JP2008228460A - Rotating machine and its manufacturing method - Google Patents

Rotating machine and its manufacturing method Download PDF

Info

Publication number
JP2008228460A
JP2008228460A JP2007063791A JP2007063791A JP2008228460A JP 2008228460 A JP2008228460 A JP 2008228460A JP 2007063791 A JP2007063791 A JP 2007063791A JP 2007063791 A JP2007063791 A JP 2007063791A JP 2008228460 A JP2008228460 A JP 2008228460A
Authority
JP
Japan
Prior art keywords
salient pole
magnet
rotating machine
pole
salient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007063791A
Other languages
Japanese (ja)
Other versions
JP5120801B2 (en
Inventor
Kazuo Shima
和男 島
Tadashi Fukami
正 深見
Ryoichi Hanaoka
良一 花岡
Shinzo Takada
新三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2007063791A priority Critical patent/JP5120801B2/en
Publication of JP2008228460A publication Critical patent/JP2008228460A/en
Application granted granted Critical
Publication of JP5120801B2 publication Critical patent/JP5120801B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To reduce magnetic saturation in a rotating machine by inserting a permanent magnet between magnetic poles. <P>SOLUTION: A synchronous machine 10 of a salient pole type includes a stator 20 and a rotator 30 having a plurality of salient poles 32. The salient pole 32 is provided with a salient pole barrel part 34 to which field winding 38 is wound and a salient pole head 36 having larger diameter or width compared to the salient pole barrel part 34. The permanent magnet 50 is arranged between salient pole heads 36 of the adjacent salient poles 32 so that the pole which is the same as the magnetized pole of the salient pole 32 is confronted with the pole. The permanent magnets 50 are installed so that they are brought into contact with the salient pole heads 36. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、回転機に関し、とくに、突極形の同期機に関する。   The present invention relates to a rotating machine, and more particularly to a salient pole type synchronous machine.

突極形同期機は、水力発電機・エンジン発電機・産業用電動機など各種用途に使用されている重要な機器である。突極形同期機については、一般的な教科書に詳述されている(例えば、非特許文献1参照)。
野中作太郎著、「電気機器(I)」、第1版第13刷、森北出版株式会社、1983年8月、p.218-219、p.234
The salient pole synchronous machine is an important device used in various applications such as a hydroelectric generator, an engine generator, and an industrial motor. The salient pole type synchronous machine is described in detail in a general textbook (for example, see Non-Patent Document 1).
Sakutaro Nonaka, “Electrical Equipment (I)”, 1st edition, 13th edition, Morikita Publishing Co., Ltd., August 1983, p.218-219, p.234

同期機の回転子の突極として鉄などの強磁性体を用いた方が、より少ない電流で大きな磁束密度が得られ、効率的である。しかし、鉄心では、磁気飽和により、2〜3テスラを越える磁束密度を得ることができず、また、磁気飽和が生じると大きな界磁電流が必要となるという問題がある。磁気飽和の影響を低減することが可能な技術の開発が望まれている。   When a ferromagnetic material such as iron is used as the salient pole of the rotor of the synchronous machine, a large magnetic flux density can be obtained with a smaller current, which is more efficient. However, the iron core has a problem that a magnetic flux density exceeding 2 to 3 Tesla cannot be obtained due to magnetic saturation, and a large field current is required when magnetic saturation occurs. Development of technology capable of reducing the influence of magnetic saturation is desired.

本発明は、こうした現状に鑑みてなされたものであり、その目的は、回転機における磁気飽和を低減する技術を提供することにある。   The present invention has been made in view of the present situation, and an object thereof is to provide a technique for reducing magnetic saturation in a rotating machine.

本発明のある態様は、回転機に関する。この回転機は、固定子と、回転子と、前記固定子又は前記回転子に設けられた突極と、を備え、前記突極は、界磁巻線を巻き付ける胴部と、前記胴部よりも大きな径又は幅を有する頭部と、を含み、隣接する突極の頭部の間に、前記突極が界磁された極と同じ極が対向するように設けられた磁石を更に備えることを特徴とする。   One embodiment of the present invention relates to a rotating machine. The rotating machine includes a stator, a rotor, and a salient pole provided on the stator or the rotor, and the salient pole includes a trunk portion around which a field winding is wound, and the trunk portion. A head having a large diameter or width, and further comprising a magnet provided between the heads of adjacent salient poles so that the same pole as the pole on which the salient pole is fielded is opposed. It is characterized by.

前記磁石は、前記頭部に接するように設けられてもよい。前記磁石は、前記磁石の外周側の表面と前記頭部の外周側の表面の間に段差が生じないように、前記頭部の間に配置されてもよい。前記磁石は、外周側よりも幅の広い部分を有した形状を有してもよい。前記磁石は、内周側から外周側へ幅が狭くなる形状を有してもよい。   The magnet may be provided in contact with the head. The magnet may be arranged between the heads so that no step is generated between the outer peripheral surface of the magnet and the outer peripheral surface of the head. The magnet may have a shape having a portion wider than the outer peripheral side. The magnet may have a shape whose width is narrowed from the inner peripheral side to the outer peripheral side.

前記突極及び前記磁石は、前記回転子の回転軸の軸方向に間隙をもって積層された複数の層を有してもよい。前記突極及び前記磁石は、同じ位置に前記間隙を有してもよい。前記間隙に絶縁層が形成されてもよい。   The salient pole and the magnet may have a plurality of layers stacked with a gap in the axial direction of the rotation axis of the rotor. The salient pole and the magnet may have the gap at the same position. An insulating layer may be formed in the gap.

前記突極の頭部及び前記磁石の外周側の表面に溝が形成されてもよい。前記溝は、前記回転子の回転軸に垂直な面に沿って設けられてもよい。   A groove may be formed on the head of the salient pole and the outer peripheral surface of the magnet. The groove may be provided along a plane perpendicular to the rotation axis of the rotor.

本発明の別の態様は、回転機の製造方法に関する。この方法は、上記のいずれかの回転機を製造する方法であって、前記磁石を前記突極の頭部の間に配置するステップと、前記回転子を回転させるときと逆の極性に前記突極を励磁するステップと、前記磁石を前記突極の頭部の間に固定するステップと、を備えることを特徴とする。   Another aspect of the present invention relates to a method for manufacturing a rotating machine. This method is a method for manufacturing any one of the above rotating machines, wherein the step of disposing the magnet between the heads of the salient poles and the polarity opposite to that when the rotor is rotated are provided. A step of exciting a pole, and a step of fixing the magnet between the heads of the salient poles.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements and a representation of the present invention converted between a method, an apparatus, a system, etc. are also effective as an aspect of the present invention.

本発明によれば、回転機における磁気飽和を低減する技術を提供することができる。   According to the present invention, a technique for reducing magnetic saturation in a rotating machine can be provided.

図1は、従来の突極形の同期機10の構成を示す。図1は、同期機10の断面を模式的に示している。同期機10は、外側に配置された円柱状の固定子20と、固定子20の内側に固定子20と同軸に配置された回転子30を備える。回転子30は、鉄などの強磁性体で形成された複数の突極32を有している。突極32は、界磁巻線38を巻き付けるための突極胴部34と、突極胴部34よりも大きな径又は幅を有する突極頭部36とを有する。突極胴部34に巻き付けられた界磁巻線38に電流が供給されると、突極32が励磁される。励磁された突極32と、固定子20の電機子22との間に働く電磁力により、回転子30が回転する。   FIG. 1 shows a configuration of a conventional salient pole type synchronous machine 10. FIG. 1 schematically shows a cross section of the synchronous machine 10. The synchronous machine 10 includes a cylindrical stator 20 disposed on the outer side, and a rotor 30 disposed coaxially with the stator 20 on the inner side of the stator 20. The rotor 30 has a plurality of salient poles 32 made of a ferromagnetic material such as iron. The salient pole 32 has a salient pole body portion 34 for winding the field winding 38 and a salient pole head portion 36 having a larger diameter or width than the salient pole body portion 34. When a current is supplied to the field winding 38 wound around the salient pole body 34, the salient pole 32 is excited. The rotor 30 is rotated by the electromagnetic force acting between the excited salient pole 32 and the armature 22 of the stator 20.

図2は、突極32の外観を模式的に示す。突極32の突極頭部36は、突極胴部34よりも大きな径又は幅を有する。これにより、突極胴部34に巻き付けられた界磁巻線38が遠心力で径方向に飛び出さないように押さえられる。   FIG. 2 schematically shows the appearance of the salient pole 32. The salient pole head 36 of the salient pole 32 has a larger diameter or width than the salient pole body 34. As a result, the field winding 38 wound around the salient pole body 34 is pressed so as not to jump out in the radial direction by centrifugal force.

鉄心の突極形の同期機10では、鉄の磁気飽和により同期機10の端子電圧が制限されるという問題がある。磁気飽和は、鉄心の各部に生じるが、とくに回転子30の突極胴部34及び突極頭部36における磁気飽和が最も強い場合が多い。また、界磁巻線38の界磁ジュール損失や発熱を低減するためには、界磁巻線38の断面積を広くするのが好ましいが、界磁巻線38の断面積を広くするには、突極胴部34の径又は幅を小さくしたり、突極頭部36の径方向の厚さを薄くしたりする必要があり、より狭い領域に磁力線が集中して磁気飽和を起こしやすくなる。とくに、図1及び図2に示した突極形の同期機10では、自動車用オルタネータなどに用いられる爪形磁極の同期機と異なり、負荷時に突極頭部36の周方向端部で磁気飽和が起こりやすくなる。   The salient-pole synchronous machine 10 having an iron core has a problem that the terminal voltage of the synchronous machine 10 is limited due to iron magnetic saturation. Magnetic saturation occurs in each part of the iron core. In particular, magnetic saturation is particularly strong in the salient pole body 34 and salient pole head 36 of the rotor 30 in many cases. In order to reduce the field joule loss and heat generation of the field winding 38, it is preferable to increase the cross-sectional area of the field winding 38, but to increase the cross-sectional area of the field winding 38. In addition, it is necessary to reduce the diameter or width of the salient pole body 34 or to reduce the radial thickness of the salient pole head 36, and magnetic field lines tend to concentrate in a narrower region, which easily causes magnetic saturation. . In particular, the salient pole type synchronous machine 10 shown in FIGS. 1 and 2 differs from the claw type magnetic pole synchronizer used in an automobile alternator and the like in the circumferential end portion of the salient pole head 36 at the time of load. Is likely to occur.

本実施の形態では、突極32を形成する鉄心の磁気飽和を低減するために、磁極間に永久磁石を挿入する技術を提案する。   In the present embodiment, a technique is proposed in which a permanent magnet is inserted between the magnetic poles in order to reduce the magnetic saturation of the iron core forming the salient poles 32.

図3は、本実施の形態に係る同期機10の構成を示す。本実施の形態では、突極32における磁気飽和を低減するために、隣接する突極32の突極頭部36の間に永久磁石50が設けられる。永久磁石50は、突極32が界磁された極と同じ極が対向するように設けられる。すなわち、N極に界磁された突極32に永久磁石50のN極が対向し、S極に界磁された突極32に永久磁石50のS極が対向するようにする。このようにすれば、永久磁石50により、図1に示した界磁巻線38による磁束60を打ち消す方向に突極32内に磁束62が発生するので、突極32における磁気飽和が低減される。   FIG. 3 shows a configuration of the synchronous machine 10 according to the present embodiment. In the present embodiment, a permanent magnet 50 is provided between the salient pole heads 36 of adjacent salient poles 32 in order to reduce magnetic saturation in the salient poles 32. The permanent magnet 50 is provided such that the same pole as the pole where the salient pole 32 is fielded is opposed. That is, the N pole of the permanent magnet 50 is opposed to the salient pole 32 fielded by the N pole, and the S pole of the permanent magnet 50 is opposed to the salient pole 32 fielded by the S pole. In this way, the permanent magnet 50 generates the magnetic flux 62 in the salient pole 32 in the direction to cancel the magnetic flux 60 generated by the field winding 38 shown in FIG. .

図4は、本実施の形態に係る突極32の外観を模式的に示す。隣接する突極32の突極頭部36の間に永久磁石50が挿入されている。永久磁石50は、突極頭部36に接するように設けられる。これにより、永久磁石50から出る磁束が効率良く突極32に達するので、磁気飽和を低減させる効果を向上させることができる。また、永久磁石50が、突極頭部36の間の隙間を埋め、かつ、永久磁石50の外周側の表面と突極頭部36の外周側の表面の間に段差が生じないように、突極頭部36の間に配置されることで、回転子30が回転するときの摩擦損失を低減することができる。   FIG. 4 schematically shows the appearance of the salient pole 32 according to the present embodiment. A permanent magnet 50 is inserted between the salient pole heads 36 of the adjacent salient poles 32. The permanent magnet 50 is provided in contact with the salient pole head 36. Thereby, since the magnetic flux which comes out of the permanent magnet 50 reaches the salient pole 32 efficiently, the effect of reducing magnetic saturation can be improved. Further, the permanent magnet 50 fills the gap between the salient pole heads 36, and a step is not generated between the outer peripheral surface of the permanent magnet 50 and the outer peripheral surface of the salient pole head 36. By being disposed between the salient pole heads 36, friction loss when the rotor 30 rotates can be reduced.

本発明者は、有限要素解析(FEA)を用いて、図3及び図4に示した構造の有効性を検証した。以下、解析の内容について説明する。解析対象機は、固定子内径914mm、固定子外径1240mm、軸方向長507mm、定格速度750min−1、Y結線の8極機とする。運転条件は無負荷時とし、ダンパバーや永久磁石などの渦電流を無視した静磁界解析とする。界磁電流は一定とする。回転子を1極あたり100分割で回転させる。永久磁石の残留磁束密度を1.2T、リコイル比透磁率を1.05とする。固定子及び回転子鉄心のBH特性には、それぞれ無方向性電磁鋼帯50A400、50A1000の直流磁化曲線を用いる。 The inventor has verified the effectiveness of the structure shown in FIGS. 3 and 4 using finite element analysis (FEA). The contents of the analysis will be described below. The analysis target machine is an 8-pole machine having a stator inner diameter of 914 mm, a stator outer diameter of 1240 mm, an axial length of 507 mm, a rated speed of 750 min −1 , and a Y connection. The operating condition is when no load is applied, and static magnetic field analysis is performed ignoring eddy currents such as damper bars and permanent magnets. The field current is constant. The rotor is rotated at 100 divisions per pole. The residual magnetic flux density of the permanent magnet is 1.2 T, and the recoil relative permeability is 1.05. For the BH characteristics of the stator and the rotor core, the DC magnetization curves of the non-directional electromagnetic steel strips 50A400 and 50A1000 are used, respectively.

図5(a)は、図1に示した回転機と同様に、永久磁石を挿入していない従来の構造の解析対象機Aの断面を示す。図6(a)は、図3に示した本実施の形態の構造の解析対象機Bの断面を示す。図7(a)は、突極胴部の幅を解析対象機A及びBよりも30%細くし、これに伴いコイル領域の断面積を約50%増した構造の解析対象機Cの断面を示す。   FIG. 5A shows a cross section of the machine A to be analyzed having a conventional structure in which a permanent magnet is not inserted, like the rotating machine shown in FIG. FIG. 6A shows a cross section of the machine B to be analyzed having the structure of the present embodiment shown in FIG. FIG. 7A shows a cross section of the analysis target machine C having a structure in which the salient pole body is 30% thinner than the analysis target machines A and B and the cross-sectional area of the coil region is increased by about 50%. Show.

図5(b)、図6(b)、図7(b)は、界磁電流130Aにおける解析対象機A、B、Cの磁束線図を示す。解析対象機Bの突極胴部の磁束密度は、解析対象機Aよりも0.28T小さい。また、解析対象機Cは、解析対象機Aよりも突極胴部の幅を約30%細くしたにもかかわらず、突極胴部の磁束密度が同等であることが分かる。   FIG. 5B, FIG. 6B, and FIG. 7B show magnetic flux diagrams of the machines A, B, and C to be analyzed at the field current 130A. The magnetic flux density of the salient pole body of the analysis target machine B is 0.28 T smaller than the analysis target machine A. Further, it can be understood that the magnetic flux density of the salient pole body is the same in the analysis object machine C, although the salient pole body part is about 30% thinner than the analysis object machine A.

図8は、永久磁石による磁束線図を示す。ギャップを横切って固定子側に達する磁束線は見られず、全ての磁束線が突極内を通っている。この磁束線が界磁巻線による磁束線と打ち消し合い、突極における磁気飽和を緩和していると考えられる。   FIG. 8 shows a magnetic flux diagram by a permanent magnet. There are no magnetic flux lines that reach the stator side across the gap, and all the magnetic flux lines pass through the salient poles. It is considered that this magnetic flux line cancels out the magnetic flux line caused by the field winding and relaxes magnetic saturation at the salient pole.

図9は、それぞれの解析対象機の無負荷飽和曲線を示す。従来の構造の解析対象機Aでは、界磁電流が90A付近から磁気飽和の影響が現れることが分かる。一方、永久磁石を挿入した解析対象機Bでは、110A付近から磁気飽和の影響が現れている。すなわち、永久磁石の挿入によって不飽和領域が拡大している。   FIG. 9 shows a no-load saturation curve of each analysis target machine. It can be seen that in the analysis object machine A having the conventional structure, the influence of magnetic saturation appears from the vicinity of 90 A of the field current. On the other hand, in the machine B to be analyzed with the permanent magnet inserted, the influence of magnetic saturation appears from around 110A. That is, the unsaturated region is expanded by the insertion of the permanent magnet.

図9において、端子電圧が700Vの領域に注目すると、解析対象機Aよりも解析対象機Bの方が、界磁電流を約40A低減できることが分かる。すなわち、永久磁石の挿入によって、界磁電流低減効果を得ることができる。また、界磁電流が150Aの領域に注目すると、解析対象機Aでは端子電圧が700V強にとどまっているのに対して、解析対象機Bでは850V近くの端子電圧が生じていることが分かる。すなわち、永久磁石の挿入によって端子電圧向上効果を得ることができる。   In FIG. 9, focusing on the region where the terminal voltage is 700 V, it can be seen that the analysis target machine B can reduce the field current by about 40 A than the analysis target machine A. That is, a field current reduction effect can be obtained by inserting a permanent magnet. When attention is paid to the region where the field current is 150 A, it can be seen that the terminal voltage of the analysis target machine A is just over 700 V, whereas the analysis target machine B has a terminal voltage of about 850 V. That is, the effect of improving the terminal voltage can be obtained by inserting the permanent magnet.

解析対象機Cは、解析対象機Aよりも突極胴部の幅を30%細くしたにもかかわらず、同等の端子電圧が得られている。したがって、永久磁石を挿入することによって、端子電圧を減らすことなく、界磁コイル領域の断面積を約50%増加することができる。これにより、界磁ジュール損失や界磁巻線発熱を低減することが可能となる。   Although the analysis object machine C has a salient pole body portion 30% thinner than the analysis object machine A, an equivalent terminal voltage is obtained. Therefore, by inserting a permanent magnet, the cross-sectional area of the field coil region can be increased by about 50% without reducing the terminal voltage. Thereby, field joule loss and field winding heat generation can be reduced.

一方、界磁電流が90A以下の領域に注目すると、解析対象機A、B、及びCのギャップ線が一致していることが分かる。すなわち、磁気飽和の生じない領域では、永久磁石の効果が無いことが分かる。   On the other hand, when attention is paid to the region where the field current is 90 A or less, it can be seen that the gap lines of the machines A, B, and C to be analyzed match. That is, it can be seen that the permanent magnet has no effect in a region where magnetic saturation does not occur.

以上のように、永久磁石の挿入により、解析対象機の磁気飽和が顕著に緩和されることが示された。   As described above, it was shown that the magnetic saturation of the machine to be analyzed is remarkably reduced by the insertion of the permanent magnet.

上記の解析は、無負荷時のものであるが、負荷時にも同様に、永久磁石の挿入により磁気飽和が顕著に緩和される。突極形の同期機を電動機として用いる場合、負荷時には、回転子を回転させるために、回転方向前方の電機子と突極が引き合うように電機子の極性が制御されるため、突極頭部の回転方向前方側の端部、すなわち、界磁巻線とエアギャップの間の部分に、より多くの磁束が集中して、磁気飽和がとくに起こりやすくなる。これにより、大きな界磁電流が必要となるという問題が生じる。同様の問題は、同期機を発電機として用いる場合にも生じうる。しかし、突極頭部間に永久磁石を挿入することにより、突極頭部の周方向端部及び突極胴部における磁気飽和を顕著に低減させることができるので、同期機の性能を一段と向上させることができる。   The above analysis is for no load, but similarly, magnetic saturation is remarkably mitigated by insertion of a permanent magnet. When a salient pole type synchronous machine is used as an electric motor, the polarity of the armature is controlled so that the armature in front of the rotation direction attracts the salient pole in order to rotate the rotor when loaded. More magnetic flux concentrates at the end portion on the front side in the rotation direction, that is, the portion between the field winding and the air gap, and magnetic saturation is particularly likely to occur. This causes a problem that a large field current is required. Similar problems can occur when using a synchronous machine as a generator. However, by inserting a permanent magnet between the salient pole heads, magnetic saturation at the circumferential end of the salient pole head and salient pole body can be significantly reduced, further improving the performance of the synchronous machine. Can be made.

図10は、実施の形態に係る同期機10の別の構成例を示す。図10に示した同期機10では、永久磁石50が、内周側から外周側へ向かって徐々に幅が狭くなる形状を有している。   FIG. 10 shows another configuration example of the synchronous machine 10 according to the embodiment. In the synchronous machine 10 shown in FIG. 10, the permanent magnet 50 has a shape in which the width gradually decreases from the inner peripheral side toward the outer peripheral side.

図11は、図10に示した同期機10の突極32の外観を模式的に示す。このように、永久磁石50の外周側の幅を、内周側の幅よりも狭くしておき、かつ、突極頭部36と永久磁石50が接するように永久磁石50を配置することにより、永久磁石50が遠心力で外へ飛び出さないように、突極頭部36で押さえる構造とすることができる。   FIG. 11 schematically shows the appearance of the salient pole 32 of the synchronous machine 10 shown in FIG. Thus, by arranging the permanent magnet 50 so that the outer peripheral side width of the permanent magnet 50 is smaller than the inner peripheral side width and the salient pole head 36 and the permanent magnet 50 are in contact with each other, A structure can be adopted in which the permanent magnet 50 is pressed by the salient pole head 36 so that the permanent magnet 50 does not jump out due to centrifugal force.

図12は、実施の形態に係る同期機10の別の構成例を示す。図12に示した同期機10では、永久磁石50が、外周側よりも幅の広い部分を有した形状を有している。   FIG. 12 shows another configuration example of the synchronous machine 10 according to the embodiment. In the synchronous machine 10 shown in FIG. 12, the permanent magnet 50 has a shape having a portion wider than the outer peripheral side.

図13は、図12に示した同期機10の突極32の外観を模式的に示す。このように、永久磁石50の外周側の幅を、中心付近の幅よりも狭くしておき、かつ、突極頭部36と永久磁石50が接するように永久磁石50を配置することにより、永久磁石50が遠心力で外へ飛び出さないように、突極頭部36で押さえる構造とすることができる。永久磁石50は、少なくとも一部において、外周に向かって幅が狭くなる領域がある形状を有していればよい。   FIG. 13 schematically shows the appearance of the salient pole 32 of the synchronous machine 10 shown in FIG. As described above, the width of the permanent magnet 50 on the outer peripheral side is made narrower than the width near the center, and the permanent magnet 50 is disposed so that the salient pole head 36 and the permanent magnet 50 are in contact with each other. A structure can be adopted in which the magnet 50 is pressed by the salient pole head 36 so that the magnet 50 does not jump out due to centrifugal force. The permanent magnet 50 only needs to have a shape in which at least part thereof has a region whose width becomes narrower toward the outer periphery.

図14は、従来の同期機10の別の構成例を示す。図14に示した同期機10では、回転子30が、回転子30の回転軸の軸方向に間隙40をもって積層された複数の層30a、30b、・・・、を有する構造となっている。これにより、回転子30において界磁巻線38などに生じた熱を効率良く外部へ発散させることができる。   FIG. 14 shows another configuration example of the conventional synchronous machine 10. In the synchronous machine 10 shown in FIG. 14, the rotor 30 has a structure having a plurality of layers 30 a, 30 b,... Stacked with a gap 40 in the axial direction of the rotation axis of the rotor 30. Thereby, the heat generated in the field winding 38 and the like in the rotor 30 can be efficiently dissipated to the outside.

図15は、本実施の形態の同期機10における突極32の外観を模式的に示す。図14に示したような構造の同期機10に永久磁石50を挿入する場合、永久磁石50も、回転子30と同じ位置に間隙40を有するように、回転子30の回転軸の軸方向に積層された複数の層を有する構造とする。これにより、永久磁石50で間隙をふさぐことなく、効率的に回転子30の内部の熱を外部へ発散させることができる。   FIG. 15 schematically shows the appearance of the salient pole 32 in the synchronous machine 10 of the present embodiment. When the permanent magnet 50 is inserted into the synchronous machine 10 having the structure as shown in FIG. 14, the permanent magnet 50 also has the gap 40 at the same position as the rotor 30 in the axial direction of the rotation axis of the rotor 30. A structure having a plurality of stacked layers is employed. Thus, the heat inside the rotor 30 can be efficiently dissipated to the outside without blocking the gap with the permanent magnet 50.

間隙40に絶縁層が形成されてもよい。これにより、突極頭部36や永久磁石50の表面に生じる渦電流を低減し、渦電流損を低減することができる。複数の層の回転子30と絶縁層は一体的に構成されてもよい。また、絶縁層は、突極頭部36及び永久磁石50の部分にのみ形成されてもよい。   An insulating layer may be formed in the gap 40. Thereby, the eddy current generated on the surface of the salient pole head 36 and the permanent magnet 50 can be reduced, and the eddy current loss can be reduced. A plurality of layers of the rotor 30 and the insulating layer may be integrally formed. Further, the insulating layer may be formed only on the salient pole head 36 and the permanent magnet 50.

図16は、本実施の形態の同期機10における突極32の外観を模式的に示す。本図では、分かりやすくするために、永久磁石50を省略している。図16に示した同期機10では、突極頭部36外周側の表面に溝42が形成されている。この溝42は、回転子30の回転軸に垂直な面に沿って設けられる。このような構造とすることにより、図14に示した同期機10と同様に、渦電流損を低減することができる。   FIG. 16 schematically shows the appearance of the salient pole 32 in the synchronous machine 10 of the present embodiment. In this figure, the permanent magnet 50 is omitted for the sake of clarity. In the synchronous machine 10 shown in FIG. 16, a groove 42 is formed on the outer peripheral surface of the salient pole head 36. The groove 42 is provided along a plane perpendicular to the rotation axis of the rotor 30. By adopting such a structure, eddy current loss can be reduced as in the synchronous machine 10 shown in FIG.

図17は、本実施の形態に係る同期機10における突極32の外観を模式的に示す。本図では、図16に示した同期機10の構成に永久磁石50を加えている。永久磁石50の外周側の表面にも溝42が設けられている。永久磁石50の表面の溝42は、突極頭部36の表面の溝42と同じ位置に設けられてもよい。   FIG. 17 schematically shows the appearance of the salient pole 32 in the synchronous machine 10 according to the present embodiment. In this figure, a permanent magnet 50 is added to the configuration of the synchronous machine 10 shown in FIG. Grooves 42 are also provided on the outer peripheral surface of the permanent magnet 50. The groove 42 on the surface of the permanent magnet 50 may be provided at the same position as the groove 42 on the surface of the salient pole head 36.

本実施の形態の同期機10を製造する場合、永久磁石50を突極頭部36の間に配置した後、回転子30を回転させるときと逆方向に界磁巻線38に電流を供給し、逆の極性に突極32を励磁する。これにより、永久磁石50のN極側の突極32がS極に、S極側の突極32がN極に励磁され、永久磁石50が突極頭部36に電磁力で固定されるので、その間に、永久磁石50を突極頭部36に溶接や治具などで接着すればよい。このとき、永久磁石50を着磁する必要があれば、着磁に必要な磁力が生じるように、界磁巻線38に電流を供給すればよい。   When the synchronous machine 10 according to the present embodiment is manufactured, after the permanent magnet 50 is disposed between the salient pole heads 36, a current is supplied to the field winding 38 in the opposite direction to the rotation of the rotor 30. The salient pole 32 is excited to the opposite polarity. As a result, the salient pole 32 on the N pole side of the permanent magnet 50 is excited to the S pole, the salient pole 32 on the S pole side is excited to the N pole, and the permanent magnet 50 is fixed to the salient pole head 36 by electromagnetic force. In the meantime, the permanent magnet 50 may be bonded to the salient pole head 36 by welding or a jig. At this time, if it is necessary to magnetize the permanent magnet 50, a current may be supplied to the field winding 38 so that a magnetic force necessary for magnetization is generated.

以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it will be understood by those skilled in the art that various modifications can be made to combinations of the respective constituent elements and processing processes, and such modifications are also within the scope of the present invention. is there.

実施の形態では、回転界磁形の突極形同期機について説明したが、回転電機子形の突極形同期機についても同様に本実施の形態の技術を適用可能である。   In the embodiment, the rotating field type salient pole type synchronous machine has been described. However, the technique of the present embodiment can be similarly applied to a rotating armature type salient pole type synchronous machine.

従来の突極形の同期機の構成を示す図である。It is a figure which shows the structure of the conventional salient pole type synchronous machine. 突極の外観を模式的に示す。The external appearance of a salient pole is shown typically. 本実施の形態に係る同期機の構成を示す図である。It is a figure which shows the structure of the synchronous machine which concerns on this Embodiment. 本実施の形態に係る突極の外観を模式的に示す。The external appearance of the salient pole concerning this embodiment is shown typically. 図5(a)は、図1に示した回転機と同様に、永久磁石を挿入していない従来の構造の解析対象機Aの断面を示す図であり、図5(b)は、解析対象機Aの磁束線図である。FIG. 5 (a) is a diagram showing a cross section of an analysis object machine A having a conventional structure in which a permanent magnet is not inserted, as in the rotating machine shown in FIG. 1, and FIG. 5 (b) is an analysis object. 2 is a magnetic flux diagram of machine A. FIG. 図6(a)は、図3に示した本実施の形態の構造の解析対象機Bの断面を示す図であり、図6(b)は、解析対象機Bの磁束線図である。6A is a diagram showing a cross section of the analysis object machine B having the structure of the present embodiment shown in FIG. 3, and FIG. 6B is a magnetic flux diagram of the analysis object machine B. 図7(a)は、突極胴部の幅を解析対象機A及びBよりも30%細くし、これに伴いコイル領域の断面積を約50%増した構造の解析対象機Cの断面を示す図であり、図7(b)は、解析対象機Cの磁束線図である。FIG. 7A shows a cross section of the analysis target machine C having a structure in which the salient pole body is 30% thinner than the analysis target machines A and B and the cross-sectional area of the coil region is increased by about 50%. FIG. 7B is a magnetic flux diagram of the machine C to be analyzed. 永久磁石による磁束線図を示す図である。It is a figure which shows the magnetic flux diagram by a permanent magnet. それぞれの解析対象機の無負荷飽和曲線を示す図である。It is a figure which shows the no-load saturation curve of each analysis object machine. 実施の形態に係る同期機の別の構成例を示す図である。It is a figure which shows another structural example of the synchronous machine which concerns on embodiment. 図10に示した同期機の突極の外観を模式的に示す。The external appearance of the salient pole of the synchronous machine shown in FIG. 10 is shown typically. 実施の形態に係る同期機の別の構成例を示す図である。It is a figure which shows another structural example of the synchronous machine which concerns on embodiment. 図12に示した同期機の突極の外観を模式的に示す。The external appearance of the salient pole of the synchronous machine shown in FIG. 12 is shown typically. 従来の同期機の別の構成例を示す図である。It is a figure which shows another structural example of the conventional synchronous machine. 本実施の形態の同期機における突極の外観を模式的に示す。An appearance of salient poles in the synchronous machine of the present embodiment is schematically shown. 本実施の形態の同期機における突極の外観を模式的に示す。An appearance of salient poles in the synchronous machine of the present embodiment is schematically shown. 本実施の形態に係る同期機における突極の外観を模式的に示す。An appearance of salient poles in the synchronous machine according to the present embodiment is schematically shown.

符号の説明Explanation of symbols

10 同期機、20 固定子、22 電機子、30 回転子、32 突極、34 突極胴部、36 突極頭部、38 界磁巻線、40 間隙、42 溝、50 永久磁石。   10 synchronous machine, 20 stator, 22 armature, 30 rotor, 32 salient pole, 34 salient pole body, 36 salient pole head, 38 field winding, 40 gap, 42 groove, 50 permanent magnet.

Claims (11)

固定子と、回転子と、前記固定子又は前記回転子に設けられた突極と、を備え、
前記突極は、
界磁巻線を巻き付ける胴部と、
前記胴部よりも大きな径又は幅を有する頭部と、を含み、
隣接する突極の頭部の間に、前記突極が界磁された極と同じ極が対向するように設けられた磁石を更に備えることを特徴とする回転機。
A stator, a rotor, and salient poles provided on the stator or the rotor,
The salient pole is
The body around which the field winding is wound;
Including a head having a larger diameter or width than the trunk,
A rotating machine further comprising a magnet provided between the heads of adjacent salient poles so that the same pole as the pole on which the salient pole is fielded faces.
前記磁石は、前記頭部に接するように設けられることを特徴とする請求項1に記載の回転機。   The rotating machine according to claim 1, wherein the magnet is provided in contact with the head. 前記磁石は、前記磁石の外周側の表面と前記頭部の外周側の表面の間に段差が生じないように、前記頭部の間に配置されることを特徴とする請求項1又は2に記載の回転機。   The said magnet is arrange | positioned between the said heads so that a level | step difference may not arise between the surface of the outer peripheral side of the said magnet, and the surface of the outer peripheral side of the said head. The rotating machine described. 前記磁石は、外周側よりも幅の広い部分を有した形状を有することを特徴とする請求項1から3のいずれかに記載の回転機。   The rotating machine according to any one of claims 1 to 3, wherein the magnet has a shape having a portion wider than an outer peripheral side. 前記磁石は、内周側から外周側へ幅が狭くなる形状を有することを特徴とする請求項4に記載の回転機。   The rotating machine according to claim 4, wherein the magnet has a shape whose width is narrowed from the inner peripheral side to the outer peripheral side. 前記突極及び前記磁石は、前記回転子の回転軸の軸方向に間隙をもって積層された複数の層を有することを特徴とする請求項1から5のいずれかに記載の回転機。   6. The rotating machine according to claim 1, wherein the salient pole and the magnet have a plurality of layers stacked with a gap in an axial direction of a rotating shaft of the rotor. 前記突極及び前記磁石は、同じ位置に前記間隙を有することを特徴とする請求項6に記載の回転機。   The rotating machine according to claim 6, wherein the salient pole and the magnet have the gap at the same position. 前記間隙に絶縁層が形成されたことを特徴とする請求項6又は7に記載の回転機。   The rotating machine according to claim 6 or 7, wherein an insulating layer is formed in the gap. 前記突極の頭部及び前記磁石の外周側の表面に溝が形成されたことを特徴とする請求項1から8のいずれかに記載の回転機。   The rotating machine according to any one of claims 1 to 8, wherein a groove is formed on a head of the salient pole and a surface on an outer peripheral side of the magnet. 前記溝は、前記回転子の回転軸に垂直な面に沿って設けられることを特徴とする請求項9に記載の回転機。   The rotating machine according to claim 9, wherein the groove is provided along a plane perpendicular to a rotation axis of the rotor. 請求項1から10のいずれかに記載の回転機を製造する方法であって、
前記磁石を前記突極の頭部の間に配置するステップと、
前記回転子を回転させるときと逆の極性に前記突極を励磁するステップと、
前記磁石を前記突極の頭部の間に固定して接着するステップと、
を備えることを特徴とする方法。
A method for manufacturing the rotating machine according to any one of claims 1 to 10,
Disposing the magnet between the salient pole heads;
Exciting the salient poles to a polarity opposite to that when rotating the rotor;
Fixing and adhering the magnet between the heads of the salient poles;
A method comprising the steps of:
JP2007063791A 2007-03-13 2007-03-13 Rotating machine and method of manufacturing the rotating machine Expired - Fee Related JP5120801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063791A JP5120801B2 (en) 2007-03-13 2007-03-13 Rotating machine and method of manufacturing the rotating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063791A JP5120801B2 (en) 2007-03-13 2007-03-13 Rotating machine and method of manufacturing the rotating machine

Publications (2)

Publication Number Publication Date
JP2008228460A true JP2008228460A (en) 2008-09-25
JP5120801B2 JP5120801B2 (en) 2013-01-16

Family

ID=39846414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063791A Expired - Fee Related JP5120801B2 (en) 2007-03-13 2007-03-13 Rotating machine and method of manufacturing the rotating machine

Country Status (1)

Country Link
JP (1) JP5120801B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200506A (en) * 2009-02-25 2010-09-09 Kanazawa Inst Of Technology Salient pole type synchronous machine
US20130002078A1 (en) * 2011-06-29 2013-01-03 Jeumont Electric Rotor of a multipolar synchronous electric machine with salient poles
CN103683593A (en) * 2012-09-17 2014-03-26 现代自动车株式会社 Rotor of motor, synchronous motor having the same and wound rotor synchronous motor
WO2014188505A1 (en) * 2013-05-21 2014-11-27 株式会社安川電機 Rotating electric machine
WO2015181895A1 (en) * 2014-05-27 2015-12-03 株式会社安川電機 Rotating electrical machine
KR20170082793A (en) * 2016-01-07 2017-07-17 한국전기연구원 Wound field synchronous motor, and rotor therefor
KR102164962B1 (en) * 2019-04-10 2020-10-13 계명대학교 산학협력단 A field winding motor generator having rotor of optimum magnet arrangement using permanent magnet assist structure and its fabrication method
KR102164960B1 (en) * 2019-04-10 2020-10-13 계명대학교 산학협력단 A field winding motor generator using permanent magnet assist structure and its fabrication method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165950A (en) * 1990-10-26 1992-06-11 Nippondenso Co Ltd Rotor of electric rotating machine for vehicle
JP2002199679A (en) * 2000-12-28 2002-07-12 Denso Corp Inductor type electric machine having magnet equipped armature
JP2002359955A (en) * 2001-05-30 2002-12-13 Toshiba Corp Method for manufacturing rotor of permanent magnet type dynamo-electric machine
JP2004229404A (en) * 2003-01-22 2004-08-12 Genesis:Kk Reluctance motor and magnet of stator for reluctance motor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04165950A (en) * 1990-10-26 1992-06-11 Nippondenso Co Ltd Rotor of electric rotating machine for vehicle
JP2002199679A (en) * 2000-12-28 2002-07-12 Denso Corp Inductor type electric machine having magnet equipped armature
JP2002359955A (en) * 2001-05-30 2002-12-13 Toshiba Corp Method for manufacturing rotor of permanent magnet type dynamo-electric machine
JP2004229404A (en) * 2003-01-22 2004-08-12 Genesis:Kk Reluctance motor and magnet of stator for reluctance motor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200506A (en) * 2009-02-25 2010-09-09 Kanazawa Inst Of Technology Salient pole type synchronous machine
US20130002078A1 (en) * 2011-06-29 2013-01-03 Jeumont Electric Rotor of a multipolar synchronous electric machine with salient poles
CN103683593A (en) * 2012-09-17 2014-03-26 现代自动车株式会社 Rotor of motor, synchronous motor having the same and wound rotor synchronous motor
KR101382335B1 (en) * 2012-09-17 2014-04-09 현대자동차 주식회사 Rotor and synchronous motor having the same and wound rotor synchronous motor
WO2014188505A1 (en) * 2013-05-21 2014-11-27 株式会社安川電機 Rotating electric machine
WO2015181895A1 (en) * 2014-05-27 2015-12-03 株式会社安川電機 Rotating electrical machine
KR20170082793A (en) * 2016-01-07 2017-07-17 한국전기연구원 Wound field synchronous motor, and rotor therefor
KR102493799B1 (en) * 2016-01-07 2023-01-30 한국전기연구원 Wound field synchronous motor, and rotor therefor
KR102164962B1 (en) * 2019-04-10 2020-10-13 계명대학교 산학협력단 A field winding motor generator having rotor of optimum magnet arrangement using permanent magnet assist structure and its fabrication method
KR102164960B1 (en) * 2019-04-10 2020-10-13 계명대학교 산학협력단 A field winding motor generator using permanent magnet assist structure and its fabrication method

Also Published As

Publication number Publication date
JP5120801B2 (en) 2013-01-16

Similar Documents

Publication Publication Date Title
JP5120801B2 (en) Rotating machine and method of manufacturing the rotating machine
JP5851365B2 (en) Rotating electric machine
US20090001831A1 (en) Axial Field Electric Motor and Method
JP5313752B2 (en) Brushless motor
US20110163618A1 (en) Rotating Electrical Machine
JP6048191B2 (en) Multi-gap rotating electric machine
JP2008148391A (en) Rotor for rotary electric machine, and the rotary electric machine
JP2007274869A (en) Slot-less permanent magnet type rotary electric machine
JP5332171B2 (en) Permanent magnet motor
JPWO2016147358A1 (en) Permanent magnet embedded electric motor, blower and refrigeration air conditioner
JP2010004634A (en) Axial-gap type rotating electrical machine
JP2013132124A (en) Core for field element
JP2006101695A (en) Permanent magnet rotary electric machine and car
JP2010193587A (en) Magnet magnetization device for rotors, and motor
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP2010183792A (en) Motor
JP2009171699A (en) Motor
JP5300381B2 (en) DC series motor and starter
WO2011089797A1 (en) Rotor, rotating electrical machine using same, and power generator
JP5904188B2 (en) Multi-gap rotating electric machine
JP2015180145A (en) Magnetization of electric motor
JP2007116850A (en) Permanent-magnet rotating electric machine and cylindrical linear motor
JP2006025486A (en) Electric electric machine
JP2010268650A (en) Axial gap type rotary electric machine
JP2007037325A (en) Motor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151102

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5120801

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees