JP2008226606A - Manufacturing method of lithium secondary battery - Google Patents

Manufacturing method of lithium secondary battery Download PDF

Info

Publication number
JP2008226606A
JP2008226606A JP2007062170A JP2007062170A JP2008226606A JP 2008226606 A JP2008226606 A JP 2008226606A JP 2007062170 A JP2007062170 A JP 2007062170A JP 2007062170 A JP2007062170 A JP 2007062170A JP 2008226606 A JP2008226606 A JP 2008226606A
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium secondary
polymerization
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062170A
Other languages
Japanese (ja)
Other versions
JP5126570B2 (en
Inventor
Atsushi Fukaya
淳 深谷
Kenichiro Kami
謙一郎 加美
Kyohei Usami
恭平 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2007062170A priority Critical patent/JP5126570B2/en
Publication of JP2008226606A publication Critical patent/JP2008226606A/en
Application granted granted Critical
Publication of JP5126570B2 publication Critical patent/JP5126570B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple manufacturing method of a lithium secondary battery composed by uniformly coating a positive electrode with a conductive polymer. <P>SOLUTION: This manufacturing method of a lithium secondary battery provided with a positive electrode, a negative electrode and an electrolyte is characterized by including: a monomer addition process of including a polymerizable compound being a monomer of a conductive polymer having an electrolytically polymerizable property in the electrolyte; and a polymerization process of polymerizing the polymerizable compound in the positive electrode by imparting potential thereto with the positive electrode brought into contact with the electrolyte. The need of employing a dedicated device executing a process of coating the positive electrode with the conductive polymer is obviated by executing a polymerization reaction with the monomer of the conductive polymer included in the electrolyte. The manufacturing method has an advantage of obviating the need to introduce any additive or any device for the purpose of executing polymerization by employing electrolytic polymerization progressing polymerization by using a difference of potential present in the battery as a polymerization reaction. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性高分子にて表面を被覆した正極を有するリチウム二次電池を製造する方法に関する。   The present invention relates to a method for producing a lithium secondary battery having a positive electrode whose surface is coated with a conductive polymer.

ノート型コンピューター、携帯電話、デジタルカメラ等の携帯型電子機器の普及に伴い、これら電子機器を駆動する二次電池の需要が拡大している。近年、これら電子機器は高機能化の進展に伴い消費電力が増大していることや、小型化が期待されていることから、二次電池に対しては容量の増大が求められている。   With the widespread use of portable electronic devices such as notebook computers, mobile phones, and digital cameras, the demand for secondary batteries that drive these electronic devices is increasing. In recent years, the power consumption of these electronic devices has increased with the progress of higher functionality, and the reduction in size is expected. Therefore, an increase in capacity is required for secondary batteries.

二次電池の中でも正極活物質にニッケル酸リチウム等のリチウム複合酸化物、負極活物質にグラファイト等の炭素材料を用いたリチウム二次電池は、高いエネルギー密度を有することから有力視されている。   Among secondary batteries, lithium secondary batteries using a lithium composite oxide such as lithium nickelate as a positive electrode active material and a carbon material such as graphite as a negative electrode active material are considered promising because of their high energy density.

正極の活物質として用いられているリチウム複合酸化物は導電性が極めて低い物質なので、炭素等の導電助剤を配合することで電子伝導性を確保している。しかし、この導電助剤である炭素は粉末であることから、活物質であるリチウム複合酸化物と部分的にしか接触できない。導電助剤が接触していない活物質表面では、充放電時の電子授受の効率が低下して容量の低下や内部抵抗の増大につながる。導電助剤と活物質であるリチウム複合酸化物との接触を増やし十分な導電性を確保する方法として、多量の導電助剤を添加する方法も考えられるが、導電助剤である炭素は電池反応(酸化還元反応)に直接関与しない材料なので、導電助剤の添加量増大に伴い容量が低下する問題がある。   Since the lithium composite oxide used as the active material of the positive electrode is a substance having extremely low conductivity, the electronic conductivity is ensured by blending a conductive aid such as carbon. However, since carbon as the conductive auxiliary agent is a powder, it can only partially contact the lithium composite oxide as the active material. On the surface of the active material that is not in contact with the conductive auxiliary agent, the efficiency of electron transfer at the time of charge / discharge is reduced, leading to a decrease in capacity and an increase in internal resistance. As a method of increasing the contact between the conductive auxiliary agent and the lithium composite oxide as the active material and ensuring sufficient conductivity, a method of adding a large amount of conductive auxiliary agent is also conceivable, but carbon as the conductive auxiliary agent is a battery reaction. Since the material does not directly participate in (oxidation-reduction reaction), there is a problem that the capacity decreases as the amount of the conductive additive added increases.

そこで、酸化還元反応に活性をもち活物質としても機能する導電助剤を用いて正極活物質であるリチウム複合酸化物表面の導電性を確保する手段が特許文献1、2などに開示されている。   Accordingly, Patent Documents 1 and 2 disclose means for ensuring the conductivity of the surface of the lithium composite oxide, which is a positive electrode active material, using a conductive additive that is active in an oxidation-reduction reaction and functions as an active material. .

特許文献1及び2には、導電性高分子であるポリピロール粉末をリチウム複合酸化物粒子に分散させることで表面に付着させる手法や、リチウム複合酸化物を酸化材としてピロールモノマーを酸化重合させてリチウム複合酸化物の表面をポリピロールで被覆する手法が開示されている。   Patent Documents 1 and 2 describe a technique in which polypyrrole powder, which is a conductive polymer, is dispersed on lithium composite oxide particles to adhere to the surface, and pyrrole monomer is oxidized and polymerized using lithium composite oxide as an oxidizing agent to form lithium. A technique for coating the surface of a complex oxide with polypyrrole is disclosed.

しかしながら前者のポリピロール粉末をリチウム複合酸化物粒子に分散させて表面に付着させる手法では、ポリピロール、リチウム複合酸化物共に粉末なので、両者を均一に分散・付着させることが難しく、調製方法により効果にバラツキが多くなる問題を有する。   However, in the former method, the polypyrrole powder is dispersed on the lithium composite oxide particles and adhered to the surface. Since both the polypyrrole and lithium composite oxide are powders, it is difficult to uniformly disperse and adhere both, and the effect varies depending on the preparation method. Have the problem of increasing.

また、後者のリチウム複合酸化物を酸化材としてピロールモノマーを酸化重合させてリチウム複合酸化物表面をポリピロールで被覆する手法では、リチウム複合酸化物の種類によっては酸化重合が進行せず被覆が困難である欠点を有する。   In addition, in the method in which pyrrole monomer is oxidatively polymerized using the latter lithium composite oxide as an oxidant and the surface of the lithium composite oxide is coated with polypyrrole, oxidative polymerization does not proceed depending on the type of lithium composite oxide, and coating is difficult. Has certain drawbacks.

一方、特許文献3、4には、酸化還元反応に活性をもつ導電性高分子であるポリアニリンを溶解した有機溶媒とリチウム複合酸化物とを混合することで調製した均質塗料液を製膜しリチウム複合酸化物表面をポリアニリンで被覆した正極活物質層を形成する手法や酸化還元反応に活性をもつ導電性高分子のモノマー、正極活物質粒子及び導電助剤を含む電解液を電解重合し、正極活物質粒子の表面をポリアニリンで被覆した電極を作製する手法が開示されている。   On the other hand, in Patent Documents 3 and 4, a homogeneous coating liquid prepared by mixing an organic solvent in which polyaniline, which is a conductive polymer having an oxidation-reduction reaction activity, is dissolved, and a lithium composite oxide, is formed into lithium. A method for forming a positive electrode active material layer in which the surface of a composite oxide is coated with polyaniline, and an electropolymerization of an electrolytic solution containing a monomer of a conductive polymer having an activity in an oxidation-reduction reaction, positive electrode active material particles and a conductive auxiliary agent. A technique for producing an electrode in which the surface of active material particles is coated with polyaniline is disclosed.

しかしながら、前社のポリアニリンを溶解した有機溶媒とリチウム複合酸化物を混合することで調製した塗料液を製膜しリチウム複合酸化物表面をポリアニリンで被覆する手法では、ポリアニリンなどの有機溶媒に可溶な導電性高分子にしか適用できず、ポリピロール、ポリアセチレンなどの有機溶媒への可溶化が困難な導電性高分子には適用できない不都合がある。   However, the coating solution prepared by mixing a lithium composite oxide with an organic solvent in which the polyaniline dissolved in the previous company is formed into a film and the surface of the lithium composite oxide is coated with polyaniline is soluble in an organic solvent such as polyaniline. However, it cannot be applied to conductive polymers that are difficult to solubilize in organic solvents such as polypyrrole and polyacetylene.

また後者の酸化還元反応に活性をもつ導電性高分子のモノマー、粒子状活物質及び導電助剤を含む電解液を電解重合することで、正極活物質粒子の表面をポリアニリンで被覆した電極を作製する手法では、リチウム複合酸化物の表面にポリアニリンを均一に被覆することが可能であるが、電解重合を行うための専用設備が別途必要となることから他の方法と比較し高コストである問題があった。
特開2001−135312号公報 特開2001−351634号公報 特開平7−130356号公報 特開平9−73893号公報
In addition, the surface of the positive electrode active material particles is coated with polyaniline by electrolytic polymerization of an electrolyte containing a conductive polymer monomer, particulate active material and conductive auxiliary active in the latter redox reaction. In this method, it is possible to uniformly coat polyaniline on the surface of the lithium composite oxide, but it requires a dedicated facility for performing electropolymerization, which is expensive compared to other methods. was there.
JP 2001-135312 A JP 2001-351634 A JP-A-7-130356 JP-A-9-73893

そこで本発明は、上記従来技術の課題を解決し、リチウム複合酸化物の表面を導電性高分子で均一に被覆したリチウム二次電池を簡便に製造可能な製造方法の提供を解決すべき課題とする。   Therefore, the present invention solves the above-mentioned problems of the prior art and solves the problem of providing a production method capable of easily producing a lithium secondary battery in which the surface of a lithium composite oxide is uniformly coated with a conductive polymer. To do.

本発明のリチウム二次電池の製造方法は、リチウムイオンを放出乃至吸蔵できる正極と、リチウムイオンを吸蔵乃至放出できる負極と、該正極及び該負極の間で該リチウムイオンを移動させる電解液とを備えるリチウム二次電池を製造する方法である。   A method for producing a lithium secondary battery according to the present invention comprises: a positive electrode capable of releasing or storing lithium ions; a negative electrode capable of storing or releasing lithium ions; and an electrolyte solution that moves the lithium ions between the positive electrode and the negative electrode. It is a method of manufacturing a lithium secondary battery provided.

上記課題を解決する目的で本発明者らは鋭意検討を行い以下の発明を完成した。すなわち、本発明のリチウム二次電池の製造方法は、前記電解液中に電解重合性を有する導電性高分子のモノマーである重合性化合物を含有させるモノマー添加工程と、
前記正極を前記電解液に接触させた状態で電位を付与することで前記重合性化合物を該正極にて重合させる重合工程と、を有することを特徴とする。
In order to solve the above-mentioned problems, the present inventors diligently studied and completed the following invention. That is, the method for producing a lithium secondary battery of the present invention includes a monomer addition step of containing a polymerizable compound that is a monomer of an electropolymerizable conductive polymer in the electrolytic solution;
And a polymerization step of polymerizing the polymerizable compound at the positive electrode by applying a potential in a state where the positive electrode is in contact with the electrolytic solution.

導電性高分子のモノマーを電解液中に含有させた状態で重合反応を行うことで導電性高分子にて被覆する工程を行う専用の装置を採用する必要が無くなる。更に重合反応として電池内に存在する電位差を利用して重合を進行させる電解重合を採用することにより、重合を行う目的で、何らかの添加物や何らかの装置を導入する必要が無くなる利点がある。   By performing the polymerization reaction in a state where the conductive polymer monomer is contained in the electrolytic solution, it is not necessary to employ a dedicated apparatus for performing the step of coating with the conductive polymer. Further, by adopting electrolytic polymerization in which polymerization proceeds by utilizing a potential difference existing in the battery as a polymerization reaction, there is an advantage that it is not necessary to introduce any additive or any device for the purpose of polymerization.

そして、前記重合工程は前記正極及び前記負極を前記電解液に接触させた状態で、該正極及び該負極の間に電圧を印加する工程であることが望ましい。正負極間への電圧の印加はリチウム二次電池として通常行う操作であり製造工程、製造設備の簡略化が期待できる。   The polymerization step is preferably a step of applying a voltage between the positive electrode and the negative electrode in a state where the positive electrode and the negative electrode are in contact with the electrolytic solution. Application of a voltage between the positive and negative electrodes is an operation normally performed as a lithium secondary battery, and simplification of the manufacturing process and manufacturing equipment can be expected.

また、前記正極はリチウム複合酸化物からなる正極活物質粒子を含有し、前記重合工程は前記導電性高分子及び該正極活物質粒子を均一に複合化させる工程であることが望ましい。正極として粒子状の正極活物質を含有させることで電解重合による生成する導電性高分子との間で均一に分散させることができる。   The positive electrode preferably includes positive electrode active material particles made of a lithium composite oxide, and the polymerization step is preferably a step of uniformly combining the conductive polymer and the positive electrode active material particles. By containing a particulate positive electrode active material as the positive electrode, it can be uniformly dispersed with the conductive polymer produced by electrolytic polymerization.

更に、前記重合性化合物がピロール、ピロール誘導体、チオフェン及びチオフェン誘導体からなる群から選択される1以上の化合物を含むことが望ましい。   Furthermore, it is desirable that the polymerizable compound contains one or more compounds selected from the group consisting of pyrrole, pyrrole derivatives, thiophene and thiophene derivatives.

この重合性化合物としては下記一般式(A)又は一般式(B)で表される化合物を含むことができる。   As this polymeric compound, the compound represented by the following general formula (A) or general formula (B) can be included.

Figure 2008226606
Figure 2008226606

(式(A)及び式(B)中、R〜Rは水素、炭素数1〜4のアルキル基からそれぞれ独立して選択される。)
特に、前記一般式(A)中、R〜Rのうちの少なくとも1つは下記式(1)〜(4)のいずれかであるものが望ましい。
(In Formula (A) and Formula (B), R 1 to R 5 are each independently selected from hydrogen and an alkyl group having 1 to 4 carbon atoms.)
In particular, in the general formula (A), at least one of R 1 to R 3 is preferably any one of the following formulas (1) to (4).

Figure 2008226606
Figure 2008226606

(式(1)〜(4)は*の部分にて、前記式(A)におけるピロール環の炭素原子又は窒素原子に結合する。式(1)〜(4)中、RはH、OH、CH又はNHである。式(1)〜(4)中、Yは−(CH−(mは0〜10の整数)であり、mが1以上のときはYを構成するメチレン基の1つ以上が、−O−、−NH−、−S−、 (Formulas (1) to (4) are bonded to the carbon atom or nitrogen atom of the pyrrole ring in the formula (A) at the portion of *. In formulas (1) to (4), R is H, OH, CH 3 or NH 2. In the formulas (1) to (4), Y is — (CH 2 ) m — (m is an integer of 0 to 10), and when m is 1 or more, Y is constituted. One or more of the methylene groups are -O-, -NH-, -S-,

Figure 2008226606
Figure 2008226606

で置換されてもよい。)
また、前記重合性化合物としては下記一般式(C)で表される化合物を含むことができる。
May be substituted. )
Moreover, as said polymeric compound, the compound represented by the following general formula (C) can be included.

Figure 2008226606
Figure 2008226606

(式(C)中、mは1〜10の整数) (In formula (C), m is an integer of 1 to 10)

本発明のリチウム二次電池の製造方法は以上の構成をもつことから以下の作用効果を発揮する。すなわち、正極に形成する導電性高分子のモノマーである重合性化合物を電解液中に添加した状態で電解重合させて導電性高分子を生成することが可能になり簡便に正極に導電性高分子を導入することができる。   Since the manufacturing method of the lithium secondary battery of this invention has the above structure, the following effects are exhibited. That is, it is possible to produce a conductive polymer by electropolymerizing a polymerizable compound, which is a monomer of the conductive polymer formed on the positive electrode, in the electrolytic solution, and it is easy to form the conductive polymer on the positive electrode. Can be introduced.

更に、リチウム二次電池が実際に使用される形態にした上で電解重合を進行させることができるので生成した導電性高分子と正極の表面との間を十分に密着させることができる。つまり、電解液中に正極を浸漬させ、且つ、重合性化合物を電解液中に含有させた状態で電解重合を進行させることで、導電性高分子は正極の表面に密着性良く生成することができる上に、その後、大きな変形などを伴う加工をする必要が無く、そのまま使用することができるので、生成した導電性高分子が確実に正極の表面に密着した状態を保つことができ高い性能を発揮・維持することができる。   Furthermore, since the electrolytic polymerization can proceed after the lithium secondary battery is actually used, the produced conductive polymer and the surface of the positive electrode can be sufficiently brought into close contact with each other. In other words, by conducting the electrolytic polymerization in a state where the positive electrode is immersed in the electrolytic solution and the polymerizable compound is contained in the electrolytic solution, the conductive polymer can be generated on the surface of the positive electrode with good adhesion. In addition, since it can be used as it is without the need for processing with large deformation after that, the generated conductive polymer can be reliably kept in close contact with the surface of the positive electrode and has high performance. It can be demonstrated and maintained.

本発明のリチウム二次電池の製造方法について実施形態に基づき以下詳細に説明する。   The method for producing a lithium secondary battery of the present invention will be described in detail below based on the embodiment.

本実施形態のリチウム二次電池の製造方法は正極と負極と電解液とを備えるリチウム二次電池を製造する方法であり、モノマー添加工程と重合工程とを有する。本実施形態のリチウム二次電池の製造方法はその他の工程として、正極、負極及び電解液の調製工程、それらを組み合わせる工程、その他必要な工程を有する。   The manufacturing method of the lithium secondary battery of this embodiment is a method of manufacturing a lithium secondary battery provided with a positive electrode, a negative electrode, and an electrolytic solution, and includes a monomer addition step and a polymerization step. The manufacturing method of the lithium secondary battery according to the present embodiment includes, as other steps, a positive electrode, a negative electrode, an electrolytic solution preparation step, a combination step thereof, and other necessary steps.

(モノマー添加工程)
モノマー添加工程は電解液中にモノマーを添加する工程である。モノマー添加工程は重合工程を完了するまでに完了すれば充分である。例えば、電解液を調製する際にモノマーも併せて添加する、電池を組み立てた後にモノマーを別に添加する、重合工程を行いながらモノマーを添加するなどである。添加されたモノマーは重合工程を経ることで電解液中から概ね消費されることになる。
(Monomer addition process)
A monomer addition process is a process of adding a monomer in electrolyte solution. It is sufficient if the monomer addition step is completed before the polymerization step is completed. For example, the monomer is added together when preparing the electrolytic solution, the monomer is added separately after the battery is assembled, and the monomer is added while performing the polymerization process. The added monomer is generally consumed from the electrolytic solution through the polymerization step.

添加するモノマーは最終的に生成する導電性高分子を構成するモノマーであり、電解重合可能な重合性化合物である。重合性化合物としては、ピロール、ピロール誘導体、チオフェン及びチオフェン誘導体からなる群から選択される1以上の化合物が例示できる。   The monomer to be added is a monomer constituting the conductive polymer finally produced, and is a polymerizable compound that can be electropolymerized. Examples of the polymerizable compound include one or more compounds selected from the group consisting of pyrrole, pyrrole derivatives, thiophene, and thiophene derivatives.

重合性化合物としては特に前記一般式(A)で表される化合物を含むことが望ましい。一般式(A)で表される化合物はピロール及びその誘導体である。R〜Rとして採用できるアルキル基としては特にメチル基が望ましい。 In particular, the polymerizable compound preferably includes a compound represented by the general formula (A). The compound represented by the general formula (A) is pyrrole and its derivatives. As the alkyl group that can be employed as R 1 to R 5 , a methyl group is particularly desirable.

更に一般式(A)中におけるR〜Rのうちの少なくとも1つは前記式(1)〜(4)のいずれかであることが望ましい。これらの基は電池反応に寄与できるラジカルを有するので電池容量の向上や内部抵抗の低下に寄与する。従って、これら式(1)〜(4)の基はすべての重合性化合物が有することが望ましい。 Furthermore, it is desirable that at least one of R 1 to R 3 in the general formula (A) is any one of the above formulas (1) to (4). Since these groups have radicals that can contribute to the battery reaction, they contribute to an improvement in battery capacity and a decrease in internal resistance. Therefore, it is desirable that all the polymerizable compounds have these groups of the formulas (1) to (4).

また、重合性化合物としては前記一般式(C)で表される化合物が特に望ましい。ここで、一般式(C)及び式(1)〜(4)中におけるmの値としては1〜3程度にすることが望ましい。   The polymerizable compound is particularly preferably a compound represented by the general formula (C). Here, the value of m in the general formula (C) and the formulas (1) to (4) is preferably about 1 to 3.

特に、R〜Rが水素であるピロールや上記一般式(C)で表される化合物のうちmが3である下記化合物eを採用することが望ましい。 In particular, it is desirable to employ pyrrole in which R 1 to R 3 are hydrogen or the following compound e in which m is 3 among the compounds represented by the general formula (C).

Figure 2008226606
Figure 2008226606

重合性化合物の添加量は、電解重合の進行のしやすさを考慮すると、電解液中に0.01mol/L〜1.0mol/L程度添加することが望ましい。   The amount of the polymerizable compound added is preferably about 0.01 mol / L to 1.0 mol / L in the electrolytic solution, considering the ease of progress of electrolytic polymerization.

電解重合の条件は製造されるリチウム二次電池内にて実現可能な雰囲気下にて進行可能な範囲で決定できる。従って、重合性化合物としては、リチウム二次電池内における一般的な電位状態である3.0V〜4.5Vの範囲で電解重合が可能である化合物を採用することが望ましい。   The conditions for the electropolymerization can be determined within a range that can proceed in an atmosphere that can be realized in the manufactured lithium secondary battery. Therefore, as the polymerizable compound, it is desirable to employ a compound that can be electrolytically polymerized in the range of 3.0 V to 4.5 V, which is a general potential state in a lithium secondary battery.

(重合工程)
重合工程は正極を電解液に接触させた状態で電位を付与することで重合性化合物を正極にて重合させる工程である。望ましくは、正極、負極及び電解液を電池ケース内にて組み立てた状態を採用することで電解重合を行うことで製造設備が簡略化できる。
(Polymerization process)
The polymerization step is a step of polymerizing the polymerizable compound at the positive electrode by applying a potential in a state where the positive electrode is in contact with the electrolytic solution. Desirably, the production equipment can be simplified by performing electrolytic polymerization by adopting a state in which the positive electrode, the negative electrode, and the electrolytic solution are assembled in the battery case.

特に、電池ケース内に組み立てた状態で電解重合を行うと、リチウム二次における正負極の電極を用いて正負極の間に電圧を印加することが可能になって製造設備がより簡略化できる。この場合、重合工程を経た後の正極、負極及び電解液は完成したリチウム二次電池にそのまま用いることが望ましい。   In particular, when electrolytic polymerization is performed in a state assembled in a battery case, it is possible to apply a voltage between the positive and negative electrodes using positive and negative electrodes in a lithium secondary, and the manufacturing equipment can be further simplified. In this case, it is desirable to use the positive electrode, the negative electrode, and the electrolytic solution after the polymerization step as they are for the completed lithium secondary battery.

重合工程は電解液中に有する重合性化合物を概ね全部反応させるまで行うことが望ましく、特にすべての重合性化合物を反応させることがより望ましい。反応が終了したか否かの正確な判断は重合工程において印加する電圧と電流との関係から判断できる。例えば、電池に定電流にて充電を行う場合に、電池の端子電圧が電解重合が進行する電位を継続的に超えることをもって重合が完了したものと考えることができる。   The polymerization step is desirably performed until almost all of the polymerizable compounds contained in the electrolytic solution are reacted, and more preferably, all of the polymerizable compounds are reacted. Accurate judgment as to whether or not the reaction has been completed can be judged from the relationship between voltage and current applied in the polymerization step. For example, when the battery is charged with a constant current, it can be considered that the polymerization is completed when the terminal voltage of the battery continuously exceeds the potential at which electrolytic polymerization proceeds.

(リチウム二次電池)
以下に本製造方法が適用できるリチウム二次電池の構成要素並びにリチウム二次電池の製造方法について詳述する。
(Lithium secondary battery)
The constituent elements of the lithium secondary battery to which the present manufacturing method can be applied and the manufacturing method of the lithium secondary battery will be described in detail below.

本製造方法が適用できるリチウム二次電池としてはリチウムイオンを放出乃至吸蔵できる正極と、リチウムイオンを吸蔵乃至放出できる負極と、正極及び負極の間でリチウムイオンを移動させる電解液とを備えるものであれば充分である。   A lithium secondary battery to which the present manufacturing method can be applied includes a positive electrode capable of releasing or storing lithium ions, a negative electrode capable of storing or releasing lithium ions, and an electrolyte that moves lithium ions between the positive electrode and the negative electrode. If there is enough.

正極としては特に限定しないが、アルミニウム箔などの集電体の表面に正極活物質を含む活物質層が形成されたものが例示できる。活物質層は正極活物質、結着材、導電助剤等を水、NMP等の溶媒中で混合した後、集電体上に塗布され形成される。   Although it does not specifically limit as a positive electrode, The thing by which the active material layer containing a positive electrode active material was formed in the surface of collectors, such as aluminum foil, can be illustrated. The active material layer is formed by mixing a positive electrode active material, a binder, a conductive additive and the like in a solvent such as water and NMP, and then applying the mixture on a current collector.

正極活物質としてはリチウム複合酸化物が例示できる。正極活物質としては粒子状の形態を採用することで重合により生成した導電性高分子との間でより均一に分散させることが可能になるので好ましい。   An example of the positive electrode active material is a lithium composite oxide. As the positive electrode active material, it is preferable to adopt a particulate form because it can be more uniformly dispersed with the conductive polymer generated by polymerization.

リチウム複合酸化物としてはLiNiO、LiMnO、LiMn、LiCoO、LiFeO、LiFePOが例示できるがこれらに限定されるものではない。また、上記リチウム複合酸化物は、単独で用いるだけでなく、これらを複数種類混合して用いることもできる。 Does not LiNiO 2, LiMnO 2, LiMn 2 O 4, LiCoO 2, LiFeO 2, LiFePO 4 but may be exemplified as being limited thereto as lithium composite oxide. Moreover, the lithium composite oxide can be used not only alone but also in combination of a plurality of these.

中でもリチウム複合酸化物としてはリチウムマンガン含有複合酸化物、リチウムニッケル含有複合酸化物及びリチウムコバルト含有複合酸化物のうちの1種以上であることが好ましい。   Among them, the lithium composite oxide is preferably at least one of lithium manganese-containing composite oxide, lithium nickel-containing composite oxide, and lithium cobalt-containing composite oxide.

結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等が挙げられる。また導電助剤としては、カーボンブラック、アセチレンブラック等の炭素粉末が挙げられる。本製造方法によると導電性高分子を正極に形成できるので導電助剤の添加量は最小限(例えば、重合工程における最初の電圧印加が達成できる程度)にすることができる。   Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, and fluororubber. Examples of the conductive assistant include carbon powder such as carbon black and acetylene black. According to this production method, since the conductive polymer can be formed on the positive electrode, the addition amount of the conductive auxiliary agent can be minimized (for example, to the extent that the first voltage application in the polymerization step can be achieved).

負極としては特に限定しないが、銅箔などの集電体の表面に負極活物質を含む活物質層が形成されたものや、金属リチウム、リチウム合金などの負極活物質をそのまま成形したものが例示できる。活物質層は負極活物質、結着材等を水、NMP等の溶媒中で混合した後、集電体上に塗布され形成される。   Although it does not specifically limit as a negative electrode, what formed the active material layer containing a negative electrode active material on the surface of collectors, such as copper foil, and what shape | molded negative electrode active materials, such as metallic lithium and a lithium alloy, are illustrated it can. The active material layer is formed by mixing a negative electrode active material, a binder or the like in a solvent such as water or NMP, and then applying the mixture on a current collector.

負極活物質としては、リチウムイオンを吸蔵及び放出できる化合物である。化合物の一例としてはリチウム等の金属材料、ケイ素、スズ等を含有する合金材料、グラファイト、コークス、有機高分子化合物焼成体又は非晶質炭素等の炭素材料があるが、これに限定されるものではない。これら化合物は、単独で用いるだけでなく、複数種類混合して用いることもできるが、中でもグラファイトが好ましい。   The negative electrode active material is a compound that can occlude and release lithium ions. Examples of compounds include metal materials such as lithium, alloy materials containing silicon, tin, etc., graphite, coke, organic polymer compound fired bodies or carbon materials such as amorphous carbon, but are not limited thereto. is not. These compounds can be used not only alone but also in a mixture of a plurality of types, among which graphite is preferable.

結着材としては、例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、EPDM、SBR、NBR、フッ素ゴム等が挙げられる。   Examples of the binder include polyvinylidene fluoride, polytetrafluoroethylene, EPDM, SBR, NBR, and fluororubber.

電解液は、有機溶媒に支持電解質を溶解させたものである。   The electrolytic solution is obtained by dissolving a supporting electrolyte in an organic solvent.

有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、1,2−ジメトキシエタン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン等が挙げられるが、これに限定されるものではない。これら有機溶媒は、単独で用いるだけでなく、複数種類混合して用いることもできる。中でもカーボネート系溶媒を含む電解液は、高温での安定性が高いことから好ましい。   Examples of the organic solvent include propylene carbonate, ethylene carbonate, 1,2-dimethoxyethane, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, and the like. Absent. These organic solvents can be used alone or in combination. Among them, an electrolytic solution containing a carbonate solvent is preferable because of its high stability at high temperatures.

支持電解質としては、LiBF、LiPF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)等が挙げられるが、これに限定されるものではない。これら支持電解質は、単独で用いるだけでなく、複数種類混合して用いることもできる。 As the supporting electrolyte, LiBF 4 , LiPF 6 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2) ) And the like, but is not limited thereto. These supporting electrolytes can be used not only independently, but also in combination of a plurality of types.

また、本製造方法が適用可能なリチウム二次電池としては上述の構成要素に加えて、正負極の間を電気的に絶縁するセパレータや、電池ケースなどの公知の構成要素を適用可能であることは言うまでもない。   Moreover, as a lithium secondary battery to which this manufacturing method can be applied, in addition to the above-described constituent elements, known constituent elements such as a separator that electrically insulates between the positive and negative electrodes and a battery case can be applied. Needless to say.

図1に示す構成をもつリチウム二次電池100を製造した。   A lithium secondary battery 100 having the configuration shown in FIG. 1 was manufactured.

(正極の作製)
正極活物質粒子としてのLiNiOを87質量部と、導電助剤としてのアセチレンブラックを10質量部と、結着材としてのカルボキシメチルセルロース(CMC)を1質量部と、結着材としてのポリエチレンオキシド(PEO)を1質量部と、結着材としてのポリテトラフルオロエチレン(PTFE)を1質量部とを水に混合・分散させ、均質な塗料液を調製した。
(Preparation of positive electrode)
87 parts by mass of LiNiO 2 as positive electrode active material particles, 10 parts by mass of acetylene black as a conductive additive, 1 part by mass of carboxymethyl cellulose (CMC) as a binder, and polyethylene oxide as a binder 1 part by mass of (PEO) and 1 part by mass of polytetrafluoroethylene (PTFE) as a binder were mixed and dispersed in water to prepare a homogeneous coating liquid.

この塗料液をアルミ製の正極集電体11両面に塗布し、乾燥、プレスすることで正極合材層を形成後、所定のサイズに裁断することで正極を作製した。   The coating liquid was applied to both surfaces of the positive electrode current collector 11 made of aluminum, dried and pressed to form a positive electrode mixture layer, and then cut into a predetermined size to produce a positive electrode.

(負極の作製)
負極活物質としてのグラファイト粉末を98質量部と、結着材としてのCMCを1質量部、結着材としてのスチレンブタジエンゴム(SBR)を1質量部とを水に混合・分散させ、均質な塗料液を調製した。
(Preparation of negative electrode)
98 parts by mass of graphite powder as the negative electrode active material, 1 part by mass of CMC as the binder, and 1 part by mass of styrene butadiene rubber (SBR) as the binder were mixed and dispersed in water to obtain a homogeneous A coating liquid was prepared.

この塗料液を銅製の負極集電体21両面に塗布し、乾燥、プレスすることで負極合材層を形成後、所定のサイズに裁断することで負極を作製した。   This coating liquid was applied to both surfaces of the copper negative electrode current collector 21, dried and pressed to form a negative electrode mixture layer, and then cut into a predetermined size to produce a negative electrode.

(電解液の調製)
エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比3:7で混合し、その混合有機溶媒に支持電解質としてのLiPFを1mol/Lの濃度で溶解させた。同時に、電解重合性を有する導電性高分子のモノマーであり重合性化合物としてのピロール(和光純薬工業製)を0.1mol/Lの濃度で溶解(モノマー添加工程)し、電解液とした。
(Preparation of electrolyte)
Ethylene carbonate (EC) and diethyl carbonate (DEC) were mixed at a volume ratio of 3: 7, and LiPF 6 as a supporting electrolyte was dissolved in the mixed organic solvent at a concentration of 1 mol / L. At the same time, pyrrole (manufactured by Wako Pure Chemical Industries, Ltd.), which is a conductive polymer monomer having electrolytic polymerizability, was dissolved at a concentration of 0.1 mol / L (monomer addition step) to obtain an electrolytic solution.

(電池の作製)
上記で得られた正極1及び負極2を、セパレータとしての厚さ25μmの微孔ポリエチレン製のフィルム4を介した状態で巻回させて、巻回型電極体を形成した。得られた巻回型電極体をケース7の内部に挿入し、ケース7内に保持した。このときシート状正極1及びシート状負極2のリードタブ溶接部に集電リード13及び23の一端を溶接し、その集電リード13及び23の他端のそれぞれをケースの正極端子部5及び負極端子部6に接合した。
(Production of battery)
The positive electrode 1 and the negative electrode 2 obtained above were wound in a state where a film 4 made of microporous polyethylene having a thickness of 25 μm as a separator was interposed therebetween to form a wound electrode body. The obtained wound electrode body was inserted into the case 7 and held in the case 7. At this time, one end of the current collecting leads 13 and 23 is welded to the lead tab welded portion of the sheet-like positive electrode 1 and the sheet-like negative electrode 2, and the other ends of the current collecting leads 13 and 23 are respectively connected to the positive electrode terminal portion 5 and the negative electrode terminal of the case. Bonded to part 6.

その後、巻回型電極体を保持したケース7内に重合性化合物を含有する上記電解液3を注入した後、ケース7を密閉、封止した。以上の手順により、φ18mm、軸方向の長さ65mmの円筒型二次電池を製作し本実施例の試験電池とした。   Then, after inject | pouring the said electrolyte solution 3 containing a polymeric compound in the case 7 holding the winding type electrode body, the case 7 was sealed and sealed. Through the above procedure, a cylindrical secondary battery having a diameter of 18 mm and an axial length of 65 mm was manufactured and used as a test battery of this example.

(容量特性の評価)
作製したリチウム二次電池の容量特性の評価は、1C相当の電流値にて4.1Vまで充電した後、1C相当の電流値で3.0Vまで放電した際の放電容量を測定した。放電容量値は、電解重合性を有する導電性高分子のモノマーを含有しない以外は本実施例と同様の組成比で調製された電解液を使用し、他の構成要素については本実施例と同じものを採用して作製した電池(比較例1)の放電容量を100として換算した。評価結果を表1に示す。
(Evaluation of capacity characteristics)
Evaluation of the capacity | capacitance characteristic of the produced lithium secondary battery measured the discharge capacity at the time of discharging to 3.0V with the electric current value equivalent to 1C, after charging to 4.1V with the electric current value equivalent to 1C. The discharge capacity value is the same as that of this example except for the use of an electrolytic solution prepared in the same composition ratio as in this example, except that it does not contain a monomer of a conductive polymer having electrolytic polymerizability. The discharge capacity of a battery (Comparative Example 1) produced using the above was converted to 100. The evaluation results are shown in Table 1.

電解重合性を有する導電性高分子のモノマーとしてピロール(和光純薬工業製)を0.2mol/Lの濃度で溶解して調製した電解液を用いた以外は、実施例1と同様の方法で電池を作製し、放電容量を測定した。評価結果を表1に示す。   In the same manner as in Example 1, except that an electrolytic solution prepared by dissolving pyrrole (manufactured by Wako Pure Chemical Industries, Ltd.) at a concentration of 0.2 mol / L was used as a conductive polymer monomer having electrolytic polymerization properties. A battery was prepared and the discharge capacity was measured. The evaluation results are shown in Table 1.

電解重合性を有する導電性高分子のモノマーである重合性化合物として上述の化合物eを0.01mol/Lの濃度で溶解して調製した電解液を用いた以外は、実施例1と同様の方法で電池を作製し、放電容量を測定した。評価結果を表1に示す。   The same method as in Example 1 except that an electrolytic solution prepared by dissolving the above-mentioned compound e at a concentration of 0.01 mol / L was used as a polymerizable compound that is a monomer of a conductive polymer having electrolytic polymerization properties. A battery was prepared and the discharge capacity was measured. The evaluation results are shown in Table 1.

なお、化合物eは以下に示す方法にて合成した。   Compound e was synthesized by the method shown below.

Figure 2008226606
Figure 2008226606

・ステップ1:化合物b(3−アミノ−1−プロパノール:18mL、0.24mol)を酢酸33mL中に氷浴で冷却しながら加えた後、化合物a(2,5−ジメトキシテトラヒドロフラン:9mL、0.07mol)を一気に加え、その後、2時間還流した。   Step 1: Compound b (3-amino-1-propanol: 18 mL, 0.24 mol) was added to acetic acid 33 mL while cooling with an ice bath, and then compound a (2,5-dimethoxytetrahydrofuran: 9 mL, 0. 07 mol) was added all at once, and then refluxed for 2 hours.

室温まで放冷後、水120mLを加え、ジクロロメタン50mLで3回抽出操作を行った。得られた有機層をNaSOで乾燥し、溶媒を減圧除去した。メタノール60mLと20質量%NaOH水溶液60mLとを残留物に加え、室温で2.5時間撹拌した。 After cooling to room temperature, 120 mL of water was added, and extraction operation was performed 3 times with 50 mL of dichloromethane. The obtained organic layer was dried over Na 2 SO 4 and the solvent was removed under reduced pressure. Methanol (60 mL) and 20% by mass NaOH aqueous solution (60 mL) were added to the residue, and the mixture was stirred at room temperature for 2.5 hours.

その後、飽和NaCl水溶液100mLを加え、ジクロロメタン50mLで3回抽出操作を行った。得られた有機層をNaSOで乾燥した後、溶媒を減圧除去し、カラムクロマトグラフィー(展開溶媒:酢酸エチル−ヘキサン1:1)で精製を行い化合物f(1−(3−ヒドロキシプロピル)−1H−ピロール)を得た。収量4.77g、収率54%であった。 Then, 100 mL of saturated NaCl aqueous solution was added, and extraction operation was performed 3 times with 50 mL of dichloromethane. The obtained organic layer was dried over Na 2 SO 4 , the solvent was removed under reduced pressure, and the residue was purified by column chromatography (developing solvent: ethyl acetate-hexane 1: 1) to obtain compound f (1- (3-hydroxypropyl). ) -1H-pyrrole). The yield was 4.77 g, and the yield was 54%.

・ステップ2:窒素雰囲気下、氷浴で冷却しながら、化合物c(3.5g、0.28mol)とトリエチルアミン(4.16mL、0.30mol)とをジクロロメタン25mL中に加えた後、メタンスルホン酸クロライド(2.45mL、0.30mol)を滴下し、室温で3時間撹拌した。水60mLを加え、ジクロロメタン60mLで抽出操作を行った。   Step 2: Compound c (3.5 g, 0.28 mol) and triethylamine (4.16 mL, 0.30 mol) were added to 25 mL of dichloromethane while cooling with an ice bath in a nitrogen atmosphere, and then methanesulfonic acid. Chloride (2.45 mL, 0.30 mol) was added dropwise and stirred at room temperature for 3 hours. 60 mL of water was added, and extraction operation was performed with 60 mL of dichloromethane.

得られた有機層を5質量%NaHCO水溶液60mLで洗浄した後、NaSOで乾燥し、溶媒を減圧除去した。その後、カラムクロマトグラフィー(展開溶媒:クロロホルム)で精製を行い化合物d(1−(3’−MsO−プロピル)−1H−ピロール)を得た。収量5.45g、収率96%であった。 The obtained organic layer was washed with 60 mL of 5% by mass NaHCO 3 aqueous solution and then dried over Na 2 SO 4 , and the solvent was removed under reduced pressure. Then, it refine | purified by column chromatography (developing solvent: chloroform), and compound d (1- (3'-MsO-propyl) -1H-pyrrole) was obtained. The yield was 5.45 g, and the yield was 96%.

・ステップ3:窒素雰囲気下、ヘキサンで洗浄したNaH(60%in Oil、0.81g、0.203mol)と4−ヒドロキシ−TEMPO(3.5g、0.203mol)をDMF30mL中に加え、0℃で1時間撹拌した。   Step 3: Under a nitrogen atmosphere, NaH (60% in Oil, 0.81 g, 0.203 mol) and 4-hydroxy-TEMPO (3.5 g, 0.203 mol) washed with hexane were added to 30 mL of DMF, and 0 ° C. For 1 hour.

その後、化合物d(5g、0.246mol)を滴下し、室温で15時間撹拌した。水60mLを加え、ヘキサン150mLで抽出操作を行った。得られた有機層を水25mLで6回洗浄した後、NaSOで乾燥し、溶媒を減圧除去した。その後、カラムクロマトグラフィー(展開溶媒:酢酸エチル−ヘキサン1:3)で精製を行い化合物eを得た。収量3.28g、収率58%であった。 Thereafter, compound d (5 g, 0.246 mol) was added dropwise and stirred at room temperature for 15 hours. 60 mL of water was added, and extraction operation was performed with 150 mL of hexane. The obtained organic layer was washed 6 times with 25 mL of water, dried over Na 2 SO 4 , and the solvent was removed under reduced pressure. Subsequently, purification was performed by column chromatography (developing solvent: ethyl acetate-hexane 1: 3) to obtain compound e. The yield was 3.28 g, and the yield was 58%.

電解重合性を有する導電性高分子のモノマーとして化合物eを0.1mol/Lの濃度で溶解して調製した電解液を用いた以外は、実施例1と同様の方法で電池を作製し、放電容量を測定した。評価結果を表1に示す。   A battery was produced in the same manner as in Example 1 except that an electrolytic solution prepared by dissolving Compound e at a concentration of 0.1 mol / L was used as a monomer of a conductive polymer having electrolytic polymerization property. The capacity was measured. The evaluation results are shown in Table 1.

比較例1Comparative Example 1

電解重合性を有する導電性高分子のモノマーを含有しない電解液を用いた以外は実施例1と同様の方法で電池を作製し、放電容量を測定した評価結果を表1に示す。   Table 1 shows the evaluation results of producing a battery and measuring the discharge capacity in the same manner as in Example 1 except that an electrolytic solution containing no electropolymerizable conductive polymer monomer was used.

Figure 2008226606
Figure 2008226606

表1より明らかなように、電解重合性を有する重合性化合物を含有させた電解液を用いてリチウム二次電池を調製することで従来の電池である比較例1の試験電池よりも高性能の電池が得られることが明らかになった。   As is clear from Table 1, a lithium secondary battery is prepared using an electrolytic solution containing a polymerizable compound having an electrolytic polymerization property, so that it has higher performance than the conventional test battery of Comparative Example 1. It became clear that a battery was obtained.

電解液中の重合性化合物は、充電を行うことで発生する電位差により正極にて電解重合し、正極上のリチウム複合酸化物を均一に被覆することができたことで性能が向上したものと推測される。   It is assumed that the polymerizable compound in the electrolytic solution was improved in performance because it was electrolytically polymerized at the positive electrode due to the potential difference generated by charging, and the lithium composite oxide on the positive electrode could be uniformly coated. Is done.

以上説明したように、本製造方法は電解液中に重合性化合物を含有させた状態で、最初の充電を行うのみという、従来よりも安価且つ簡便なプロセスにて容量特性に優れた電池を作製することが可能であることが確認できた。   As described above, this manufacturing method produces a battery with excellent capacity characteristics by a cheaper and simpler process than before, in which only the first charge is performed in a state where a polymerizable compound is contained in the electrolytic solution. It was confirmed that it was possible.

ピロールの添加濃度は電解液に対して0.1mol/L添加した実施例1の電池容量が113、0.2mol/L添加した実施例2の電池容量が112と大差ないことから0.2mol/L程度まで添加、更には0.1mol/L程度まで添加すれば充分な効果が得られることが示唆された。   The concentration of pyrrole added was 0.2 mol / L because the battery capacity of Example 1 with 0.1 mol / L added to the electrolyte was 113 and the battery capacity of Example 2 with 0.2 mol / L added was not significantly different from 112. It was suggested that a sufficient effect can be obtained by adding up to about L and further up to about 0.1 mol / L.

電解液に対して化合物eを0.01mol/L添加した実施例3の電池容量が116と、ピロールを添加した実施例1及び2よりも高い値を示した。これは化合物eがもつラジカルが電池反応に寄与することで電池容量が高くなったものと考えられる。   The battery capacity of Example 3 in which 0.01 mol / L of compound e was added to the electrolytic solution was 116, which was higher than those in Examples 1 and 2 in which pyrrole was added. This is thought to be due to the fact that the radical of compound e contributes to the battery reaction, resulting in an increase in battery capacity.

化合物eの添加濃度は電解液に対して0.01mol/L添加した実施例3の電池容量が116と、0.1mol/L添加した実施例4の電池容量が119と大差ないが添加量の増加に従い大きくなっており、0.1mol/L程度まで、更にはそれ以上添加することが望ましいことが分かった。   The addition concentration of compound e is not much different from the battery capacity of Example 3 in which 0.01 mol / L was added with respect to the electrolyte solution and 116 in Example 4 to which 0.1 mol / L was added. It has been found that it increases with increase, and it is desirable to add to about 0.1 mol / L or more.

実施例において作成される円筒形リチウム二次電池の構成を示した図である。It is the figure which showed the structure of the cylindrical lithium secondary battery produced in an Example.

符号の説明Explanation of symbols

100…リチウム二次電池
1…正極 11…正極集電体
12…正極合材層 13…集電リード
2…負極 21…負極集電体
22…負極合材層 23…集電リード
3…電解液 4…セパレータ
5…正極端子部 6…負極端子部 7…ケース
DESCRIPTION OF SYMBOLS 100 ... Lithium secondary battery 1 ... Positive electrode 11 ... Positive electrode collector 12 ... Positive electrode compound material layer 13 ... Current collector lead 2 ... Negative electrode 21 ... Negative electrode collector material 22 ... Negative electrode compound material layer 23 ... Current collector lead 3 ... Electrolyte solution 4 ... Separator 5 ... Positive electrode terminal part 6 ... Negative electrode terminal part 7 ... Case

Claims (9)

リチウムイオンを放出乃至吸蔵できる正極と、リチウムイオンを吸蔵乃至放出できる負極と、該正極及び該負極の間で該リチウムイオンを移動させる電解液とを備えるリチウム二次電池の製造方法であって、
前記電解液中に電解重合性を有する導電性高分子のモノマーである重合性化合物を含有させるモノマー添加工程と、
前記正極を前記電解液に接触させた状態で電位を付与することで前記重合性化合物を該正極にて重合させる重合工程と、
を有することを特徴とするリチウム二次電池の製造方法。
A method for producing a lithium secondary battery, comprising: a positive electrode capable of releasing or storing lithium ions; a negative electrode capable of storing or releasing lithium ions; and an electrolyte that moves the lithium ions between the positive electrode and the negative electrode.
A monomer addition step of containing a polymerizable compound that is a monomer of a conductive polymer having electrolytic polymerization in the electrolytic solution;
A polymerization step of polymerizing the polymerizable compound at the positive electrode by applying a potential in a state where the positive electrode is in contact with the electrolytic solution;
A method for producing a lithium secondary battery, comprising:
前記重合工程は前記正極及び前記負極を前記電解液に接触させた状態で、該正極及び該負極の間に電圧を印加する工程である請求項1に記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the polymerization step is a step of applying a voltage between the positive electrode and the negative electrode in a state where the positive electrode and the negative electrode are in contact with the electrolytic solution. 前記正極はリチウム複合酸化物からなる正極活物質粒子を含有し、
前記重合工程は前記導電性高分子及び該正極活物質粒子を均一に複合化させる工程である請求項1又は2に記載のリチウム二次電池の製造方法。
The positive electrode contains positive electrode active material particles made of a lithium composite oxide,
The method for producing a lithium secondary battery according to claim 1, wherein the polymerization step is a step of uniformly combining the conductive polymer and the positive electrode active material particles.
前記重合性化合物がピロール、ピロール誘導体、チオフェン及びチオフェン誘導体からなる群から選択される1以上の化合物を含む請求項1〜3のいずれかに記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the polymerizable compound includes one or more compounds selected from the group consisting of pyrrole, pyrrole derivatives, thiophene, and thiophene derivatives. 前記重合性化合物が下記一般式(A)又は一般式(B)で表される化合物を含む請求項1〜4のいずれかに記載のリチウム二次電池の製造方法。
Figure 2008226606
(式(A)及び式(B)中、R〜Rは水素、炭素数1〜4のアルキル基からそれぞれ独立して選択される。)
The manufacturing method of the lithium secondary battery in any one of Claims 1-4 in which the said polymeric compound contains the compound represented by the following general formula (A) or general formula (B).
Figure 2008226606
(In Formula (A) and Formula (B), R 1 to R 5 are each independently selected from hydrogen and an alkyl group having 1 to 4 carbon atoms.)
前記一般式(A)中、R〜Rのうちの少なくとも1つは下記式(1)〜(4)のいずれかである請求項5に記載のリチウム二次電池の製造方法。
Figure 2008226606
(式(1)〜(4)は*の部分にて、前記式(A)におけるピロール環の炭素原子又は窒素原子に結合する。式(1)〜(4)中、RはH、OH、CH又はNHである。式(1)〜(4)中、Yは−(CH−(mは0〜10の整数)であり、mが1以上のときはYを構成するメチレン基の1つ以上が、−O−、−NH−、−S−、
Figure 2008226606
で置換されてもよい。)
The method for producing a lithium secondary battery according to claim 5, wherein in the general formula (A), at least one of R 1 to R 3 is any one of the following formulas (1) to (4).
Figure 2008226606
(Formulas (1) to (4) are bonded to the carbon atom or nitrogen atom of the pyrrole ring in the formula (A) at the portion of *. In formulas (1) to (4), R is H, OH, CH 3 or NH 2. In the formulas (1) to (4), Y is — (CH 2 ) m — (m is an integer of 0 to 10), and when m is 1 or more, Y is constituted. One or more of the methylene groups are -O-, -NH-, -S-,
Figure 2008226606
May be substituted. )
前記重合性化合物が下記一般式(C)で表される化合物を含む請求項6に記載のリチウム二次電池の製造方法。
Figure 2008226606
(式(C)中、mは1〜10の整数)
The method for producing a lithium secondary battery according to claim 6, wherein the polymerizable compound contains a compound represented by the following general formula (C).
Figure 2008226606
(In formula (C), m is an integer of 1 to 10)
前記電解液中における前記重合性化合物の濃度は0.01〜1.0mol/Lである請求項1〜7のいずれかに記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the concentration of the polymerizable compound in the electrolytic solution is 0.01 to 1.0 mol / L. 前記重合性化合物は3.0V〜4.5Vの範囲で電解重合が可能である請求項1〜8のいずれかに記載のリチウム二次電池の製造方法。   The method for producing a lithium secondary battery according to claim 1, wherein the polymerizable compound is capable of electrolytic polymerization in a range of 3.0V to 4.5V.
JP2007062170A 2007-03-12 2007-03-12 Method for manufacturing lithium secondary battery Expired - Fee Related JP5126570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062170A JP5126570B2 (en) 2007-03-12 2007-03-12 Method for manufacturing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062170A JP5126570B2 (en) 2007-03-12 2007-03-12 Method for manufacturing lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2008226606A true JP2008226606A (en) 2008-09-25
JP5126570B2 JP5126570B2 (en) 2013-01-23

Family

ID=39844975

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062170A Expired - Fee Related JP5126570B2 (en) 2007-03-12 2007-03-12 Method for manufacturing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5126570B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205870A (en) * 2009-03-03 2010-09-16 Gunma Univ Electrolyte additive for electric double-layer capacitor, electrolyte, and electric double-layer capacitor
WO2011043403A1 (en) * 2009-10-09 2011-04-14 三井化学株式会社 Nonaqueous electrolyte solution containing heterocyclic ring-containing alcohol derivative, and lithium secondary battery
CN102569896A (en) * 2010-12-10 2012-07-11 比亚迪股份有限公司 Lithium ion secondary battery and preparation method thereof
JP2012142260A (en) * 2010-12-29 2012-07-26 Ind Technol Res Inst Nonaqueous electrolyte, and lithium secondary battery containing nonaqueous electrolyte
US9136559B2 (en) 2010-12-29 2015-09-15 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
CN114420909A (en) * 2022-01-18 2022-04-29 湖北亿纬动力有限公司 Composite cathode material and preparation method and application thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191432A (en) * 1997-12-26 1999-07-13 Fuji Elelctrochem Co Ltd Lithium secondary battery
JP2000090970A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2000331711A (en) * 1999-05-03 2000-11-30 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery provided therewith
JP2001135350A (en) * 1999-11-04 2001-05-18 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2002025615A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002270226A (en) * 2001-03-12 2002-09-20 Ngk Insulators Ltd Lithium secondary battery
JP2003132949A (en) * 2001-10-29 2003-05-09 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacturing method
JP2006216276A (en) * 2005-02-01 2006-08-17 Canon Inc Lithium secondary battery and its manufacturing method
JP2007207443A (en) * 2006-01-30 2007-08-16 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery
JP2008027833A (en) * 2006-07-25 2008-02-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11191432A (en) * 1997-12-26 1999-07-13 Fuji Elelctrochem Co Ltd Lithium secondary battery
JP2000090970A (en) * 1998-09-14 2000-03-31 Matsushita Electric Ind Co Ltd Lithium secondary battery
JP2000331711A (en) * 1999-05-03 2000-11-30 Samsung Sdi Co Ltd Electrolyte for lithium secondary battery and lithium secondary battery provided therewith
JP2001135350A (en) * 1999-11-04 2001-05-18 Toyota Central Res & Dev Lab Inc Nonaqueous electrolyte secondary battery
JP2002025615A (en) * 2000-07-10 2002-01-25 Toyota Central Res & Dev Lab Inc Lithium secondary battery
JP2002270226A (en) * 2001-03-12 2002-09-20 Ngk Insulators Ltd Lithium secondary battery
JP2003132949A (en) * 2001-10-29 2003-05-09 Hitachi Maxell Ltd Nonaqueous secondary battery and its manufacturing method
JP2006216276A (en) * 2005-02-01 2006-08-17 Canon Inc Lithium secondary battery and its manufacturing method
JP2007207443A (en) * 2006-01-30 2007-08-16 Mitsui Mining & Smelting Co Ltd Nonaqueous electrolyte secondary battery
JP2008027833A (en) * 2006-07-25 2008-02-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010205870A (en) * 2009-03-03 2010-09-16 Gunma Univ Electrolyte additive for electric double-layer capacitor, electrolyte, and electric double-layer capacitor
WO2011043403A1 (en) * 2009-10-09 2011-04-14 三井化学株式会社 Nonaqueous electrolyte solution containing heterocyclic ring-containing alcohol derivative, and lithium secondary battery
JPWO2011043403A1 (en) * 2009-10-09 2013-03-04 三井化学株式会社 Non-aqueous electrolyte and lithium secondary battery containing heterocycle-containing alcohol derivative
JP5367836B2 (en) * 2009-10-09 2013-12-11 三井化学株式会社 Nonaqueous electrolytic solution containing heterocycle-containing alcohol derivative, additive for nonaqueous electrolytic solution of lithium secondary battery, and lithium secondary battery
CN102569896A (en) * 2010-12-10 2012-07-11 比亚迪股份有限公司 Lithium ion secondary battery and preparation method thereof
JP2012142260A (en) * 2010-12-29 2012-07-26 Ind Technol Res Inst Nonaqueous electrolyte, and lithium secondary battery containing nonaqueous electrolyte
US9136559B2 (en) 2010-12-29 2015-09-15 Industrial Technology Research Institute Non-aqueous electrolyte and lithium secondary battery including the same
US11034669B2 (en) 2018-11-30 2021-06-15 Nuvation Bio Inc. Pyrrole and pyrazole compounds and methods of use thereof
CN114420909A (en) * 2022-01-18 2022-04-29 湖北亿纬动力有限公司 Composite cathode material and preparation method and application thereof

Also Published As

Publication number Publication date
JP5126570B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP5702362B2 (en) Lithium secondary battery using ionic liquid
JP5969981B2 (en) Radical composition and battery using the same
WO2006080110A1 (en) Positive electrode material for lithium secondary cell
JP5126570B2 (en) Method for manufacturing lithium secondary battery
JPWO2012133204A1 (en) battery
KR20150005492A (en) Electrolyte for electrochemical device and the electrochemical device thereof
JP2012221575A (en) Radical compound, method for producing the same, and secondary battery
JP2013089365A (en) Nonaqueous electrolytic solution containing ionic fluid, and lithium secondary battery
JP6247284B2 (en) Polymers useful as electrode materials for lithium secondary batteries
JP5191931B2 (en) Lithium secondary battery using ionic liquid
JP5326575B2 (en) Method for producing polyradical compound-conductive substance complex
JP6007902B2 (en) Negative electrode active material for lithium secondary battery, lithium secondary battery using the same, and production method thereof
JP2013196910A (en) Nonaqueous electrolyte secondary battery
JPWO2014092016A1 (en) Power storage device
JP2010277701A (en) Secondary battery and its manufacturing method
JP2008135371A (en) Secondary battery active substance and secondary battery
JP5176130B2 (en) Polyradical compounds, electrode active materials and batteries
KR102233775B1 (en) Polymer, and Electrolyte and Lithium battery comprising polymer
JP2020066681A (en) Polymer, electrode active material and secondary battery
JP2008258031A (en) Polymer secondary battery
JP2019061826A (en) Lithium ion secondary battery
WO2013077211A1 (en) Agent for forming gel electrolyte, composition for forming gel electrolyte, gel electrolyte, and electricity storage device
JP5896154B2 (en) SOLID ELECTROLYTE FILM FORMING AGENT, ELECTROLYTIC SOLUTION CONTAINING SAME, AND ELECTRIC STORAGE DEVICE
JP7180861B2 (en) Electrolyte, lithium ion secondary battery, compound
JP2004200058A (en) Power storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121017

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees