JP2008228622A - Trigeneration system of greenhouse for protected horticulture - Google Patents

Trigeneration system of greenhouse for protected horticulture Download PDF

Info

Publication number
JP2008228622A
JP2008228622A JP2007070928A JP2007070928A JP2008228622A JP 2008228622 A JP2008228622 A JP 2008228622A JP 2007070928 A JP2007070928 A JP 2007070928A JP 2007070928 A JP2007070928 A JP 2007070928A JP 2008228622 A JP2008228622 A JP 2008228622A
Authority
JP
Japan
Prior art keywords
carbon dioxide
greenhouse
heat
prime mover
reservoir
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007070928A
Other languages
Japanese (ja)
Other versions
JP4846632B2 (en
Inventor
Takao Nakagaki
隆雄 中垣
Yukio Ohashi
幸夫 大橋
Takashi Amamiya
隆 雨宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007070928A priority Critical patent/JP4846632B2/en
Publication of JP2008228622A publication Critical patent/JP2008228622A/en
Application granted granted Critical
Publication of JP4846632B2 publication Critical patent/JP4846632B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/20Reduction of greenhouse gas [GHG] emissions in agriculture, e.g. CO2

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon dioxide feeding device and system of a greenhouse for protected horticulture, easily removing impurities contained in exhaust gas, efficiently using CO<SB>2</SB>for application, and capable of greatly saving energy to be considerate to the environment. <P>SOLUTION: This trigeneration system of a greenhouse for protected horticulture includes supplying electric power, heat and carbon dioxide to a greenhouse for protected horticulture. The trigeneration system has a motor 11 which supplies fuel containing carbon to produce electric power, a waste heat collecting vessel 13 which is connected to the motor 11 and collects waste heat of the motor 11, and a carbon dioxide storing vessel 12 which is arranged between the motor 11 and the waste heat collecting vessel 13, and uses a carbon dioxide absorbing material mainly containing lithium complex oxide. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、施設園芸用温室へ電力・熱・二酸化炭素を供給する施設園芸用温室のトリジェネレーションシステムの改良に関する。   The present invention relates to an improvement of a trigeneration system for a greenhouse for horticulture that supplies electric power, heat, and carbon dioxide to the greenhouse for horticulture.

周知の如く、施設園芸の温室では、夜間の冷温時に室内の暖房として加温機を用いている。この加温機は、重油や灯油のほかLPガスや都市ガスを燃料とし、バーナーで燃焼させて熱源としている。一方で、高品質な園芸作物を生産するために、温室内で光合成の原料の一つとなる二酸化炭素(以下、CO)濃度を高めるCO施用装置も普及している。加温機の排気ガスは、炭化水素である燃料を燃焼させるため大気中よりも高濃度のCOを含んでおり、この排気ガスをCO施用として直接温室内に供給する装置が実用化されている。これらの技術を開示した例としては、例えば特許文献1、特許文献2が知られている。 As is well known, in greenhouses for horticultural horticulture, warmers are used for indoor heating when the temperature is low at night. This warmer uses fuel oil, kerosene, LP gas, and city gas as fuel, and burns it with a burner as a heat source. On the other hand, in order to produce high-quality horticultural crops, CO 2 application devices that increase the concentration of carbon dioxide (hereinafter referred to as CO 2 ), which is one of the raw materials for photosynthesis in a greenhouse, are also widespread. The exhaust gas of the warmer contains CO 2 at a higher concentration than in the atmosphere in order to burn fuel that is a hydrocarbon, and a device for supplying this exhaust gas directly into the greenhouse as CO 2 application has been put into practical use. ing. As examples of disclosing these techniques, for example, Patent Document 1 and Patent Document 2 are known.

また、図10に示すように、ガスエンジンなどを原動機とした熱電併給のコージェネーションシステムを導入して、発電した電力を人工照明や農業施設の電源として利用するとともに、排気ガスから温湯として熱を回収し、温室の加温に用いるシステムも欧州を中心に普及している。さらに、このコージェネレーションシステムから出る原動機の排気ガス中に含まれるCOを温室内に供給して光合成に利用することを目的とした、いわゆる熱・電気・二酸化炭素のトリジェネレーションシステムも導入されている。 In addition, as shown in FIG. 10, a cogeneration system that uses a gas engine or the like as a prime mover is introduced to use the generated power as a power source for artificial lighting or agricultural facilities. Systems that are collected and used to warm greenhouses are also popular in Europe. In addition, a so-called heat / electricity / carbon dioxide trigeneration system was introduced for the purpose of supplying CO 2 contained in the exhaust gas of the prime mover from this cogeneration system into the greenhouse for use in photosynthesis. Yes.

図10において、図中の符番1は原動機であり、この近くにラジエータ2が配置されている。原動機1には、脱硝器3、キャタライザー4、排熱回収器5が順次接続されている。図10のシステムでは、原動機1の排熱は排熱回収器5で回収され、温室6を加温するための加熱源として利用され、余剰分は貯湯槽7に蓄熱される。
特開2004−344154号公報 特開2004−169937号公報
In FIG. 10, reference numeral 1 in the figure is a prime mover, and a radiator 2 is disposed in the vicinity thereof. A denitrator 3, a catalyzer 4, and an exhaust heat recovery device 5 are sequentially connected to the prime mover 1. In the system of FIG. 10, the exhaust heat of the prime mover 1 is recovered by the exhaust heat recovery device 5 and used as a heating source for heating the greenhouse 6, and the surplus is stored in the hot water storage tank 7.
JP 2004-344154 A JP 2004-169937 A

施設園芸において、発電した電気の大部分は人工照明等の用途に限られている。従って、冬季以外の日照が十分な期間に発電機を稼動させる場合は、余剰電力は系統を通じて売電されることになる。しかしながら、売電価格は決して高くはないため、暖房やCOを供給するために発電機を稼動させるのは、運用上あまり得策とは言えない。ところで、温室に供給される電気、熱、COのうち、最も優先順位の高いのは温室の温度を保つ熱源の確保であり、熱供給をベースにした発電機の運用がなされることになる。しかし、電気と熱の必要な時間帯は合致しないことが多く、これまでのトリジェネレーションシステムでは、貯湯槽を設けて温熱を一時貯留し、発電機の稼動していないときにも温室の加温ができるように熱源として利用するシステムが実用化されてきた。 In greenhouse horticulture, most of the electricity generated is limited to artificial lighting and other uses. Therefore, when the generator is operated during a period of sufficient sunshine other than the winter season, surplus power is sold through the grid. However, since the selling price of electricity is not high, it is not very good in terms of operation to operate a generator to supply heating or CO 2 . By the way, among the electricity, heat, and CO 2 supplied to the greenhouse, the highest priority is to secure a heat source that maintains the temperature of the greenhouse, and the generator based on the heat supply will be operated. . However, the time zones where electricity and heat are required often do not match, and conventional trigeneration systems have a hot water storage tank to temporarily store heat and warm the greenhouse even when the generator is not operating. As a heat source, a system used as a heat source has been put into practical use.

ところが、COの必要な時間帯は主に日の出の早朝から温室内換気が行われるまでの数時間である。従って、この時間帯にCO源である原動機を稼動させても、電気および熱が不要なことが多く、効率的な運用が難しかった。さらには、ガスエンジン排気ガスに含まれる窒素酸化物・硫黄酸化物や未燃炭化水素などが作物の成長阻害要因となるため、排気ガスのクリーンアップシステムとして脱硝器や触媒装置が必要となり、装置の大型化、コストアップを招いていた。 However, the necessary time zone of CO 2 is mainly several hours from early morning of sunrise to ventilation in the greenhouse. Therefore, even if the prime mover, which is a CO 2 source, is operated during this time period, electricity and heat are often unnecessary, and efficient operation is difficult. In addition, nitrogen oxides, sulfur oxides, and unburned hydrocarbons contained in gas engine exhaust gas are factors that hinder crop growth, so a denitrifier and a catalytic device are required as an exhaust gas cleanup system. Has led to an increase in size and cost.

本発明は、こうした事情を考慮してなされたもので、排気ガスに含まれる不純物を容易に取り除くとともにCOを効率よく施用に利用し,さらに大幅に省エネルギー化できる環境に配慮した施設園芸用温室のトリジェネレーションシステムを提供することを目的とする。 The present invention has been made in consideration of such circumstances, and is an environmentally-friendly greenhouse for horticultural use that can easily remove impurities contained in exhaust gas, efficiently use CO 2 for application, and can greatly save energy. The purpose is to provide a trigeneration system.

本発明(第1の発明)は、施設園芸用温室へ電力・熱・二酸化炭素を供給する施設園芸用温室のトリジェネレーションシステムにおいて、炭素を含む燃料を供給して発電する原動機と、この原動機に接続された,該原動機の排熱を回収する排熱回収器と、前記原動機と排熱回収器間に配置された,主にリチウム複合酸化物を含む二酸化炭素吸収材を用いた二酸化炭素貯留器とを具備することを特徴とするトリジェネレーションシステムである。   The present invention (first invention) is a trigeneration system for a greenhouse for horticulture that supplies electric power, heat, and carbon dioxide to a greenhouse for horticulture, and a prime mover that generates power by supplying a fuel containing carbon. A connected exhaust heat recovery device for recovering the exhaust heat of the prime mover, and a carbon dioxide storage device using a carbon dioxide absorbent mainly including a lithium composite oxide disposed between the prime mover and the exhaust heat recovery device A trigeneration system characterized by comprising:

また、本発明(第2の発明)は、施設園芸用温室へ電力・熱・二酸化炭素を供給するトリジェネレーションシステムにおいて、炭素を含む燃料を供給して発電する原動機と、この原動機に接続された,主にリチウム複合酸化物を含む二酸化炭素吸収材を用いた二酸化炭素貯留器と、発電中の原動機の燃焼排ガスの熱を貯めておく蓄熱器とを具備することを特徴とする施設園芸用温室のトリジェネレーションシステムである。   In addition, the present invention (second invention) is a trigeneration system that supplies electric power, heat, and carbon dioxide to a greenhouse for horticulture, and is connected to the prime mover that supplies fuel containing carbon to generate electricity. A greenhouse for horticultural horticulture, comprising a carbon dioxide reservoir using a carbon dioxide absorber mainly containing lithium composite oxide and a heat accumulator for storing the heat of combustion exhaust gas from the prime mover during power generation This is a trigeneration system.

本発明によれば、排気ガスに含まれる不純物を容易に取り除くとともにCOを効率よく施用に利用し,さらに大幅に省エネルギー化できる環境に配慮した施設園芸用温室のトリジェネレーションシステムを得ることができる。 According to the present invention, it is possible to obtain an environment-friendly greenhouse horticulture trigeneration system that can easily remove impurities contained in exhaust gas and efficiently use CO 2 for application, and further save energy. .

以下、本発明に係る施設園芸用温室のトリジェネレーションシステムについて説明する。
第1の発明において、前記二酸化炭素貯留器の出口側に、二酸化炭素貯留器内の二酸化炭素を温室に導入するか否かを選択可能なガス切り替え手段を更に具備し、前記原動機の稼働中は、二酸化炭素を二酸化炭素貯留器に蓄積しながら電気及び熱を温室に供給し、前記原動機の停止中は、二酸化炭素貯留器に蓄積した二酸化炭素のみを温室に供給する、2つの運転状態を選択できる運転モードを有した構成とすることが好ましい。これにより、原動機の稼働中は、後述する図3のように、二酸化炭素を二酸化炭素貯留器に蓄積しながら電気及び熱を温室に供給することになる。一方、原動機の停止中は、後述する図4のように、二酸化炭素貯留器に蓄積した二酸化炭素のみを温室に供給することになる。このように、第1の発明によれば、上述した構成を採用することにより、原動機の稼動状態に関係なく、必要な時にCOを温室に供給することができるとともに、単純な構成でクリーンなCOリッチ空気を温室に供給することができる。
The facility horticultural greenhouse trigeneration system according to the present invention will be described below.
1st invention WHEREIN: Furthermore, it has further the gas switching means which can select whether the carbon dioxide in a carbon dioxide storage device is introduce | transduced into a greenhouse at the exit side of the said carbon dioxide storage device, , Supply electricity and heat to the greenhouse while accumulating carbon dioxide in the carbon dioxide reservoir, and select two operating states to supply only the carbon dioxide accumulated in the carbon dioxide reservoir to the greenhouse while the prime mover is stopped It is preferable to have a configuration having a possible operation mode. Thus, during operation of the prime mover, electricity and heat are supplied to the greenhouse while accumulating carbon dioxide in the carbon dioxide reservoir as shown in FIG. 3 described later. On the other hand, while the prime mover is stopped, only the carbon dioxide accumulated in the carbon dioxide reservoir is supplied to the greenhouse as shown in FIG. As described above, according to the first invention, by adopting the above-described configuration, it is possible to supply CO 2 to the greenhouse when necessary regardless of the operating state of the prime mover, and a clean configuration with a simple configuration. CO 2 rich air can be supplied to the greenhouse.

第2の発明において、前記二酸化炭素貯留器の出口側に、二酸化炭素貯留器内の二酸化炭素を温室に導入するか否かを選択可能なガス切り替え手段を備えるとともに、前記蓄熱器の出口側に、蓄熱器に蓄積した熱を二酸化炭素貯留器または温室に導入するかを選択可能な熱供給切り替え手段とを更に具備し、前記原動機の稼働中は、二酸化炭素を二酸化炭素貯留器に蓄積しながら電気及び熱を温室に供給し、前記原動機の停止中は、二酸化炭素貯留器に蓄積した二酸化炭素のみを温室に供給するか、あるいは蓄熱器に蓄積した熱のみを温室に供給するか、あるいは二酸化炭素貯留器からの二酸化炭素及び蓄熱器からの熱の両者を供給する、4つの運転状態を選択可能な運転モードを有した構成とすることが好ましい。これにより、原動機の稼働中は、後述する図5のように、二酸化炭素を二酸化炭素貯留器に蓄積しながら電気及び熱を温室に供給することになる。また、原動機の停止中は、二酸化炭素貯留器に蓄積した二酸化炭素のみを温室に供給する(後述する図7参照)か、あるいは蓄熱器に蓄積した熱のみを温室に供給する(後述する図8参照)か、あるいは二酸化炭素貯留器からの二酸化炭素及び蓄熱器からの熱の両者を供給する(後述する図9参照)。   2nd invention WHEREIN: While equipped with the gas switching means which can select whether the carbon dioxide in a carbon dioxide reservoir is introduce | transduced into a greenhouse at the exit side of the said carbon dioxide reservoir, On the exit side of the said thermal storage device And heat supply switching means capable of selecting whether the heat accumulated in the heat accumulator is introduced into the carbon dioxide reservoir or the greenhouse, while carbon dioxide is accumulated in the carbon dioxide reservoir during operation of the prime mover. When electricity and heat are supplied to the greenhouse and the motor is stopped, only the carbon dioxide accumulated in the carbon dioxide reservoir is supplied to the greenhouse, or only the heat accumulated in the regenerator is supplied to the greenhouse, or It is preferable to have a configuration having an operation mode capable of selecting four operation states for supplying both carbon dioxide from the carbon reservoir and heat from the regenerator. As a result, during operation of the prime mover, electricity and heat are supplied to the greenhouse while accumulating carbon dioxide in the carbon dioxide reservoir as shown in FIG. 5 described later. Further, while the prime mover is stopped, only the carbon dioxide accumulated in the carbon dioxide reservoir is supplied to the greenhouse (see FIG. 7 described later), or only the heat accumulated in the regenerator is supplied to the greenhouse (FIG. 8 described later). Or carbon dioxide from the carbon dioxide reservoir and heat from the heat accumulator are supplied (see FIG. 9 described later).

第2の発明によれば、上述した構成を採用することにより、原動機の稼動状態に関係なく、必要な時にCOや熱を両者同時にあるいは別々に温室へ供給することができる。また、それぞれ最適な時間帯に合わせてCOや熱を温室へ供給することが可能で、運転の自由度が高い装置を構築することができる。さらに、CO供給時にCO貯留器の加熱源の一部を蓄熱器から供給することで、CO供給に伴う電力消費を大幅に削減することができる。 According to the second invention, by adopting the above-described configuration, it is possible to supply CO 2 and heat to the greenhouse simultaneously or separately when necessary regardless of the operating state of the prime mover. In addition, CO 2 and heat can be supplied to the greenhouse in accordance with the optimum time zones, respectively, and an apparatus with a high degree of freedom in operation can be constructed. Further, by supplying a portion of the heating source CO 2 reservoir from the heat accumulator during CO 2 supply, it is possible to greatly reduce the power consumption associated with the CO 2 supply.

次に、本発明の実施形態を、図面を参照して説明する。なお、本実施形態は下記に述べるものに限定されない。
(実施例1) (請求項1、2に対応)
図1に本発明に係る施設園芸温室のトリジェネレーションシステムの構成を、図2に一日の運転タイムスケジュールの一例を夫々示す。図2において、(A)は電力,熱,二酸化炭素がいつ必要とするかを示す例であり、(B)は電力,熱,二酸化炭素をいつ供給するかを示す例である。
Next, embodiments of the present invention will be described with reference to the drawings. The present embodiment is not limited to the one described below.
(Example 1) (Corresponding to Claims 1 and 2)
FIG. 1 shows a configuration of a facility horticulture greenhouse trigeneration system according to the present invention, and FIG. 2 shows an example of a daily operation time schedule. In FIG. 2, (A) is an example showing when power, heat and carbon dioxide are required, and (B) is an example showing when power, heat and carbon dioxide are supplied.

図1中の符番11は原動機を示す。原動機11は発電機を駆動させ、温室16では発電した電気を人口照明等に利用する。原動機11には、CO貯留器12,排熱回収器13が順次接続されている。また、CO貯留器12の出口側,即ちCO貯留器12と排熱回収器13を結ぶライン、及びこのラインから温室16へ分岐するラインには、夫々ガス切り替え手段としての電動ダンパー17a,17bが設けられている。電動ダンパー17a,17bにより、CO貯留器12に蓄積した二酸化炭素(CO)を温室16に導入するか否かを選択することができる。即ち、電動ダンパー17aを閉じ、電動ダンパー17bを開いた状態ではCO貯留器12からの二酸化炭素が温室16に導入され、両方の電動ダンパー17a,17bを閉じた状態ではCO貯留器12に二酸化炭素を蓄積することになる。前記原動機11、CO貯留器12、排熱回収器13及び電動ダンパー17a,17b等により、施設園芸用温室のトリジェネレーションシステムが構成されている。 Reference numeral 11 in FIG. 1 indicates a prime mover. The prime mover 11 drives a generator, and the greenhouse 16 uses the generated electricity for artificial lighting. A CO 2 reservoir 12 and an exhaust heat recovery device 13 are sequentially connected to the prime mover 11. Moreover, the outlet side of the CO 2 reservoir 12, i.e. CO 2 line connecting the reservoir 12 and the exhaust heat recovery unit 13, and a line branching from the line to the greenhouse 16, the electric damper 17a as respective gas switching means, 17b is provided. The electric dampers 17a and 17b can select whether or not to introduce the carbon dioxide (CO 2 ) accumulated in the CO 2 reservoir 12 into the greenhouse 16. That is, when the electric damper 17a is closed and the electric damper 17b is opened, carbon dioxide from the CO 2 reservoir 12 is introduced into the greenhouse 16, and when both the electric dampers 17a and 17b are closed, the CO 2 reservoir 12 is supplied. It will accumulate carbon dioxide. The prime mover 11, the CO 2 storage device 12, the exhaust heat recovery device 13, the electric dampers 17a and 17b, and the like constitute a greenhouse system greenhouse trigeneration system.

原動機11の排熱はCO貯留器12に回収され、温室16の加温のための加熱源とし利用され、余剰分は貯湯槽14に蓄熱される。なお、原動機11が往復動機関の場合、エンジンブロックを冷却するための冷却水が循環しているため、排熱回収器13と共に原動機11の近くに配置されたラジエータ15で放熱している熱を回収してもよい。原動機11から出るCOを含む排気ガスは、排熱回収器13を通る前に二酸化炭素吸収材が充填されたCO貯留器12を通り、ここでCOが蓄積される。二酸化炭素吸収材(以下、CO吸収材も同義)は、主にリチウム複合酸化物で構成され、常温から600℃までの温度範囲で下記式(1)に示す反応においてCOを吸収する。
LiSiO+CO⇔LiSiO+LiCO+Q …(1)
この反応は可逆反応であり、650℃程度に加熱すると逆反応によりCOを放出し、吸収材が再使用できる。反応に伴い、右方が発熱で左方が吸熱となる。図1は、この特徴を利用して原動機11の稼動状態と無関係にCO供給可能な構成となっている。
The exhaust heat of the prime mover 11 is collected in the CO 2 reservoir 12 and used as a heating source for heating the greenhouse 16, and the surplus is stored in the hot water storage tank 14. When the prime mover 11 is a reciprocating engine, the cooling water for cooling the engine block circulates, so the heat radiated by the radiator 15 disposed near the prime mover 11 together with the exhaust heat recovery device 13 is radiated. It may be recovered. The exhaust gas containing CO 2 exiting the prime mover 11 passes through the CO 2 reservoir 12 filled with the carbon dioxide absorbent before passing through the exhaust heat recovery device 13, where CO 2 is accumulated. A carbon dioxide absorbent (hereinafter also synonymous with a CO 2 absorbent) is mainly composed of a lithium composite oxide, and absorbs CO 2 in the reaction represented by the following formula (1) in a temperature range from room temperature to 600 ° C.
Li 4 SiO 4 + CO 2 ⇔Li 2 SiO 3 + Li 2 CO 2 + Q (1)
This reaction is a reversible reaction, and when heated to about 650 ° C., CO 2 is released by the reverse reaction, and the absorbent material can be reused. Along with the reaction, the right side is exothermic and the left side is endothermic. FIG. 1 shows a configuration in which CO 2 can be supplied regardless of the operating state of the prime mover 11 using this feature.

トリジェネレーションシステムの運転状態を図3及び図4を用いて説明する。図3は、原動機11が稼動しており、COを蓄積しながら電気および熱を供給している状態を示す。図2の(A)の例では15時から21時ごろまでがこの状態となっている。その後、翌朝までの夜間は、原動機11は熱需要に合わせた間欠的な運転を繰り返し、COを蓄積しながら余剰電力は系統を通じて売却される。図2の(B)の例では21時から翌朝7時ごろまでがこの状態となっている。 The operation state of the trigeneration system will be described with reference to FIGS. FIG. 3 shows a state where the prime mover 11 is operating and supplying electricity and heat while accumulating CO 2 . In the example of FIG. 2A, this state is from 15:00 to around 21:00. After that, during the night until the next morning, the prime mover 11 repeats intermittent operation in accordance with the heat demand, and surplus power is sold through the grid while accumulating CO 2 . In the example of FIG. 2B, this state is from 21:00 to around 7:00 the next morning.

CO貯留器12は原動機11の稼動中に、排気ガス中に含まれるCOを上記式(1)の反応によって200℃〜400℃の排気ガス温度で直接的に吸収・蓄積する。このとき、排熱回収器13はCO貯留器12の上流あるいは下流のどちらに位置してもよい。しかし、CO吸収時には前述の通り発熱反応を生じるため、排気ガスが加熱されて原動機11の排出温度よりも高くなる。したがって、排熱回収器13を図3のようにCO貯留器12の下流に設置すれば、吸収反応の発熱も効率よく回収できる。CO貯留器12の出口ガスは、この場合、煙道などを通じて屋外へ放出される。CO貯留器12では、COの他、NOxやSOxなど、作物に有害であったり、成長を阻害する微量な酸化物もその分圧によっては吸収されることもあるが、ほとんどは反応せずにすり抜けてしまう。 While the prime mover 11 is in operation, the CO 2 reservoir 12 directly absorbs and accumulates CO 2 contained in the exhaust gas at an exhaust gas temperature of 200 ° C. to 400 ° C. by the reaction of the above formula (1). At this time, the exhaust heat recovery device 13 may be located either upstream or downstream of the CO 2 reservoir 12. However, since the exothermic reaction occurs as described above during CO 2 absorption, the exhaust gas is heated and becomes higher than the exhaust temperature of the prime mover 11. Therefore, if the exhaust heat recovery device 13 is installed downstream of the CO 2 storage device 12 as shown in FIG. 3, the heat generated by the absorption reaction can be recovered efficiently. In this case, the outlet gas of the CO 2 reservoir 12 is discharged to the outside through a flue or the like. In the CO 2 reservoir 12, in addition to CO 2 , trace amounts of oxides that are harmful to crops, such as NOx and SOx, or that inhibit growth may be absorbed depending on the partial pressure, but most of them react. I will slip through.

一方、図4では原動機11は停止しており、CO貯留器12から蓄積したCOを温室に供給している状態を示す。図2の(A)の例では7時から12時ごろまでがこの状態となっている。COを供給する時は、CO貯留器12に充填されたCO吸収材を電気ヒータなどで効率よく所定の温度まで加熱してCOを放出させ、空気で希釈してCOリッチな空気を温室に送り込む。CO貯留器12の出口ガスは、上述した電動ダンパー17a,17bを用いて煙道放出から温室導入へ切り替える。このとき、CO吸収材から放出されるのは100%純度のCOのみであり、他の有害物質は全く温室に供給されない。また、原動機11及び排熱回収器13は停止していても稼動していてもその状態はいずれでもよく、全く独立してCOを供給することができる。 On the other hand, the prime mover 11 in FIG. 4 illustrating the supply has stopped, the CO 2 accumulated from CO 2 reservoir 12 in a greenhouse. In the example of FIG. 2A, this state is from 7 o'clock to 12 o'clock. When supplying CO 2 , the CO 2 absorbent filled in the CO 2 reservoir 12 is efficiently heated to a predetermined temperature with an electric heater or the like to release CO 2 , diluted with air, and rich in CO 2 . Send air into the greenhouse. The outlet gas of the CO 2 reservoir 12 is switched from flue emission to greenhouse introduction using the electric dampers 17a and 17b described above. At this time, only 100% pure CO 2 is released from the CO 2 absorbent, and no other harmful substances are supplied to the greenhouse. Further, the prime mover 11 and the exhaust heat recovery unit 13 may be in any state regardless of whether they are stopped or operating, and CO 2 can be supplied completely independently.

以上をまとめると、実施例1に係る施設園芸温室のトリジェネレーションシステムでは、原動機11の稼動状態に関係なく、必要な時にCOを温室16に供給することができる。また、脱硫・脱硝及び還元・酸化触媒等を用いることなく、CO貯留器12がその役目を果たし、単純な構成でクリーンなCOリッチ空気を温室16に供給することができる。 In summary, in the facility horticultural greenhouse trigeneration system according to the first embodiment, CO 2 can be supplied to the greenhouse 16 when necessary regardless of the operating state of the prime mover 11. Further, the CO 2 reservoir 12 plays the role without using desulfurization / denitration and reduction / oxidation catalyst, and clean CO 2 rich air can be supplied to the greenhouse 16 with a simple configuration.

(実施例2) (請求項3、4に対応)
図5は、実施例2に係る施設園芸用温室のトリジェネレーションシステムを示す。但し、図1と同部材は同符番を付して説明を省略する。同システムは、原動機11と、CO貯留器12と、蓄熱器21と、電動ダンパー17a,17bと、蓄熱器21の出口側に設けられた熱供給切り替え手段としての電動ダンパー22a,22bで構成される。一方の電動ダンパー17a,17bはCO貯留器12と蓄熱器21を結ぶライン,このラインから分岐して温室16につながるラインに夫々設けられている。他方の電動ダンパー22a,22bは蓄熱器21とCO貯留器12,温室16を夫々結ぶラインに設けられている。図6には一日の運転タイムスケジュールの一例を示す。原動機11が稼動している時は、発電した電気を温室内の人工照明などに供給する。図6の例では16時から翌日1時ごろまでがこの状態となっている。
(Example 2) (Corresponding to Claims 3 and 4)
FIG. 5 shows a trigeneration system for a greenhouse for horticulture according to the second embodiment. However, the same members as those in FIG. The system includes a prime mover 11, a CO 2 reservoir 12, a heat accumulator 21, electric dampers 17a and 17b, and electric dampers 22a and 22b as heat supply switching means provided on the outlet side of the heat accumulator 21. Is done. One of the electric dampers 17a and 17b is provided on a line connecting the CO 2 reservoir 12 and the heat accumulator 21, and a line branched from this line and connected to the greenhouse 16. The other electric dampers 22a and 22b are provided on lines connecting the heat accumulator 21, the CO 2 reservoir 12, and the greenhouse 16 respectively. FIG. 6 shows an example of the daily driving time schedule. When the prime mover 11 is in operation, the generated electricity is supplied to artificial lighting in the greenhouse. In the example of FIG. 6, this state is from 16:00 to 1 o'clock the next day.

原動機11から出た排気ガスはCO貯留器12、蓄熱器21を通り、それぞれCOおよび排熱を蓄積する。CO貯留器12は原動機11の稼動中に、排気ガス中に含まれるCOを上記式(1)の反応によって200℃〜400℃の排気ガス温度で直接的に吸収・蓄積する。このとき、蓄熱器21はCO貯留器12の上流あるいは下流のどちらに位置してもよい。しかし、CO吸収時には前述の通り発熱反応を生じるため、排気ガスが加熱されて原動機排出温度よりも高くなる。したがって、蓄熱器21を図5のようにCO貯留器12の下流に設置すれば、吸収反応の発熱も効率よく回収できる。蓄熱器21は、セラミックス充填材等、耐熱性があり、熱容量の大きなものが適している。そして、放熱を最小限にして、できるだけ高い温度を保てるように厳重に断熱されていることが望ましい。蓄熱器21の出口ガスは、この場合、煙道などを通じて屋外へ放出される。 The exhaust gas emitted from the prime mover 11 passes through the CO 2 reservoir 12 and the heat accumulator 21 and accumulates CO 2 and exhaust heat, respectively. While the prime mover 11 is in operation, the CO 2 reservoir 12 directly absorbs and accumulates CO 2 contained in the exhaust gas at an exhaust gas temperature of 200 ° C. to 400 ° C. by the reaction of the above formula (1). At this time, the heat accumulator 21 may be located either upstream or downstream of the CO 2 reservoir 12. However, since the exothermic reaction occurs during CO 2 absorption as described above, the exhaust gas is heated and becomes higher than the prime mover discharge temperature. Therefore, if the heat accumulator 21 is installed downstream of the CO 2 reservoir 12 as shown in FIG. 5, the heat generated by the absorption reaction can be efficiently recovered. The heat accumulator 21 is heat resistant and has a large heat capacity, such as a ceramic filler. It is desirable that heat insulation be strictly insulated so as to minimize heat dissipation and maintain as high a temperature as possible. In this case, the outlet gas of the heat accumulator 21 is discharged to the outside through a flue or the like.

COを供給する場合は、電動ダンパー22aを開け、電動ダンパー22bを閉じた状態で、図7のように空気を蓄熱器21に通し、CO貯留器12へ200℃〜300℃に加熱した空気を送り込む。図6の例では7時から12時ごろまでがこの状態となっている。CO貯留器12からCOを供給させるには、上記式(1)の反応によって650℃〜700℃の温度が必要となるため、200℃〜300℃から反応温度の650℃〜700℃までは電気的に加熱する。しかし、蓄熱器21から送られる空気の顕熱を補助的に用いることで、CO貯留器12内部を速やかに温度上昇させるとともに、CO供給に伴う電力消費を大幅に削減することができる。 When supplying CO 2, with the electric damper 22a opened and the electric damper 22b closed, air was passed through the heat accumulator 21 as shown in FIG. 7, and the CO 2 reservoir 12 was heated to 200 ° C. to 300 ° C. Bring in air. In the example of FIG. 6, this state is from 7 o'clock to 12 o'clock. In order to supply CO 2 from the CO 2 reservoir 12, a temperature of 650 ° C. to 700 ° C. is required by the reaction of the above formula (1), and therefore, from 200 ° C. to 300 ° C. to a reaction temperature of 650 ° C. to 700 ° C. Is heated electrically. However, by using the sensible heat of the air sent from the heat accumulator 21 as an auxiliary, the temperature inside the CO 2 reservoir 12 can be quickly raised and the power consumption associated with the CO 2 supply can be greatly reduced.

一方、温室16で熱供給のみが必要な場合は、電動ダンパー22aを閉じ、電動ダンパー22bを開けた状態で、図8に示すように蓄熱器21に空気や温水等の熱媒を通して温室を加温すればよく、原動機11の運転状態とは無関係に熱供給が可能である。図6の例では1時から7時ごろまでがこの状態となっている。さらに、熱とCOの両方が必要な場合は、図9に示すように蓄熱器17から空気や温水等の熱媒を介して温室に供給し、一方でCO貯留器12を電気ヒータ等の電気的手段により反応温度の650℃〜700℃まで加熱してから吸熱反応に必要な熱を与えることでCOを供給する。この際、電動ダンパー17a,22aは閉じ、電動ダンパー17b,22bは開いた状態にある。図6の例では7時から9時ごろまでがこの状態となっている。この場合、図7に示した運転方法よりもCO供給に必要な電気エネルギーは増加するが、熱とCOの供給を全く独立させて行うことができる。蓄熱器17の熱をCO貯留器12と温室とに切り替えて供給する手段は、例えば電動ダンパーで容易に実現できる。 On the other hand, when only the heat supply is required in the greenhouse 16, with the electric damper 22a closed and the electric damper 22b opened, the greenhouse is heated through a heat medium such as air or hot water as shown in FIG. What is necessary is just to warm, and heat supply is possible irrespective of the driving | running state of the motor | power_engine 11. In the example of FIG. 6, this state is from 1 o'clock to about 7 o'clock. Further, when both heat and CO 2 are required, as shown in FIG. 9, the heat is stored in the greenhouse 17 through a heat medium such as air or hot water, while the CO 2 reservoir 12 is supplied with an electric heater or the like. CO 2 is supplied by heating to a reaction temperature of 650 ° C. to 700 ° C. by the electric means and then applying heat necessary for the endothermic reaction. At this time, the electric dampers 17a and 22a are closed, and the electric dampers 17b and 22b are in an open state. In the example of FIG. 6, this state is from 7 o'clock to 9 o'clock. In this case, the electric energy required for the CO 2 supply is increased as compared with the operation method shown in FIG. 7, but the heat and the CO 2 supply can be performed completely independently. A means for switching and supplying the heat of the heat accumulator 17 to the CO 2 reservoir 12 and the greenhouse can be easily realized by, for example, an electric damper.

以上をまとめると、実施例2に係る施設園芸温室のトリジェネレーションシステムによれば、原動機11の稼動状態に関係なく、必要な時にCOや熱を温室16へ供給することができる。また、CO貯留器12と蓄熱器21と電動ダンパー17a,17b,22a,22bを具備することにより、COと熱を別々に供給することができる。このため、それぞれ最適な時間帯に合わせてCOや熱を温室16へ供給することが可能で、運転の自由度が高い装置を構築することができる。さらに、CO供給時にCO貯留器12の加熱源11の一部を蓄熱器21から供給することで、CO供給に伴う電力消費を大幅に削減することができる。 In summary, according to the facility horticultural greenhouse trigeneration system according to the second embodiment, CO 2 and heat can be supplied to the greenhouse 16 when necessary regardless of the operating state of the prime mover 11. Moreover, CO 2 reservoir 12 and the heat storage unit 21 and the electric damper 17a, 17b, 22a, by having a 22b, can be fed separately of CO 2 and heat. For this reason, it is possible to supply CO 2 and heat to the greenhouse 16 in accordance with optimum time zones, respectively, and it is possible to construct an apparatus with a high degree of freedom of operation. Further, by supplying a portion of the heating source 11 of CO 2 reservoir 12 from the heat accumulator 21 when CO 2 supply, it is possible to greatly reduce the power consumption associated with the CO 2 supply.

なお、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。具体的には、実施例1,2では貯湯槽を設けた場合に述べたが、必ずしも必要なものではない。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。   Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. Further, various inventions can be formed by appropriately combining a plurality of constituent elements disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Specifically, in the first and second embodiments, the case where a hot water storage tank is provided is described, but this is not always necessary. Furthermore, you may combine suitably the component covering different embodiment.

本発明の実施例1に係る施設園芸用温室のトリジェネレーションシステムの構成を示す図。The figure which shows the structure of the trigeneration system of the greenhouse for greenhouses which concerns on Example 1 of this invention. 図1の二酸化炭素供給装置の運転タイムスケジュールの一例を示す図。The figure which shows an example of the operation time schedule of the carbon dioxide supply apparatus of FIG. 図1の二酸化炭素供給装置の原動機が稼動している時の運転状態を示す図。The figure which shows the driving | running state when the motor | power_engine of the carbon dioxide supply apparatus of FIG. 1 is operating. 図1の二酸化炭素供給装置の原動機が停止している時の運転状態を示す図。The figure which shows the driving | running state when the motor | power_engine of the carbon dioxide supply apparatus of FIG. 1 has stopped. 本発明の実施例2に係る施設園芸用温室のトリジェネレーションシステムの構成を示す図。The figure which shows the structure of the trigeneration system of the greenhouse for greenhouses which concerns on Example 2 of this invention. 図5の二酸化炭素供給装置の運転タイムスケジュールの一例を示す図。The figure which shows an example of the operation time schedule of the carbon dioxide supply apparatus of FIG. 図5の二酸化炭素供給装置においてCOを温室へ供給する場合の運転状態を示す図。It shows the operating state when supplying CO 2 to the greenhouse at the carbon dioxide supply apparatus of FIG. 図5の二酸化炭素供給装置において温室で熱供給のみが必要な場合の運転状態を示す図。The figure which shows the driving | running state when only heat supply is required in a greenhouse in the carbon dioxide supply apparatus of FIG. 図5の二酸化炭素供給装置において温室で熱とCOの両方が必要な場合の運転状態を示す図。Shows the operating state in the case both heat and CO 2 in the greenhouse is required in the carbon dioxide supply apparatus of FIG. 従来の施設園芸用温室のコージェネーションシステムの構成を示す図。The figure which shows the structure of the coordination system of the conventional greenhouse for greenhouses.

符号の説明Explanation of symbols

11…原動機、12…CO貯留器、13…排熱回収器、14…貯湯槽、16…温室、17a,17b,22a,22b…電動ダンパー、21…蓄熱器。 11 ... engine, 12 ... CO 2 reservoir, 13 ... exhaust heat recovery device, 14 ... hot water tank, 16 ... greenhouses, 17a, 17b, 22a, 22b ... electric damper 21 ... heat accumulator.

Claims (4)

施設園芸用温室へ電力・熱・二酸化炭素を供給する施設園芸用温室のトリジェネレーションシステムにおいて、
炭素を含む燃料を供給して発電する原動機と、この原動機に接続された,該原動機の排熱を回収する排熱回収器と、前記原動機と排熱回収器間に配置された,主にリチウム複合酸化物を含む二酸化炭素吸収材を用いた二酸化炭素貯留器とを具備することを特徴とするトリジェネレーションシステム。
In the horticulture greenhouse trigeneration system that supplies power, heat, and carbon dioxide to the greenhouse for horticulture,
A prime mover that supplies fuel containing carbon to generate electric power, an exhaust heat recovery device that is connected to the prime mover to recover exhaust heat of the prime mover, and that is disposed between the prime mover and the exhaust heat recovery device. A trigeneration system comprising a carbon dioxide reservoir using a carbon dioxide absorbent containing a composite oxide.
前記二酸化炭素貯留器の出口側に、二酸化炭素貯留器内の二酸化炭素を温室に導入するか否かを選択可能なガス切り替え手段を更に具備し、
前記原動機の稼働中は、二酸化炭素を二酸化炭素貯留器に蓄積しながら電気及び熱を温室に供給し、
前記原動機の停止中は、二酸化炭素貯留器に蓄積した二酸化炭素のみを温室に供給する、2つの運転状態を選択できる運転モードを有した構成であることを特徴とする請求項1記載の施設園芸用温室のトリジェネレーションシステム。
Further comprising gas switching means on the outlet side of the carbon dioxide reservoir capable of selecting whether or not to introduce carbon dioxide in the carbon dioxide reservoir into the greenhouse;
During operation of the prime mover, supplying electricity and heat to the greenhouse while accumulating carbon dioxide in the carbon dioxide reservoir,
The facility horticulture according to claim 1, wherein the horticultural horticulture has an operation mode in which only two operation states can be selected to supply only the carbon dioxide accumulated in the carbon dioxide reservoir to the greenhouse while the prime mover is stopped. Greenhouse trigeneration system.
施設園芸用温室へ電力・熱・二酸化炭素を供給するトリジェネレーションシステムにおいて、
炭素を含む燃料を供給して発電する原動機と、この原動機に接続された,主にリチウム複合酸化物を含む二酸化炭素吸収材を用いた二酸化炭素貯留器と、発電中の原動機の燃焼排ガスの熱を貯めておく蓄熱器とを具備することを特徴とする施設園芸用温室のトリジェネレーションシステム。
In the trigeneration system that supplies electricity, heat, and carbon dioxide to greenhouses for horticulture,
A prime mover that generates power by supplying fuel containing carbon, a carbon dioxide reservoir that uses a carbon dioxide absorbent mainly containing lithium composite oxide, and heat of combustion exhaust gas from the prime mover during power generation. A greenhouse for horticultural horticulture, characterized by comprising a heat accumulator for storing water.
前記二酸化炭素貯留器の出口側に、二酸化炭素貯留器内の二酸化炭素を温室に導入するか否かを選択可能なガス切り替え手段を備えるとともに、前記蓄熱器の出口側に、蓄熱器に蓄積した熱を二酸化炭素貯留器または温室に導入するかを選択可能な熱供給切り替え手段とを更に具備し、
前記原動機の稼働中は、二酸化炭素を二酸化炭素貯留器に蓄積しながら電気及び熱を温室に供給し、
前記原動機の停止中は、二酸化炭素貯留器に蓄積した二酸化炭素のみを温室に供給するか、あるいは蓄熱器に蓄積した熱のみを温室に供給するか、あるいは二酸化炭素貯留器からの二酸化炭素及び蓄熱器からの熱の両者を供給する、
4つの運転状態を選択可能な運転モードを有した構成であることを特徴とする請求項3記載の施設園芸用温室のトリジェネレーションシステム。
On the outlet side of the carbon dioxide reservoir, provided with gas switching means that can select whether or not to introduce carbon dioxide in the carbon dioxide reservoir into the greenhouse, and accumulated in the regenerator on the outlet side of the heat accumulator A heat supply switching means capable of selecting whether heat is introduced into the carbon dioxide reservoir or the greenhouse,
During operation of the prime mover, supplying electricity and heat to the greenhouse while accumulating carbon dioxide in the carbon dioxide reservoir,
While the prime mover is stopped, only the carbon dioxide accumulated in the carbon dioxide reservoir is supplied to the greenhouse, only the heat accumulated in the regenerator is supplied to the greenhouse, or the carbon dioxide and the heat accumulation from the carbon dioxide reservoir Supply both heat from the vessel,
4. The greenhouse system for horticulture for facilities and horticulture according to claim 3, wherein the system has an operation mode in which four operation states can be selected.
JP2007070928A 2007-03-19 2007-03-19 Tri-generation system of greenhouse for horticulture Expired - Fee Related JP4846632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070928A JP4846632B2 (en) 2007-03-19 2007-03-19 Tri-generation system of greenhouse for horticulture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070928A JP4846632B2 (en) 2007-03-19 2007-03-19 Tri-generation system of greenhouse for horticulture

Publications (2)

Publication Number Publication Date
JP2008228622A true JP2008228622A (en) 2008-10-02
JP4846632B2 JP4846632B2 (en) 2011-12-28

Family

ID=39902194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070928A Expired - Fee Related JP4846632B2 (en) 2007-03-19 2007-03-19 Tri-generation system of greenhouse for horticulture

Country Status (1)

Country Link
JP (1) JP4846632B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246401A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Plant cultivation apparatus
JP2013094155A (en) * 2011-11-04 2013-05-20 Mitsui Eng & Shipbuild Co Ltd Greenhouse cultivation method
KR101347523B1 (en) 2011-11-28 2014-01-07 서울대학교산학협력단 Air conditioning and heating system and method for greenhouse
US8857163B2 (en) 2011-01-21 2014-10-14 Satoshi Mogi Exhaust heat utilization system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141528A (en) * 1987-11-27 1989-06-02 Nkk Corp Vegetable plant system
JPH0638645A (en) * 1992-07-23 1994-02-15 Mitsubishi Heavy Ind Ltd Vegetable plant
JP2006340683A (en) * 2005-06-10 2006-12-21 Toshiba Corp Method and device for supplying carbon dioxide for nursery horticultural green house

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01141528A (en) * 1987-11-27 1989-06-02 Nkk Corp Vegetable plant system
JPH0638645A (en) * 1992-07-23 1994-02-15 Mitsubishi Heavy Ind Ltd Vegetable plant
JP2006340683A (en) * 2005-06-10 2006-12-21 Toshiba Corp Method and device for supplying carbon dioxide for nursery horticultural green house

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010246401A (en) * 2009-04-10 2010-11-04 Honda Motor Co Ltd Plant cultivation apparatus
US8857163B2 (en) 2011-01-21 2014-10-14 Satoshi Mogi Exhaust heat utilization system
JP2013094155A (en) * 2011-11-04 2013-05-20 Mitsui Eng & Shipbuild Co Ltd Greenhouse cultivation method
KR101347523B1 (en) 2011-11-28 2014-01-07 서울대학교산학협력단 Air conditioning and heating system and method for greenhouse

Also Published As

Publication number Publication date
JP4846632B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
JP6956665B2 (en) Method of methaneization of carbon dioxide in combustion exhaust gas and methane production equipment
ES2599411T3 (en) Method and system to convert carbon dioxide into chemical starting materials
US9242204B2 (en) Carbon dioxide recovery system and method
US20060053776A1 (en) Management of thermal fluctuations in lean NOx adsorber aftertreatment systems
ES2675034T3 (en) Boiler system and electric power generation plant provided with it
US9662607B2 (en) CO2 recovery unit and CO2 recovery method
CA2786010C (en) Carbon dioxide capture interface and power generation facility
JP4846632B2 (en) Tri-generation system of greenhouse for horticulture
CN105102782B (en) The situ regeneration method of the denitrating catalyst of emission control system
Yin et al. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine
JP3486220B2 (en) Combustion exhaust gas purification method and apparatus
JP5635802B2 (en) Internal combustion engine drive control method and greenhouse cultivation system
CN103079682A (en) Integrated biogas cleaning system to remove water, siloxanes, sulfur, oxygen, chlorides and volatile organic compounds
CN104797798B (en) Sunlight-utilizing gas turbine power generation system provided with hydrogen-generating unit
WO2006082512A3 (en) Mechanism and method of combined fuel reformer and dosing system for exhaust aftertreatment and anti-idle sofc apu
JP2006340683A (en) Method and device for supplying carbon dioxide for nursery horticultural green house
JP4039120B2 (en) Hydrogen generator
CN105408597B (en) Waste gas cleaning system and exhaust gas purifying method
JP4744971B2 (en) Low quality waste heat recovery system
JP5944042B2 (en) Exhaust gas treatment system and exhaust gas treatment method
KR101361152B1 (en) Carbon dioxide generator for cultivation of plants
JP4243578B2 (en) Plant growth system that can promote plant growth
JP2003054927A (en) System and method of recovering carbon dioxide
KR101950950B1 (en) Tri-generation system
US8495867B2 (en) Heating module for an exhaust gas treatment system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090724

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees