JP2008224605A - Measuring method and device of deformation behavior - Google Patents

Measuring method and device of deformation behavior Download PDF

Info

Publication number
JP2008224605A
JP2008224605A JP2007067038A JP2007067038A JP2008224605A JP 2008224605 A JP2008224605 A JP 2008224605A JP 2007067038 A JP2007067038 A JP 2007067038A JP 2007067038 A JP2007067038 A JP 2007067038A JP 2008224605 A JP2008224605 A JP 2008224605A
Authority
JP
Japan
Prior art keywords
particles
test
test piece
measuring
deformation behavior
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007067038A
Other languages
Japanese (ja)
Other versions
JP4834584B2 (en
Inventor
Yukito Miyaguchi
幸人 宮口
Masaaki Tsutsubuchi
雅明 筒渕
Yoshihiro Uchiumi
好博 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2007067038A priority Critical patent/JP4834584B2/en
Publication of JP2008224605A publication Critical patent/JP2008224605A/en
Application granted granted Critical
Publication of JP4834584B2 publication Critical patent/JP4834584B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a highly-accurate measuring device for a deformation behavior, capable of acquiring data of a plurality of dislocations or the like by one-time test. <P>SOLUTION: This measuring device of the deformation behavior has characteristics wherein a test is performed by allowing particles P to adhere to the surface of a test piece S, and deformation between adhering specific particles is measured. Hereby, data of the plurality of dislocations or the like are acquired by one-time test in comparison with a method using a strain gage or a method by image analysis using marking by a pen, and the deformation behavior can be measured accurately. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えば、機械的試験の際の変形挙動を測定する方法及び装置に関する。   The present invention relates to a method and apparatus for measuring deformation behavior during, for example, a mechanical test.

有限要素法を用いたコンピュータシミュレーション技術は、各種の材料を用いた構造物の設計・開発において欠かすことができない技術になっている。このような有限要素法を用いたコンピュータシミュレーションにおいては、計算を行うために様々な材料物性を入力する必要がある。そのような材料物性の一つとしてポアソン比がある。   Computer simulation technology using the finite element method has become an indispensable technology in the design and development of structures using various materials. In computer simulation using such a finite element method, it is necessary to input various material properties in order to perform calculations. One such material property is the Poisson's ratio.

ポアソン比は、試験片の引張方向に発生する縦歪み及び引張方向と垂直方向に発生する横歪みとの比から求める。歪みを測定する方法として、試験片に歪みゲージを貼付する方法や、変形の際の試験片の各部の変位を測定する方法などがある。しかしながら、歪みゲージを用いる方法では、歪みを測定する方向に真っ直ぐに歪みゲージを貼ることが難しく、温度や材料によっては歪みゲージが貼り付き難いなどの問題がある。   The Poisson's ratio is determined from the ratio of the longitudinal strain generated in the tensile direction of the test piece and the lateral strain generated in the tensile direction and the vertical direction. As a method for measuring strain, there are a method of attaching a strain gauge to a test piece, a method of measuring displacement of each part of the test piece during deformation, and the like. However, in the method using a strain gauge, it is difficult to stick the strain gauge straight in the direction of measuring strain, and there is a problem that the strain gauge is difficult to stick depending on the temperature and material.

一方、変位を測定して歪みを測定する方法としては、特許文献1又は特許文献2のように、画像解析を用いる方法やレーザー変位計を用いる方法などがある。特許文献1の方法では試験片にペン等でマーカーを付して、引張試験の際にこれらのマーカーを撮影し、マーカー間の距離とマーカー部の断面積を測定するようにしている。また、特許文献2の方法では、レーザー変位計と特殊治具を用いて標線間の距離と試験片の幅を測定している。   On the other hand, as a method for measuring the displacement by measuring the displacement, there are a method using image analysis, a method using a laser displacement meter, and the like, as in Patent Document 1 or Patent Document 2. In the method of Patent Document 1, markers are attached to a test piece with a pen or the like, and these markers are photographed during a tensile test, and the distance between the markers and the cross-sectional area of the marker portion are measured. In the method of Patent Document 2, the distance between the marked lines and the width of the test piece are measured using a laser displacement meter and a special jig.

特許文献1の手法は、マクロなレベルで歪みを測定する場合には有効であるが、微小変形の解析を行うなどの場合において、よりミクロなレベルで歪みを測定する場合には不向きであることが分かった。その1つの理由は、従来の画像解析を用いる手法では、ペン等を用いて所定の塗料で描かれたマーカーや標線が比較的大きな幅を持っており、その中心を解析する際、中心が分かり難くなって、画像解析の精度が低下するためである。また、このようなマーキング方法では、変形が大きくなるとマーキングが伸びて薄くなり、中心が特定しにくくなる結果、画像解析の精度が低下するという理由もある。
また、特許文献2の手法は、レーザー変位計と特殊な治具がなければ測定が行えず、汎用性が無い。
The method of Patent Document 1 is effective when measuring strain at a macro level, but is not suitable for measuring strain at a micro level when analyzing a micro deformation. I understood. One reason is that in the conventional method using image analysis, a marker or a marked line drawn with a predetermined paint using a pen or the like has a relatively large width. This is because it becomes difficult to understand and the accuracy of image analysis is reduced. In addition, in such a marking method, when the deformation is increased, the marking is elongated and thinned, and the center is difficult to specify. As a result, the accuracy of the image analysis is lowered.
Further, the method of Patent Document 2 cannot be measured without a laser displacement meter and a special jig, and is not versatile.

特開2004-69460号公報Japanese Patent Laid-Open No. 2004-69460 特開平5-322556号公報JP-A-5-322556

本発明は、前記事情に鑑みて為されたもので、比較的簡易な手段を用いて、試験片の変形挙動を精度良く測定することができる測定方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and an object thereof is to provide a measurement method capable of accurately measuring the deformation behavior of a test piece using a relatively simple means.

請求項1に記載の変形挙動の測定方法は、試験片の変形挙動を測定する方法において、試験片の表面に粒子を付着させて試験を行い、付着させた特定の粒子間の変位を測定することを特徴とする。     The deformation behavior measuring method according to claim 1 is a method for measuring the deformation behavior of a test piece, in which a test is performed by attaching particles to the surface of the test piece, and a displacement between the attached specific particles is measured. It is characterized by that.

請求項1に記載の変形挙動の測定方法においては、変位を測定する基準となるマークが粒子によって形成されている。粒子は、金属、セラミックス、樹脂等の種々の素材から作成された、適当な粒径のものが採用される。このような粒子は、工業的な用途が有り、極微細径を含む多くの種類のものが市販され、その中から適宜のものが採用可能である。一般的な素材としては、光学的な検知手段を用いる場合、光沢が有って撮像が容易な金属が適当である。微細な粒子の製造技術も確立されており、ペン等によるマーキングよりはるかに微小な寸法のものを採用することができる。   In the deformation behavior measuring method according to the first aspect, the mark serving as a reference for measuring the displacement is formed of particles. As the particles, those having an appropriate particle diameter prepared from various materials such as metals, ceramics, and resins are adopted. Such particles have industrial uses, and many types of particles including ultrafine diameters are commercially available, and appropriate ones can be adopted from them. As a general material, when an optical detection means is used, a metal that is glossy and easy to image is suitable. Technology for producing fine particles has also been established, and it is possible to employ one having a much smaller size than marking with a pen or the like.

試験片に付着した粒子は、試験片とは独立の剛体であるので、試験片が変形しても、それと連動して変形することはない。従って、マーキングが伸びて拡大したり、不規則に変形したりして、中心の特定が困難になるという問題が発生しない。もちろん、塗料のように薄くなったり、かすれたりして、マーキングとしての機能を損なうことも防止される。   Since the particles adhering to the test piece are rigid bodies independent of the test piece, even if the test piece is deformed, it is not deformed in conjunction with it. Therefore, there is no problem that it becomes difficult to specify the center because the marking extends and expands or deforms irregularly. Of course, it is also possible to prevent the marking function from being impaired due to thinning or fainting like a paint.

粒子を試験片に付着させるには、試験片に適当な接着剤を塗布しておき、粒子を上から降りかければよい。このような作業は非常に簡単であり、歪みゲージを貼付する場合などに比べて、作業の手間が大幅に軽減される。   In order to adhere the particles to the test piece, an appropriate adhesive may be applied to the test piece and the particles may be dropped from above. Such an operation is very simple, and the labor of the operation is greatly reduced as compared with the case where a strain gauge is attached.

請求項2に記載の変形挙動の測定方法は、請求項1に記載の発明において、前記粒子として径が500μm以下となる粒子を用いることを特徴とする。
これにより、樹脂試験片などにマーキング可能な油性マジックなどのペン先が細い一般的なペンに比べて、粒子径が小さいので、マーキングの中心部を解析する際、解析データのバラツキが小さくなる。そのため、ポアソン比や弾性率を測定するような微小変形の解析を行うなどの場合、画像解析時の誤差が減り、より精度の高い解析ができる。
また、細かくマーキングできるため、一回の試験で様々な方向の変位を測定することや、同方向にある複数の粒子間の変位を測定することで複数個の歪みなどのデータを得ることなどができる。
なお、粒子はより好ましくは粒子径が150μm以下であることが好ましい。
The deformation behavior measuring method according to claim 2 is characterized in that, in the invention according to claim 1, particles having a diameter of 500 μm or less are used as the particles.
Accordingly, since the particle diameter is smaller than that of a general pen having a thin pen tip such as an oil-based magic that can be marked on a resin test piece or the like, variation in analysis data is reduced when analyzing the central portion of the marking. For this reason, when performing analysis of minute deformation such as measurement of Poisson's ratio and elastic modulus, errors during image analysis are reduced, and more accurate analysis can be performed.
In addition, because it can be finely marked, it is possible to measure displacement in various directions in a single test, or obtain data such as multiple strains by measuring the displacement between multiple particles in the same direction. it can.
The particles preferably have a particle diameter of 150 μm or less.

請求項3に記載の変形挙動の測定方法は、請求項1又は請求項2に記載の発明において、高温又は低温において試験片に粒子を付着させることができる接着剤を用いることを特徴とする。
これにより、歪みゲージでは樹脂などの熱膨張率に完全に対応した歪みゲージが無いため、歪みゲージ貼り付け後に温度変化した場合、歪みゲージと試験片で発生している歪みが異なる等の問題があるが、本願の方法では、粒子を貼り付けた後、温度変化した際も、試験片に追随しているため、問題がない。また、歪みゲージは高温試験時に剥れやすいという問題があるが、本発明の方法では剥れ難い。仮に幾つかの粒子が剥れても、粒子が多数あるため、問題ない。なお、試験温度に制限は無いが、好ましくは−40〜80℃である。
The method for measuring deformation behavior according to claim 3 is characterized in that, in the invention according to claim 1 or 2, an adhesive capable of adhering particles to a test piece at high or low temperature is used.
As a result, strain gauges do not have a strain gauge that fully corresponds to the thermal expansion coefficient of resin, etc., so if the temperature changes after attaching the strain gauge, the strain generated on the strain gauge differs from that on the test piece. However, in the method of the present application, there is no problem because the test piece follows the test piece even when the temperature changes after attaching the particles. Moreover, although there exists a problem that a strain gauge tends to peel at the time of a high temperature test, it is hard to peel by the method of this invention. Even if some particles are peeled off, there is no problem because there are many particles. In addition, although there is no restriction | limiting in test temperature, Preferably it is -40-80 degreeC.

請求項4に記載の変形挙動の測定方法は、請求項1ないし請求項3のいずれかに記載の発明において、前記試験が引張試験であり、前記粒子の変位の測定結果に基づいて求めた試験片の縦歪み及び横歪みとの比からポアソン比を測定することを特徴とする。
これにより、歪みゲージを用いた場合に比べ、容易にポアソン比の測定が行える。また、ペンを用いてマーキングする場合に比べ、精度良くポアソン比の測定が行える。
The deformation behavior measuring method according to claim 4 is the test according to any one of claims 1 to 3, wherein the test is a tensile test and is obtained based on a measurement result of the particle displacement. The Poisson's ratio is measured from the ratio of the longitudinal strain and lateral strain of the piece.
As a result, the Poisson's ratio can be measured more easily than when a strain gauge is used. In addition, the Poisson's ratio can be measured with higher accuracy than when marking with a pen.

請求項5に記載のシミュレーション方法は、請求項1ないし請求項4のいずれかに記載の測定方法によって測定した前記粒子間の変位の測定結果を用いることを特徴とする。本発明のシミュレーション方法においては、歪みゲージを用いた場合に比べ、容易に短時間で粒子間の変位の測定結果(データ)を得ることができ、シミュレーションを行うまでの前処理段階に要する時間を短縮できる。また、ペンを用いてマーキングする測定方法に比べ、測定精度が高いので、変形挙動についてより高い精度でシミュレーションを行うことができる。   A simulation method according to a fifth aspect is characterized in that a measurement result of the displacement between the particles measured by the measurement method according to any one of the first to fourth aspects is used. In the simulation method of the present invention, the measurement result (data) of the displacement between particles can be easily obtained in a short time compared to the case where a strain gauge is used, and the time required for the preprocessing stage until the simulation is performed. Can be shortened. Moreover, since the measurement accuracy is higher than the measurement method of marking using a pen, the deformation behavior can be simulated with higher accuracy.

請求項6に記載の変形挙動の測定装置は、試験片について機械的試験を行う試験機と、試験機に取り付けられた試験片の表面に付着した粒子を撮像する撮像手段と、撮像手段によって取得された粒子の画像を解析して、機械的試験の際の試験片の変形挙動を解析し、特定の粒子間の変位を測定することを特徴とする。   The deformation behavior measuring apparatus according to claim 6 is obtained by a testing machine that performs a mechanical test on a test piece, an imaging unit that images particles adhering to the surface of the test piece attached to the testing machine, and an imaging unit. It is characterized in that an image of the formed particles is analyzed, a deformation behavior of the test piece in the mechanical test is analyzed, and a displacement between specific particles is measured.

請求項1ないし請求項4に記載の発明によれば、比較的簡易な手段を用いつつ、変形挙動を精度良く測定することができる。   According to the first to fourth aspects of the invention, the deformation behavior can be accurately measured using a relatively simple means.

以下、発明の好適な実施の形態として、変形挙動の測定方法を、図面を参照しつつ説明する。
図1は、この実施の形態の変形挙動の測定装置の構成を示すもので、引張試験機の把持機構10,12に把持された試験片Sと、この試験片Sに対向する位置に配置された撮像装置14と、撮像装置14の出力画像を取得して画像解析を行うための解析装置16を備えている。撮像装置14としてはCCDを用いたデジタルカメラ等が、解析装置16としては画像解析ソフトを搭載したコンピュータ等が好適に使用可能である。
Hereinafter, as a preferred embodiment of the present invention, a method for measuring deformation behavior will be described with reference to the drawings.
FIG. 1 shows the configuration of the deformation behavior measuring apparatus according to this embodiment. The test piece S is held by the holding mechanisms 10 and 12 of the tensile tester, and is arranged at a position facing the test piece S. And an analysis device 16 for acquiring an output image of the image pickup device 14 and performing image analysis. A digital camera or the like using a CCD can be suitably used as the imaging device 14, and a computer or the like equipped with image analysis software can be suitably used as the analysis device 16.

このように構成された変形挙動の測定装置の動作について説明する。撮像装置14は、試験の際に所定のタイミングで試験片Sの表面を撮像し、データを解析装置16に送る。解析装置16は、撮像装置14によって時系列的に得られた画像を画像解析ソフトを用いて解析し、特定の粒子の移動の軌跡を追い、時々刻々の変位を解析する。画像解析は試験中に行っても、試験後に行っても良い。2つの粒子についてこの解析を行えば、引張試験の前後の2点の移動が分かり、それはこれらの粒子が付着していた試験片Sの2点の変形を示す。従って、これらの2点を引張試験方向にとれば、試験片Sの材料の縦歪みを算出することができ、引張方向と直交する方向にとれば、横歪みを算出することができる。   The operation of the deformation behavior measuring apparatus configured as described above will be described. The imaging device 14 images the surface of the test piece S at a predetermined timing during the test, and sends the data to the analysis device 16. The analysis device 16 analyzes the image obtained in time series by the imaging device 14 using image analysis software, follows the movement trajectory of specific particles, and analyzes the momentary displacement. Image analysis may be performed during the test or after the test. If this analysis is performed on two particles, the movement of the two points before and after the tensile test can be seen, which indicates a two-point deformation of the specimen S to which these particles were attached. Therefore, if these two points are taken in the tensile test direction, the longitudinal strain of the material of the test piece S can be calculated, and if taken in the direction orthogonal to the tensile direction, the lateral strain can be calculated.

画像解析ソフトは試験片Sの表面の粒子の概ね円形である画像の中心の位置を判断し、その座標を特定する。この発明の方法では、試験片Sが変形しても粒子は変形したり薄れたりしないので、撮像データは常に明確であり、座標の特定を画像解析ソフトを用いて行う際に高い精度が維持される。このようにして得られた粒子座標を時系列的に追跡すれば、粒子の変位の軌跡が得られる。   The image analysis software determines the position of the center of the image that is approximately circular of the particles on the surface of the test piece S, and specifies the coordinates. In the method of the present invention, even if the test piece S is deformed, the particles are not deformed or thinned. Therefore, the imaging data is always clear, and high accuracy is maintained when specifying coordinates using image analysis software. The If the particle coordinates thus obtained are tracked in time series, the locus of particle displacement can be obtained.

追跡を行う方法の一例は以下の通りである。初期画像において、着目すべき粒子(対象粒子)を選択する。選択すべき粒子は、例えば、測定の目的が材料のポアソン比であれば、縦横それぞれ適当な距離だけ離間した2点ずつを選択する。対象粒子は、画像解析が行い易いように、複数の粒子の内、他の粒子と接近しすぎていない粒子を選択する。   An example of the method of tracking is as follows. In the initial image, a particle to be noticed (target particle) is selected. For example, if the purpose of the measurement is the Poisson's ratio of the material, two particles that are separated from each other by an appropriate distance are selected. The target particles are selected from among a plurality of particles that are not too close to other particles so that image analysis can be easily performed.

次に、その後のタイミングにおいて得た画像について同様に解析し、対象粒子の座標を測定する。このような工程を順次繰り返すことにより、ある粒子がどのような軌跡で移動したかを測定することができる。   Next, the image obtained at the subsequent timing is similarly analyzed, and the coordinates of the target particle are measured. By repeating such steps in sequence, it is possible to measure the trajectory of a certain particle.

この方法では、基本的に粒子の1コマの移動距離が充分に小さいことを前提としているので、撮像タイミングの間隔も充分小さく設定する必要がある。また、画像解析が行い易いように、粒子を試験片S面に付着させる際に工夫をしてもよい。例えば、必要な数だけの粒子を試験片S表面に配置するようにしてもよい。このようにして、粒子の移動の追跡作業をコンピュータソフトで実行することにより、煩雑な作業を人間が行う手間を省くことができる。もちろん、追跡作業を人間が画像を視認しつつ行うことも可能である。   In this method, it is basically assumed that the moving distance of one frame of particles is sufficiently small, so it is necessary to set the imaging timing interval to be sufficiently small. Moreover, you may devise when attaching particle | grains to the test piece S surface so that an image analysis may be performed easily. For example, a necessary number of particles may be arranged on the surface of the test piece S. In this way, by performing the tracking operation of the movement of the particles with the computer software, it is possible to save time and effort for a human to perform a complicated operation. Of course, it is also possible for the human to perform the tracking work while visually recognizing the image.

次に、上記の実施の形態の装置を用いて、樹脂製の引張試験片Sの変形挙動の測定を行う場合について説明する。
まず、図2(a)に示すように、試験片Sの所定領域に粒子Pを付着させる。これは、まず、表面に接着剤を塗布又は噴霧し、その上から金属等の粒子Pを降りかけることにより実施できる。この際、画像解析が行い易いように、粒子を必要以上の量を付着させないようにすることが望ましい。
Next, the case where the deformation | transformation behavior of the resin-made tensile test piece S is measured using the apparatus of said embodiment is demonstrated.
First, as shown in FIG. 2A, particles P are adhered to a predetermined region of the test piece S. This can be carried out by first applying or spraying an adhesive on the surface and then dropping particles P such as metal from the top. At this time, it is desirable not to attach an excessive amount of particles so as to facilitate image analysis.

次に、試験片Sを引張試験機の把持機構10,12に取り付け、試験温度で状態調整を行い、引張試験を開始する。引張試験の間、撮像装置14により、所定のタイミングで粒子を付けた表面の撮影を行う。この結果、例えば、図2(b)に示すように、粒子Pは試験片Sの変形に伴って移動する。得られた画像データを解析装置16に送り、解析を行って、図2(c)に示すように、着目した粒子(黒丸で表示)の移動を追跡する。そしてこれらのデータを試験片Sの変形のデータに換算することで、試験片Sの変形挙動を測定することができる。
例えば、ポアソン比の測定を行う場合は、引張方向の変位と引張方向と垂直方向の変位を測定する。そしてこれらのデータより、引張方向の縦歪み及び引張方向と垂直方向の横歪みを算出し、その比からポアソン比を求める。
Next, the test piece S is attached to the gripping mechanisms 10 and 12 of the tensile tester, the state is adjusted at the test temperature, and the tensile test is started. During the tensile test, the imaging device 14 performs imaging of the surface to which particles are attached at a predetermined timing. As a result, for example, as shown in FIG. 2 (b), the particles P move with the deformation of the test piece S. The obtained image data is sent to the analysis device 16 and analyzed to track the movement of the focused particle (indicated by a black circle) as shown in FIG. Then, by converting these data into deformation data of the test piece S, the deformation behavior of the test piece S can be measured.
For example, when measuring the Poisson's ratio, the displacement in the tensile direction and the displacement in the direction perpendicular to the tensile direction are measured. From these data, the longitudinal strain in the tensile direction and the lateral strain in the direction perpendicular to the tensile direction are calculated, and the Poisson's ratio is obtained from the ratio.

樹脂製の引張試験片Sの素材として、住友化学株式会社製ノーブレンAZ864E4を用いた場合の変形挙動及びポアソン比の測定を実施した。
(1)試験設備
引張試験機:島津製作所製 ハイドロショットHITS-T10
粒子:福田金属箔工業株式会社製 Cu-At 100-200(粒子径150μm以下が85%以上)
接着剤:住友スリーエム株式会社製 3Mスプレーのり55
カメラ:株式会社NIKON製 デジタル一眼レフカメラ D100
画像解析ソフト:株式会社ライブラリー製 MoveTr2D
(2)試験条件
試験片S:ASTMD−638−I
引張速度:0.1mm/s
試験温度:23℃
The deformation behavior and Poisson's ratio were measured when Noblen AZ864E4 manufactured by Sumitomo Chemical Co., Ltd. was used as the material for the tensile test piece S made of resin.
(1) Test equipment tensile testing machine: Shimadzu Hydroshot HITS-T10
Particles: Cu-At 100-200 manufactured by Fukuda Metal Foil Industry Co., Ltd. (particle size 150 μm or less is 85% or more)
Adhesive: 3M spray paste 55 manufactured by Sumitomo 3M Limited
Camera: NIKON Digital SLR Camera D100
Image analysis software: MoveTr2D manufactured by Library Inc.
(2) Test condition test piece S: ASTM D-638-I
Tensile speed: 0.1mm / s
Test temperature: 23 ° C

図3に、試験片Sの引張方向に発生する縦歪み及び引張方向と垂直方向に発生する横歪みの関係を示す。また、縦歪みと横歪みの比であるポアソン比は0.42であった。 FIG. 3 shows the relationship between the longitudinal strain generated in the tensile direction of the test piece S and the lateral strain generated in the direction perpendicular to the tensile direction. The Poisson's ratio, which is the ratio of longitudinal strain to lateral strain, was 0.42.

この発明の実施の形態の変形挙動の測定装置を示す図である。It is a figure which shows the measuring apparatus of the deformation behavior of embodiment of this invention. この発明の実施の形態の変形挙動の測定方法を説明する図であり、(a)は試験片を、(b)は試験の前後の粒子の状態を、(c)は変位を示す図である。It is a figure explaining the measuring method of the deformation | transformation behavior of embodiment of this invention, (a) is a test piece, (b) is a state of the particle | grains before and behind a test, (c) is a figure which shows a displacement. . 樹脂製の引張試験片の縦歪みと横歪みの関係を示す図である。It is a figure which shows the relationship between the longitudinal strain and lateral strain of a resin-made tensile test piece.

符号の説明Explanation of symbols

S 試験片
P 粒子
S Specimen P Particle

Claims (6)

試験片の変形挙動を測定する方法において、試験片の表面に粒子を付着させて試験を行い、付着させた特定の粒子間の変位を測定することを特徴とする変形挙動の測定方法。   A method for measuring the deformation behavior of a test piece, comprising performing a test by attaching particles to the surface of the test piece, and measuring a displacement between the attached specific particles. 前記粒子として径が500μm以下である粒子を用いることを特徴とする請求項1に記載の変形挙動の測定方法。   The method for measuring deformation behavior according to claim 1, wherein particles having a diameter of 500 μm or less are used as the particles. 高温又は低温において試験片に粒子を付着させることができる接着剤を用いることを特徴とする請求項1又は請求項2に記載の変形挙動の測定方法。   The method for measuring deformation behavior according to claim 1 or 2, wherein an adhesive capable of adhering particles to the test piece at high or low temperature is used. 前記試験が引張試験であり、前記粒子の変位の測定結果に基づいて求めた試験片の縦歪み及び横歪みとの比からポアソン比を測定することを特徴とする請求項1ないし請求項3のいずれかに記載の変形挙動の測定方法。   4. The Poisson's ratio according to claim 1, wherein the test is a tensile test, and a Poisson's ratio is measured from a ratio of a longitudinal strain and a lateral strain of a test piece obtained based on a measurement result of the displacement of the particles. The deformation | transformation behavior measuring method in any one. 請求項1ないし請求項4のいずれかに記載の変形挙動の測定方法によって測定した前記粒子間の変位の測定結果を用いることを特徴とするシミュレーション方法。   5. A simulation method using a measurement result of displacement between the particles measured by the deformation behavior measuring method according to claim 1. 試験片について機械的試験を行う試験機と、
試験機に取り付けられた試験片の表面に付着した粒子を撮像する撮像手段と、
撮像手段によって取得された粒子の画像を解析して、機械的試験の際の試験片の変形挙動を解析し、特定の粒子間の変位を測定することを特徴とする変形挙動の測定装置。
A testing machine for performing a mechanical test on the test piece;
Imaging means for imaging particles adhering to the surface of the test piece attached to the test machine;
An apparatus for measuring deformation behavior, comprising: analyzing an image of a particle acquired by an imaging unit; analyzing a deformation behavior of a test piece during a mechanical test; and measuring a displacement between specific particles.
JP2007067038A 2007-03-15 2007-03-15 Deformation behavior measurement method, simulation method, and measurement apparatus Expired - Fee Related JP4834584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007067038A JP4834584B2 (en) 2007-03-15 2007-03-15 Deformation behavior measurement method, simulation method, and measurement apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007067038A JP4834584B2 (en) 2007-03-15 2007-03-15 Deformation behavior measurement method, simulation method, and measurement apparatus

Publications (2)

Publication Number Publication Date
JP2008224605A true JP2008224605A (en) 2008-09-25
JP4834584B2 JP4834584B2 (en) 2011-12-14

Family

ID=39843393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007067038A Expired - Fee Related JP4834584B2 (en) 2007-03-15 2007-03-15 Deformation behavior measurement method, simulation method, and measurement apparatus

Country Status (1)

Country Link
JP (1) JP4834584B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117965A (en) * 2009-12-04 2011-06-16 Qinghua Univ Strain measurement device and method of strain measurement using the same
JP2012002617A (en) * 2010-06-16 2012-01-05 Nishimatsu Constr Co Ltd Measurement method of reinforcing steel corrosion inside concrete
KR101163916B1 (en) 2010-10-20 2012-07-09 한국생산기술연구원 A mesuring method for stress-strain curve and a apparatus for the same
JP2015518560A (en) * 2012-03-23 2015-07-02 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド System and method for workpiece measurement during forging by image processing
WO2018123407A1 (en) * 2016-12-27 2018-07-05 日本電気硝子株式会社 Glass substrate inspection method and manufacturing method
KR20230081134A (en) * 2021-11-30 2023-06-07 주식회사 포스코 Apparatus and Method for obtaining plastic strain ratio in the perpendicular direction to loading in the sheet tensile testing accompanied by the digital image correlation technique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205504A (en) * 1990-01-05 1991-09-09 Mitsubishi Heavy Ind Ltd Shape measuring method for body
JPH05322556A (en) * 1991-05-23 1993-12-07 Idemitsu Petrochem Co Ltd Measuring device of poisson's ratio and measuring method
JP2000162104A (en) * 1998-11-30 2000-06-16 Shimadzu Corp Material testing machine
JP2003232688A (en) * 2002-02-08 2003-08-22 Japan Science & Technology Corp Two-dimensional stress field measuring system and two- dimensional stress field measuring program
JP2006078345A (en) * 2004-09-09 2006-03-23 Toyota Motor Corp Mark setting method
JP2008139273A (en) * 2006-12-20 2008-06-19 Tokyo Univ Of Agriculture Method and system for measuring strain

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03205504A (en) * 1990-01-05 1991-09-09 Mitsubishi Heavy Ind Ltd Shape measuring method for body
JPH05322556A (en) * 1991-05-23 1993-12-07 Idemitsu Petrochem Co Ltd Measuring device of poisson's ratio and measuring method
JP2000162104A (en) * 1998-11-30 2000-06-16 Shimadzu Corp Material testing machine
JP2003232688A (en) * 2002-02-08 2003-08-22 Japan Science & Technology Corp Two-dimensional stress field measuring system and two- dimensional stress field measuring program
JP2006078345A (en) * 2004-09-09 2006-03-23 Toyota Motor Corp Mark setting method
JP2008139273A (en) * 2006-12-20 2008-06-19 Tokyo Univ Of Agriculture Method and system for measuring strain

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011117965A (en) * 2009-12-04 2011-06-16 Qinghua Univ Strain measurement device and method of strain measurement using the same
JP2012002617A (en) * 2010-06-16 2012-01-05 Nishimatsu Constr Co Ltd Measurement method of reinforcing steel corrosion inside concrete
KR101163916B1 (en) 2010-10-20 2012-07-09 한국생산기술연구원 A mesuring method for stress-strain curve and a apparatus for the same
JP2015518560A (en) * 2012-03-23 2015-07-02 スペシャルティ ミネラルズ (ミシガン) インコーポレーテツド System and method for workpiece measurement during forging by image processing
WO2018123407A1 (en) * 2016-12-27 2018-07-05 日本電気硝子株式会社 Glass substrate inspection method and manufacturing method
KR20230081134A (en) * 2021-11-30 2023-06-07 주식회사 포스코 Apparatus and Method for obtaining plastic strain ratio in the perpendicular direction to loading in the sheet tensile testing accompanied by the digital image correlation technique
KR102568661B1 (en) 2021-11-30 2023-08-18 주식회사 포스코 Apparatus and Method for obtaining plastic strain ratio in the perpendicular direction to loading in the sheet tensile testing accompanied by the digital image correlation technique

Also Published As

Publication number Publication date
JP4834584B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4834584B2 (en) Deformation behavior measurement method, simulation method, and measurement apparatus
KR102218594B1 (en) Device and Method for measuring material properties and stress state by digital image correlation(DIC) near micro-indentation mark
JP2007273631A (en) Method of detecting end position of probe and storage medium recorded therewith, and probe device
JP2017062226A5 (en)
JP2008243860A (en) Method for detecting tip position of probe, alignment method, tip position detector and probe unit
JP3800394B2 (en) Method for optimizing probe card analysis and scrub mark analysis data
JP2008175725A (en) Poisson&#39;s ratio measuring method of thin-film-like material, and measuring device for it
JP2006337360A (en) Method for measuring deformation of test piece and system for attaching mark to its test piece
Ahmed et al. Automated micro-transfer printing with cantilevered stamps
CN109883344A (en) A kind of detection method of marine anticorrosion coating surface strain and displacement
Kim et al. Design of MEMS vision tracking system based on a micro fiducial marker
JP6464815B2 (en) Distortion measuring method and apparatus, program and recording medium
CN104729919B (en) A kind of method and system for the micro- beam tensile break strength for extracting bulk silicon technological manufacture
Adorna et al. Evaluation of Hopkinson bar experiments using multiple digital image correlation software tools
JP5571224B2 (en) Needle tip position detection device and probe device
CN114216403B (en) Discontinuous deformation measurement method based on infrared and visible light double-light camera
CN115031650A (en) Relative deformation measuring method and system based on mark point combination
US20210347092A1 (en) Methods and systems for making tilted and curved structures with high aspect ratios
Ahmed et al. Microfabricated instrumented composite stamps for transfer printing
CN205719835U (en) A kind of mechanical property of materials determinator and pressure head component thereof
Djuzhev et al. Non-destructive method of surface mapping to improve accuracy of mechanical stresses measurements
Aydın et al. Application of digital image correlation technique to tensile test for printed PLA specimens
Adam et al. Design of a 3d vision-based micro-force sensing probe
Raitt et al. Soft, stiffness-controllable sensing tip for on-demand force range adjustment with angled force direction identification
Aksoy et al. High-resolution spatiotemporal strain mapping reveals non-uniform deformation in micropatterned elastomers

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20090311

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090316

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091001

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110920

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees