WO2014188505A1 - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
WO2014188505A1
WO2014188505A1 PCT/JP2013/064029 JP2013064029W WO2014188505A1 WO 2014188505 A1 WO2014188505 A1 WO 2014188505A1 JP 2013064029 W JP2013064029 W JP 2013064029W WO 2014188505 A1 WO2014188505 A1 WO 2014188505A1
Authority
WO
WIPO (PCT)
Prior art keywords
field winding
iron core
winding
rotor
core
Prior art date
Application number
PCT/JP2013/064029
Other languages
French (fr)
Japanese (ja)
Inventor
野中 剛
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2015517954A priority Critical patent/JPWO2014188505A1/en
Priority to PCT/JP2013/064029 priority patent/WO2014188505A1/en
Publication of WO2014188505A1 publication Critical patent/WO2014188505A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/02Details
    • H02K21/04Windings on magnets for additional excitation ; Windings and magnets for additional excitation
    • H02K21/042Windings on magnets for additional excitation ; Windings and magnets for additional excitation with permanent magnets and field winding both rotating

Definitions

  • the disclosed embodiment relates to a rotating electrical machine.
  • Patent Document 1 discloses that a rotor includes a rotor magnetic pole formed of an iron core in which a large number of magnetic plates are laminated in the axial direction, a permanent magnet embedded in a substantially central portion in the circumferential direction of the rotor magnetic pole, and a rotor.
  • a rotating electrical machine including an annular field winding provided at the base of a magnetic pole and energized by supplying a field current from the outside.
  • Patent Document 1 is difficult to achieve high-speed rotation because the holding structure for holding the field winding against the centrifugal force is weak.
  • the radial dimension of the holding structure is increased to eliminate this, the leakage of magnetic flux from the permanent magnet increases and the magnetic flux that contributes to torque generation decreases. It becomes difficult.
  • the present invention has been made in view of such problems, and an object thereof is to provide a rotating electrical machine capable of achieving both high torque and high speed rotation.
  • the rotor core includes: a stator including a stator winding and a stator core; and a rotor including a rotor core. Is applied to a rotating electrical machine including a permanent magnet provided for each magnetic pole, a field winding having a winding iron core, and a composite magnetic material having a ferromagnetic portion and a nonmagnetic portion.
  • FIG. 2 is a transverse sectional view taken along a section AA ′ in FIG. 1. It is explanatory drawing at the time of field winding non-energization showing magnetic flux control by a field winding, and explanatory drawing at the time of field winding energization. It is the elements on larger scale of FIG. 1 showing the detailed structure of a non-contact electric power feeder. It is a circuit diagram showing the rectifier circuit which rectifies the alternating current high voltage which generate
  • the rotating electrical machine 10 is a so-called variable field rotating electrical machine whose characteristics are changed by energization of windings (details will be described later), and includes a cylindrical frame 9.
  • the radial direction (vertical direction in FIG. 1) of the frame 9 is hereinafter simply referred to as “radial direction”, and the axial direction (horizontal direction in FIG. 1) of the frame 9 is hereinafter simply referred to as “axial direction”.
  • the circumferential direction is hereinafter simply referred to as “circumferential direction”.
  • the rotating electrical machine 10 is an inner rotor type electric motor including a stator 20 provided on the inner side in the radial direction of the frame 9 and a cylindrical rotor 30 provided on the inner side in the radial direction of the stator 20. .
  • the rotating electrical machine 10 also includes a counter load side bracket 11 that closes an opening on one side (left side in FIG. 1) of the frame 9 and a load that closes an opening on the other side (right side in FIG. 1) of the frame 9.
  • the side bracket 12 and a cylindrical non-contact power feeding device 50 provided inside the rotor 30 are provided.
  • the rotor 30 is provided on the rotating shaft 8 extending in the axial direction.
  • the rotating shaft 8 includes a hollow cylindrical portion 8a that can accommodate the non-contact power feeding device 50 radially inward, and an anti-load side shaft that is integrally provided on one axial side (left side in FIG. 1) of the cylindrical portion 8a.
  • a portion 8b and a load-side shaft portion 8c provided integrally on the other axial side of the cylindrical portion 8a (the right side in FIG. 1).
  • the outer peripheral surface of the anti-load side shaft portion 8b is rotatably supported by the anti-load side bracket 11 via a bearing 7a.
  • the anti-load side bracket 11 is provided with a lid portion 6 for accommodating the anti-load side shaft portion 8b of the rotary shaft 8.
  • the outer peripheral surface of the load side shaft portion 8c is rotatably supported by the load side bracket 12 via a bearing 7b.
  • the inner peripheral surface of one end (left side in FIG. 1) in the axial direction of the cylindrical portion 8a is rotatably supported by a hollow support shaft 51 of the non-contact power feeding device 50 via a bearing 52a.
  • the inner peripheral surface of the end portion on the other axial side (right side in FIG. 1) of the cylindrical portion 8a is rotatably supported by the support shaft 51 via a bearing 52b.
  • the stator 20 includes a stator core 21 provided on the inner peripheral surface of the frame 9, and a plurality (12 in this example) of stator windings 22 arranged in the circumferential direction of the stator core 21.
  • the stator iron core 21 is fixed between the half load side bracket 11 and the load side bracket 12 by a plurality of bolts 25 penetrating the outer peripheral edge of the radial direction.
  • a plurality (12 in this example) of teeth 23 penetrating in the axial direction are arranged on the outer side in the radial direction of the stator core 21 in the circumferential direction.
  • a slot 24 penetrating in the axial direction is formed between two adjacent teeth 23, 23.
  • Each stator winding 22 is mounted on a tooth 23 and accommodated in slots 24 on both sides in the circumferential direction of the tooth 23.
  • the rotor 30 includes a ring-shaped rotor iron core 31.
  • the rotor core 31 is provided with a plurality of N poles and S poles alternately (10 in this example) along the circumferential direction on the outer side in the radial direction.
  • the rotor core 31 has a permanent magnet 34 and a field winding 35 provided with a winding core 35a.
  • the permanent magnet 34 is provided at the substantially central portion in the radial direction of the rotor core 31 for each magnetic pole.
  • the field winding 35 is provided between the magnetic poles adjacent to each other in the circumferential direction from the substantially central portion in the radial direction of the rotor core 31 to the radially outer portion.
  • the field winding 35 is provided between two magnetic poles adjacent to each other in the circumferential direction of the rotor core 31, and is wound around the winding core 35a to generate a magnetic flux in the circumferential direction by energization.
  • the rotor core 31 includes a first iron core 32 on the radially outer side and a second iron core 33 on the radially inner side.
  • the first iron core 32 is disposed opposite to the stator iron core 21 with a magnetic gap in the radial direction.
  • the second iron core 33 is attached to the inner side in the radial direction of the first iron core 32 and to the outer side of the cylindrical portion 8 a of the rotating shaft 8.
  • the first iron core 32 and the second iron core 33 are integrally assembled with the permanent magnet 34 and the field winding 35 interposed therebetween.
  • a first mounting hole 37 and a second mounting hole 38 penetrating in the axial direction are provided in the integrated first core 32 and second iron core 33.
  • the first iron core 32 is provided with a recess that forms a part of the first mounting hole 37
  • the second iron core 33 is provided with a recess that forms the remaining part of the first mounting hole 37.
  • the first mounting hole 37 is formed by combining the two concave portions.
  • the first iron core 32 is provided with a recess that forms a part of the second mounting hole 38
  • the second iron core 33 is provided with a recess that forms the remaining part of the second mounting hole 38.
  • the 2nd mounting hole 37 is formed because those two recessed parts unite
  • the permanent magnet 34 is attached to the first mounting hole 37 and the field winding 35 is attached to the second mounting hole 38.
  • the first iron core 32 includes a ferromagnetic region 32a (corresponding to a ferromagnetic portion) and a weak magnetic region 32b (in this example, a nonmagnetic region, corresponding to a nonmagnetic portion) that is weaker than the ferromagnetic region 32a.
  • the composite magnetic material is provided.
  • the weak magnetic region 32 b is formed in a narrow portion of the first iron core 32 on the radially outer side of the field winding 35, and this narrow portion (that is, the weak magnetic region 32 b) is formed in the field winding 35. (In detail, radially outside the field winding 35) and holds the field winding 35 from the outside in the radial direction.
  • the weak magnetic region 32b functions as a holding portion that has weaker magnetism than other portions and holds the field winding 35.
  • a plate material of a composite magnetic material as a ferromagnetic material is processed into a shape corresponding to the first iron core 32 and laminated. Thereafter, the laminate is inserted into, for example, a high-temperature gas furnace (not shown), and a high-temperature flame is passed through the first mounting hole 38 for the field winding 35 and heated to about 1200 ° C. Thereafter, the magnetism is lost by quenching by natural cooling using heat diffusion.
  • the field winding of the first iron core 32 is left in the first iron core 32 of the ferromagnetic composite magnetic material other than the outer region in the radial direction of the field winding 35 as the ferromagnetic region 32a.
  • the radially outer region 35 can be the weak magnetic region 32b.
  • both a ferromagnetic property and a weak magnetic property can be realized while using a composite magnetic material having a single composition, and the first core 32 of the rotor core 31 has a ferromagnetic region. 32a and the weak magnetic region 32b can be formed.
  • other methods such as induction overheating are also appropriately used.
  • FIG. 3A shows magnetic fluxes formed by the permanent magnets 34 of the rotor core 31 when the field winding 35 is not energized (that is, at the normal time when the high-speed rotation is performed).
  • the permanent magnet 34 disposed corresponding to the N-pole magnetic pole (see FIG. 2) of the rotor core 31.
  • Magnetic flux (hereinafter referred to as “gap magnetic flux”) B emitted from the N pole forms a magnetic circuit that contributes to torque generation.
  • the gap magnetic flux B causes the first iron core 32, the gap between the rotor 30 and the stator 20, and the teeth 23 of the rotor 30 to be radially outward from the N pole of the permanent magnet 34. After crossing, it goes around to another tooth 23 adjacent in the circumferential direction. Then, the gap magnetic flux B crosses the tooth 23 inward in the radial direction, and is another permanent magnet arranged corresponding to the S pole (see FIG. 1) adjacent to the N pole of the rotor core 31. After reaching the S pole of 34 and exiting from the N pole of the other permanent magnet 34, the S pole of the original permanent magnet 34 is returned.
  • a part (hereinafter referred to as “leakage magnetic flux”) Q of the magnetic flux emitted from the N pole of the permanent magnet 34 arranged corresponding to the N pole magnetic pole (see FIG. 2) of the rotor core 31 is A magnetic circuit (leakage magnetic circuit) different from the magnetic circuit of the gap magnetic flux B described above is formed. That is, as shown in FIG. 3A, the magnetic flux Q passes from the north pole of the permanent magnet 34 through the winding core 35a while traversing the first iron core 32 in the circumferential direction, and then the rotor. After reaching the south pole of another permanent magnet 34 arranged corresponding to the south pole of the iron core 31 adjacent to the north pole (see FIG.
  • FIG. 3B shows the magnetic flux formed by the permanent magnet 34 of the rotor core 31 when the field winding 35 is energized. Since the field winding 35 has a function of generating a magnetic flux in the circumferential direction when energized, when the field winding 35 is excited by energization, the direction of the leakage flux Q is opposite to that when passing through the winding core 35a. A magnetic flux P is generated. In other words, the field winding 35 is excited so as to block the leakage flux Q. As a result, the gap magnetic flux B is prevented from being lowered due to the generation of the leakage magnetic flux Q as described above with reference to FIG. When energization is further increased, as shown in FIG.
  • the winding core is applied to the gap magnetic flux B from the N pole of the permanent magnet 34 to the first iron core 32 radially outward as described above. Since the magnetic flux P after passing through 35a is also added, the magnetic flux contributing to torque generation can be increased (in other words, the gap magnetic flux B can be increased).
  • the field winding 35 when it is desired to obtain a large torque characteristic, the field winding 35 is energized to obtain the magnetic flux generation mode shown in FIG. In this case, the field winding 35 is set in a non-energized state so that the magnetic flux is generated as shown in FIG.
  • the non-contact power feeding device 50 includes the hollow support shaft 51.
  • the support shaft 51 is fixed to the stator 20 with an end portion on one side in the axial direction (left side in FIG. 4) attached to the lid portion 6 (see FIG. 1).
  • the support shaft 51 attached to the lid portion 6 extends in the rotary shaft 8 from the anti-load side shaft portion 8b to the end surface portion on the other axial side (right side in FIG. 4) of the cylindrical portion 8a.
  • An insulating bracket 55 having three annular grooves 55a along the axial direction is attached to the outer peripheral surface of the support shaft 51.
  • primary windings 54 of U-phase, V-phase, and W-phase are wound around the axial direction.
  • an insulating bracket 57 having three annular grooves 57a is attached to the inner peripheral surface of the cylindrical portion 8a of the rotating shaft 8 along the axial direction.
  • the U phase, V, and V are arranged along the axial direction so as to be radially outside the primary winding 54 of each phase of the U phase, V phase, and W phase.
  • a secondary winding 56 of each phase of the phase and the W phase is wound. At this time, the secondary winding 56 of each phase is provided so as to face the corresponding primary winding 54 with a predetermined gap in the radial direction.
  • Each primary winding 54 is connected to a three-phase AC power source (not shown) on the stator 20 side via a lead wire (not shown) passing through the hollow portion 51a of the support shaft 51.
  • the AC high voltage of each phase is induced in the secondary winding 56 of each phase by the high voltage of the three-phase AC supplied from the three-phase AC power source to the primary winding 54.
  • the AC high voltage induced in the secondary winding 56 of each phase is rectified by a rectifier circuit 60 in which two diodes 58 and 58 connected in series are connected in parallel for three phases as shown in FIG. , And supplied to the field winding 35 via the load resistance Z.
  • the rectifier circuit 60 is provided at an end portion on one axial side (the left side in FIG. 4) of the cylindrical portion 8 a of the rotating shaft 8.
  • the rotor core 31 is provided with the weak magnetic region 32b.
  • the weak magnetic region 32 b has a function of holding the field winding 35 in the vicinity of the field winding 35. Thereby, the field winding 35 can be firmly held against the centrifugal force, so that high speed rotation can be achieved.
  • the holding part that holds the field winding 35 has the same magnetism as other parts, the magnetic flux from the permanent magnet 34 passes through the holding part, and the leakage of the magnetic flux increases. To do.
  • the weak magnetic region 32b since the weak magnetic region 32b has weaker magnetism than other parts, the above-described adverse effects can be avoided and leakage of magnetic flux can be suppressed. As a result, as described above with reference to FIG. 3B, the magnetic flux contributing to the torque generation at the low speed can be secured, and the torque can be increased. As described above, according to the present embodiment, both large torque and high-speed rotation can be achieved.
  • the weak magnetic region 32b is provided on the radially outer side of the field winding 35, and holds the field winding 35 from the radially outer side. Therefore, even when a large centrifugal force is applied to the field winding 35 during high-speed rotation, the field winding 35 can be reliably held from the outside in the radial direction.
  • the rotor core 31 is made of a composite magnetic material having a ferromagnetic region 32a and a weak magnetic region 32b, and the weak magnetic region 32b functions as the above-described holding portion.
  • part can be implement
  • the rotor core 31 includes an outer first iron core 32 and an inner second iron core 33 provided with a permanent magnet 34 and a field winding 35 interposed therebetween. .
  • the field winding 35 with the winding iron core is later connected to the first iron core 32 and the second iron core 33.
  • the assembly workability at the time of manufacture can be improved.
  • the field winding 35 is centrifuged even during high-speed rotation. Can be held against force.
  • the weak magnetic region 32 b is provided in the radially outer portion of the field winding 35 in the first iron core 32.
  • the weak magnetic region 32b provided in the first iron core 32 that surrounds the outside of the field winding 35 can reliably hold the field winding 35 against centrifugal force even during high-speed rotation. .
  • the field winding 35 is excited so that the leakage magnetic flux Q passing through the permanent magnet 34 and the winding iron core 35a when not energized is interrupted when energized. That is, in the present embodiment, the field winding 35 is deenergized during high-speed rotation so that the leakage magnetic flux Q passes through the permanent magnet 34 and the winding iron core 35a, thereby realizing high-speed rotation. At a low speed, a large torque can be achieved by energizing and exciting the field winding 35 to interrupt the leakage flux Q.
  • the rotating electrical machine of the second embodiment is provided with a cylindrical stator (not shown) similar to the stator 20 of the first embodiment and a magnetic air gap inside the stator in the radial direction.
  • a cylindrical rotor 30A is provided with a cylindrical stator (not shown) similar to the stator 20 of the first embodiment and a magnetic air gap inside the stator in the radial direction.
  • the rotor 30A includes a ring-shaped rotor core 31A.
  • the rotor core 31A is provided with a plurality of N poles and S poles alternately (10 in this example) along the circumferential direction on the outer side in the radial direction.
  • the rotor core 31A has the same permanent magnets 34 and field windings 65 as those in the first embodiment, which are provided on the substantially outer side in the radial direction of the rotor core 31A for each magnetic pole.
  • the rotor core 31 ⁇ / b> A includes an outer first iron core 32 and an inner second iron core 33.
  • a plurality of (in this example, ten) teeth 33a penetrating in the axial direction are arranged in the circumferential direction.
  • a slot 33b penetrating in the axial direction is formed between two adjacent teeth 33a and 33a.
  • Each field winding 65 is wound around the teeth 33a so as to generate a magnetic flux in the circumferential direction when energized, and is accommodated in the slots 33b on both sides of the teeth 33a.
  • the gap between the opposing linear portions of the field winding 65 of the teeth 33a on both sides accommodated in the slot 33b is filled with the mold resin 61.
  • the first iron core 32 and the second iron core 33 are provided so as to sandwich the permanent magnet 34 and the field winding 65 therebetween.
  • the field winding 65 is provided on the magnetic pole in the rotor core 31A, and generates a magnetic flux in the radial direction when energized.
  • the first iron core 32 includes a ferromagnetic region 32a (corresponding to a ferromagnetic portion) and a weak magnetic region 32b (in this example, a nonmagnetic region, which is weaker than the ferromagnetic region 32a). And a composite magnetic material.
  • the weak magnetic region 32b is provided in the first iron core 32 in the vicinity of the field winding 65 (specifically, the outer side in the radial direction of the field winding 65), and holds the field winding 65 from the outer side in the radial direction. .
  • the weak magnetic region 32b functions as a holding portion that has weaker magnetism than other portions and holds the field winding 65.
  • the weak magnetic region 32b can be formed by partially heat-treating the first iron core 32 of the ferromagnetic composite magnetic material, as in the first embodiment.
  • the magnetic flux formed by the permanent magnet 34 of the rotor core 31A when the field winding 65 is not energized is as shown in FIG. 7A and FIG.
  • a magnetic circuit is formed. That is, the gap magnetic flux B is generated from the N pole of the permanent magnet 34 to the first iron core 32, the gap between the rotor 30 and the stator 20, and the teeth 23 of the rotor 30 (see FIG. 2 described above).
  • the gap magnetic flux B crosses the tooth 23 inward in the radial direction, and is another permanent magnet disposed corresponding to the S pole (see FIG. 6) adjacent to the N pole of the rotor core 31A.
  • the teeth 33a of the rotor core 31A located on the radially inner side of the other permanent magnet are passed through the proximal end portion on the radially inner side of the teeth 33a.
  • the wrapping gap magnetic flux B returns to the S pole of the original permanent magnet. That is, in this rotor core 31A, the magnetic flux emitted from the N pole of the permanent magnet 34 does not cross the first iron core 32 in the circumferential direction as in the first embodiment, and the aforementioned leakage magnetic flux does not occur. .
  • FIG. 7B shows the magnetic flux formed by the permanent magnet 34 of the rotor core 31A when the field winding 65 is energized.
  • the field winding 65 has a function of generating a magnetic flux in the radial direction when energized. Therefore, when the field winding 65 is energized by energization, the non-description of FIG. A magnetic flux P ′ is generated in the same direction as the gap magnetic flux B, which is directed from the permanent magnet 34 toward the stator 20 along the radial direction when energized. In other words, the gap magnetic flux B can be increased by applying the magnetic flux P ′.
  • the field winding 65 when it is desired to obtain a large torque characteristic, the field winding 65 is energized to obtain the magnetic flux generation mode of FIG. When it is desired to obtain the above characteristics, the field winding 65 is set in a non-energized state and the magnetic flux generation mode shown in FIG.
  • the same effect as that of the first embodiment is obtained.
  • energizing and exciting the field winding 65 at low speed increases the magnetic flux contributing to torque generation from the permanent magnet 34 toward the stator 20 (referred to as gap magnetic flux B + magnetic flux P ′). Torque can be achieved.
  • the permanent magnet 34 at the time of non-energization is not wasted unlike the method of the first embodiment in which the leakage magnetic flux generated at the time of de-energization is interrupted at the time of energization to increase the torque.
  • the rotating electrical machine 10 is an inner rotor type in which the rotors 30 and 30A are provided inside the stator 20 has been described as an example.
  • the present invention can also be applied to other rotating electric machines.
  • the rotary electric machine 10 is an electric motor has been described as an example, the present invention can also be applied to the case where the rotary electric machine 10 is a generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

[Problem] To obtain a rotating electric machine both having a large torque and rotating at high speed. [Solution] A rotating electric machine (10) has: a stator (20) equipped with a stator winding (22) and a stator iron core (21); and a rotor (30) equipped with a rotor iron core (31). The rotor iron core (31) includes: permanent magnets (34) provided at respective magnetic poles; field windings (35) provided between the magnetic poles adjacent in a circumferential direction or at the magnetic poles and generating a magnetic flux in a circumferential direction when current is flowed therethrough; and weak magnetic regions (32b) having a magnetism weaker than that of the other region and holding the field windings (35).

Description

回転電機Rotating electric machine
 開示の実施形態は、回転電機に関する。 The disclosed embodiment relates to a rotating electrical machine.
 特許文献1には、回転子が、軸方向に多数の磁性板を積層した鉄心によって構成された回転子磁極と、回転子磁極の周方向のほぼ中央部に埋め込まれた永久磁石と、回転子磁極の基部に設けられ外部からの界磁電流の供給により通電される環状の界磁巻線と、を備えた、回転電機が記載されている。 Patent Document 1 discloses that a rotor includes a rotor magnetic pole formed of an iron core in which a large number of magnetic plates are laminated in the axial direction, a permanent magnet embedded in a substantially central portion in the circumferential direction of the rotor magnetic pole, and a rotor. There is described a rotating electrical machine including an annular field winding provided at the base of a magnetic pole and energized by supplying a field current from the outside.
特開2007-124755号公報JP 2007-124755 A
 しかしながら、特許文献1に記載のものでは、界磁巻線を遠心力に抗して保持する保持構造が弱いことから、高速回転化が困難である。これを解消するために当該保持構造の半径方向寸法を増大させた場合には、永久磁石からの磁束の漏洩が大きくなってトルク発生に寄与する磁束が減少するので、低速回転時の大トルク化が困難となる。 However, the one described in Patent Document 1 is difficult to achieve high-speed rotation because the holding structure for holding the field winding against the centrifugal force is weak. When the radial dimension of the holding structure is increased to eliminate this, the leakage of magnetic flux from the permanent magnet increases and the magnetic flux that contributes to torque generation decreases. It becomes difficult.
 本発明はこのような問題点に鑑みてなされたものであり、大トルクと高速回転との両立を図れる、回転電機を提供することを目的とする。 The present invention has been made in view of such problems, and an object thereof is to provide a rotating electrical machine capable of achieving both high torque and high speed rotation.
 上記課題を解決するため、本発明の一の観点によれば、固定子巻線と固定子鉄心を備えた固定子と、回転子鉄心を備えた回転子と、を有し、前記回転子鉄心は、磁極毎に設けられた永久磁石と、巻線用鉄心を有する界磁巻線と、強磁性部と非磁性部とを有する複合磁性材と、を備える回転電機が適用される。 In order to solve the above problems, according to one aspect of the present invention, the rotor core includes: a stator including a stator winding and a stator core; and a rotor including a rotor core. Is applied to a rotating electrical machine including a permanent magnet provided for each magnetic pole, a field winding having a winding iron core, and a composite magnetic material having a ferromagnetic portion and a nonmagnetic portion.
 本発明の回転電機によれば、大トルクと高速回転との両立を図ることができる。 According to the rotating electrical machine of the present invention, both large torque and high speed rotation can be achieved.
第1実施形態の回転電機の全体構成を表す縦断面図である。It is a longitudinal cross-sectional view showing the whole structure of the rotary electric machine of 1st Embodiment. 図1中のA-A′断面による横断面図である。FIG. 2 is a transverse sectional view taken along a section AA ′ in FIG. 1. 界磁巻線による磁束制御を表す、界磁巻線非通電時の説明図、及び、界磁巻線通電時の説明図である。It is explanatory drawing at the time of field winding non-energization showing magnetic flux control by a field winding, and explanatory drawing at the time of field winding energization. 非接触給電装置の詳細構成を表す、図1の部分拡大断面図である。It is the elements on larger scale of FIG. 1 showing the detailed structure of a non-contact electric power feeder. 非接触給電装置の2次巻線に発生した交流高電圧を整流する整流回路を表す回路図である。It is a circuit diagram showing the rectifier circuit which rectifies the alternating current high voltage which generate | occur | produced in the secondary winding of the non-contact electric power feeder. 第2実施形態の回転電機に備えられた回転子を表す横断面図である。It is a cross-sectional view showing the rotor provided in the rotary electric machine of 2nd Embodiment. 界磁巻線による磁束制御を表す、界磁巻線の非通電時の説明図、及び、界磁巻線の通電時の説明図である。It is explanatory drawing at the time of the deenergization of a field winding showing magnetic flux control by a field winding, and explanatory drawing at the time of energization of a field winding.
 以下、開示の実施の形態について図面を参照しつつ説明する。 Hereinafter, embodiments of the disclosure will be described with reference to the drawings.
 <第1実施形態>
 図1乃至図5により第1実施形態の回転電機を説明する。
<First Embodiment>
The rotating electrical machine according to the first embodiment will be described with reference to FIGS.
 <回転電機の全体構成>
 まず、第1実施形態の回転電機10の全体構成について説明する。図1及び図2において、回転電機10は、巻線の通電で特性が変化する(詳細は後述)いわゆる可変界磁回転電機であり、円筒状のフレーム9を有する。このフレーム9の半径方向(図1中の上下方向)を以下単に「半径方向」と称し、フレーム9の軸方向(図1中の左右方向)を以下単に「軸方向」と称し、フレーム9の周方向を以下単に「周方向」と称する。
<Overall configuration of rotating electrical machine>
First, the whole structure of the rotary electric machine 10 of 1st Embodiment is demonstrated. 1 and 2, the rotating electrical machine 10 is a so-called variable field rotating electrical machine whose characteristics are changed by energization of windings (details will be described later), and includes a cylindrical frame 9. The radial direction (vertical direction in FIG. 1) of the frame 9 is hereinafter simply referred to as “radial direction”, and the axial direction (horizontal direction in FIG. 1) of the frame 9 is hereinafter simply referred to as “axial direction”. The circumferential direction is hereinafter simply referred to as “circumferential direction”.
 回転電機10は、フレーム9の半径方向内側に設けられた固定子20と、固定子20の半径方向内側に設けられた円筒状の回転子30と、を備えた、インナーロータ型の電動機である。また回転電機10は、フレーム9の軸方向一方側(図1中左側)の開口部を塞ぐ反負荷側ブラケット11と、フレーム9の軸方向他方側(図1中右側)の開口部を塞ぐ負荷側ブラケット12と、回転子30の内側に設けられた円筒状の非接触給電装置50と、を備えている。 The rotating electrical machine 10 is an inner rotor type electric motor including a stator 20 provided on the inner side in the radial direction of the frame 9 and a cylindrical rotor 30 provided on the inner side in the radial direction of the stator 20. . The rotating electrical machine 10 also includes a counter load side bracket 11 that closes an opening on one side (left side in FIG. 1) of the frame 9 and a load that closes an opening on the other side (right side in FIG. 1) of the frame 9. The side bracket 12 and a cylindrical non-contact power feeding device 50 provided inside the rotor 30 are provided.
 回転子30は、上記軸方向に延びる回転軸8に設けられている。回転軸8は、上記非接触給電装置50を半径方向内側に収容可能な中空の円筒部8aと、円筒部8aの軸方向一方側(図1中左側)に一体に設けられた反負荷側軸部8bと、円筒部8aの軸方向他方側(図1中右側)に一体に設けられた負荷側軸部8cと、を備えている。 The rotor 30 is provided on the rotating shaft 8 extending in the axial direction. The rotating shaft 8 includes a hollow cylindrical portion 8a that can accommodate the non-contact power feeding device 50 radially inward, and an anti-load side shaft that is integrally provided on one axial side (left side in FIG. 1) of the cylindrical portion 8a. A portion 8b and a load-side shaft portion 8c provided integrally on the other axial side of the cylindrical portion 8a (the right side in FIG. 1).
 上記反負荷側軸部8bの外周面は、軸受7aを介して反負荷側ブラケット11に回転自在に支持されている。なお反負荷側ブラケット11には、回転軸8の反負荷側軸部8bを収容する蓋部6が設けられている。上記負荷側軸部8cの外周面は、軸受7bを介して負荷側ブラケット12に回転自在に支持されている。また円筒部8aの軸方向一方側(図1中左側)端部の内周面は、軸受52aを介し、非接触給電装置50の中空の支持軸51に回転自在に支持されている。円筒部8aの軸方向他方側(図1中右側)の端部の内周面は、軸受52bを介し、上記支持軸51に回転自在に支持されている。 The outer peripheral surface of the anti-load side shaft portion 8b is rotatably supported by the anti-load side bracket 11 via a bearing 7a. The anti-load side bracket 11 is provided with a lid portion 6 for accommodating the anti-load side shaft portion 8b of the rotary shaft 8. The outer peripheral surface of the load side shaft portion 8c is rotatably supported by the load side bracket 12 via a bearing 7b. Further, the inner peripheral surface of one end (left side in FIG. 1) in the axial direction of the cylindrical portion 8a is rotatably supported by a hollow support shaft 51 of the non-contact power feeding device 50 via a bearing 52a. The inner peripheral surface of the end portion on the other axial side (right side in FIG. 1) of the cylindrical portion 8a is rotatably supported by the support shaft 51 via a bearing 52b.
 固定子20は、フレーム9の内周面に設けられた固定子鉄心21と、固定子鉄心21の周方向に配列された複数個(この例では12個)の固定子巻線22と、を備えている。固定子鉄心21は、半径方向外側の周縁部を貫通する複数のボルト25によって、上記半負荷側ブラケット11と負荷側ブラケット12との間に固定されている。固定子鉄心21の半径方向外側には、軸方向に貫通するティース23が周方向に複数(この例では12個)配列されている。このとき、隣り合う2つのティース23,23の間に、軸方向に貫通するスロット24が形成されている。各固定子巻線22は、ティース23に装着されるとともに、ティース23の周方向両側のスロット24に収容される。 The stator 20 includes a stator core 21 provided on the inner peripheral surface of the frame 9, and a plurality (12 in this example) of stator windings 22 arranged in the circumferential direction of the stator core 21. I have. The stator iron core 21 is fixed between the half load side bracket 11 and the load side bracket 12 by a plurality of bolts 25 penetrating the outer peripheral edge of the radial direction. A plurality (12 in this example) of teeth 23 penetrating in the axial direction are arranged on the outer side in the radial direction of the stator core 21 in the circumferential direction. At this time, a slot 24 penetrating in the axial direction is formed between two adjacent teeth 23, 23. Each stator winding 22 is mounted on a tooth 23 and accommodated in slots 24 on both sides in the circumferential direction of the tooth 23.
 <回転子の詳細構造>
 回転子30は、リング状の回転子鉄心31を備えている。回転子鉄心31には、半径方向外側に周方向に沿ってN極の磁極とS極の磁極とが交互に複数(この例では10個)設けられている。回転子鉄心31は、永久磁石34と、巻線用鉄心35aを備えた界磁巻線35と、を有している。
<Detailed structure of rotor>
The rotor 30 includes a ring-shaped rotor iron core 31. The rotor core 31 is provided with a plurality of N poles and S poles alternately (10 in this example) along the circumferential direction on the outer side in the radial direction. The rotor core 31 has a permanent magnet 34 and a field winding 35 provided with a winding core 35a.
 永久磁石34は、磁極毎に回転子鉄心31の半径方向略中央部に設けられている。界磁巻線35は、周方向に隣接する磁極の間に、回転子鉄心31の半径方向略中央部から半径方向外側部に亘って設けられている。界磁巻線35は、回転子鉄心31のうち周方向に隣接する2つの磁極の間に設けられ、巻線用鉄心35aに巻回されて通電により磁束を周方向に発生する。 The permanent magnet 34 is provided at the substantially central portion in the radial direction of the rotor core 31 for each magnetic pole. The field winding 35 is provided between the magnetic poles adjacent to each other in the circumferential direction from the substantially central portion in the radial direction of the rotor core 31 to the radially outer portion. The field winding 35 is provided between two magnetic poles adjacent to each other in the circumferential direction of the rotor core 31, and is wound around the winding core 35a to generate a magnetic flux in the circumferential direction by energization.
 また回転子鉄心31は、径方向外側の第1鉄心32と径方向内側の第2鉄心33と、を備えている。第1鉄心32は、固定子鉄心21との間に径方向に磁気的空隙を空けて対向して配置される。第2鉄心33は、第1鉄心32の径方向内側でかつ回転軸8の円筒部8aの外側に取り付けられている。これら第1鉄心32と第2鉄心33とは、上記永久磁石34及び上記界磁巻線35を間に挟みつつ、一体的に組み付けられている。この一体となった状態の第1鉄心32及び第2鉄心33において、軸方向にそれぞれ貫通する第1装着孔37及び第2装着孔38が設けられている。 The rotor core 31 includes a first iron core 32 on the radially outer side and a second iron core 33 on the radially inner side. The first iron core 32 is disposed opposite to the stator iron core 21 with a magnetic gap in the radial direction. The second iron core 33 is attached to the inner side in the radial direction of the first iron core 32 and to the outer side of the cylindrical portion 8 a of the rotating shaft 8. The first iron core 32 and the second iron core 33 are integrally assembled with the permanent magnet 34 and the field winding 35 interposed therebetween. In the integrated first core 32 and second iron core 33, a first mounting hole 37 and a second mounting hole 38 penetrating in the axial direction are provided.
 すなわち、第1鉄心32には第1装着孔37の一部をなす凹部が設けられ、第2鉄心33には第1装着孔37の残りの部分をなす凹部が設けられる。そして、上記第1鉄心32と第2鉄心33とが上記のように一体となったときに、それら2つの凹部が合体することで第1装着孔37が形成される。同様に、第1鉄心32に第2装着孔38の一部をなす凹部が設けられ、第2鉄心33には第2装着孔38の残りの部分をなす凹部が設けられる。そして、上記第1鉄心32と第2鉄心33とが上記のように一体となったときに、それら2つの凹部が合体することで第2装着孔37が形成される。そして、第1装着孔37に永久磁石34が取り付けられ、第2装着孔38に界磁巻線35が取り付けられる。 That is, the first iron core 32 is provided with a recess that forms a part of the first mounting hole 37, and the second iron core 33 is provided with a recess that forms the remaining part of the first mounting hole 37. When the first iron core 32 and the second iron core 33 are integrated as described above, the first mounting hole 37 is formed by combining the two concave portions. Similarly, the first iron core 32 is provided with a recess that forms a part of the second mounting hole 38, and the second iron core 33 is provided with a recess that forms the remaining part of the second mounting hole 38. And when the said 1st iron core 32 and the 2nd iron core 33 are united as mentioned above, the 2nd mounting hole 37 is formed because those two recessed parts unite | combine. The permanent magnet 34 is attached to the first mounting hole 37 and the field winding 35 is attached to the second mounting hole 38.
 <第1鉄心の磁性領域>
 そして、第1鉄心32は、強磁性領域32a(強磁性部に相当)と、強磁性領域32aより磁性が弱い弱磁性領域32b(この例では非磁性領域。非磁性部に相当)と、を備えた、複合磁性材により構成されている。弱磁性領域32bは、第1鉄心32のうちの界磁巻線35の半径方向外側の幅の狭い部位に形成され、この幅の狭い部位(すなわち弱磁性領域32b)が、界磁巻線35の近傍(詳細には界磁巻線35の半径方向外側)に設けられ、界磁巻線35を半径方向外側から保持する。この結果、この例では、上記弱磁性領域32bが、他の部位より弱い磁性を備え界磁巻線35を保持する保持部として機能する。
<Magnetic region of the first iron core>
The first iron core 32 includes a ferromagnetic region 32a (corresponding to a ferromagnetic portion) and a weak magnetic region 32b (in this example, a nonmagnetic region, corresponding to a nonmagnetic portion) that is weaker than the ferromagnetic region 32a. The composite magnetic material is provided. The weak magnetic region 32 b is formed in a narrow portion of the first iron core 32 on the radially outer side of the field winding 35, and this narrow portion (that is, the weak magnetic region 32 b) is formed in the field winding 35. (In detail, radially outside the field winding 35) and holds the field winding 35 from the outside in the radial direction. As a result, in this example, the weak magnetic region 32b functions as a holding portion that has weaker magnetism than other portions and holds the field winding 35.
 第1鉄心32のうち、上記界磁巻線35の半径方向外側領域(言い換えれば第1装着孔38の半径方向外側領域。以下同様)に弱磁性領域32bを形成する際には、例えばまず、強磁性材としての複合磁性材の板材を、第1鉄心32に対応した形状に加工し、積層する。その後、上記積層体を例えば図示しない高温ガス炉内に挿入し、高温の火炎を界磁巻線35用の上記第1装着孔38に通過させ、1200℃程度に加熱する。その後、熱の拡散を利用した自然冷却で急冷して磁性を消失させる。これにより、強磁性複合磁性材の第1鉄心32のうち上記界磁巻線35の半径方向外側領域以外の領域を強磁性領域32aとして残存させつつ、第1鉄心32のうち上記界磁巻線35の半径方向外側領域を、上記弱磁性領域32bとすることができる。 When forming the weak magnetic region 32b in the first iron core 32 in the radially outer region of the field winding 35 (in other words, the radially outer region of the first mounting hole 38, the same applies hereinafter), for example, first, A plate material of a composite magnetic material as a ferromagnetic material is processed into a shape corresponding to the first iron core 32 and laminated. Thereafter, the laminate is inserted into, for example, a high-temperature gas furnace (not shown), and a high-temperature flame is passed through the first mounting hole 38 for the field winding 35 and heated to about 1200 ° C. Thereafter, the magnetism is lost by quenching by natural cooling using heat diffusion. Thus, the field winding of the first iron core 32 is left in the first iron core 32 of the ferromagnetic composite magnetic material other than the outer region in the radial direction of the field winding 35 as the ferromagnetic region 32a. The radially outer region 35 can be the weak magnetic region 32b.
 例えば上記のような手法を用いることにより、単一組成の複合磁性材でありながら、強磁性と弱磁性の両方の磁気特性を実現して、回転子鉄心31の第1鉄心32に強磁性領域32aと弱磁性領域32bとを形成することができる。なお、1200℃程度に加熱する方法としては、誘導過熱等他の方法も適宜用いられる。 For example, by using the above-described technique, both a ferromagnetic property and a weak magnetic property can be realized while using a composite magnetic material having a single composition, and the first core 32 of the rotor core 31 has a ferromagnetic region. 32a and the weak magnetic region 32b can be formed. In addition, as a method of heating to about 1200 ° C., other methods such as induction overheating are also appropriately used.
 <界磁巻線の励磁制御>
 本実施形態の回転電機10では、界磁巻線35の通電の有無によって、大トルクを得る制御と、高速回転を得る制御とが切り替えられる。この界磁巻線35の励磁制御について、図3(a)及び図3(b)を用いて説明する。
<Excitation control of field winding>
In the rotating electrical machine 10 of the present embodiment, control for obtaining a large torque and control for obtaining high-speed rotation are switched depending on whether or not the field winding 35 is energized. Excitation control of the field winding 35 will be described with reference to FIGS. 3 (a) and 3 (b).
 <界磁巻線非通電時の挙動>
 上記界磁巻線35の非通電時(すなわち、上記高速回転を行う通常時)において、回転子鉄心31の永久磁石34が形成する磁束を、図3(a)に示す。図3(a)及び前述の図1に示すように、界磁巻線35の非通電時には、回転子鉄心31のN極の磁極(図2参照)に対応して配置された永久磁石34のN極から出た磁束(以下適宜、「ギャップ磁束」という)Bは、トルク発生に寄与する磁気回路を形成する。すなわち、このギャップ磁束Bは、上記永久磁石34の上記N極から、第1鉄心32、回転子30と固定子20との間の空隙、及び、回転子30のティース23、をそれぞれ半径方向外側へ横切った後、周方向に隣接する別のティース23へと回り込む。そして、ギャップ磁束Bは、当該ティース23を半径方向内側へ横切り、上記回転子鉄心31のN極の磁極に隣接するS極の磁極(図1参照)に対応して配置された別の永久磁石34のS極へ至り、当該別の永久磁石34のN極から出た後、もとの永久磁石34のS極へと戻る。
<Behavior when field winding is not energized>
FIG. 3A shows magnetic fluxes formed by the permanent magnets 34 of the rotor core 31 when the field winding 35 is not energized (that is, at the normal time when the high-speed rotation is performed). As shown in FIG. 3A and FIG. 1 described above, when the field winding 35 is not energized, the permanent magnet 34 disposed corresponding to the N-pole magnetic pole (see FIG. 2) of the rotor core 31. Magnetic flux (hereinafter referred to as “gap magnetic flux”) B emitted from the N pole forms a magnetic circuit that contributes to torque generation. In other words, the gap magnetic flux B causes the first iron core 32, the gap between the rotor 30 and the stator 20, and the teeth 23 of the rotor 30 to be radially outward from the N pole of the permanent magnet 34. After crossing, it goes around to another tooth 23 adjacent in the circumferential direction. Then, the gap magnetic flux B crosses the tooth 23 inward in the radial direction, and is another permanent magnet arranged corresponding to the S pole (see FIG. 1) adjacent to the N pole of the rotor core 31. After reaching the S pole of 34 and exiting from the N pole of the other permanent magnet 34, the S pole of the original permanent magnet 34 is returned.
 また、回転子鉄心31のN極の磁極(図2参照)に対応して配置された上記永久磁石34の上記N極から出た磁束の一部(以下適宜、「漏れ磁束」という)Qが、上述したギャップ磁束Bの磁気回路とは別の磁気回路(漏洩磁気回路)を形成する。すなわち、この磁束Qは、図3(a)に示すように、上記永久磁石34の上記N極から、第1鉄心32を周方向に横切りつつ巻線用鉄心35aを通過した後、上記回転子鉄心31のN極の磁極に隣接するS極の磁極(図1参照)に対応して配置された別の永久磁石34のS極へ至り、当該別の永久磁石34のN極から出た後、もとの永久磁石34のS極へと戻る。このような漏れ磁束Qの発生により、この界磁巻線35の非通電時(すなわち通常時)には、上記ギャップ磁束Bの磁束密度が低下した状態となっている。 Further, a part (hereinafter referred to as “leakage magnetic flux”) Q of the magnetic flux emitted from the N pole of the permanent magnet 34 arranged corresponding to the N pole magnetic pole (see FIG. 2) of the rotor core 31 is A magnetic circuit (leakage magnetic circuit) different from the magnetic circuit of the gap magnetic flux B described above is formed. That is, as shown in FIG. 3A, the magnetic flux Q passes from the north pole of the permanent magnet 34 through the winding core 35a while traversing the first iron core 32 in the circumferential direction, and then the rotor. After reaching the south pole of another permanent magnet 34 arranged corresponding to the south pole of the iron core 31 adjacent to the north pole (see FIG. 1) and coming out of the north pole of the other permanent magnet 34 Return to the S pole of the original permanent magnet 34. Due to the generation of the leakage magnetic flux Q, the magnetic flux density of the gap magnetic flux B is reduced when the field winding 35 is not energized (that is, at normal time).
 <界磁巻線通電時の挙動>
 上記界磁巻線35の通電時において、回転子鉄心31の永久磁石34が形成する磁束を、図3(b)に示す。界磁巻線35は通電時には磁束を周方向に発生する機能を備えるので、界磁巻線35が通電により励磁されると、巻線用鉄心35aの通過時において上記漏れ磁束Qと逆方向となる磁束Pを発生する。言い換えれば、界磁巻線35は、漏れ磁束Qを遮断するように励磁される。この結果、上記図3(a)を用いて上述したような、漏れ磁束Qの発生によるギャップ磁束Bの低下が防止される。さらに通電を大きくすると、図3(b)に示すように、前述のようにして上記永久磁石34の上記N極から第1鉄心32を半径方向外側へ向かうギャップ磁束Bに対し、巻線用鉄心35aを通った後の上記磁束Pも加わるので、トルク発生に寄与する磁束を増大させる(言い換えればギャップ磁束Bを増大させる)ことができる。
<Behavior when field winding is energized>
FIG. 3B shows the magnetic flux formed by the permanent magnet 34 of the rotor core 31 when the field winding 35 is energized. Since the field winding 35 has a function of generating a magnetic flux in the circumferential direction when energized, when the field winding 35 is excited by energization, the direction of the leakage flux Q is opposite to that when passing through the winding core 35a. A magnetic flux P is generated. In other words, the field winding 35 is excited so as to block the leakage flux Q. As a result, the gap magnetic flux B is prevented from being lowered due to the generation of the leakage magnetic flux Q as described above with reference to FIG. When energization is further increased, as shown in FIG. 3 (b), the winding core is applied to the gap magnetic flux B from the N pole of the permanent magnet 34 to the first iron core 32 radially outward as described above. Since the magnetic flux P after passing through 35a is also added, the magnetic flux contributing to torque generation can be increased (in other words, the gap magnetic flux B can be increased).
 以上の結果、本実施形態の回転電機10では、大トルク特性を得たい場合には界磁巻線35を通電して図3(b)の磁束発生態様とし、高速回転の特性を得たい場合には、界磁巻線35を非通電状態として図3(a)の磁束発生態様とされる。 As a result, in the rotating electrical machine 10 of the present embodiment, when it is desired to obtain a large torque characteristic, the field winding 35 is energized to obtain the magnetic flux generation mode shown in FIG. In this case, the field winding 35 is set in a non-energized state so that the magnetic flux is generated as shown in FIG.
 <非接触給電装置>
 次に、上記界磁巻線35への通電を行うために用いられる上記非接触給電装置50の構成について、図4を用いて説明する。図4において、前述したように、非接触給電装置50は、中空の上記支持軸51を備えている。この支持軸51は、軸方向一方側(図4中左側)の端部を上記蓋部6に取り付けられ(図1参照)、固定子20に固定されている。蓋部6に取り付けられたこの支持軸51は、上記反負荷側軸部8bから、円筒部8aの軸方向他方側(図4中右側)の端面部まで、回転軸8内を延びている。
<Non-contact power feeding device>
Next, the configuration of the non-contact power feeding device 50 used for energizing the field winding 35 will be described with reference to FIG. In FIG. 4, as described above, the non-contact power feeding device 50 includes the hollow support shaft 51. The support shaft 51 is fixed to the stator 20 with an end portion on one side in the axial direction (left side in FIG. 4) attached to the lid portion 6 (see FIG. 1). The support shaft 51 attached to the lid portion 6 extends in the rotary shaft 8 from the anti-load side shaft portion 8b to the end surface portion on the other axial side (right side in FIG. 4) of the cylindrical portion 8a.
 支持軸51の外周面には、軸方向に沿って3つの環状溝55aを有する絶縁性のブラケット55が取り付けられている。ブラケット55の環状溝55a内には、上記軸方向に沿って、U相、V相、W相の各相の1次巻線54がそれぞれ巻回されている。また、これに対応して、上記回転軸8の円筒部8aの内周面には、上記軸方向に沿って3つの環状溝57aを有する絶縁性のブラケット57が取り付けられている。ブラケット57の環状溝57a内には、上記軸方向に沿って、上記U相、V相、W相の各相の1次巻線54の半径方向外側の部位となるように、U相、V相、W相の各相の2次巻線56が巻回されている。このとき、各相の2次巻線56は、対応する1次巻線54に対し半径方向に所定の間隙を空けて対向するように設けられる。 An insulating bracket 55 having three annular grooves 55a along the axial direction is attached to the outer peripheral surface of the support shaft 51. In the annular groove 55a of the bracket 55, primary windings 54 of U-phase, V-phase, and W-phase are wound around the axial direction. Correspondingly, an insulating bracket 57 having three annular grooves 57a is attached to the inner peripheral surface of the cylindrical portion 8a of the rotating shaft 8 along the axial direction. In the annular groove 57 a of the bracket 57, the U phase, V, and V are arranged along the axial direction so as to be radially outside the primary winding 54 of each phase of the U phase, V phase, and W phase. A secondary winding 56 of each phase of the phase and the W phase is wound. At this time, the secondary winding 56 of each phase is provided so as to face the corresponding primary winding 54 with a predetermined gap in the radial direction.
 各1次巻線54には、支持軸51の中空部51a内を通る図示しないリード線を介して、固定子20側の3相交流電源(図示せず)に接続されている。3相交流電源から1次巻線54に供給された3相交流の高電圧により、各相の2次巻線56に各相の交流高電圧が誘起される。各相の2次巻線56に誘起された交流高電圧は、図5に示すように、直列接続した2個のダイオード58,58を3相分並列接続した、整流回路60によって整流された後、負荷抵抗Zを介して界磁巻線35に供給される。整流回路60は、例えば、図4に示すように、回転軸8の円筒部8aの軸方向一方側(図4中左側)の端部に設けられる。 Each primary winding 54 is connected to a three-phase AC power source (not shown) on the stator 20 side via a lead wire (not shown) passing through the hollow portion 51a of the support shaft 51. The AC high voltage of each phase is induced in the secondary winding 56 of each phase by the high voltage of the three-phase AC supplied from the three-phase AC power source to the primary winding 54. The AC high voltage induced in the secondary winding 56 of each phase is rectified by a rectifier circuit 60 in which two diodes 58 and 58 connected in series are connected in parallel for three phases as shown in FIG. , And supplied to the field winding 35 via the load resistance Z. For example, as shown in FIG. 4, the rectifier circuit 60 is provided at an end portion on one axial side (the left side in FIG. 4) of the cylindrical portion 8 a of the rotating shaft 8.
 <第1実施形態の効果>
 以上説明したように、本実施形態の回転電機10では、回転子鉄心31に弱磁性領域32bが設けられている。弱磁性領域32bは、界磁巻線35の近傍において当該界磁巻線35を保持する機能を備えている。これにより、界磁巻線35を遠心力に抗して強固に保持することができるので、高速回転化を図ることができる。ここで、このような界磁巻線35を保持する保持部が他の部位と同等の磁性を備えていると、永久磁石34からの磁束が当該保持部を通過することとなり磁束の漏洩が増大する。本実施形態では、弱磁性領域32bが他の部位よりも弱い磁性を備えることにより、上記弊害を回避し、磁束の漏洩を抑制することができる。この結果、図3(b)を用いて前述したように、低速時にトルク発生に寄与する磁束を確保することができ、大トルク化を図ることができる。以上のようにして、本実施形態によれば、大トルクと高速回転との両立を図ることができる。
<Effects of First Embodiment>
As described above, in the rotating electrical machine 10 of the present embodiment, the rotor core 31 is provided with the weak magnetic region 32b. The weak magnetic region 32 b has a function of holding the field winding 35 in the vicinity of the field winding 35. Thereby, the field winding 35 can be firmly held against the centrifugal force, so that high speed rotation can be achieved. Here, if the holding part that holds the field winding 35 has the same magnetism as other parts, the magnetic flux from the permanent magnet 34 passes through the holding part, and the leakage of the magnetic flux increases. To do. In the present embodiment, since the weak magnetic region 32b has weaker magnetism than other parts, the above-described adverse effects can be avoided and leakage of magnetic flux can be suppressed. As a result, as described above with reference to FIG. 3B, the magnetic flux contributing to the torque generation at the low speed can be secured, and the torque can be increased. As described above, according to the present embodiment, both large torque and high-speed rotation can be achieved.
 また、本実施形態では特に、弱磁性領域32bは、界磁巻線35の半径方向外側に設けられ、当該界磁巻線35を半径方向外側から保持する。これにより、高速回転時に界磁巻線35に対し大きな遠心力が外側へ加わったときでも、界磁巻線35を半径方向外側から確実に保持することができる。 In the present embodiment, in particular, the weak magnetic region 32b is provided on the radially outer side of the field winding 35, and holds the field winding 35 from the radially outer side. Thereby, even when a large centrifugal force is applied to the field winding 35 during high-speed rotation, the field winding 35 can be reliably held from the outside in the radial direction.
 また、本実施形態では特に、回転子鉄心31は、強磁性領域32aと弱磁性領域32bとを備えた複合磁性材により構成されており、弱磁性領域32bが前述の保持部として機能する。これにより、共通の単一部材を用いた回転子鉄心31において、他の部位よりも弱い磁性を備えた弱磁性領域32bを容易に実現することができる。 In this embodiment, in particular, the rotor core 31 is made of a composite magnetic material having a ferromagnetic region 32a and a weak magnetic region 32b, and the weak magnetic region 32b functions as the above-described holding portion. Thereby, in the rotor core 31 using the common single member, the weak magnetic area | region 32b provided with the magnetism weaker than another site | part can be implement | achieved easily.
 また、本実施形態では特に、回転子鉄心31は、永久磁石34及び界磁巻線35を間に挟んで設けられた、外側の第1鉄心32と内側の第2鉄心33とを備えている。これにより、内側の第2鉄心33と外側の第1鉄心32とを先に組み付けた後、巻線用鉄心付きの界磁巻線35を後からそれら第1鉄心32と第2鉄心33との間に組み込むことができる。この結果、製造時における組立作業性を向上することができる。またその際、上記のようにして後付けで組み込まれる別部材である界磁巻線35の外側を、第1鉄心32で囲い込むことにより、高速回転時であっても界磁巻線35を遠心力に抗して保持することができる。 In this embodiment, in particular, the rotor core 31 includes an outer first iron core 32 and an inner second iron core 33 provided with a permanent magnet 34 and a field winding 35 interposed therebetween. . Thereby, after assembling the inner second iron core 33 and the outer first iron core 32 first, the field winding 35 with the winding iron core is later connected to the first iron core 32 and the second iron core 33. Can be incorporated in between. As a result, the assembly workability at the time of manufacture can be improved. At that time, by enclosing the outside of the field winding 35, which is a separate member to be assembled later as described above, with the first iron core 32, the field winding 35 is centrifuged even during high-speed rotation. Can be held against force.
 また、本実施形態では特に、弱磁性領域32bは、第1鉄心32のうち、界磁巻線35の半径方向外側の部位に設けられている。界磁巻線35の外側を囲い込む第1鉄心32に備えられた弱磁性領域32bにより、高速回転時であっても界磁巻線35を遠心力に抗して確実に保持することができる。 Further, particularly in the present embodiment, the weak magnetic region 32 b is provided in the radially outer portion of the field winding 35 in the first iron core 32. The weak magnetic region 32b provided in the first iron core 32 that surrounds the outside of the field winding 35 can reliably hold the field winding 35 against centrifugal force even during high-speed rotation. .
 また、本実施形態では特に、界磁巻線35は、非通電時に永久磁石34及び巻線用鉄心35aを通過する漏れ磁束Qを、通電時において遮断するように、励磁される。すなわち、本実施形態においては、高速回転時には界磁巻線35を非通電状態とすることで、永久磁石34及び巻線用鉄心35aを漏れ磁束Qが通過するようにし、高速回転を実現する。そして、低速時には、界磁巻線35に通電して励磁し上記漏れ磁束Qを遮断することで、大トルク化を図ることができる。 In this embodiment, particularly, the field winding 35 is excited so that the leakage magnetic flux Q passing through the permanent magnet 34 and the winding iron core 35a when not energized is interrupted when energized. That is, in the present embodiment, the field winding 35 is deenergized during high-speed rotation so that the leakage magnetic flux Q passes through the permanent magnet 34 and the winding iron core 35a, thereby realizing high-speed rotation. At a low speed, a large torque can be achieved by energizing and exciting the field winding 35 to interrupt the leakage flux Q.
 <第2実施形態>
 第2実施形態の回転電機の構成について図6及び図7を用いて説明する。各図において、上記第1実施形態と同等の部分には同一の符号を付し、適宜、説明を省略又は簡略化する。本実施形態の回転電機は、上記第1実施形態の固定子20と同様の円筒状の固定子(図示せず)と、この固定子の半径方向の内側に磁気的空隙を空けて設けられた円筒状の回転子30Aと、を備える。
Second Embodiment
The configuration of the rotating electrical machine of the second embodiment will be described with reference to FIGS. 6 and 7. In each figure, the same reference numerals are given to the same parts as those in the first embodiment, and the description will be omitted or simplified as appropriate. The rotating electrical machine of the present embodiment is provided with a cylindrical stator (not shown) similar to the stator 20 of the first embodiment and a magnetic air gap inside the stator in the radial direction. A cylindrical rotor 30A.
 <回転子の詳細構造>
 回転子30Aは、リング状の回転子鉄心31Aを備えている。回転子鉄心31Aには、半径方向外側に周方向に沿ってN極の磁極とS極の磁極とが交互に複数(この例では10個)設けられている。回転子鉄心31Aは、磁極毎に回転子鉄心31Aの半径方向略外側部に設けられた、上記第1実施形態と同様の永久磁石34と、界磁巻線65と、を有している。
<Detailed structure of rotor>
The rotor 30A includes a ring-shaped rotor core 31A. The rotor core 31A is provided with a plurality of N poles and S poles alternately (10 in this example) along the circumferential direction on the outer side in the radial direction. The rotor core 31A has the same permanent magnets 34 and field windings 65 as those in the first embodiment, which are provided on the substantially outer side in the radial direction of the rotor core 31A for each magnetic pole.
 また、回転子鉄心31Aは、外側の第1鉄心32と内側の第2鉄心33とを備えている。第2鉄心33の半径方向外側には、軸方向に貫通する複数(この例では10個)の上記ティース33aが周方向に配列されている。隣り合う2つのティース33a,33aの間に、軸方向に貫通するスロット33bが形成されている。各界磁巻線65は、通電により磁束を周方向に発生するようにティース33aに巻回されるとともに、ティース33aの両側のスロット33bに収容される。なお、スロット33b内に収容された両側のティース33aの界磁巻線65の相対する直線部の間の間隙は、モールド樹脂61が充填される。上記第1鉄心32及び第2鉄心33は、永久磁石34及び界磁巻線65を間に挟むように設けられている。界磁巻線65は、回転子鉄心31Aにおける上記磁極に設けられ、通電により磁束を半径方向に発生する。
 <第1鉄心の磁性領域>
 そして、第1鉄心32は、上記第1実施形態と同様、強磁性領域32a(強磁性部に相当)と、強磁性領域32aより磁性が弱い弱磁性領域32b(この例では非磁性領域。非磁性部に相当)と、を備えた、複合磁性材により構成されている。弱磁性領域32bは、第1鉄心32のうち、界磁巻線65の近傍(詳細には界磁巻線65の半径方向外側)に設けられ、界磁巻線65を半径方向外側から保持する。この結果、この例では、上記弱磁性領域32bが、他の部位より弱い磁性を備え界磁巻線65を保持する保持部として機能する。
The rotor core 31 </ b> A includes an outer first iron core 32 and an inner second iron core 33. On the outer side in the radial direction of the second iron core 33, a plurality of (in this example, ten) teeth 33a penetrating in the axial direction are arranged in the circumferential direction. A slot 33b penetrating in the axial direction is formed between two adjacent teeth 33a and 33a. Each field winding 65 is wound around the teeth 33a so as to generate a magnetic flux in the circumferential direction when energized, and is accommodated in the slots 33b on both sides of the teeth 33a. The gap between the opposing linear portions of the field winding 65 of the teeth 33a on both sides accommodated in the slot 33b is filled with the mold resin 61. The first iron core 32 and the second iron core 33 are provided so as to sandwich the permanent magnet 34 and the field winding 65 therebetween. The field winding 65 is provided on the magnetic pole in the rotor core 31A, and generates a magnetic flux in the radial direction when energized.
<Magnetic region of the first iron core>
As in the first embodiment, the first iron core 32 includes a ferromagnetic region 32a (corresponding to a ferromagnetic portion) and a weak magnetic region 32b (in this example, a nonmagnetic region, which is weaker than the ferromagnetic region 32a). And a composite magnetic material. The weak magnetic region 32b is provided in the first iron core 32 in the vicinity of the field winding 65 (specifically, the outer side in the radial direction of the field winding 65), and holds the field winding 65 from the outer side in the radial direction. . As a result, in this example, the weak magnetic region 32b functions as a holding portion that has weaker magnetism than other portions and holds the field winding 65.
 なお、弱磁性領域32bは、上記第1実施形態と同様、強磁性複合磁性材の第1鉄心32を部分的に加熱処理することにより形成することができる。 The weak magnetic region 32b can be formed by partially heat-treating the first iron core 32 of the ferromagnetic composite magnetic material, as in the first embodiment.
 <界磁巻線の励磁制御>
 本実施形態の回転電機では、上記第1実施形態と同様、界磁巻線65の通電の有無によって、大トルクを得る制御と、高速回転を得る制御とが切り替えられる。この界磁巻線65の励磁制御について、図7(a)及び図7(b)を用いて説明する。
<Excitation control of field winding>
In the rotating electrical machine of the present embodiment, as in the first embodiment, control for obtaining a large torque and control for obtaining high-speed rotation are switched depending on whether or not the field winding 65 is energized. Excitation control of the field winding 65 will be described with reference to FIGS. 7 (a) and 7 (b).
 <界磁巻線非通電時の挙動>
 上記界磁巻線65の非通電時(すなわち、上記高速回転を行う通常時)において、回転子鉄心31Aの永久磁石34が形成する磁束は、図7(a)及び前述の図6に示すように、回転子鉄心31AのN極の磁極(図6参照)に対応して配置された永久磁石34のN極から出た上記第1実施形態と同様のギャップ磁束Bが、トルク発生に寄与する磁気回路を形成する。すなわち、ギャップ磁束Bは、上記永久磁石34の上記N極から、第1鉄心32、回転子30と固定子20との間の空隙、及び、回転子30のティース23(前述の図2参照)、をそれぞれ半径方向外側へ横切った後、周方向に隣接する別のティース23へと回り込む。そして、ギャップ磁束Bは、当該ティース23を半径方向内側へ横切り、上記回転子鉄心31AのN極の磁極に隣接するS極の磁極(図6参照)に対応して配置された別の永久磁石34のS極へ至る。その後、当該別の永久磁石34のN極から出た後、その別の永久磁石の半径方向内側に位置する回転子鉄心31Aのティース33aから、当該ティース33aの半径方向内側の基端部を介し、周方向に隣接する、もとの永久磁石34に対応したティース33aと回り込む。そして、回り込んだギャップ磁束Bは、もとの永久磁石の上記S極へと戻る。すなわち、この回転子鉄心31Aでは、上記永久磁石34のN極から出た磁束は、上記第1実施形態のように第1鉄心32を周方向に横切ることがなく、前述の漏れ磁束が生じない。
<Behavior when field winding is not energized>
The magnetic flux formed by the permanent magnet 34 of the rotor core 31A when the field winding 65 is not energized (that is, at the normal time when the high-speed rotation is performed) is as shown in FIG. 7A and FIG. In addition, the gap magnetic flux B similar to that in the first embodiment, which comes out of the N pole of the permanent magnet 34 arranged corresponding to the N pole of the rotor core 31A (see FIG. 6), contributes to torque generation. A magnetic circuit is formed. That is, the gap magnetic flux B is generated from the N pole of the permanent magnet 34 to the first iron core 32, the gap between the rotor 30 and the stator 20, and the teeth 23 of the rotor 30 (see FIG. 2 described above). , Respectively, and then wrap around to another tooth 23 adjacent in the circumferential direction. The gap magnetic flux B crosses the tooth 23 inward in the radial direction, and is another permanent magnet disposed corresponding to the S pole (see FIG. 6) adjacent to the N pole of the rotor core 31A. To 34 S poles. Then, after coming out of the N pole of the other permanent magnet 34, the teeth 33a of the rotor core 31A located on the radially inner side of the other permanent magnet are passed through the proximal end portion on the radially inner side of the teeth 33a. Then, it wraps around the teeth 33a corresponding to the original permanent magnet 34 adjacent in the circumferential direction. Then, the wrapping gap magnetic flux B returns to the S pole of the original permanent magnet. That is, in this rotor core 31A, the magnetic flux emitted from the N pole of the permanent magnet 34 does not cross the first iron core 32 in the circumferential direction as in the first embodiment, and the aforementioned leakage magnetic flux does not occur. .
 <界磁巻線通電時の挙動>
 上記界磁巻線65の通電時において、回転子鉄心31Aの永久磁石34が形成する磁束を、図7(b)に示す。図7(b)に示すように、界磁巻線65は通電時には磁束を半径方向に発生する機能を備えるので、界磁巻線65が通電により励磁されると、図7(a)の非通電時に永久磁石34から半径方向に沿って固定子20側へと向かっていた上記ギャップ磁束Bと同方向の、磁束P′が生じる。言い換えれば、磁束P′が加わることでギャップ磁束Bを増大させることができる。
<Behavior when field winding is energized>
FIG. 7B shows the magnetic flux formed by the permanent magnet 34 of the rotor core 31A when the field winding 65 is energized. As shown in FIG. 7B, the field winding 65 has a function of generating a magnetic flux in the radial direction when energized. Therefore, when the field winding 65 is energized by energization, the non-description of FIG. A magnetic flux P ′ is generated in the same direction as the gap magnetic flux B, which is directed from the permanent magnet 34 toward the stator 20 along the radial direction when energized. In other words, the gap magnetic flux B can be increased by applying the magnetic flux P ′.
 すなわち、本実施形態の回転電機では、第1実施形態と同様にして、大トルク特性を得たい場合には界磁巻線65を通電して図7(b)の磁束発生態様とし、高速回転の特性を得たい場合には、界磁巻線65を非通電状態として図7(a)の磁束発生態様とされる。 That is, in the rotating electrical machine of the present embodiment, as in the first embodiment, when it is desired to obtain a large torque characteristic, the field winding 65 is energized to obtain the magnetic flux generation mode of FIG. When it is desired to obtain the above characteristics, the field winding 65 is set in a non-energized state and the magnetic flux generation mode shown in FIG.
 以上説明した第2実施形態においても、上記第1実施形態と同様の効果を得る。特に、低速時において界磁巻線65に通電して励磁し、永久磁石34から固定子20側へ向かうトルク発生に寄与する磁束を増大させる(ギャップ磁束B+磁束P′とする)ことで、大トルク化を図ることができる。また、この結果、非通電時に生じる漏れ磁束を通電時に遮断して大トルク化を図る上記第1実施形態の手法のように、非通電時の永久磁石34の無駄が生じることがない。 In the second embodiment described above, the same effect as that of the first embodiment is obtained. In particular, energizing and exciting the field winding 65 at low speed increases the magnetic flux contributing to torque generation from the permanent magnet 34 toward the stator 20 (referred to as gap magnetic flux B + magnetic flux P ′). Torque can be achieved. As a result, the permanent magnet 34 at the time of non-energization is not wasted unlike the method of the first embodiment in which the leakage magnetic flux generated at the time of de-energization is interrupted at the time of energization to increase the torque.
 なお、以上では、回転電機10が、回転子30,30Aを固定子20の内側に備えたインナーロータ型である場合を一例として説明したが、回転子を固定子の外側に備えたアウターロータ型の回転電機に対しても適用可能である。さらに、回転電機10が電動機である場合を一例として説明したが、回転電機10が発電機である場合にも適用することができる。 In the above description, the case where the rotating electrical machine 10 is an inner rotor type in which the rotors 30 and 30A are provided inside the stator 20 has been described as an example. However, an outer rotor type in which the rotor is provided outside the stator. The present invention can also be applied to other rotating electric machines. Furthermore, although the case where the rotary electric machine 10 is an electric motor has been described as an example, the present invention can also be applied to the case where the rotary electric machine 10 is a generator.
 また、以上既に述べた以外にも、上記各実施形態や変形例による手法を適宜組み合わせて利用しても良い。 In addition to those already described above, the methods according to the above embodiments and modifications may be used in appropriate combination.
 その他、一々例示はしないが、上記実施形態及び変形例は、その趣旨を逸脱しない範囲内において、種々の変更が加えられて実施されるものである。 In addition, although not illustrated one by one, the above-described embodiments and modifications are implemented with various modifications without departing from the spirit thereof.
 8      回転軸
 8a     円筒部
 10     回転電機
 20     固定子
 21     固定子鉄心
 22     固定子巻線
 30     回転子
 30A    回転子
 31     回転子鉄心
 31A    回転子鉄心
 32     第1鉄心
 32a    強磁性領域
 32b    弱磁性領域
 33     第2鉄心
 33a    ティース
 34     永久磁石
 35     界磁巻線
 35a    巻回用鉄心
 50     非接触給電装置
 54     1次巻線
 56     2次巻線
DESCRIPTION OF SYMBOLS 8 Rotating shaft 8a Cylindrical part 10 Rotating electric machine 20 Stator 21 Stator iron core 22 Stator winding 30 Rotor 30A Rotor 31 Rotor iron core 31A Rotor iron core 32 1st iron core 32a Ferromagnetic area 32b Weak magnetic area 33 2nd Iron core 33a Teeth 34 Permanent magnet 35 Field winding 35a Winding iron core 50 Non-contact power feeding device 54 Primary winding 56 Secondary winding

Claims (8)

  1.  固定子巻線と固定子鉄心を備えた固定子と、
     回転子鉄心を備えた回転子と、
    を有し、
     前記回転子鉄心は、
     磁極毎に設けられた永久磁石と、
     巻線用鉄心を有する界磁巻線と、
     強磁性部と非磁性部とを有する複合磁性材と、
    を備える
    ことを特徴とする回転電機。
    A stator with a stator winding and a stator core;
    A rotor with a rotor core;
    Have
    The rotor core is
    A permanent magnet provided for each magnetic pole;
    A field winding having a winding core;
    A composite magnetic material having a ferromagnetic part and a non-magnetic part;
    A rotating electric machine comprising:
  2.  前記界磁巻線は、
     周方向に隣接する前記磁極の間、若しくは、前記磁極に設けられ、通電により漏れ磁束を遮断し、
     前記非磁性部は、
     前記界磁巻線を保持する保持部を備える
    ことを特徴とする請求項1記載の回転電機。
    The field winding is
    Provided between the magnetic poles adjacent to each other in the circumferential direction, or provided on the magnetic pole, to interrupt the leakage magnetic flux by energization,
    The nonmagnetic part is
    The rotating electrical machine according to claim 1, further comprising a holding portion that holds the field winding.
  3.  前記保持部は、
     前記界磁巻線の半径方向外側に設けられ、当該界磁巻線を半径方向外側から保持する
    ことを特徴とする請求項2記載の回転電機。
    The holding part is
    The rotating electrical machine according to claim 2, wherein the rotating electrical machine is provided outside the field winding in a radial direction and holds the field winding from the outside in the radial direction.
  4.  前記回転子鉄心は、
     前記永久磁石及び前記界磁巻線を間に挟んで設けられた、外側の第1鉄心と内側の第2鉄心とを備えている
    ことを特徴とする請求項3記載の回転電機。
    The rotor core is
    4. The rotating electrical machine according to claim 3, further comprising an outer first iron core and an inner second iron core provided with the permanent magnet and the field winding interposed therebetween.
  5.  前記保持部は、
     前記第1鉄心のうち、前記界磁巻線の半径方向外側の部位に
    設けられている
    ことを特徴とする請求項4記載の回転電機。
    The holding part is
    5. The rotating electrical machine according to claim 4, wherein the rotating electrical machine is provided in a portion of the first iron core that is radially outward of the field winding.
  6.  前記界磁巻線は、
     非通電時に前記永久磁石及び前記巻線用鉄心を通過する漏れ磁束を、通電時において遮断するように、励磁される
    ことを特徴とする請求項3乃至請求項5のいずれか1項記載の回転電機。
    The field winding is
    The rotation according to any one of claims 3 to 5, wherein a leakage magnetic flux that passes through the permanent magnet and the winding core when not energized is excited so as to be interrupted when energized. Electric.
  7.  前記界磁巻線は、
     非通電時に前記永久磁石から半径方向に沿って前記固定子側へ向かう磁束を、通電時において増大させるように、励磁される
    ことを特徴とする請求項3乃至請求項5のいずれか1項記載の回転電機。
    The field winding is
    6. The magnetism according to claim 3, wherein a magnetic flux directed from the permanent magnet toward the stator along a radial direction when not energized is excited so as to increase when energized. Rotating electric machine.
  8.  固定子側に接続された1次巻線と、回転子側に接続された2次巻線と、を備えた
    非接触給電装置を有する
    ことを特徴とする請求項2乃至請求項7のいずれか1項記載の回転電機。
    8. A non-contact power feeding device comprising a primary winding connected to a stator side and a secondary winding connected to a rotor side. The rotating electric machine according to item 1.
PCT/JP2013/064029 2013-05-21 2013-05-21 Rotating electric machine WO2014188505A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015517954A JPWO2014188505A1 (en) 2013-05-21 2013-05-21 Rotating electric machine
PCT/JP2013/064029 WO2014188505A1 (en) 2013-05-21 2013-05-21 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/064029 WO2014188505A1 (en) 2013-05-21 2013-05-21 Rotating electric machine

Publications (1)

Publication Number Publication Date
WO2014188505A1 true WO2014188505A1 (en) 2014-11-27

Family

ID=51933096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064029 WO2014188505A1 (en) 2013-05-21 2013-05-21 Rotating electric machine

Country Status (2)

Country Link
JP (1) JPWO2014188505A1 (en)
WO (1) WO2014188505A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144888A1 (en) * 2019-01-10 2020-07-16 三菱電機株式会社 Rotating electric machine rotor
US20220344986A1 (en) * 2019-09-19 2022-10-27 Meidensha Corporation Rotor and rotating machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236714A (en) * 1992-02-18 1993-09-10 Yaskawa Electric Corp Permanent magnet type synchronous motor
JP2003018808A (en) * 2001-06-27 2003-01-17 Hitachi Ltd Alternator for vehicle
JP2007124755A (en) * 2005-10-26 2007-05-17 Mitsubishi Electric Corp Hybrid excitation dynamo-electric machine, and vehicle with hybrid excitation dynamo-electric machine
JP2008228460A (en) * 2007-03-13 2008-09-25 Kanazawa Inst Of Technology Rotating machine and its manufacturing method
JP2010226785A (en) * 2009-03-19 2010-10-07 Yaskawa Electric Corp Manufacturing method for plate-like member, plate-like member, rotor using plate-like member, and embedded magnet rotary electric machine having the rotor
JP2011223792A (en) * 2010-04-13 2011-11-04 Aisan Ind Co Ltd Rotating electrical machine

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4225001B2 (en) * 2002-08-09 2009-02-18 株式会社エクォス・リサーチ Electric motor
JP2010022185A (en) * 2008-06-13 2010-01-28 Suri-Ai:Kk Synchronous machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05236714A (en) * 1992-02-18 1993-09-10 Yaskawa Electric Corp Permanent magnet type synchronous motor
JP2003018808A (en) * 2001-06-27 2003-01-17 Hitachi Ltd Alternator for vehicle
JP2007124755A (en) * 2005-10-26 2007-05-17 Mitsubishi Electric Corp Hybrid excitation dynamo-electric machine, and vehicle with hybrid excitation dynamo-electric machine
JP2008228460A (en) * 2007-03-13 2008-09-25 Kanazawa Inst Of Technology Rotating machine and its manufacturing method
JP2010226785A (en) * 2009-03-19 2010-10-07 Yaskawa Electric Corp Manufacturing method for plate-like member, plate-like member, rotor using plate-like member, and embedded magnet rotary electric machine having the rotor
JP2011223792A (en) * 2010-04-13 2011-11-04 Aisan Ind Co Ltd Rotating electrical machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020144888A1 (en) * 2019-01-10 2020-07-16 三菱電機株式会社 Rotating electric machine rotor
US11764657B2 (en) 2019-01-10 2023-09-19 Mitsubishi Electric Corporation Rotor for rotating electric machine
US20220344986A1 (en) * 2019-09-19 2022-10-27 Meidensha Corporation Rotor and rotating machine
US11552513B2 (en) * 2019-09-19 2023-01-10 Meidensha Corporation Rotor and rotating machine

Also Published As

Publication number Publication date
JPWO2014188505A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP5641156B2 (en) Rotating electric machine rotor and rotating electric machine equipped with the same
JP6668844B2 (en) Rotating electric machine
US10236730B2 (en) Electric machine with low magnetic slot leakage
JP6561692B2 (en) Rotating electric machine
WO2018051938A1 (en) Rotating electrical machine
JP6593038B2 (en) Rotating electric machine
JP2013038918A (en) Rotary electric machine
JP7047337B2 (en) Permanent magnet type rotary electric machine
JP2017169281A (en) Rotary electric machine
JP6645351B2 (en) Rotating electric machine
JP2012182942A (en) Rotary electric machine
WO2014188505A1 (en) Rotating electric machine
JP2018061379A (en) Dynamo-electric machine
JP2017050946A (en) Rotary electric machine
JP2017050942A (en) Rotary electric machine
JP6589703B2 (en) Rotating electric machine
JP2018148675A (en) Stator for rotary electric machine
JP6483300B1 (en) Synchronous reluctance motor
JP2018516532A (en) Single pole composite type asynchronous motor
JP2017077133A (en) Rotary electric machine
JP6724362B2 (en) Rotating electric machine
JP6645352B2 (en) Rotating electric machine
JP6593163B2 (en) Rotating electric machine
JP6610357B2 (en) Rotating electric machine
JP6589282B2 (en) Rotating electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13885272

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015517954

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13885272

Country of ref document: EP

Kind code of ref document: A1