JP2008231564A - Method of manufacturing copper fine particle - Google Patents

Method of manufacturing copper fine particle Download PDF

Info

Publication number
JP2008231564A
JP2008231564A JP2007077354A JP2007077354A JP2008231564A JP 2008231564 A JP2008231564 A JP 2008231564A JP 2007077354 A JP2007077354 A JP 2007077354A JP 2007077354 A JP2007077354 A JP 2007077354A JP 2008231564 A JP2008231564 A JP 2008231564A
Authority
JP
Japan
Prior art keywords
copper
fine particles
reduction reaction
copper fine
reaction solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007077354A
Other languages
Japanese (ja)
Other versions
JP5202858B2 (en
Inventor
Hideo Nishikubo
英郎 西久保
Hidemichi Fujiwara
英道 藤原
Takuya Harada
琢也 原田
Yoshiaki Ogiwara
吉章 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2007077354A priority Critical patent/JP5202858B2/en
Publication of JP2008231564A publication Critical patent/JP2008231564A/en
Application granted granted Critical
Publication of JP5202858B2 publication Critical patent/JP5202858B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a metal fine particle by which a copper fine particle small in particle diameter, narrow in particle size distribution, excellent in dispersion stability and suppressive in formation of dendrite can be mass-manufactured by a simple process. <P>SOLUTION: The method of manufacturing the copper fine particle is carried out by depositing the copper fine particle having 1-500 nm particle diameter by a reducing reaction of copper ion in a reducing reaction solution in which at least copper ion, halogen ion and an organic dispersing medium are dissolved. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、銅イオンの還元反応により粒子径が1〜500nmの範囲にある銅微粒子の製造方法、及び該方法により得られた銅微粒子に関する。   The present invention relates to a method for producing copper fine particles having a particle diameter in the range of 1 to 500 nm by a reduction reaction of copper ions, and copper fine particles obtained by the method.

従来から、金属微粒子は、融点の低下、触媒活性、磁気特性、比熱特性、光学特性の変化等を発現することから、電子材料、触媒材料、蛍光体材料、発光体材料等の分野で広く用いられている。特に、電子材料用の導電性ペーストのような配線形成材料として、プリント配線、半導体の内部配線、プリント配線板と電子部品との接続等に利用されている。最近では、インクジェットプリンターを用いて金属微粒子を含有するインクにより配線パターンの印刷を行い、低温焼成して配線を形成する技術が着目され、研究開発が進められている。しかし、インクジェットプリンターの場合、インクに含まれる金属微粒子は、インク中において長期間分散性を保つことが要請されており、そのため金属微粒子のより微細化が必要となっている。   Conventionally, metal fine particles have been widely used in the fields of electronic materials, catalyst materials, phosphor materials, phosphor materials, etc. because they exhibit melting point reduction, catalytic activity, magnetic properties, specific heat properties, changes in optical properties, etc. It has been. In particular, it is used as a wiring forming material such as a conductive paste for electronic materials for printed wiring, semiconductor internal wiring, connection between a printed wiring board and an electronic component, and the like. Recently, a technique for printing a wiring pattern with ink containing metal fine particles using an ink jet printer and firing at a low temperature to form a wiring has attracted attention, and research and development have been promoted. However, in the case of an ink jet printer, the metal fine particles contained in the ink are required to maintain dispersibility in the ink for a long period of time, and therefore, it is necessary to make the metal fine particles finer.

下記特許文献1には、銅(I)アンミン錯イオンを含む水溶液に酸を加えてpHを低下させ、銅(I)イオン(Cu)を、銅(II)イオン(Cu2+)と金属銅(Cu)とに不均化分解反応させることによって、銅を析出させることを特徴とする銅微粒子製造方法が記載されている。
特許文献2には、塩化銅(II)を添加して成るデキストリン・銅水溶液に、還元剤として水素化ホウ素ナトリウムを加えて銅イオンを還元・析出する銅ナノ粒子製造方法が開示されている。
特許文献3には、10〜100nm程度の粒径の銅ナノ粒子を提供するために、有機溶媒中で、該有機溶媒に溶解可能な銅を構成元素とする化合物と、多価アルコールと、保護剤とを含む組成液を非酸化条件下で加熱することによって還元された銅ナノ粒子の形成が開示されている。
特許文献4には、銅の酸化物、水酸化物又は塩をポリエチレングリコール又はエチレングリコール溶液中で加熱還元して銅微粒子を得る方法において、核生成のためのパラジウムイオンを添加すると共に、分散剤としてポリエチレンイミンを添加し、パラジウムを含有する粒径50nm以下の銅微粒子を得る方法が記載されている。
In the following Patent Document 1, an acid is added to an aqueous solution containing a copper (I) ammine complex ion to lower the pH, so that the copper (I) ion (Cu + ), the copper (II) ion (Cu 2+ ) and the metal copper are added. A copper fine particle production method is described, in which copper is precipitated by causing a disproportionation decomposition reaction with (Cu).
Patent Document 2 discloses a method for producing copper nanoparticles, in which sodium borohydride is added as a reducing agent to a dextrin / copper aqueous solution obtained by adding copper (II) chloride to reduce and precipitate copper ions.
In Patent Document 3, in order to provide copper nanoparticles having a particle diameter of about 10 to 100 nm, a compound having copper as a constituent element, a polyhydric alcohol, and a protective compound in an organic solvent are provided. The formation of copper nanoparticles reduced by heating a composition solution containing an agent under non-oxidizing conditions is disclosed.
In Patent Document 4, in a method of obtaining copper fine particles by heating and reducing copper oxide, hydroxide or salt in a polyethylene glycol or ethylene glycol solution, palladium ion for nucleation is added and a dispersing agent is added. Describes a method of adding polyethyleneimine to obtain copper fine particles containing palladium and having a particle size of 50 nm or less.

特開2002−363618号公報JP 2002-363618 A 特開2003−213311号公報JP 2003-213111 A 特開2005−281781号公報JP 2005-281781 A 特開2005−330552号公報JP 2005-330552 A

上記特許文献1の銅微粒子製造方法では不均化分解反応によるので、反応収量が必ずしも十分といえない。特許文献2の銅ナノ粒子製造方法にはAu、Ag、Pd、Pt、Ru、Rh等の貴金属の場合は、加熱のみで還元反応が生じるために、還元剤を使用せずに金属ナノ粒子を合成することが可能であり、還元剤の除去が不要であると記載されている。一方、Cu、Co、Ni等は、加熱のみでは還元され難いために、還元剤を使用することが好ましいと記載されているが、還元反応後に還元剤を効率よく除去して高純度の銅微粒子を合成する方法は開示されていない。   Since the copper fine particle production method of Patent Document 1 uses a disproportionation decomposition reaction, the reaction yield is not necessarily sufficient. In the method for producing copper nanoparticles of Patent Document 2, in the case of noble metals such as Au, Ag, Pd, Pt, Ru, and Rh, a reduction reaction occurs only by heating. Therefore, metal nanoparticles are used without using a reducing agent. It is described that it can be synthesized and removal of the reducing agent is unnecessary. On the other hand, since Cu, Co, Ni, etc. are difficult to be reduced only by heating, it is described that it is preferable to use a reducing agent. However, after the reduction reaction, the reducing agent is efficiently removed to obtain high purity copper fine particles. A method for synthesizing is not disclosed.

特許文献3に記載の銅ナノ粒子の形成法では、銅化合物(例えばアセチルアセトナト銅錯体)と還元剤として機能しうる多価アルコールで金属イオンを還元する方法が適用されるが、還元反応後にポリビニルピロリドン等の保護剤成分が付与された状態の銅ナノ粒子の精製法については開示されていない。特許文献4に記載の銅微粒子製造方法では、ポリエチレングリコール又はエチレングリコールを用いて得られる銅微粒子の分散性を向上しているが得られる微粒子のデンドライト化の抑制する対策が開示されていない。また、パラジウムイオンの添加が必要であるという問題点もある。
粒径が小さく、分散安定性に優れかつデンドロイト化が抑制された銅微粒子を、簡便な方法でかつ大量に生成することのできる製造方法は未だ確率されていない。
In the method of forming copper nanoparticles described in Patent Document 3, a method of reducing metal ions with a copper compound (for example, acetylacetonato copper complex) and a polyhydric alcohol that can function as a reducing agent is applied. There is no disclosure of a method for purifying copper nanoparticles in a state where a protective agent component such as polyvinylpyrrolidone is applied. In the method for producing copper fine particles described in Patent Document 4, the dispersibility of copper fine particles obtained using polyethylene glycol or ethylene glycol is improved, but measures for suppressing dendrite formation of the obtained fine particles are not disclosed. There is also a problem that it is necessary to add palladium ions.
A production method that can produce a large amount of copper fine particles having a small particle size, excellent dispersion stability, and dendrite formation suppressed by a simple method has not yet been established.

本発明者らは、上記従来技術に鑑みて、還元反応溶液に有機物分散媒とハロゲンイオンとの存在下に銅イオンの還元反応を行うと得られる銅微粒子の分散性が向上すると共にデンドライト化も抑制されることを見出し、本発明を完成するに至った。
即ち、本発明は、少なくとも、銅イオン、ハロゲンイオン、及び有機物分散媒が溶解している還元反応溶液において、銅イオンの還元反応により粒子径が1〜500nmの範囲にある銅微粒子を析出させることを特徴とする、銅微粒子の製造方法に関する発明である。
In view of the above prior art, the present inventors improve the dispersibility of copper fine particles obtained by reducing copper ions in a reduction reaction solution in the presence of an organic dispersion medium and halogen ions, and improve dendrite formation. The present inventors have found that it is suppressed and have completed the present invention.
That is, the present invention deposits copper fine particles having a particle diameter in the range of 1 to 500 nm by a reduction reaction of copper ions in a reduction reaction solution in which at least copper ions, halogen ions, and organic dispersion media are dissolved. It is invention regarding the manufacturing method of copper fine particles characterized by these.

本発明の「銅微粒子の製造方法」においては更に下記(2)ないし(9)に記載の態様とすることができる。
(2)前記ハロゲンイオンが、フッ素イオン、塩素イオン、臭素イオン、及び沃素イオンから選択される1種又は2種以上であって、これらのハロゲンイオンの供給源が塩化水素、塩化カリウム、塩化ナトリウム、塩化第一銅、塩化第二銅、臭化水素、臭化カリウム、臭化ナトリウム、臭化第一銅、臭化第二銅、沃化水素、沃化カリウム、沃化ナトリウム、沃化第一銅、沃化第二銅、フッ化水素、フッ化カリウム、フッ化ナトリウム、フッ化第一銅、フッ化第二銅、塩化カルシウム、塩化バリウム、塩化アンモニウム、臭化カルシウム、臭化バリウム、臭化アンモニウム、沃化カルシウム、沃化バリウム、沃化アンモニウム、及び弗化アンモニウムから選択される1種又は2種以上である。
(3)前記還元反応溶液におけるハロゲンイオン濃度が0.002〜1.0モル/リットルである。
(4)前記有機物分散媒が水溶性の高分子化合物であって、ポリビニルピロリドン、ポリエチレンイミン、ポリアクリル酸、カルボキシメチルセルロース、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、デンプン、及びゼラチンから選択される1種又は2種以上である。
In the “method for producing copper fine particles” of the present invention, the embodiments described in the following (2) to (9) can be used.
(2) The halogen ion is one or more selected from fluorine ion, chlorine ion, bromine ion and iodine ion, and the source of these halogen ions is hydrogen chloride, potassium chloride, sodium chloride , Cuprous chloride, cupric chloride, hydrogen bromide, potassium bromide, sodium bromide, cuprous bromide, cupric bromide, hydrogen iodide, potassium iodide, sodium iodide, iodine iodide Cuprous, cupric iodide, hydrogen fluoride, potassium fluoride, sodium fluoride, cuprous fluoride, cupric fluoride, calcium chloride, barium chloride, ammonium chloride, calcium bromide, barium bromide, One or more selected from ammonium bromide, calcium iodide, barium iodide, ammonium iodide, and ammonium fluoride.
(3) The halogen ion concentration in the reduction reaction solution is 0.002 to 1.0 mol / liter.
(4) The organic dispersion medium is a water-soluble polymer compound selected from polyvinyl pyrrolidone, polyethyleneimine, polyacrylic acid, carboxymethylcellulose, polyacrylamide, polyvinyl alcohol, polyethylene oxide, starch, and gelatin. Or it is 2 or more types.

(5)前記還元反応溶液における有機物分散媒の添加量が該還元反応溶液に存在する銅原子に対する質量比([有機物分散媒/Cu]質量比)で0.01〜30である。
(6)前記還元反応溶液に存在する銅原子が0.01〜4.0モル/リットルとなるように銅化合物を添加する。
(7)前記還元反応による、銅微粒子の製造方法が、前記還元反応溶液中に設けられたアノードとカソード間に電位を加えることによりカソード表面付近に銅微粒子を析出させる方法。
(8)前記還元反応による、銅微粒子の製造方法が、前記還元反応溶液に還元剤を加えることにより、銅微粒子を析出させる。
(9)前記還元剤が水素化ホウ素ナトリウム、ヒドラジン、ジメチルアミノボラン、及びトリメチルアミノボランの中から選択された1種又は2種以上である。
(5) The addition amount of the organic dispersion medium in the reduction reaction solution is 0.01 to 30 in terms of mass ratio ([organic dispersion medium / Cu] mass ratio) to copper atoms present in the reduction reaction solution.
(6) A copper compound is added so that the copper atoms present in the reduction reaction solution are 0.01 to 4.0 mol / liter.
(7) The method for producing copper fine particles by the reduction reaction, wherein the copper fine particles are deposited near the cathode surface by applying a potential between the anode and the cathode provided in the reduction reaction solution.
(8) The manufacturing method of the copper fine particle by the said reduction reaction deposits a copper fine particle by adding a reducing agent to the said reduction reaction solution.
(9) The reducing agent is one or more selected from sodium borohydride, hydrazine, dimethylaminoborane, and trimethylaminoborane.

本発明の「銅微粒子の製造方法」により、粒径が小さく、粒度分布が比較的狭く、分散安定性に優れ、デンドライト状の凝集が抑制された球状の銅粒子を析出することが可能である。このように粒径が小さく、しかもデンドライト状の凝集は見られない球状の粒子は、インクジェットプリンター用インク等に好適に使用することができる。   By the “method for producing copper fine particles” of the present invention, spherical copper particles having a small particle size, a relatively narrow particle size distribution, excellent dispersion stability, and dendrite-like aggregation can be precipitated. . Such spherical particles having a small particle size and no dendrite-like aggregation can be suitably used for ink for ink jet printers and the like.

以下、本発明の構成について詳述する。
本発明の「銅微粒子の製造方法」は、少なくとも、銅イオン、ハロゲンイオン、及び有機物分散媒が溶解している水溶液において、銅イオンの還元反応により粒子径が1〜500nmの範囲にある銅微粒子を析出させることを特徴とする。後述するように、上記還元反応は、電解還元、及び無電解還元の双方の手段を用いることができる。
尚、以下、電解還元において還元反応が行われる溶液を還元反応溶液といい、無電解還元において、少なくとも銅イオン、ハロゲンイオン等が溶解されている水溶液を反応水溶液といい、少なくとも還元剤が溶解されている水溶液を還元剤水溶液といい、前記反応水溶液と還元剤水溶液を混合した溶液を還元反応溶液という。尚、有機物分散媒は、単独で添加してもよく、反応水溶液、又は還元剤水溶液に添加してもよい。
Hereinafter, the configuration of the present invention will be described in detail.
The “copper fine particle production method” of the present invention is a copper fine particle having a particle diameter in the range of 1 to 500 nm by a reduction reaction of copper ion in an aqueous solution in which at least copper ions, halogen ions, and an organic dispersion medium are dissolved. It is characterized by precipitating. As will be described later, the reduction reaction can use both electrolytic reduction and electroless reduction.
Hereinafter, a solution that undergoes a reduction reaction in electrolytic reduction is referred to as a reduction reaction solution, and an aqueous solution in which at least copper ions, halogen ions, and the like are dissolved in electroless reduction is referred to as a reaction aqueous solution, and at least a reducing agent is dissolved. The aqueous solution is called a reducing agent aqueous solution, and a solution obtained by mixing the reaction aqueous solution and the reducing agent aqueous solution is called a reduction reaction solution. The organic dispersion medium may be added alone or in an aqueous reaction solution or an aqueous reducing agent solution.

〔1〕還元反応溶液
還元反応溶液を構成する銅イオン、有機物分散媒、及びハロゲンイオンについて説明する。この還元反応溶液は、電解還元又と電解還元に共通して使用できる。
(1)銅イオン
還元反応溶液中に存在する銅イオンは、電解還元又は無電解還元により銅微粒子を生成する。
銅イオンは、一価ないし二価の銅イオンを生成するイオン性化合物を使用することができる。
使用可能なイオン性化合物として、酢酸銅、硝酸銅、ハロゲン化銅、シアン化銅、ピロリン酸銅、硫酸銅等が挙げられるが,酢酸銅の使用が好ましく、実用上酢酸銅(II)の1水和物((CHCOO)Cu・1HO)の使用が特に望ましい。還元反応溶液中の好ましい銅原子濃度は、0.01〜4.0モル/リットルである。銅原子が0.01モル/リットル未満では、銅粒子の生成量が低減し反応相からの銅微粒子の収率が低下するという不都合を生じ、4.0モル/リットルを超えると生成される粒子間での粗大な凝集がおこるおそれがある。よリ好ましい銅原子濃度は、0.05〜0.5モル/リットルである。
[1] Reduction Reaction Solution The copper ions, organic dispersion medium, and halogen ions that constitute the reduction reaction solution will be described. This reduction reaction solution can be used in common for electrolytic reduction or electrolytic reduction.
(1) Copper ions Copper ions present in the reduction reaction solution generate copper fine particles by electrolytic reduction or electroless reduction.
As the copper ion, an ionic compound that generates monovalent to divalent copper ions can be used.
Usable ionic compounds include copper acetate, copper nitrate, copper halide, copper cyanide, copper pyrophosphate, copper sulfate, etc., but the use of copper acetate is preferred, and practically one of copper (II) acetate. The use of hydrates ((CH 3 COO) 2 Cu · 1H 2 O) is particularly desirable. A preferable copper atom concentration in the reduction reaction solution is 0.01 to 4.0 mol / liter. If the copper atom is less than 0.01 mol / liter, the production amount of copper particles is reduced, resulting in a disadvantage that the yield of copper fine particles from the reaction phase is reduced, and particles produced when the amount exceeds 4.0 mol / liter. There is a risk of coarse aggregation between the two. A more preferable copper atom concentration is 0.05 to 0.5 mol / liter.

(2)有機物分散媒
本発明における有機物分散媒の作用についてのメカニズムは、明らかではないが、有機物分散媒は、還元反応溶液に存在して、銅イオンが還元されて結晶核が生成するのを助長し、更に析出してくる銅粒子結晶を分散させる機能を有しているものと推定される。
有機物分散媒としては、上記機能を有するものであれば特に限定されるものではないが、このような機能を有する好ましいものとして、水溶性の高分子化合物が挙げられる。該水溶性の高分子化合物としてポリビニルピロリドン、ポリエチレンイミン等のアミン系の高分子;ポリアクリル酸、カルボキシメチルセルロース等のカルボン酸基を有する炭化水素系高分子;ポリアクリルアミド等のアクリルアミド;ポリビニルアルコール、ポリエチレンオキシド、更にはデンプン、ゼラチン等が例示できる。
(2) Organic dispersion medium The mechanism of the action of the organic dispersion medium in the present invention is not clear, but the organic dispersion medium is present in the reduction reaction solution, and copper ions are reduced to produce crystal nuclei. It is presumed to have a function of promoting and further dispersing the precipitated copper particle crystals.
Although it will not specifically limit if it has the said function as an organic substance dispersion medium, A water-soluble high molecular compound is mentioned as a preferable thing which has such a function. Examples of the water-soluble polymer compound include amine polymers such as polyvinylpyrrolidone and polyethyleneimine; hydrocarbon polymers having a carboxylic acid group such as polyacrylic acid and carboxymethylcellulose; acrylamides such as polyacrylamide; Examples thereof include ethylene oxide, starch, gelatin and the like.

上記例示した水溶性の高分子化合物の具体例として、ポリビニルピロリドン(分子量:1000〜500、000)、ポリエチレンイミン(分子量:100〜100,000)、カルボキシメチルセルロース(ヒドロキシル基Na塩のカルボキシメチル基への置換度:0.4以上、分子量:1000〜100,000)、ポリアクリルアミド(分子量:100〜6,000,000)、ポリビニルアルコール(分子量:1000〜100,000)、ポリエチレングリコール(分子量:100〜50,000)、ポリエチレンオキシド(分子量:50,000〜900,000)、ゼラチン(平均分子量:61,000〜67,000)、水溶性のデンプン等が挙げられる。上記かっこ内にそれぞれの高分子化合物の数平均分子量を示すが、このような分子量範囲にあるものは水溶性を有するので、本発明の有機物分散媒として好適に使用できる。尚、これらの2種以上を混合して使用することもできる。
また、有機物分散媒の添加量は、還元反応溶液に存在する銅原子に対する質量比([有機物分散媒/Cu]質量比)は0.01〜30が好ましい。有機物分散媒の添加量が前記30を超えると溶液の粘性が高くなり還元反応終了後の銅粒子精製に支障をきたす場合がある。一方、前記0.01未満では粒子分散の効果が発揮されなくなる。より好ましい上記添加量は、0.5〜10である。
Specific examples of the water-soluble polymer compound exemplified above include polyvinylpyrrolidone (molecular weight: 1000 to 500,000), polyethyleneimine (molecular weight: 100 to 100,000), carboxymethyl cellulose (to the carboxymethyl group of the hydroxyl group Na salt). Substitution degree: 0.4 or more, molecular weight: 1000 to 100,000, polyacrylamide (molecular weight: 100 to 6,000,000), polyvinyl alcohol (molecular weight: 1000 to 100,000), polyethylene glycol (molecular weight: 100) -50,000), polyethylene oxide (molecular weight: 50,000-900,000), gelatin (average molecular weight: 61,000-67,000), water-soluble starch and the like. The number average molecular weight of each polymer compound is shown in the parentheses, but those having such molecular weight range are water-soluble and can be suitably used as the organic dispersion medium of the present invention. In addition, these 2 or more types can also be mixed and used.
Moreover, as for the addition amount of an organic substance dispersion medium, 0.01-30 are preferable for the mass ratio ([organic substance dispersion medium / Cu] mass ratio) with respect to the copper atom which exists in a reduction reaction solution. When the addition amount of the organic dispersion medium exceeds 30, the viscosity of the solution becomes high, which may hinder the purification of copper particles after the reduction reaction. On the other hand, if it is less than 0.01, the effect of particle dispersion is not exhibited. The more preferable addition amount is 0.5 to 10.

(3)ハロゲンイオン
本発明におけるハロゲンイオンの作用についてのメカニズムは、明らかではないが、ハロゲンイオンが還元反応溶液中に好適な濃度範囲で存在していると、銅の結晶核の生成を促進すると共に、還元反応により銅微粒子の結晶が結晶核から成長する際にデンドライト状の凝集を顕著に抑制して、結晶が略球状に成長していくのを助長しているものと推定される。
一方、還元反応溶液中ハロゲンイオンを存在させずに、銅化合物及び有機物分散媒が溶解している水溶液から電解還元により銅微粒子を析出させた場合には、析出した結晶中に原料の銅化合物の混入、及び該銅化合物の結晶面を介して結晶がデンドライト状に成長していく。
従って、ハロゲンイオンは、還元反応溶液中でデンドライト状の凝集を顕著に抑制して、粒子が略球状に成長するのを助長していることが確認される。
(3) Halogen ion The mechanism of the action of the halogen ion in the present invention is not clear, but if the halogen ion is present in a suitable concentration range in the reduction reaction solution, the formation of copper crystal nuclei is promoted. At the same time, it is presumed that dendrite-like aggregation is remarkably suppressed when crystals of copper fine particles grow from crystal nuclei due to a reduction reaction, thereby promoting the growth of crystals into a substantially spherical shape.
On the other hand, when copper fine particles are precipitated by electrolytic reduction from an aqueous solution in which the copper compound and the organic dispersion medium are dissolved without the presence of halogen ions in the reduction reaction solution, the raw material copper compound The crystal grows in a dendrite shape through mixing and the crystal plane of the copper compound.
Therefore, it is confirmed that the halogen ions remarkably suppress dendrite-like aggregation in the reduction reaction solution and promote the growth of the particles into a substantially spherical shape.

このようなハロゲンイオンは、フッ素イオン、塩素イオン、臭素イオン、及び沃素イオンから選択される1種又は2種以上であり、イオン性ハロゲン化物が該ハロゲンイオンの供給源となることができ、その具体例としては、塩化水素、塩化カリウム、塩化ナトリウム、塩化第一銅、塩化第二銅、臭化水素、臭化カリウム、臭化ナトリウム、臭化第一銅、臭化第二銅、沃化水素、沃化カリウム、沃化ナトリウム、沃化第一銅、沃化第二銅、フッ化水素、フッ化カリウム、フッ化ナトリウム、フッ化第一銅、フッ化第二銅、塩化カルシウム、塩化バリウム、塩化アンモニウム、臭化カルシウム、臭化バリウム、臭化アンモニウム、沃化カルシウム、沃化バリウム、沃化アンモニウム、弗化アンモニウム等が挙げられる。これらは2種以上であってもよい。
上記ハロゲンイオンのうち特に好ましいのは、塩素イオンである。
Such halogen ions are one or more selected from fluorine ions, chlorine ions, bromine ions, and iodine ions, and an ionic halide can serve as a source of the halogen ions. Specific examples include hydrogen chloride, potassium chloride, sodium chloride, cuprous chloride, cupric chloride, hydrogen bromide, potassium bromide, sodium bromide, cuprous bromide, cupric bromide, iodide. Hydrogen, potassium iodide, sodium iodide, cuprous iodide, cupric iodide, hydrogen fluoride, potassium fluoride, sodium fluoride, cuprous fluoride, cupric fluoride, calcium chloride, chloride Examples thereof include barium, ammonium chloride, calcium bromide, barium bromide, ammonium bromide, calcium iodide, barium iodide, ammonium iodide, and ammonium fluoride. Two or more of these may be used.
Of the halogen ions, particularly preferred are chlorine ions.

還元反応溶液中での上記ハロゲンイオンの濃度は、還元反応溶液中において0.002〜1.0モル/リットル(L)が好ましい。ハロゲンイオンの濃度が前記0.002モル/L未満では一価ないし二価の銅イオン性化合物の混入という不都合を生じ、1.0モル/Lを超えるとハロゲンイオンの除去に不都合を生じる場合がある。
より好ましいハロゲンイオンの濃度は、0.005〜0.2モル/Lである。
The concentration of the halogen ion in the reduction reaction solution is preferably 0.002 to 1.0 mol / liter (L) in the reduction reaction solution. When the halogen ion concentration is less than 0.002 mol / L, there is a problem that a monovalent or divalent copper ionic compound is mixed. is there.
A more preferable halogen ion concentration is 0.005 to 0.2 mol / L.

(4)その他の添加剤
還元反応溶液のpH調整等は特に不要である。光沢剤(アミン誘導体とエピハロヒドリンとのモル比1:1の反応生成物等)や光沢補助剤(パラホルムアルデヒド等のアルデヒド誘導体)は添加すると析出物が膜状となり、粒子状物の析出を抑制するので添加は避けるべきである。
以下に、本発明の銅微粒子の製造方法の具体例である、電解還元と無電解還元について説明する。
(4) Other additives It is not particularly necessary to adjust the pH of the reduction reaction solution. Addition of brighteners (reaction products with a 1: 1 molar ratio of amine derivative to epihalohydrin) and gloss adjuvants (aldehyde derivatives such as paraformaldehyde) form a precipitate that suppresses the precipitation of particulate matter. Addition should be avoided.
Below, the electrolytic reduction and the electroless reduction which are the specific examples of the manufacturing method of the copper fine particle of this invention are demonstrated.

〔2〕電解還元
(1)還元反応溶液
還元反応溶液は、少なくとも銅イオン、ハロゲンイオン、及び有機物分散媒を含む溶液である。
それぞれの好ましい濃度は上記した通りである。
(2)電極
陰極材料としては、白金、カーボン等の棒状、板状電極、ドット電極のようなナノ構造電極が例示でき、陽極としては、Cu、カーボン、白金等の棒状・板状・網状の形状電極が例示できる。尚、陰極表面付近に析出した粒子を脱離、回収するために陰極に超音波振動等の揺動を与えることが可能な構造とすることもできる。
[2] Electrolytic reduction (1) Reduction reaction solution The reduction reaction solution is a solution containing at least copper ions, halogen ions, and an organic dispersion medium.
Each preferable concentration is as described above.
(2) Electrode Examples of the cathode material include rod-shaped platinum, carbon and the like, plate-like electrodes, and nanostructure electrodes such as dot electrodes, and examples of the anode include rod-like, plate-like and net-like shapes such as Cu, carbon and platinum. A shape electrode can be illustrated. In addition, in order to desorb and collect particles deposited in the vicinity of the cathode surface, it is possible to adopt a structure capable of imparting oscillation such as ultrasonic vibration to the cathode.

(3)電流密度、電解温度
電流密度は好ましくは0.01〜100kA/dm2 、より好ましくは0.1〜50kA/dm2 程度であり、直流のほかパルス電流とすることもできる。
還元温度は、10〜70℃が好ましく、10〜40℃がより好ましい。還元温度は、高温になるほど還元反応速度は速くなり、低温になるほど析出する粒子の粒径は小さくなる傾向がある。
(4)電解還元操作と生成銅微粒子の回収
以下に電解還元方法を例示するが本発明は下記方法に限定されるものではない。
先ず、上記した電極を有する浴中に還元反応溶液を調製し、上記した条件で電解還元反応を行う。還元反応終了後、カソード表面付近に析出した銅微粒子を回収して、エチルアルコール等の溶剤で洗浄して真空乾燥させる。
尚、析出した銅微粒子を精製する必要がある場合の精製法の例を以下に記載する。
還元反応溶液から回収した銅微粒子に水を加えて撹拌洗浄して遠心分離機で銅微粒子を回収する水洗操作を数度(1度又は2度以上)行い、次にエタノール等のアルコールを添加して撹拌洗浄後、遠心分離機で銅微粒子を回収する洗浄操作を数度(1度又は2度以上)行い、その後、得られた結晶を回収する。尚、必要により精製した銅微粒子をエチレングリコール等の溶剤中に分散させて保存することもできる。
(3) current density, electrolyte temperature current density is preferably 0.01~100kA / dm 2, more preferably about 0.1~50kA / dm 2, can be with other pulse current of the direct current.
10-70 degreeC is preferable and, as for reduction temperature, 10-40 degreeC is more preferable. As the reduction temperature increases, the reduction reaction rate increases, and as the temperature decreases, the particle size of the precipitated particles tends to decrease.
(4) Electrolytic reduction operation and recovery of generated copper fine particles The electrolytic reduction method is exemplified below, but the present invention is not limited to the following method.
First, a reduction reaction solution is prepared in a bath having the above-described electrode, and an electrolytic reduction reaction is performed under the above-described conditions. After completion of the reduction reaction, the copper fine particles deposited near the cathode surface are collected, washed with a solvent such as ethyl alcohol and vacuum dried.
In addition, the example of the refinement | purification method when it is necessary to refine | purify the deposited copper fine particle is described below.
Water is added to the copper fine particles collected from the reduction reaction solution, washed with stirring, and then washed with water to collect the copper fine particles with a centrifuge several times (once or twice), and then alcohol such as ethanol is added. After stirring and washing, a washing operation for collecting the copper fine particles with a centrifugal separator is performed several times (once or twice or more), and then the obtained crystals are collected. If necessary, the refined copper fine particles can be dispersed and stored in a solvent such as ethylene glycol.

〔3〕無電解還元の場合
(1)還元反応溶液
還元反応溶液は、少なくとも銅イオン、ハロゲンイオン、有機物分散媒、及び還元剤を含む溶液である。
還元剤は、めっきを行う際に通常使用されている還元剤が使用可能であり、水素化ホウ素ナトリウム、ヒドラジン、水素化アルミニウムリチウム等が例示できるが特に好ましいのは、水素化ホウ素ナトリウムである。還元反応溶液中の還元剤の濃度は、還元反応溶液に存在する銅原子に対するモル比([還元剤/Cu]モル比)で10〜500が好ましく、10〜100がより好ましい。
(2)無電解還元操作
窒素雰囲気下で行うのが好ましく、還元温度は10〜50℃が好ましい。pHは特に調整する必要はないが、還元反応溶液のpHは11.5〜12.5程度である。
還元剤の添加方法は、特に制限はなく、一括仕込みしてもよく、銅イオン、ハロゲンイオン、及び有機物分散媒を含む溶液中に連続的に滴下してもよい。
反応溶液をよく撹拌しながら、反応させて銅微粒子を析出させる。
[3] In the case of electroless reduction (1) Reduction reaction solution The reduction reaction solution is a solution containing at least copper ions, halogen ions, an organic dispersion medium, and a reducing agent.
As the reducing agent, a reducing agent usually used in plating can be used, and examples thereof include sodium borohydride, hydrazine, lithium aluminum hydride and the like, but sodium borohydride is particularly preferable. The concentration of the reducing agent in the reduction reaction solution is preferably 10 to 500, more preferably 10 to 100 in terms of a molar ratio ([reducing agent / Cu] molar ratio) to copper atoms present in the reduction reaction solution.
(2) Electroless reduction operation It is preferably performed in a nitrogen atmosphere, and the reduction temperature is preferably 10 to 50 ° C. Although it is not necessary to adjust the pH, the pH of the reduction reaction solution is about 11.5 to 12.5.
The method for adding the reducing agent is not particularly limited, and may be charged all at once, or may be continuously dropped into a solution containing copper ions, halogen ions, and an organic dispersion medium.
The reaction solution is reacted with good stirring to precipitate copper fine particles.

(3)生成銅微粒子の回収、精製
以下に上記無電解還元で得られた銅微粒子の精製例について記載する。
無電解還元反応終了後に還元反応溶液に凝集促進剤を添加して銅微粒子を凝集沈殿させる。該沈殿した銅微粒子を還元反応溶液からから分離回収して、溶剤により洗浄し、更に使用した溶剤を除去することにより精製することができる。以下にその具体例を記載する。
無電解還元反応終了後に、得られた銅微粒子を含む還元反応溶液に、例えばクロロホルムのような凝集促進剤を添加してよく攪拌する。攪拌後、遠心分離機等に供給して、粒子成分を沈殿回収する。
次に、粒子成分を水等の溶媒に入れ、例えば超音波ホモジナイザーを用いてよく攪拌した後、遠心分離機で粒子成分を回収する洗浄を1度又は2度以上行う、続いて、必要により回収された粒子成分に有機溶媒を添加して、超音波ホモジナイザー等によりよく攪拌した後、遠心分離機で粒子成分を回収する有機溶媒洗浄を1度又は2度以上行う。
上記有機溶媒としては、炭素数1〜5のアルコールが使用でき、この中でもメタノール又はエタノールが好ましい。
尚、前記凝集促進剤として好ましいのは、エチレンクロロヒドリン、塩化アリル、塩化エチル、塩化ベンジル、塩化メチル、塩化メチレン、クロロナフタリン、クロロプロピレン、クロロベンゾール、クロロホルム、クロロプレン、四塩化アセチレン、四塩化エタン、四塩化炭素、ジクロロルエタン、ジクロロエチレン、ジクロロベンゾール、トリクロロルエチレン、トリクロロルメタン、ブロムベンゾール、ブロモホルム、ヘキサクロロエタン等の中から選択された少なくとも1種又は2種以上である。このような凝集促進剤の添加量は、還元反応溶液に存在する銅原子質量に対して(mol/銅原子質量(g))比で0.01〜10.0が好ましく、0.1〜1.0がより好ましい。
以上の操作により、還元剤等の不純物が十分に除去された銅微粒子が得ることができる。
(3) Recovery and purification of produced copper fine particles Examples of purification of copper fine particles obtained by the above electroless reduction are described below.
After completion of the electroless reduction reaction, an aggregation accelerator is added to the reduction reaction solution to coagulate and precipitate the copper fine particles. The precipitated copper fine particles can be separated and recovered from the reduction reaction solution, washed with a solvent, and further purified by removing the used solvent. Specific examples are described below.
After completion of the electroless reduction reaction, an agglomeration promoter such as chloroform is added to the resulting reduction reaction solution containing copper fine particles and stirred well. After stirring, the mixture is supplied to a centrifuge or the like to collect and collect the particle components.
Next, the particle component is put into a solvent such as water, and after thoroughly stirring using, for example, an ultrasonic homogenizer, washing is performed once or twice or more with a centrifuge, and then recovered as necessary. An organic solvent is added to the obtained particle component, and the mixture is thoroughly stirred with an ultrasonic homogenizer or the like, and then washed with an organic solvent to collect the particle component with a centrifuge once or twice or more.
As said organic solvent, a C1-C5 alcohol can be used, Methanol or ethanol is preferable among these.
Preferred as the aggregation accelerator is ethylene chlorohydrin, allyl chloride, ethyl chloride, benzyl chloride, methyl chloride, methylene chloride, chloronaphthalene, chloropropylene, chlorobenzole, chloroform, chloroprene, acetylene tetrachloride, tetrachloride. It is at least one or more selected from ethane, carbon tetrachloride, dichloroethane, dichloroethylene, dichlorobenzole, trichloroethylene, trichloromethane, brombenzol, bromoform, hexachloroethane and the like. The addition amount of such an aggregation accelerator is preferably 0.01 to 10.0 in terms of (mol / copper atom mass (g)) with respect to the copper atom mass present in the reduction reaction solution. 0.0 is more preferable.
By the above operation, copper fine particles from which impurities such as a reducing agent are sufficiently removed can be obtained.

〔4〕生成銅微粒子
上記電解還元で得られる銅微粒子には、ハロゲン化銅が5質量%以下、酸化銅が1質量%以下で還元剤や他の金属は含まれない。不純物である該ハロゲン化銅の除去は溶媒を用いた洗浄により比較的容易であるので、比較的容易な操作で高純度の銅微粒子を得ることができる。
また、無電解還元により得られる銅微粒子に含まれる還元剤は上記した凝集促進剤を使用して銅微粒子を凝集させて分離回収後に洗浄することにより容易に精製することができる。
上記した電解還元及び無電解還元により得られる銅微粒子は、粒径が1〜500nm程度の範囲にあり、その形状はデンドライト状に凝集していない略球状の微粒子である。
尚、還元反応にハロゲンイオンを使用しないと、銅イオンの原料となる銅化合物(例えば酢酸銅II一水和物を原料に使用すると、無水酢酸銅(II))が20〜30質量%混入し、更に得られる微粒子は、複数の基本粒子がデンドライト状に凝集をおこしており、1ミクロンから10ミクロンぐらいの凝集体になる。
[4] Fine copper particles The copper fine particles obtained by the above electrolytic reduction contain 5% by mass or less of copper halide and 1% by mass or less of copper oxide and do not contain a reducing agent or other metals. Since removal of the copper halide as an impurity is relatively easy by washing with a solvent, high-purity copper fine particles can be obtained by a relatively easy operation.
Moreover, the reducing agent contained in the copper fine particles obtained by electroless reduction can be easily purified by aggregating the copper fine particles using the above-described aggregation accelerator and washing after separation and recovery.
The copper fine particles obtained by the above-described electrolytic reduction and electroless reduction are substantially spherical fine particles having a particle diameter in the range of about 1 to 500 nm and not agglomerated in a dendritic shape.
In addition, if halogen ions are not used for the reduction reaction, copper compound (for example, copper acetate II monohydrate used as a raw material for copper ion II) is mixed in an amount of 20 to 30% by mass. Further, in the fine particles obtained, a plurality of basic particles are aggregated in a dendritic form, and become aggregates of about 1 to 10 microns.

以下本発明を実施例により具体的に説明するが、本発明は以下の実施例に限定されるものではない。
[実施例1]
銅イオンの電解還元反応により銅微粒子を生成させ、得られた銅微粒子の評価を行った。
尚、還元反応溶液中のハロゲンイオン濃度は0.01モル/リットル(L)とした。
(1)銅微粒子の調製
銅イオンとして酢酸銅(II)の1水和物((CHCOO)Cu・1HO)20g、有機物分散剤としてポリビニルピロリドン5g([有機物分散剤/Cu]質量比で0.78)、及びハロゲンイオンとして0.1mol/Lの塩酸100mlを使用して、還元反応溶液を1L調製した。pHは約5.0であった。
次にこの溶液中で白金板陰極(カソード電極)(片面16mm)と白金板陽極(アノード電極)と間を25℃で1分間通電し還元反応を行った。この時、印加した電流密度は0.01mA/mm以下とした。
得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、透過電子顕微鏡(TEM)による観測結果、粒子径は5〜300nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。得られた銅微粒子は銅純度94質量%以上、塩化銅2質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
[Example 1]
Copper fine particles were generated by electrolytic reduction reaction of copper ions, and the obtained copper fine particles were evaluated.
The halogen ion concentration in the reduction reaction solution was 0.01 mol / liter (L).
(1) Preparation of copper fine particles Copper acetate (II) monohydrate ((CH 3 COO) 2 Cu · 1H 2 O) 20 g as a copper ion, polyvinyl pyrrolidone 5 g ([organic matter dispersant / Cu] as an organic dispersant) Using a mass ratio of 0.78) and 100 ml of 0.1 mol / L hydrochloric acid as a halogen ion, 1 L of a reduction reaction solution was prepared. The pH was about 5.0.
Next, a reduction reaction was carried out in this solution by passing a current between a platinum plate cathode (cathode electrode) (single side 16 mm 2 ) and a platinum plate anode (anode electrode) at 25 ° C. for 1 minute. At this time, the applied current density was set to 0.01 mA / mm 2 or less.
The obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced copper fine particles The copper fine particles were observed with a transmission electron microscope (TEM). As a result, the particle diameter was in the range of 5 to 300 nm, the shape was substantially spherical, and no dendrite-like aggregation was observed. The obtained copper fine particles had a copper purity of 94% by mass or more, copper chloride of 2% by mass or less, copper oxide of 1% by mass or less, and anhydrous copper acetate of 1% by mass or less.

[実施例2]
(1)銅微粒子の調製
電極として陰極に白金ドット電極を用いた以外は、実施例1と同様にして、銅イオンの電解還元反応を行った。尚、上記白金ドット電極は、白金基板上に互いに樹脂で絶縁された平均径が50nm程度の樹枝状の白金突起が形成された電極である。
得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、透過電子顕微鏡(TEM)による観測結果、粒径は2〜200nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は銅純度94質量%以上、塩化銅2質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
[Example 2]
(1) Preparation of copper fine particles An electrolytic reduction reaction of copper ions was carried out in the same manner as in Example 1 except that a platinum dot electrode was used as the cathode as the electrode. The platinum dot electrode is an electrode in which dendritic platinum protrusions having an average diameter of about 50 nm and insulated from each other by a resin are formed on a platinum substrate.
The obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of generated copper fine particles The copper fine particles were observed with a transmission electron microscope (TEM). As a result, the particle diameter was in the range of 2 to 200 nm, the shape was substantially spherical, and dendrite-like aggregation was not observed.
The obtained copper fine particles had a copper purity of 94% by mass or more, copper chloride of 2% by mass or less, copper oxide of 1% by mass or less, and anhydrous copper acetate of 1% by mass or less.

[実施例3]
還元反応溶液中のハロゲンイオン濃度を0.1モル/Lとして、銅イオンの電解還元反応により銅微粒子を生成させ、該銅微粒子の評価を行った。
(1)銅微粒子の調製
塩酸濃度を塩酸0.1モル/Lとした以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。還元反応溶液のpHは約4.9であった。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、粒径は3〜250nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は、銅純度92質量%以上、塩化銅5質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
[Example 3]
Copper fine particles were generated by electrolytic reduction reaction of copper ions at a halogen ion concentration in the reduction reaction solution of 0.1 mol / L, and the copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and a reduction reaction was performed in the same manner as in Example 1 except that the hydrochloric acid concentration was 0.1 mol / L hydrochloric acid. The pH of the reduction reaction solution was about 4.9.
After completion of the reduction reaction, the obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced copper fine particles The copper fine particles were observed with a fine transmission electron microscope (TEM). As a result, the particle diameter was in the range of 3 to 250 nm, the shape was substantially spherical, and no dendrite-like aggregation was observed.
The obtained copper fine particles had a copper purity of 92% by mass or more, copper chloride of 5% by mass or less, copper oxide of 1% by mass or less, and anhydrous copper acetate of 1% by mass or less.

[実施例4]
還元反応溶液中のハロゲンイオン濃度を1モル/Lとして、銅イオンの電解還元反応により銅微粒子を生成させ、該銅微粒子の評価を行った。
(1)銅微粒子の調製
塩酸濃度を塩酸1モル/Lとした以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。還元反応溶液のpHは約4.8であった。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、粒径は1〜200nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は、銅純度90質量%以上、塩化銅7質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった
[Example 4]
Copper fine particles were generated by electrolytic reduction reaction of copper ions at a halogen ion concentration in the reduction reaction solution of 1 mol / L, and the copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and a reduction reaction was performed in the same manner as in Example 1 except that the hydrochloric acid concentration was 1 mol / L of hydrochloric acid. The pH of the reduction reaction solution was about 4.8.
After completion of the reduction reaction, the obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced copper fine particles The copper fine particles were observed with a fine transmission electron microscope (TEM). As a result, the particle diameter was in the range of 1 to 200 nm, the shape was substantially spherical, and no dendrite-like aggregation was observed.
The obtained copper fine particles had a copper purity of 90% by mass or more, copper chloride of 7% by mass or less, copper oxide of 1% by mass or less, and anhydrous copper acetate of 1% by mass or less.

[比較例1]
還元反応溶液中のハロゲンイオン濃度を0モル/Lとして、銅イオンの電解還元反応により銅微粒子を生成させ、該銅微粒子の評価を行った。
(1)銅微粒子の調製
塩酸濃度を塩酸0モル/Lとした以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、1次粒子の粒径は5〜300nmの範囲であったが、析出した結晶に無水酢酸銅の混入が見られた。また、結晶形状はデンドライト状に凝集して、1〜10μmの凝集体になっていることが観察された。
得られた結晶は、銅純度70〜80質量%、酸化銅1質量%以下,無水酢酸銅20〜30質量%以下であった。
[Comparative Example 1]
Copper fine particles were produced by electrolytic reduction of copper ions at a halogen ion concentration in the reduction reaction solution of 0 mol / L, and the copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and a reduction reaction was performed in the same manner as in Example 1 except that the hydrochloric acid concentration was changed to 0 mol / L of hydrochloric acid.
After completion of the reduction reaction, the obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of generated copper fine particles Observation of copper fine particles with a fine transmission electron microscope (TEM) showed that primary particles had a particle size in the range of 5 to 300 nm, but the precipitated crystals were mixed with anhydrous copper acetate. It was observed. Moreover, it was observed that the crystal shape aggregated in a dendrite shape to form an aggregate of 1 to 10 μm.
The obtained crystals had a copper purity of 70 to 80% by mass, copper oxide of 1% by mass or less, and anhydrous copper acetate of 20 to 30% by mass or less.

[比較例2]
(1)銅微粒子の調製
電極として陰極に、実施例2で使用したと同様の白金ドット電極を用いた以外は、比較例1と同様にして、銅イオンの電解還元反応を行った。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、1次粒子の粒径は2〜250nmの範囲であったが、析出した結晶に無水酢酸銅の混入が見られた。また、結晶形状はデンドライト状に凝集して、1〜10μmの凝集体になっていることが観察された。
得られた銅微粒子は、銅純度70〜80質量%、酸化銅1質量%以下、無水酢酸銅20〜30質量%以下であった。
[Comparative Example 2]
(1) Preparation of copper fine particles An electrolytic reduction reaction of copper ions was performed in the same manner as in Comparative Example 1 except that the same platinum dot electrode as that used in Example 2 was used as the cathode.
(2) Evaluation of generated copper fine particles Observation of copper fine particles with a fine transmission electron microscope (TEM) showed that the primary particles had a particle size in the range of 2 to 250 nm, but the precipitated crystals were mixed with anhydrous copper acetate. It was observed. Moreover, it was observed that the crystal shape aggregated in a dendrite shape to form an aggregate of 1 to 10 μm.
The obtained copper fine particles had a copper purity of 70 to 80% by mass, copper oxide of 1% by mass or less, and anhydrous copper acetate of 20 to 30% by mass or less.

[実施例5]
還元反応溶液中のハロゲンイオンとして臭素イオンを使用して、銅イオンの電解還元反応により銅微粒子を生成させ、該銅微粒子の評価を行った。
(1)銅微粒子の調製
還元反応溶液中で0.1モル/Lとなるように臭化水素を使用した以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。還元反応溶液のpHは約4.7であった。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、粒径は3〜320nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は、銅純度93質量%以上、臭化銅4質量%以下,酸化銅1質量%以下,無水酢酸銅1質量%以下であった。
[Example 5]
Using bromine ions as halogen ions in the reduction reaction solution, copper fine particles were produced by electrolytic reduction reaction of copper ions, and the copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and subjected to a reduction reaction in the same manner as in Example 1 except that hydrogen bromide was used so as to be 0.1 mol / L in the reduction reaction solution. The pH of the reduction reaction solution was about 4.7.
After completion of the reduction reaction, the obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced copper fine particles The copper fine particles were observed with a fine transmission electron microscope (TEM). As a result, the particle diameter was in the range of 3 to 320 nm, the shape was substantially spherical, and no dendrite-like aggregation was observed.
The obtained copper fine particles had a copper purity of 93 mass% or more, copper bromide 4 mass% or less, copper oxide 1 mass% or less, and anhydrous copper acetate 1 mass% or less.

[実施例6]
還元反応溶液中のハロゲンイオンとして沃素イオンを使用して、銅イオンの電解還元反応により銅微粒子を生成させ、該銅微粒子の評価を行った。
(1)銅微粒子の調製
還元反応溶液中で0.1モル/Lとなるように沃化水素を使用した以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。還元反応溶液のpHは約4.6であった。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、粒径は3〜250nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は、銅純度94質量%以上、沃化銅3質量%以下,酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
[Example 6]
Copper ions were produced by electrolytic reduction of copper ions using iodine ions as halogen ions in the reduction reaction solution, and the copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and subjected to a reduction reaction in the same manner as in Example 1 except that hydrogen iodide was used in the reduction reaction solution at 0.1 mol / L. The pH of the reduction reaction solution was about 4.6.
After completion of the reduction reaction, the obtained colloid solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced copper fine particles The copper fine particles were observed with a fine transmission electron microscope (TEM). As a result, the particle diameter was in the range of 3 to 250 nm, the shape was substantially spherical, and no dendrite-like aggregation was observed.
The obtained copper fine particles had a copper purity of 94 mass% or more, copper iodide 3 mass% or less, copper oxide 1 mass% or less, and anhydrous copper acetate 1 mass% or less.

[実施例7]
実施例1で使用した還元反応溶液中のポリビニルピロリドン濃度を低くした条件で、銅イオンの電解還元反応により銅微粒子を生成させ、得られた銅微粒子の評価を行った。
(1)銅微粒子の調製
ポリビニルピロリドンを0.5g([有機物分散剤/Cu]質量比で0.078)とした以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。還元反応溶液のpHは約5.0であった。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、粒径は7〜400nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は、銅純度92質量%以上、塩化銅5質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
[Example 7]
Under the condition that the polyvinylpyrrolidone concentration in the reduction reaction solution used in Example 1 was lowered, copper fine particles were generated by electrolytic reduction reaction of copper ions, and the obtained copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and subjected to a reduction reaction in the same manner as in Example 1 except that polyvinylpyrrolidone was changed to 0.5 g ([organic matter dispersing agent / Cu] mass ratio of 0.078). It was. The pH of the reduction reaction solution was about 5.0.
After completion of the reduction reaction, the obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced | generated copper fine particle About the copper fine particle, as a result of observation by a fine particle transmission electron microscope (TEM), the particle diameter was in the range of 7 to 400 nm, the shape was substantially spherical, and dendrite-like aggregation was not observed.
The obtained copper fine particles had a copper purity of 92% by mass or more, copper chloride of 5% by mass or less, copper oxide of 1% by mass or less, and anhydrous copper acetate of 1% by mass or less.

[実施例8]
実施例1で使用した還元反応溶液中のポリビニルピロリドン濃度を高くした条件で、銅イオンの電解還元反応により銅微粒子を生成させ、得られた銅微粒子の評価を行った。
(1)銅微粒子の調製
ポリビニルピロリドン濃度を20g([有機物分散剤/Cu]質量比で3.14)とした以外は実施例1と同様に、還元反応溶液を調製し、還元反応を行った。還元反応溶液のpHは約5.0であった。
還元反応終了後、得られたコロイド溶液を、カーボン支持膜をとりつけたアルミメッシュ上に採取し、溶媒を乾燥除去した後、2mgの銅微粒子を得た。
(2)生成した銅微粒子の評価
銅微粒子について、微粒透過電子顕微鏡(TEM)による観測結果、粒径は3〜250nmの範囲で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた銅微粒子は、銅純度95質量%以上、塩化銅2質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
[Example 8]
Under the condition that the polyvinylpyrrolidone concentration in the reduction reaction solution used in Example 1 was increased, copper fine particles were generated by electrolytic reduction reaction of copper ions, and the obtained copper fine particles were evaluated.
(1) Preparation of copper fine particles A reduction reaction solution was prepared and subjected to a reduction reaction in the same manner as in Example 1 except that the polyvinylpyrrolidone concentration was 20 g ([organic matter dispersing agent / Cu] mass ratio: 3.14). . The pH of the reduction reaction solution was about 5.0.
After completion of the reduction reaction, the obtained colloidal solution was collected on an aluminum mesh to which a carbon support film was attached, and after removing the solvent by drying, 2 mg of copper fine particles were obtained.
(2) Evaluation of produced copper fine particles The copper fine particles were observed with a fine transmission electron microscope (TEM). As a result, the particle diameter was in the range of 3 to 250 nm, the shape was substantially spherical, and no dendrite-like aggregation was observed.
The obtained copper fine particles had a copper purity of 95% by mass or more, copper chloride of 2% by mass or less, copper oxide of 1% by mass or less, and anhydrous copper acetate of 1% by mass or less.

[実施例9]
銅イオンの無電解還元反応により銅微粒子を生成させ、得られた銅微粒子の評価を行った。
(1)銅微粒子の調製
酢酸銅(II)の1水和物((CHCOO)Cu・1HO)2.0g、0.1規定の塩酸10ml、及び有機物分散媒としてポリビニルピロリドン(PVP、数平均分子量:3500)0.5g([有機物分散剤/Cu]質量比で0.78)を蒸留水に溶解させた水溶液100mlに、金属イオン還元剤として5.0mol/Lとなるように水素化ホウ素ナトリウムを混合した。
攪拌溶解させた後、窒素ガス雰囲気中で、約60分間よく攪拌しながら反応させた結果、有機物分散媒としてPVPで被覆された銅微粒子が得られた。
次に、上記方法で得られた有機物保護皮膜で被覆された銅微粒子の水分散液100mlに、凝集促進剤の一例としてハロゲン系炭化水素の一つである四塩化炭素を、5ml添加してよく攪拌した。数分間攪拌した後、反応液を遠心分離機に入れ、粒子成分を沈殿回収した。
[Example 9]
Copper fine particles were generated by an electroless reduction reaction of copper ions, and the obtained copper fine particles were evaluated.
(1) Preparation of Copper Fine Particles Copper acetate (II) monohydrate ((CH 3 COO) 2 Cu · 1H 2 O) 2.0 g, 0.1 N hydrochloric acid 10 ml, and polyvinylpyrrolidone as an organic dispersion medium ( PVP, number average molecular weight: 3500) In 100 ml of an aqueous solution in which 0.5 g (0.78 in terms of mass ratio of [organic matter dispersing agent / Cu]) was dissolved in distilled water, it was 5.0 mol / L as a metal ion reducing agent. Was mixed with sodium borohydride.
After stirring and dissolving, the reaction was conducted in a nitrogen gas atmosphere with good stirring for about 60 minutes. As a result, copper fine particles coated with PVP as an organic dispersion medium were obtained.
Next, 5 ml of carbon tetrachloride, which is one of halogen-based hydrocarbons, may be added to 100 ml of an aqueous dispersion of copper fine particles coated with the organic protective film obtained by the above method as an example of an aggregation accelerator. Stir. After stirring for several minutes, the reaction solution was put into a centrifuge and the particle components were collected by precipitation.

その後、試験管に得られた粒子と適量の蒸留水とを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離機で粒子成分を回収する水洗浄を3回、続いて、同じく試験管中で、得られた粒子と適量のエタノールとを入れ、超音波ホモジナイザーを用いてよく攪拌した後、遠心分離器で粒子成分を回収するアルコール洗浄を3回行った。
洗浄後の粒子成分を遠心分離により分離し、銅微粒子を得た。
また上記の方法によって得られた銅微粒子を、分散溶媒の一例としてエチレングリコールに混合することで、銅微粒子分散液を得た。
Then, after putting the particles obtained in a test tube and an appropriate amount of distilled water, stirring well with an ultrasonic homogenizer, washing with water to collect the particle components with a centrifuge three times, followed by the same test tube Inside, the obtained particles and an appropriate amount of ethanol were added, and after thoroughly stirring using an ultrasonic homogenizer, alcohol washing for recovering the particle components was performed three times with a centrifuge.
The washed particle component was separated by centrifugation to obtain copper fine particles.
Moreover, the copper fine particle obtained by said method was mixed with ethylene glycol as an example of a dispersion solvent, and the copper fine particle dispersion liquid was obtained.

(2)生成した銅微粒子の評価
得られた銅微粒子分散液をカーボン蒸着された銅メッシュ上に塗布乾燥し、日本電子製透過型電子顕微鏡(TEM)で観察を行ったところ、得られた銅微粒子は平均粒径1〜100nmのナノサイズの超微粒子で、形状は略球状でデンドライト状の凝集は観察されなかった。
得られた結晶は塩化銅3質量%以下、酸化銅1質量%以下、無水酢酸銅1質量%以下であった。
(2) Evaluation of generated copper fine particles The obtained copper fine particle dispersion was applied and dried on a carbon-deposited copper mesh and observed with a transmission electron microscope (TEM) manufactured by JEOL. The fine particles were nano-sized ultrafine particles having an average particle diameter of 1 to 100 nm, the shape was substantially spherical, and dendrite-like aggregation was not observed.
The obtained crystals were 3% by mass or less of copper chloride, 1% by mass or less of copper oxide, and 1% by mass or less of anhydrous copper acetate.

Claims (9)

少なくとも、銅イオン、ハロゲンイオン、及び有機物分散媒が溶解している還元反応溶液において、銅イオンの還元反応により粒子径が1〜500nmの範囲にある銅微粒子を析出させることを特徴とする、銅微粒子の製造方法。   At least in a reduction reaction solution in which copper ions, halogen ions, and an organic dispersion medium are dissolved, copper fine particles having a particle diameter in the range of 1 to 500 nm are precipitated by a reduction reaction of copper ions. A method for producing fine particles. 前記ハロゲンイオンが、フッ素イオン、塩素イオン、臭素イオン、及び沃素イオンから選択される1種又は2種以上であって、これらのハロゲンイオンの供給源が塩化水素、塩化カリウム、塩化ナトリウム、塩化第一銅、塩化第二銅、臭化水素、臭化カリウム、臭化ナトリウム、臭化第一銅、臭化第二銅、沃化水素、沃化カリウム、沃化ナトリウム、沃化第一銅、沃化第二銅、フッ化水素、フッ化カリウム、フッ化ナトリウム、フッ化第一銅、フッ化第二銅、塩化カルシウム、塩化バリウム、塩化アンモニウム、臭化カルシウム、臭化バリウム、臭化アンモニウム、沃化カルシウム、沃化バリウム、沃化アンモニウム、及び弗化アンモニウムから選択される1種又は2種以上である、請求項1に記載の銅微粒子の製造方法。   The halogen ion is one or more selected from fluorine ion, chlorine ion, bromine ion and iodine ion, and the source of these halogen ions is hydrogen chloride, potassium chloride, sodium chloride, chloride chloride Cuprous, cupric chloride, hydrogen bromide, potassium bromide, sodium bromide, cuprous bromide, cupric bromide, hydrogen iodide, potassium iodide, sodium iodide, cuprous iodide, Cupric iodide, hydrogen fluoride, potassium fluoride, sodium fluoride, cuprous fluoride, cupric fluoride, calcium chloride, barium chloride, ammonium chloride, calcium bromide, barium bromide, ammonium bromide The method for producing copper fine particles according to claim 1, which is one or more selected from calcium iodide, barium iodide, ammonium iodide, and ammonium fluoride. 前記還元反応溶液におけるハロゲンイオン濃度が0.002〜1.0モル/リットルである、請求項1又は2に記載の銅微粒子の製造方法。   The method for producing copper fine particles according to claim 1 or 2, wherein a halogen ion concentration in the reduction reaction solution is 0.002 to 1.0 mol / liter. 前記有機物分散媒が水溶性の高分子化合物であって、ポリビニルピロリドン、ポリエチレンイミン、ポリアクリル酸、カルボキシメチルセルロース、ポリアクリルアミド、ポリビニルアルコール、ポリエチレンオキシド、デンプン、及びゼラチンから選択される1種又は2種以上である、請求項1ないし3のいずれか1項に記載の銅微粒子の製造方法。   The organic dispersion medium is a water-soluble polymer compound, and one or two selected from polyvinylpyrrolidone, polyethyleneimine, polyacrylic acid, carboxymethylcellulose, polyacrylamide, polyvinyl alcohol, polyethylene oxide, starch, and gelatin The method for producing copper fine particles according to any one of claims 1 to 3, which is as described above. 前記還元反応溶液における有機物分散媒の添加量が該還元反応溶液に存在する銅原子に対する質量比([有機物分散媒/Cu]質量比)で0.01〜30である、請求項1ないし4のいずれか1項に記載の銅微粒子の製造方法。   The addition amount of the organic dispersion medium in the reduction reaction solution is 0.01 to 30 in terms of mass ratio ([organic dispersion medium / Cu] mass ratio) to copper atoms present in the reduction reaction solution. The manufacturing method of the copper fine particle of any one of Claims 1. 前記還元反応溶液に存在する銅原子が0.01〜4.0モル/リットルとなるように銅化合物を添加することを特徴とする、請求項1ないし5のいずれか1項に記載の銅微粒子の製造方法。   The copper fine particles according to any one of claims 1 to 5, wherein a copper compound is added so that the copper atoms present in the reduction reaction solution are 0.01 to 4.0 mol / liter. Manufacturing method. 前記還元反応による、銅微粒子の製造方法が、還元反応溶液中に設けられたアノードとカソード間に電位を加えることによりカソード表面付近に銅微粒子を析出させる方法であることを特徴とする、請求項1ないし6のいずれか1項に記載の銅微粒子の製造方法。   The method for producing copper fine particles by the reduction reaction is a method of depositing copper fine particles in the vicinity of a cathode surface by applying a potential between an anode and a cathode provided in a reduction reaction solution. The method for producing copper fine particles according to any one of 1 to 6. 前記還元反応による、銅微粒子の製造方法が、還元反応溶液に還元剤を加えることにより、銅微粒子を析出させる方法であることを特徴とする、請求項1ないし6のいずれか1項に記載の銅微粒子の製造方法。   The method for producing copper fine particles by the reduction reaction is a method of depositing copper fine particles by adding a reducing agent to a reduction reaction solution. A method for producing copper fine particles. 前記還元剤が水素化ホウ素ナトリウム、ヒドラジン、ジメチルアミノボラン、及びトリメチルアミノボランの中から選択された1種又は2種以上である、請求項8に記載の銅微粒子の製造方法。   The method for producing copper fine particles according to claim 8, wherein the reducing agent is one or more selected from sodium borohydride, hydrazine, dimethylaminoborane, and trimethylaminoborane.
JP2007077354A 2007-03-23 2007-03-23 Method for producing copper fine particles Expired - Fee Related JP5202858B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007077354A JP5202858B2 (en) 2007-03-23 2007-03-23 Method for producing copper fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007077354A JP5202858B2 (en) 2007-03-23 2007-03-23 Method for producing copper fine particles

Publications (2)

Publication Number Publication Date
JP2008231564A true JP2008231564A (en) 2008-10-02
JP5202858B2 JP5202858B2 (en) 2013-06-05

Family

ID=39904717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007077354A Expired - Fee Related JP5202858B2 (en) 2007-03-23 2007-03-23 Method for producing copper fine particles

Country Status (1)

Country Link
JP (1) JP5202858B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090443A (en) * 2008-10-08 2010-04-22 Furukawa Electric Co Ltd:The Method for producing fine particle of copper alloy
JP2010133015A (en) * 2008-10-27 2010-06-17 Furukawa Electric Co Ltd:The Method of preparing copper fine particle dispersion aqueous solution and method of storing copper fine particles dispersion aqueous solution
JP2010222603A (en) * 2009-03-19 2010-10-07 Furukawa Electric Co Ltd:The Method for producing dispersion liquid of copper fine particle
JP2011052284A (en) * 2009-09-02 2011-03-17 Hokkaido Univ Method for producing metal fine particle
JP2011058027A (en) * 2009-09-07 2011-03-24 Fukuda Metal Foil & Powder Co Ltd Aggregate of electrolytic copper powder and method of producing the electrolytic copper powder
WO2011114751A1 (en) 2010-03-19 2011-09-22 古河電気工業株式会社 Conductive connecting member and manufacturing method of same
JP2011202245A (en) * 2010-03-26 2011-10-13 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle provided by the manufacturing method
JP2011208274A (en) * 2010-03-26 2011-10-20 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same and method for producing the same
WO2012046666A1 (en) * 2010-10-06 2012-04-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
US20120328469A1 (en) * 2011-06-24 2012-12-27 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
JP2013129859A (en) * 2011-12-20 2013-07-04 Waseda Univ Production method of metal fine particle, and production apparatus
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
JP2014156627A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Method of producing copper fine particle, and copper fine particle dispersion solution
JP2015105413A (en) * 2013-11-29 2015-06-08 住友金属鉱山株式会社 Method for manufacturing gold powder with high bulk density
JP2015108183A (en) * 2013-10-24 2015-06-11 住友金属鉱山株式会社 Copper powder and manufacturing method therefor, and copper paste using the same
JP2016102249A (en) * 2014-11-28 2016-06-02 住友金属鉱山株式会社 Method for producing electrolytic copper powder
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
WO2018092671A1 (en) 2016-11-18 2018-05-24 古河電気工業株式会社 Bonding film, tape for wafer processing, method for producing bonded object, and bonded object
WO2018116813A1 (en) 2016-12-21 2018-06-28 古河電気工業株式会社 Bonding film and tape for wafer processing
WO2021010171A1 (en) 2019-07-16 2021-01-21 古河電気工業株式会社 Bonding film, tape for wafer processing, method for producing bonded object, and bonded object and pasted object
CN113369486A (en) * 2021-06-17 2021-09-10 中科检测技术服务(重庆)有限公司 Preparation method of nano-copper particles for solar cell panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516995A (en) * 1996-07-30 2000-12-19 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for producing solvent-stabilized metal colloid and metal cluster fixed on support
JP2003213311A (en) * 2002-01-22 2003-07-30 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal nanoparticle
JP2005307335A (en) * 2004-03-25 2005-11-04 Sumitomo Metal Mining Co Ltd Copper fine particle, production method therefor and copper fine particle-dispersed liquid
JP2006104572A (en) * 2004-09-08 2006-04-20 Tokyo Univ Of Science Metal ultramicroparticle organosol, method for producing the same, metal ultramicroparticle, and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000516995A (en) * 1996-07-30 2000-12-19 シュトゥディエンゲゼルシャフト・コーレ・ミット・ベシュレンクテル・ハフツング Method for producing solvent-stabilized metal colloid and metal cluster fixed on support
JP2003213311A (en) * 2002-01-22 2003-07-30 Sumitomo Osaka Cement Co Ltd Method for manufacturing metal nanoparticle
JP2005307335A (en) * 2004-03-25 2005-11-04 Sumitomo Metal Mining Co Ltd Copper fine particle, production method therefor and copper fine particle-dispersed liquid
JP2006104572A (en) * 2004-09-08 2006-04-20 Tokyo Univ Of Science Metal ultramicroparticle organosol, method for producing the same, metal ultramicroparticle, and method for producing the same

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090443A (en) * 2008-10-08 2010-04-22 Furukawa Electric Co Ltd:The Method for producing fine particle of copper alloy
JP2010133015A (en) * 2008-10-27 2010-06-17 Furukawa Electric Co Ltd:The Method of preparing copper fine particle dispersion aqueous solution and method of storing copper fine particles dispersion aqueous solution
JP2010222603A (en) * 2009-03-19 2010-10-07 Furukawa Electric Co Ltd:The Method for producing dispersion liquid of copper fine particle
JP2011052284A (en) * 2009-09-02 2011-03-17 Hokkaido Univ Method for producing metal fine particle
JP2011058027A (en) * 2009-09-07 2011-03-24 Fukuda Metal Foil & Powder Co Ltd Aggregate of electrolytic copper powder and method of producing the electrolytic copper powder
WO2011114751A1 (en) 2010-03-19 2011-09-22 古河電気工業株式会社 Conductive connecting member and manufacturing method of same
JP2011202245A (en) * 2010-03-26 2011-10-13 Furukawa Electric Co Ltd:The Method of manufacturing copper alloy fine particle and copper alloy fine particle provided by the manufacturing method
JP2011208274A (en) * 2010-03-26 2011-10-20 Samsung Electro-Mechanics Co Ltd Method for producing metal nanoparticle, ink composition using the same and method for producing the same
WO2012046666A1 (en) * 2010-10-06 2012-04-12 旭硝子株式会社 Electrically conductive copper particles, process for producing electrically conductive copper particles, composition for forming electrically conductive body, and base having electrically conductive body attached thereto
JPWO2012046666A1 (en) * 2010-10-06 2014-02-24 旭硝子株式会社 Conductive copper particles, method for producing conductive copper particles, composition for forming conductor, and substrate with conductor
JP5720693B2 (en) * 2010-10-06 2015-05-20 旭硝子株式会社 Method for producing conductive copper particles
US20120328469A1 (en) * 2011-06-24 2012-12-27 Carestream Health, Inc. Nanowire preparation methods, compositions, and articles
JP2013129859A (en) * 2011-12-20 2013-07-04 Waseda Univ Production method of metal fine particle, and production apparatus
JP2014156627A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Method of producing copper fine particle, and copper fine particle dispersion solution
JP2015108183A (en) * 2013-10-24 2015-06-11 住友金属鉱山株式会社 Copper powder and manufacturing method therefor, and copper paste using the same
JP2015105413A (en) * 2013-11-29 2015-06-08 住友金属鉱山株式会社 Method for manufacturing gold powder with high bulk density
JP2014129609A (en) * 2014-03-07 2014-07-10 Hokkaido Univ Method for producing copper fine particle
JP2016102249A (en) * 2014-11-28 2016-06-02 住友金属鉱山株式会社 Method for producing electrolytic copper powder
JP2017002364A (en) * 2015-06-11 2017-01-05 古河電気工業株式会社 Dispersion solution of surface-coated metal particulate, and methods of producing sintered electrical conductor and electrically conductive connection member, including steps of applying and sintering the dispersion solution
WO2018092671A1 (en) 2016-11-18 2018-05-24 古河電気工業株式会社 Bonding film, tape for wafer processing, method for producing bonded object, and bonded object
WO2018116813A1 (en) 2016-12-21 2018-06-28 古河電気工業株式会社 Bonding film and tape for wafer processing
WO2021010171A1 (en) 2019-07-16 2021-01-21 古河電気工業株式会社 Bonding film, tape for wafer processing, method for producing bonded object, and bonded object and pasted object
CN113369486A (en) * 2021-06-17 2021-09-10 中科检测技术服务(重庆)有限公司 Preparation method of nano-copper particles for solar cell panel
CN113369486B (en) * 2021-06-17 2023-06-16 中科检测技术服务(重庆)有限公司 Preparation method of nano copper particles for solar cell panel

Also Published As

Publication number Publication date
JP5202858B2 (en) 2013-06-05

Similar Documents

Publication Publication Date Title
JP5202858B2 (en) Method for producing copper fine particles
JP2014019877A (en) Method for producing copper fine particle
JP5392910B2 (en) Method for producing copper fine particles
JP5065072B2 (en) Method for producing copper fine particles
JP5898400B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP3635451B2 (en) Metal powder, method for producing the same, and conductive paste
JP5520504B2 (en) Method for producing copper fine particle dispersion
JP4279329B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP5306966B2 (en) Method for producing copper fine particle dispersed aqueous solution and method for storing copper fine particle dispersed aqueous solution
JP2008050691A (en) Method for producing fine particle, fine particle obtained by using the production method, method for producing fine particle dispersion, fine particle dispersion obtained by using the production method, and conductive material
JP5424545B2 (en) Copper fine particles, production method thereof, and copper fine particle dispersion
JP5213592B2 (en) Copper fine powder, dispersion thereof and method for producing copper fine powder
JP5566743B2 (en) Method for producing copper alloy fine particles
JP5922810B1 (en) Fine particles, fine particle dispersion solution, and method for producing fine particles
JP2013177677A (en) Method for producing copper fine particle, copper fine particle dispersion, and method for preserving copper fine particle dispersion
JP4100244B2 (en) Nickel powder and method for producing the same
JP4248002B2 (en) Fine particle dispersion and method for producing fine particle dispersion
JP5376109B2 (en) Method for producing silver fine particles
JP4735939B2 (en) Method for producing alloy fine particles and alloy fine particles and metal colloid solution produced thereby
JP2008223096A (en) Method for manufacturing flaky silver powder
JP5435611B2 (en) Method for producing copper alloy fine particles
JP5761716B2 (en) Metal fine particle carrier in which metal fine particles are supported on carbon material and method for producing the same
JP5566794B2 (en) Method for producing metal fine particles
Xie et al. Functionalized carbon nanotubes in platinum decoration
JP6004643B2 (en) Method and apparatus for producing metal fine particles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100104

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R151 Written notification of patent or utility model registration

Ref document number: 5202858

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees