JP2000331711A - Electrolyte for lithium secondary battery and lithium secondary battery provided therewith - Google Patents

Electrolyte for lithium secondary battery and lithium secondary battery provided therewith

Info

Publication number
JP2000331711A
JP2000331711A JP2000133216A JP2000133216A JP2000331711A JP 2000331711 A JP2000331711 A JP 2000331711A JP 2000133216 A JP2000133216 A JP 2000133216A JP 2000133216 A JP2000133216 A JP 2000133216A JP 2000331711 A JP2000331711 A JP 2000331711A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
lithium secondary
negative electrode
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000133216A
Other languages
Japanese (ja)
Inventor
Gikan So
義 煥 宋
Genich Cho
元 一 丁
Tokutetsu Ko
徳 哲 黄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Publication of JP2000331711A publication Critical patent/JP2000331711A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve stability and service life of a battery by adding the monomer of a conductive polymer electrochemically polymerizable with a specified potential difference to lithium potential to a nonaqueous organic solvent. SOLUTION: This monomer, for example, consists of pyrrole, aniline, or their derivatives, which is electrochemically polymerizable at about 4.0 V to lithium potential, and in a nonaqueous electrolyte battery containing this, a conductive polymer film is formed on the surface of a positive electrode material during its charging. This does not participate in the movement of lithium ions in normal charging and discharging but rather assists its reversible migration, and it forms an immobilized film at a high potential of 4.3 V or higher which is generated in overcharge or penetration to interrupt the flow of heavy current. The addition quantity to the organic solvent is preferably set to less than 2.0 wt.%, to avoid the increase in discharge capacity and non-reversible capacity. Further more, as active materials of positive electrode and negative electrode, a lithium composite oxide and a graphite carbonaceous material, which are absorbable/releasable of lithium ion, are preferably used.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はリチウム二次電池用
電解液及びこれを備えたリチウム二次電池に関し、より
詳しくは安全性が優れているリチウム二次電池の技術に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery including the same, and more particularly, to a technology of a lithium secondary battery having excellent safety.

【0002】[0002]

【従来の技術】最近、先端電子産業の発達により電子装
備の少量化及び軽量化が可能になったことに伴って携帯
用電子機器の使用が増大している。このような携帯用電
子機器の電源として高いエネルギー密度を有する電池の
必要性が増大し、リチウム二次電池の研究が活発に行わ
れている。リチウム二次電池の負極材料としてリチウム
金属や炭素材料が用いられており、正極材料としてはリ
チウム金属酸化物が用いられている。リチウム金属を負
極材料に使用する場合、樹枝状結晶(デンドライト)の
形成により電池短絡による爆発の危険性があるため、負
極材料としてリチウム金属の代わりに炭素材料が使用さ
れるようになっている。正極材料としてはLiMn
24、LiMnO2、LiCoO2、LiNiO2、Li
Ni1-xCoxO2(0<x<1)などの複合金属酸化
物が用いられている。LiMn24、LiMnO2など
のMn系電極物質は、合成も容易で、比較的安価で、環
境に対する汚染も少ないという長所があるが、容量が少
ないという短所がある。特に、LiMn24は、LiC
oO2、LiNiO2などの他の活物質に比べて放電容量
が少なく、高率充放電時における放電容量が急激に減少
し、高温での連続的な充放電時におけるマンガンの溶出
により、電池の寿命が急激に劣化するという問題点があ
る。LiCoO2は、良好な電気伝導度と高い電池電
圧、そして優れた電極特性を有しており、現在、SON
Y社などで商業化され市販されている代表的な正極電極
物質であるが、値段が高いという短所がある。LiNi
2は前述の正極電極物質のうち比較的値段が安く最も
高い放電容量の電池特性を示しているが、合成が難し
く、高い放電容量などにより電池の安定性確保の問題が
台頭している。
2. Description of the Related Art In recent years, the use of portable electronic devices has been increasing with the advancement of the advanced electronic industry, which has made it possible to reduce the size and weight of electronic equipment. The need for batteries having a high energy density as a power source for such portable electronic devices has increased, and research on lithium secondary batteries has been actively conducted. Lithium metal or carbon material is used as a negative electrode material of a lithium secondary battery, and lithium metal oxide is used as a positive electrode material. When lithium metal is used for the negative electrode material, there is a risk of explosion due to short-circuiting of the battery due to the formation of dendrites (dendrites). Therefore, a carbon material has been used instead of lithium metal as the negative electrode material. LiMn as positive electrode material
2 O 4 , LiMnO 2 , LiCoO 2 , LiNiO 2 , Li
A composite metal oxide such as Ni 1 -xCoxO 2 (0 <x <1) is used. Mn-based electrode materials such as LiMn 2 O 4 and LiMnO 2 are advantageous in that they can be easily synthesized, are relatively inexpensive, and have little pollution to the environment, but have disadvantages in that they have a small capacity. In particular, LiMn 2 O 4
oO 2 , the discharge capacity is smaller than other active materials such as LiNiO 2 , the discharge capacity at the time of high-rate charge and discharge decreases rapidly, and the manganese elution at the time of continuous charge and discharge at high temperature causes There is a problem that the life is rapidly deteriorated. LiCoO 2 has good electrical conductivity, high battery voltage, and excellent electrode characteristics.
Although it is a typical positive electrode material commercialized and marketed by company Y, it has a disadvantage that it is expensive. LiNi
O 2 is relatively inexpensive among the above-mentioned positive electrode materials and has the highest battery capacity with the highest discharge capacity, but is difficult to synthesize, and the problem of securing the stability of the battery due to the high discharge capacity and the like is emerging.

【0003】また、電池は正極/電解液、負極/電解液
などの複合的な反応によってその特性が現れるため、適
切な電解液の使用が電池の性能を向上させる重要な要素
の一つである。従来の電解液の体系は、単純にリチウム
イオンを移動させる媒介体程度の役割だけを期待され、
またそのように作用してきた。既存の電解液を使用する
場合、貫通や過充電のような大きな電流が流れると、そ
れを遮断できる方法がないので、熱暴走現象が招来され
ることになり、危険な状況に変わる恐れがある。したが
って、最近ではこのような問題点を解決するため、既存
の電解液に負極との初期反応により負極表面に薄い不動
態化膜を形成させる添加剤を使用する方法が知られてい
る。
[0003] In addition, since the characteristics of a battery appear due to a complex reaction of a positive electrode / electrolyte solution and a negative electrode / electrolyte solution, use of an appropriate electrolyte solution is one of the important factors for improving the performance of the battery. . The conventional electrolyte system is expected to play only the role of a medium that simply moves lithium ions,
It has also worked that way. When using an existing electrolyte, if a large current such as penetration or overcharging flows, there is no way to shut it off, so a thermal runaway phenomenon will be induced, which may turn into a dangerous situation . Therefore, recently, in order to solve such a problem, a method of using an additive for forming a thin passivation film on the surface of the negative electrode by an initial reaction with the negative electrode in an existing electrolytic solution is known.

【0004】しかしながら、正極表面に伝導性高分子膜
を形成して過充電や貫通のような大きな電流が流れる時
これを遮断できる電解液については知られていない。
[0004] However, there is no known electrolyte capable of forming a conductive polymer film on the surface of the positive electrode to block a large current such as overcharge or penetration when the current flows.

【0005】[0005]

【発明が解決しようとする課題】本発明の目的は、正極
表面に伝導性高分子膜を形成することにより過電流が流
れる場合、これを遮断して電池の安定性を向上させるこ
とができるリチウム二次電池用電解液を提供することに
ある。
SUMMARY OF THE INVENTION An object of the present invention is to form a conductive polymer film on the surface of a positive electrode, and to prevent the overcurrent from flowing when the overcurrent flows, thereby improving the stability of the battery. An object of the present invention is to provide an electrolyte for a secondary battery.

【0006】本発明の他の目的は、安定性と電池の寿命
とが向上したリチウム二次電池を提供することにある。
Another object of the present invention is to provide a lithium secondary battery having improved stability and battery life.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明においては、非水性有機溶媒に、リチウム
電位に対して4V前後で電気化学的に重合できる伝導性
高分子の単量体を添加することによって非水性電解液を
製造してリチウム二次電池に適用する。
In order to achieve the above-mentioned object, the present invention relates to a method for preparing a monomer containing a conductive polymer which can be electrochemically polymerized at about 4 V with respect to a lithium potential in a non-aqueous organic solvent. A non-aqueous electrolyte solution is prepared by adding a body and applied to a lithium secondary battery.

【0008】以下、本発明をより詳しく説明する。Hereinafter, the present invention will be described in more detail.

【0009】本発明によるリチウム二次電池用電解液
は、非水性溶媒に、リチウム電位に対して4.0V前後
で電気化学的に重合できる伝導性高分子の単量体を添加
して製造される。本発明に使用可能である伝導性高分子
の単量体の例としては、ピロール(pyrrole)、
アニリン(aniline)、またはこれらの誘導体が
ある。これら化合物は2.0重量%未満の添加量で使用
することが好ましい。2.0重量%以上添加される場
合、放電容量と非可逆容量とが増加し電池の性能を低下
させる問題点が発生する。前記非水性溶媒としては、環
状または鎖状カーボネートのような有機溶媒が用いられ
ることができ、二つ以上を混合して使用することもでき
る。これらの具体的な例には、エチレンカーボネート
(EC)、ジエチルカーボネート(DEC)、エチルメ
チルカーボネート(EMC)などがある。
The electrolyte for a lithium secondary battery according to the present invention is prepared by adding a monomer of a conductive polymer which can be electrochemically polymerized at a potential of about 4.0 V to a non-aqueous solvent. You. Examples of conductive polymer monomers that can be used in the present invention include pyrrole,
There is aniline, or derivatives thereof. These compounds are preferably used in an amount of less than 2.0% by weight. When added in an amount of 2.0% by weight or more, the discharge capacity and the irreversible capacity increase, which causes a problem that the performance of the battery is reduced. As the non-aqueous solvent, an organic solvent such as a cyclic or chain carbonate may be used, and two or more may be used in combination. Specific examples of these include ethylene carbonate (EC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).

【0010】前記リチウム二次電池の電解液には、リチ
ウムヘキサフルオロフォスフェート(lithium
hexafluorophosphate)(LiPF
6)、リチウムテトラフルオロボレート(lithiu
m tetrafluoroborate)(LiBF
4)、リチウムヘキサフルオロアルセナート(lith
ium hexafluoroarsenate)(L
iAsF6)、リチウムパークロレート(lithiu
m perchlorate)(LiClO4)、リチ
ウムトリフルオロメタンスルホナート(lithium
trifluoromethanesulfonat
e)(CF3SO3Li)の1つ、またはこれらの中で二
つ以上の混合物が、支持電解塩として添加されることが
できる。
The electrolyte of the lithium secondary battery includes lithium hexafluorophosphate (lithium).
hexafluorophosphate) (LiPF
6 ), lithium tetrafluoroborate (lithhiu)
m tetrafluoroborate) (LiBF
4 ) Lithium hexafluoroarsenate (lith
ium hexafluorosenate) (L
iAsF 6 ), lithium perchlorate (lithiu)
m perchlorate (LiClO 4 ), lithium trifluoromethanesulfonate (lithium)
trifluoromethanesulfonat
e) One of (CF 3 SO 3 Li), or a mixture of two or more thereof, can be added as a supporting electrolyte salt.

【0011】本発明のリチウム二次電池はこれまで説明
してきた本発明のリチウム二次電池用電解液と、負極極
板及び正極極板から構成される。前記負極極板は樹脂バ
インダーと、負極活物質としてのリチウムイオンを吸収
/放出可能な黒鉛系炭素物質とで製造される。前記負極
活物質は、d002層間距離(interplanar
distance)が3.35〜3.38Åであり、X
線回折による結晶子径(crystallite si
ze)Lcが少なくとも20nm以上であり、700℃
以上で発熱ピークを有するものである。本発明に用いら
れる負極活物質はメソフェーズ(mesophase)
球形粒子を使用し、これが炭化段階及び黒鉛化段階の工
程によって製造された黒鉛系炭素物質である。また、繊
維型メソフェーズピッチ(mesophase pit
ch fiber)を使用して、これを炭化段階及び黒
鉛化段階によって製造した繊維形黒鉛系炭素物質も負極
活物質として使用可能であり、人造黒鉛または天然黒鉛
が両方使用可能である。
The lithium secondary battery of the present invention comprises the electrolyte for a lithium secondary battery of the present invention described above, a negative electrode plate and a positive electrode plate. The negative electrode plate is made of a resin binder and a graphite-based carbon material capable of absorbing / releasing lithium ions as a negative electrode active material. The negative active material, d 002 interlayer distance (interplanar
distance) is 3.35 to 3.38 °, and X
Crystallite size by X-ray diffraction
ze) Lc is at least 20 nm or more and 700 ° C.
The above has an exothermic peak. The negative electrode active material used in the present invention is mesophase.
Spherical particles are used, which is a graphite-based carbon material produced by the steps of carbonization and graphitization. In addition, fiber type mesophase pitch (mesophase pit)
Also, a fibrous graphite-based carbon material prepared by using a carbon fiber and a carbonization step and a graphitization step can be used as the negative electrode active material, and both artificial graphite and natural graphite can be used.

【0012】前記正極極板にはリチウムイオンを吸収/
放出可能なリチウム複合酸化物が用いられる。これらの
具体的な例にはLiCoO2、LiNi1-x-yCoxy
2(0≦x≦1、0≦y≦1、0≦x+y≦1、MはA
l、Sr、Mg、Laなどの金属)、LiMnO2、L
iMn24などがある。
The positive electrode plate absorbs lithium ions /
A releasable lithium composite oxide is used. LiCoO 2 to these specific examples, LiNi 1-xy Co x M y O
2 (0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1, M is A
l, metals such as Sr, Mg, La), LiMnO 2 , L
iMn 2 O 4 and the like.

【0013】前記正極と負極極板との間に伝導性高分子
の単量体を含む非水性電解液を適用すると、充電中に正
極活物質の表面に伝導性高分子膜が形成される。このよ
うに形成された伝導性高分子膜は、正常な充放電でリチ
ウムイオンの移動には関与しないが、過充電や貫通時に
発生する4.3V以上の高電位で伝導性をなくすことに
よって不動態化膜の特性を有するようになる。これによ
り大きな電流の流れを遮断することができ、過充電や貫
通による熱暴走現象を防止することができる。また、伝
導性高分子膜が正極表面に形成されることによって、リ
チウムイオンの出入りがより可逆的に行われるのを助け
て電池の寿命が延びるようになる。
When a non-aqueous electrolyte containing a monomer of a conductive polymer is applied between the positive electrode and the negative electrode plate, a conductive polymer film is formed on the surface of the positive electrode active material during charging. The conductive polymer film thus formed does not participate in the movement of lithium ions during normal charge / discharge, but becomes ineffective due to loss of conductivity at a high potential of 4.3 V or more generated during overcharge or penetration. It has the properties of a passivation film. As a result, a large current flow can be cut off, and a thermal runaway phenomenon due to overcharging or penetration can be prevented. In addition, since the conductive polymer film is formed on the surface of the positive electrode, lithium ions can be more reversibly inserted and removed, and the life of the battery can be extended.

【0014】[0014]

【発明の実施の形態】次に、本発明の理解のために好ま
しい実施例を提示する。しかし、下記の実施例は本発明
をより容易に理解するために提供されるものであり、本
発明が下記の実施例に限られるわけではない。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, preferred embodiments will be presented for understanding the present invention. However, the following examples are provided for easier understanding of the present invention, and the present invention is not limited to the following examples.

【0015】エチレンカーボネート/エチルメチルカー
ボネート/ジエチルカーボネート(EC/EMC/DE
C)が3:3:1に混合された非水性有機溶媒に、ピロ
ールの添加量を変えながらリチウム二次電池用電解液を
製造した。LiNi1-x-yCoxSry2(0≦x≦1、
0≦y≦1、0≦x+y≦1)活物質で正極を構成し黒
鉛(KMFC:川崎製鉄社製品)で負極を構成して、上
記のリチウム二次電池用電解液を適用して18650リ
チウム二次電池を製造した。その製造されたリチウム二
次電池を利用して電池のサイクル寿命、容量(初期放電
容量と非可逆容量)、及び安定性を測定、評価して下記
の表1に示す。
Ethylene carbonate / ethyl methyl carbonate / diethyl carbonate (EC / EMC / DE
An electrolytic solution for a lithium secondary battery was manufactured while changing the amount of pyrrole added to a non-aqueous organic solvent in which C) was mixed at 3: 3: 1. LiNi 1-xy Co x Sr y O 2 (0 ≦ x ≦ 1,
0 ≦ y ≦ 1, 0 ≦ x + y ≦ 1) A positive electrode is composed of an active material and a negative electrode is composed of graphite (KMFC: product of Kawasaki Steel Corporation), and the above-mentioned electrolyte for lithium secondary batteries is applied to 18650 lithium. A secondary battery was manufactured. Using the manufactured lithium secondary battery, the cycle life, capacity (initial discharge capacity and irreversible capacity), and stability of the battery were measured and evaluated, and are shown in Table 1 below.

【0016】[0016]

【表1】 [Table 1]

【0017】また、上記の表1における安全性評価の基
準は以下の通りである。 L0:良好、L1:漏液、L2:閃光、L3:火炎、L
4:煙、L5:発火、L6:破裂。
The criteria for the safety evaluation in Table 1 above are as follows. L0: good, L1: liquid leakage, L2: flash, L3: flame, L
4: smoke, L5: ignition, L6: burst.

【0018】上記の表1に示したように、伝導性高分子
の単量体であるピロールが添加された実施例1〜4の場
合、安全性だけでなくサイクル寿命も優れたものであっ
た。これに比べて比較例1は、安全性特性が非常に低下
することがわかる。上記の表1の結果において、ピロー
ルの含有量による充放電サイクル数と容量の関係である
サイクル特性を図1に示す。また、ピロールの含有量が
0.5重量%である実施例2の電解液を含むリチウム二
次電池を利用して、多様な試験条件下で安全性を評価し
てその結果を下記の表2に示す。尚、下記の表におい
て、OCVは開放電圧を示し、この電圧は電池を用いる
ことができる状態にするために、この電圧まで充電した
ことを意味する。
As shown in Table 1 above, in Examples 1 to 4 in which pyrrole, a monomer of the conductive polymer, was added, not only safety but also cycle life was excellent. . In comparison, it can be seen that Comparative Example 1 has significantly reduced safety characteristics. FIG. 1 shows the cycle characteristics as a relationship between the number of charge / discharge cycles and the capacity according to the pyrrole content in the results in Table 1 above. In addition, the safety was evaluated under various test conditions using a lithium secondary battery including the electrolyte solution of Example 2 having a pyrrole content of 0.5% by weight, and the results were shown in Table 2 below. Shown in In the table below, OCV indicates an open-circuit voltage, which means that the battery was charged to this voltage in order to make the battery usable.

【0019】[0019]

【表2】 [Table 2]

【0020】上記の表2に示したように、貫通や過充電
のような劣悪な条件下においても、本発明の実施例2の
リチウム二次電池は全てよい結果を見せた。したがっ
て、本発明によって構成されたリチウム二次電池は安全
性が非常に優れていることがわかる。
As shown in Table 2 above, all the lithium secondary batteries of Example 2 of the present invention showed good results even under poor conditions such as penetration and overcharging. Therefore, it can be seen that the lithium secondary battery constituted according to the present invention has very excellent safety.

【0021】[0021]

【発明の効果】本発明によって製造された伝導性高分子
の単量体を含有する電解液は、充電中に正極表面に伝導
性高分子膜を形成して、過充電や貫通のような過電流が
流れる場合、これを遮断して電池の安定性を向上させる
発明の効果を有する。本発明による電解液を含むリチウ
ム二次電池は、過充電や貫通時に発生する高電位で伝導
性をなくすことによって不動態化膜の特性を有するよう
になり、過充電や貫通による熱暴走現象を防止できる発
明の効果も有する。また、正極表面に形成された伝導性
高分子膜は、リチウムイオンの出入りがより可逆的に行
われるようにして電池の寿命を向上させることができ
る。
The electrolytic solution containing the monomer of the conductive polymer produced according to the present invention forms a conductive polymer film on the surface of the positive electrode during charging, and causes overcharging or penetration. When a current flows, the present invention has an effect of cutting off the current and improving the stability of the battery. The lithium secondary battery including the electrolytic solution according to the present invention has the property of a passivation film by losing conductivity at a high potential generated at the time of overcharging or penetration, and causes a thermal runaway phenomenon due to overcharging or penetration. It also has the effect of the invention that can be prevented. In addition, the conductive polymer film formed on the surface of the positive electrode allows lithium ions to enter and exit more reversibly, thereby improving the life of the battery.

【0022】本発明の単純な変形ないし変更はこの分野
の通常の知識を有する者によって容易に実施することが
でき、このような変形や変更は全て本発明の領域に含ま
れるものと見ることができる。
Simple modifications or alterations of the present invention can be easily implemented by those having ordinary skill in the art, and all such alterations and modifications are considered to be included in the scope of the present invention. it can.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウム二次電池のピロールの含有量による充
放電サイクル数と容量の関係であるサイクル特性を示す
グラフ
FIG. 1 is a graph showing cycle characteristics, which is a relationship between the number of charge / discharge cycles and capacity according to the pyrrole content of a lithium secondary battery.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 非水性有機溶媒に、リチウム電位に対し
て4.0V前後で電気化学的に重合できる伝導性高分子
の単量体を含有してなるリチウム二次電池用電解液。
An electrolyte for a lithium secondary battery comprising a non-aqueous organic solvent and a monomer of a conductive polymer which can be electrochemically polymerized at a potential of about 4.0 V with respect to a lithium potential.
【請求項2】 前記伝導性高分子の単量体が、ピロー
ル、アニリン及びこれらの誘導体からなる群より選択さ
れるものである請求項1に記載のリチウム二次電池用電
解液。
2. The electrolyte according to claim 1, wherein the conductive polymer monomer is selected from the group consisting of pyrrole, aniline, and derivatives thereof.
【請求項3】 前記伝導性高分子の単量体の含有量が、
前記有機溶媒に対して2.0重量%未満である請求項1
又は2に記載のリチウム二次電池用電解液。
3. The content of the monomer of the conductive polymer is:
2. The composition according to claim 1, wherein the content of the organic solvent is less than 2.0% by weight.
Or the electrolyte solution for a lithium secondary battery according to 2.
【請求項4】 リチウムヘキサフルオロフォスフェー
ト、リチウムテトラフルオロボレート、リチウムヘキサ
フルオロアルセナート、リチウムパークロレート、リチ
ウムトリフルオロメタンスルホナートの一つ又は二つ以
上を含有する混合物からなる群から選択された支持電解
塩を含有する請求項1から3の何れか1項に記載のリチ
ウム二次電池用電解液。
4. A support selected from the group consisting of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium hexafluoroarsenate, lithium perchlorate, and a mixture containing one or more of lithium trifluoromethanesulfonate. The electrolytic solution for a lithium secondary battery according to any one of claims 1 to 3, further comprising an electrolytic salt.
【請求項5】 前記請求項1から4の何れか1項に記載
のリチウム二次電池用電解液と、 樹脂バインダー、及び負極活物質としてのリチウムイオ
ンを吸収及び放出可能な黒鉛系炭素物質で構成された負
極極板と、 正極活物質としてのリチウムイオンを吸収及び放出可能
なリチウム複合酸化物で構成された正極極板とを備えた
リチウム二次電池。
5. The lithium secondary battery electrolyte according to claim 1, a resin binder, and a graphite-based carbon material capable of absorbing and releasing lithium ions as a negative electrode active material. A lithium secondary battery comprising: a negative electrode plate configured as described above; and a positive electrode plate formed of a lithium composite oxide capable of absorbing and releasing lithium ions as a positive electrode active material.
【請求項6】 前記負極活物質が、d002層間距離が
3.35〜3.38Åであり、X線回折による結晶子径
Lcが20nm以上であり、700℃以上で発熱ピーク
を有するものである請求項5記載のリチウム二次電池。
6. The negative electrode active material, wherein the d 002 interlayer distance is 3.35 to 3.38 °, the crystallite diameter Lc by X-ray diffraction is 20 nm or more, and it has an exothermic peak at 700 ° C. or more. The lithium secondary battery according to claim 5.
【請求項7】 前記負極活物質が、メソフェーズ球形粒
子から炭化段階及び黒鉛化段階を順に経て製造された黒
鉛系炭素物質である請求項5又は6に記載のリチウム二
次電池。
7. The lithium secondary battery according to claim 5, wherein the negative electrode active material is a graphite-based carbon material manufactured from mesophase spherical particles through a carbonization step and a graphitization step in this order.
【請求項8】 前記負極活物質は、繊維型メソフェーズ
ピッチから炭化段階及び黒鉛化段階を経て製造された繊
維形黒鉛系炭素物質である請求項5又は6に記載のリチ
ウム二次電池。
8. The lithium secondary battery according to claim 5, wherein the negative electrode active material is a fibrous graphite-based carbon material manufactured from a fibrous mesophase pitch through a carbonization step and a graphitization step.
JP2000133216A 1999-05-03 2000-05-02 Electrolyte for lithium secondary battery and lithium secondary battery provided therewith Pending JP2000331711A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1019990015926A KR100322450B1 (en) 1999-05-03 1999-05-03 A electrolyte containing a monomer of conductive polymer and a lithium secondary battery made thereof
KR1999-15926 1999-05-03

Publications (1)

Publication Number Publication Date
JP2000331711A true JP2000331711A (en) 2000-11-30

Family

ID=19583626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000133216A Pending JP2000331711A (en) 1999-05-03 2000-05-02 Electrolyte for lithium secondary battery and lithium secondary battery provided therewith

Country Status (2)

Country Link
JP (1) JP2000331711A (en)
KR (1) KR100322450B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process
WO2005076403A1 (en) * 2004-02-10 2005-08-18 Lg Chem, Ltd. Non-aqueous-electrolyte and lithium secondary battery using the same
JP2008226606A (en) * 2007-03-12 2008-09-25 Denso Corp Manufacturing method of lithium secondary battery
JP2010278014A (en) * 2004-03-12 2010-12-09 Samsung Sdi Co Ltd Lithium secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102108278B1 (en) 2014-02-10 2020-05-07 삼성에스디아이 주식회사 Additive for electrolyte and electrolyte and lithium secondary battery
KR102586098B1 (en) 2016-06-02 2023-10-05 삼성에스디아이 주식회사 Electrolyte for rechargeable lithium battery and rechargeable lithium battery including the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100424256B1 (en) * 2001-10-20 2004-03-22 삼성에스디아이 주식회사 Process for preparing an polymer electolyte by electrochemical polymerization and lithium battery employing such process
WO2005076403A1 (en) * 2004-02-10 2005-08-18 Lg Chem, Ltd. Non-aqueous-electrolyte and lithium secondary battery using the same
US8142936B2 (en) 2004-02-10 2012-03-27 Lg Chem, Ltd. Non-aqueous electrolyte and lithium secondary battery using the same
JP2010278014A (en) * 2004-03-12 2010-12-09 Samsung Sdi Co Ltd Lithium secondary battery
JP2008226606A (en) * 2007-03-12 2008-09-25 Denso Corp Manufacturing method of lithium secondary battery

Also Published As

Publication number Publication date
KR100322450B1 (en) 2002-03-18
KR20000072955A (en) 2000-12-05

Similar Documents

Publication Publication Date Title
US11799081B2 (en) Positive electrode material for lithium secondary battery, positive electrode including same, and lithium secondary battery
JP4543085B2 (en) Additive for lithium secondary battery
JP5070753B2 (en) battery
CA2522107C (en) Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same
EP2160788B1 (en) Non-aqueous electrolyte and lithium secondary battery comprising the same
EP3719883B1 (en) Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery, and lithium secondary battery including the same
JP2005347240A (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery containing it
WO2008150134A1 (en) Non-aqueous electrolyte solution for lithium ion secondary battery and lithium ion secondary battery having the same
JP4138208B2 (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using the same
JP2021501450A (en) Lithium secondary battery with improved high temperature storage characteristics
JP5082198B2 (en) Lithium ion secondary battery
KR100838986B1 (en) Non-aqueous electrolyte and secondary battery comprising the same
JP2009200043A (en) Battery
JP7176821B2 (en) Non-aqueous electrolyte additive for lithium secondary battery, non-aqueous electrolyte for lithium secondary battery containing the same, and lithium secondary battery
JP2022551058A (en) Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery containing the same
JP2005071679A (en) Battery
JPH09293536A (en) Nonaqueous electrolyte secondary battery
JPH0927314A (en) Nonaqueous electrolyte secondary battery
JP2008103311A (en) Battery
JP4129347B2 (en) ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY AND LITHIUM SECONDARY BATTERY HAVING THE SAME
KR101310730B1 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
JP2000331711A (en) Electrolyte for lithium secondary battery and lithium secondary battery provided therewith
CA2390160A1 (en) Method for manufacturing a rechargeable 3v li-ion battery
KR100309774B1 (en) A electrolyte for a lithium secondary battery with enhanced life characteristics
US7150944B2 (en) Non-aqueous electrolyte compositions and lithium secondary batteries made thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040802

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070223

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080408

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909