JP2008139273A - Method and system for measuring strain - Google Patents

Method and system for measuring strain Download PDF

Info

Publication number
JP2008139273A
JP2008139273A JP2006357309A JP2006357309A JP2008139273A JP 2008139273 A JP2008139273 A JP 2008139273A JP 2006357309 A JP2006357309 A JP 2006357309A JP 2006357309 A JP2006357309 A JP 2006357309A JP 2008139273 A JP2008139273 A JP 2008139273A
Authority
JP
Japan
Prior art keywords
strain
beads
reflective
measured
reflected light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006357309A
Other languages
Japanese (ja)
Inventor
Jun Kobayashi
純 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture
Original Assignee
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture filed Critical Tokyo University of Agriculture
Priority to JP2006357309A priority Critical patent/JP2008139273A/en
Publication of JP2008139273A publication Critical patent/JP2008139273A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for readily measuring a strain (deformation) of a wood, metallic or resin material or the like by effectively using retroreflective beads. <P>SOLUTION: In the case where a strain of an article is measured, retroreflective beads are uniformly adhered to the measuring face of the article to be measured. The surface having the adhered retroreflective beads is irradiated with a light, the reflection amount before occurrence of strain is compared with that after the occurrence of the strain, thereby measuring the strain. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、木材、金属あるいはその他の材料からなる各種物体のひずみ(変形)を測定する方法及びそれを行うためのシステムに関するものである。  The present invention relates to a method for measuring strain (deformation) of various objects made of wood, metal, or other materials, and a system for performing the method.

建築物やその他の構造物あるいはその部材などにおいて、用いられている木材、金属材、合成樹脂材、コンクリート材あるいはその他の材料が、外力などによって、時間と共にクリープ変形し、ついには破壊に至るため、使用中のひずみ(変形)の状態を知ること、さらには破壊に至るまでの余寿命を知ることは、長期的な安定使用のためには極めて重要である。  Because wood, metal materials, synthetic resin materials, concrete materials, and other materials used in buildings and other structures or their components are subject to creep deformation over time due to external forces, etc., eventually leading to destruction Knowing the state of strain (deformation) during use, and knowing the remaining life until breakage are extremely important for long-term stable use.

物体のひずみ測定法としては様々な測定方法が知られている。最も一般的なひずみ(変形)の測定方法は、その寸法変化を実測する方法であり、物体の表面上に目印を2ヶ所以上刻印しておき、目印間の距離の変化を測定する方法が古くから採用されてきた。しかし、これらの寸法測定では、局所的な変形を測定することが困難なため、微小部分のひずみ測定方法として、材料の被測定部分の表面を研磨しその面の炭化物などを抽出し、その分布状態を電子顕微鏡にて観察し測定する方法もあるが、材質により変化の現れ方が異なるとか、寿命の終期に近づかなければ十分な確度で測定できないなどの難点がある。  Various measuring methods are known as methods for measuring the strain of an object. The most common method for measuring strain (deformation) is to measure the dimensional change, and the method of measuring the change in the distance between the marks by marking two or more marks on the surface of the object is an old method. Has been adopted. However, since it is difficult to measure local deformation in these dimensional measurements, the surface of the measured portion of the material is polished to extract carbides on the surface, and its distribution is used as a strain measurement method for the minute portion. There are also methods for observing and measuring the state with an electron microscope, but there are problems such as how the change appears depending on the material, and measurement with sufficient accuracy unless it approaches the end of life.

これに対し、スペックルパターンによる微小部分の変形測定方法を、このクリープ変形のひずみ量の測定に利用しようという提案がある。このスペックルパターンによるひずみ測定方法とは、例えば、物体の表面に細かい凹凸を付け、それによる反射光映像をあらかじめ撮影しておき、応力が加えられ変形した後、再度反射光映像を撮影し、両者の映像の差からデジタル画像処理技術により変位を測定して、ひずみの大きさやその分布を知る方法である。しかし、この方法は、材料によっては長期間の使用でその表面状態が大きく変化して反射光も大きく影響を受ける。そこで、表面変化の影響を避けるため、被測定部分の表面に環境により影響されない安定な薄い皮膜(例えば白金箔など)を取り付け、その皮膜のスペックルパターン変化の測定により目的とする部分の微少ひずみを測定する方法も提案されている。(下記特許文献1及び非特許文献1参照)。この場合、被測定部分に白金箔を溶接しておき、この白金箔の表面凹凸によるスペックルパターンを利用する。白金は高温長時間の使用の間表面が酸化することなく、箔にして被測定金属部材などの表面に溶接すれば部材の変形に応じて変形し、部材のひずみ及びその分布は上記スペックルパターン測定の方法にて測定が可能であると説明されている。  On the other hand, there is a proposal to use a method for measuring the deformation of a minute portion by a speckle pattern for measuring the amount of creep deformation. With this speckle pattern strain measurement method, for example, fine unevenness is given to the surface of the object, the reflected light image is pre-photographed, and after the stress is applied and deformed, the reflected light image is imaged again, This is a method of measuring the displacement by the digital image processing technique from the difference between the two images and knowing the magnitude and distribution of the strain. However, according to this method, depending on the material, the surface state changes greatly over a long period of use, and the reflected light is greatly affected. Therefore, in order to avoid the influence of the surface change, a stable thin film (such as platinum foil) that is not affected by the environment is attached to the surface of the part to be measured, and the minute distortion of the target part is measured by measuring the speckle pattern change of the film. A method for measuring the above has also been proposed. (See Patent Document 1 and Non-Patent Document 1 below). In this case, a platinum foil is welded to the portion to be measured, and a speckle pattern formed by surface irregularities of the platinum foil is used. Platinum does not oxidize on the surface during use at high temperatures for a long time. If it is made into a foil and welded to the surface of a metal member to be measured, it deforms according to the deformation of the member. It is described that measurement is possible by the measurement method.

また、試験体の伸びや縮みを電気的に測定するひずみゲージによる方法もよく知られている。例えば、試験片のひずみ量を測定するひずみセンサにおいて、試験片のひずみ量を測定する部分に設置された超磁歪材料と、前記超磁歪材料の近傍に前記超磁歪材料と、非接触状態で設置された前記超磁歪材料が前記試験片に追従して変形することで発生する磁界の電磁誘導によって電流を誘起するコイルとを設け、前記電流の電流値を測定し、この電流値と既知の超磁歪材料のひずみ量と電流値との関係とから試験片のひずみ量を算出する方法が知られている(下記特許文献2参照)。これは、静的・動的・衝撃的応力測定を可能とするが、弾性領域を越えてしまうとひずみ測定が行えない。  In addition, a method using a strain gauge for electrically measuring the elongation and shrinkage of a test body is also well known. For example, in a strain sensor that measures the strain amount of a test piece, the super magnetostrictive material installed in the portion for measuring the strain amount of the test piece, and the super magnetostrictive material in the vicinity of the super magnetostrictive material are installed in a non-contact state. A coil that induces a current by electromagnetic induction of a magnetic field generated by the deformed super magnetostrictive material following the test piece and measuring the current value of the current. A method of calculating the strain amount of a test piece from the relationship between the strain amount of the magnetostrictive material and the current value is known (see Patent Document 2 below). This makes it possible to measure static, dynamic and impact stress, but cannot measure the strain beyond the elastic region.

弾性領域を越えたひずみ測定には、高精度、非接触、高速、全視野測定の利点を有する光学的測定方法を用いるのが好ましいとされている。かかる光学的測定方法の一例として、試験材料に固定する固定部と該固定部と一体的に形成された測定部とを備えた少なくとも2個の測定治具と、該測定治具の対向する測定部間の変位をレーザ光によって測定する測定手段(レーザ測長機)とからなる測定装置を用い、試験片の標点位置に測定治具の固定部を取り付け、レーザ測長機のレーザ発振機から測定部に側方からレーザ光を照射し、検出器により受光・検出して測定部間の変位を測定することにより、試験片の標点間の変位を測定する方法が提案されている(下記特許文献3参照)。しかし、一般に、光学的測定方法は原理理解に時間を要すこと、使いやすい装置が市販されていないこともあって普及していない。  For measuring strain beyond the elastic region, it is preferable to use an optical measurement method having advantages of high accuracy, non-contact, high speed and full-field measurement. As an example of such an optical measurement method, at least two measurement jigs each provided with a fixed part that is fixed to a test material and a measurement part that is formed integrally with the fixed part, and a measurement that is opposed to the measurement jig. Using a measuring device consisting of measuring means (laser length measuring machine) that measures the displacement between the parts with a laser beam, a fixing part of a measuring jig is attached to the test point of the test piece, and the laser oscillator of the laser length measuring machine A method has been proposed in which the measurement part is irradiated with laser light from the side, and the displacement between the measurement points of the test piece is measured by measuring the displacement between the measurement parts by receiving and detecting with a detector ( See Patent Document 3 below). However, in general, the optical measurement method is not widely used because it takes time to understand the principle and an easy-to-use apparatus is not commercially available.

特開2005−291979号公報  JP 2005-291979 A 特開2004−219105号公報  JP 2004-219105 A 特開平10−89950号公報  JP-A-10-89950 アール、ヴァンヴルペン(R.van Vulpen)他著「高温用部材における補修溶接部のクリープひずみ測定(Creep Monitoring of Repair Welds in High Temperature Components)」  R. van Vulpen et al., “Creep Monitoring of Repair Welds in High Temperature Components”

以上の如き従来の測定方法は、局所ごとの正確な変形量を測定することが困難であるとか、白金箔のような高価な測定手段を要するとか、あるいは測定のために大掛かりな器具、装置を要するなどの問題がある。
本発明の目的は、このような従来の測定法の問題を解決し、簡単に材料のひずみを簡便にかつ正確に測定できる、精度の高い測定法を提供することにある。
The conventional measurement methods as described above are difficult to measure the accurate deformation amount for each local area, require expensive measurement means such as platinum foil, or require large-scale instruments and devices for measurement. There are problems such as cost.
An object of the present invention is to solve such problems of the conventional measuring method and to provide a highly accurate measuring method that can easily and accurately measure the strain of a material.

本発明者は、上記の目的を達成すべく鋭意研究の結果、再帰反射性ビーズに着目した。ここで「再帰反射性」とは、反射材を塗布した表面において光源から発した光が再び光源に向かって戻ってくる反射現象をいう。かかる再帰反射性ビーズはロードマーキングや道路標識などに広く使用されているが、本発明では、そのような性質の再帰反射性ビーズ(以下、単に「反射ビーズ」ということがある)を塗布した木材などの材料に荷重を与えて横圧縮変形を観察し、該木材などが弾性領域を越えても、その表面に塗布した反射ビーズからの反射光の変化を観察することで、木材などのひずみ(変形)の測定を行うことが可能であることを見出した。
そして、かかる知見に基づきさらに研究を重ね、ひずみ(変形)を簡単かつ正確に測定できる本発明の方法を完成した。
すなわち、観察している箇所と木材などの被測定物体全体のひずみとの間に誤差が生じると予想し、試験機が表示する被測定物体全体のひずみと反射ビーズによる反射光の変化との関係を検討したところ、被測定物体表面に均一に付着させた反射ビーズの挙動は該物体の変形(ひずみ)と連動し、圧縮荷重が加わり物体の表面に収縮が起きたときは、その表面に塗布されている反射ビーズの間隔が狭まり、その表面の単位面積当りに存在する反射ビーズが占める総面積は大きくなり、分布密度が高くなる。したがって反射光の強さ(反射光量)も増加する。その結果として、物体に光が照射され圧縮が進行していくと圧縮部分の反射光の強さ(反射光量)も増えるので、それを測定すればひずみを定量的に測定できることになる。また、曲げ変形が生じたときは、変形に応じて局所的に単位面積当りの反射ビーズの総面積が変わるため、これを測定すれば、曲げによるひずみの状態を知ることができる。
The inventor of the present invention paid attention to retroreflective beads as a result of intensive studies to achieve the above-mentioned object. Here, “retroreflective” refers to a reflection phenomenon in which light emitted from the light source returns to the light source again on the surface coated with the reflective material. Such retroreflective beads are widely used for road markings, road signs, and the like. In the present invention, wood coated with retroreflective beads having such properties (hereinafter sometimes simply referred to as “reflective beads”) is used. By applying a load to the material, etc. and observing the lateral compression deformation, even if the wood exceeds the elastic region, by observing the change in the reflected light from the reflective beads applied to the surface, the strain of the wood ( It has been found that it is possible to measure deformation.
Based on this knowledge, further research was conducted to complete the method of the present invention that can easily and accurately measure strain (deformation).
In other words, it is expected that there will be an error between the point being observed and the distortion of the entire object to be measured such as wood, and the relationship between the distortion of the entire object to be measured displayed by the testing machine and the change in reflected light due to the reflective beads. As a result, the behavior of the reflective beads uniformly attached to the surface of the object to be measured is linked to the deformation (strain) of the object, and when the compressive load is applied and the object surface contracts, it is applied to the surface of the object. The interval between the reflective beads is reduced, the total area occupied by the reflective beads per unit area of the surface is increased, and the distribution density is increased. Therefore, the intensity of reflected light (the amount of reflected light) also increases. As a result, when the object is irradiated with light and the compression proceeds, the intensity of the reflected light (the amount of reflected light) at the compressed portion also increases. By measuring this, the distortion can be measured quantitatively. Further, when bending deformation occurs, the total area of the reflective beads per unit area changes locally according to the deformation, and by measuring this, the state of strain due to bending can be known.

かくして、本発明によれば、以下のような測定方法が提供される。
(1)物体のひずみを測定するに当り、被測定物体の表面に再帰反射性ビーズを均一に付着させ、その面に光を照射して、該再帰反射性ビーズからの反射光の変化を調べることにより、ひずみを測定することを特徴とするひずみの測定方法。
(2)被測定物体の表面に接着剤を均一に塗布し、再帰反射性ビーズを分散させた気体を接着剤塗布面に接触させることにより、被測定物体の表面に再帰反射性ビーズを均一に付着させることを特徴とする請求項1記載のひずみの測定方法。
(3)ひずみ発生時にデジタルカメラで反射ビーズ付着面からの反射光を撮影し、その撮影画像から単位面積当りの反射ビーズの総面積を算出することにより、反射光の変化を調べることを特徴とする請求項1記載のひずみの測定方法。
(4)ひずみ発生前及び発生時にデジタルカメラで反射ビーズからの反射光を撮影し、各撮影画像を合成して、ひずみの経緯を観察することを特徴とする請求項1記載のひずみの測定方法。
さらに、本発明によれば、上記の方法を実施する手段として、以下のような測定システムが提供される。
(5)再帰反射性ビーズを付着させた被測定物体の表面に光を照射する手段と、該再帰反射性ビーズからの反射光を撮影してデジタル画像にする手段と、撮影したデジタル画像を解析して単位面積当たりの反射ビーズの総面積を算出する手段とを備えることを特徴とするひずみの測定システム。
(6)再帰反射性ビーズを付着させた被測定物体の表面に光を照射する手段と、該再帰反射性ビーズからの反射光を撮影してデジタル画像にする手段と、撮影したデジタル画像を合成してひずみの経緯を画像表示する手段とを備えることを特徴とするひずみの測定システム。
Thus, according to the present invention, the following measuring method is provided.
(1) When measuring the strain of an object, retroreflective beads are uniformly attached to the surface of the object to be measured, and the surface is irradiated with light to examine changes in reflected light from the retroreflective beads. A strain measuring method characterized by measuring strain.
(2) Apply the adhesive uniformly to the surface of the object to be measured, and make the retroreflective beads uniformly on the surface of the object to be measured by bringing the gas in which the retroreflective beads are dispersed into contact with the adhesive application surface. The strain measuring method according to claim 1, wherein the strain is attached.
(3) It is characterized in that the reflected light from the surface where the reflective beads are attached is photographed with a digital camera when distortion occurs, and the change in the reflected light is examined by calculating the total area of the reflective beads per unit area from the photographed image. The method for measuring strain according to claim 1.
(4) The strain measuring method according to claim 1, wherein the reflected light from the reflecting beads is photographed with a digital camera before and at the time of occurrence of the strain, the photographed images are synthesized, and the history of the strain is observed. .
Furthermore, according to the present invention, the following measurement system is provided as means for carrying out the above method.
(5) means for irradiating light on the surface of the object to be measured with retroreflective beads attached, means for photographing the reflected light from the retroreflective beads into a digital image, and analyzing the photographed digital image And a means for calculating the total area of the reflective beads per unit area.
(6) A means for irradiating light on the surface of the object to be measured with the retroreflective beads attached, a means for photographing the reflected light from the retroreflective beads into a digital image, and a composite of the photographed digital image And a means for displaying an image of the background of the distortion.

本発明の方法及びシステムによれば、再帰反射性ビーズを有効に活用することにより、簡単にかつ正確に物体のひずみを測定することが可能となる。  According to the method and system of the present invention, it is possible to easily and accurately measure the strain of an object by effectively using retroreflective beads.

<被測定材料について>
本発明による測定法は、木材、金属材、合成樹脂材などの材料において、外力によって生じたひずみ(変形)を正確に測定することが可能であり、被測定材料の大きさや材質には制限がない。
<About the material to be measured>
The measurement method according to the present invention can accurately measure strain (deformation) caused by external force in materials such as wood, metal materials, and synthetic resin materials, and there are limitations on the size and material of the material to be measured. Absent.

<再帰反射性ビーズの被測定材料への付与について>
本発明の方法によれば、まず、被測定材料の表面に再帰反射性ビーズを均一付着させる。この再帰反射性ビーズ(以下、単に「反射ビーズ」ということがある)としては、透明ガラスビーズ単体又は部分的に埋設した部分に反射膜を備えるガラスビーズが使用できる。該反射ビーズの直径は、通常40〜200μm、好適には50〜150μmの範囲である。かかる再帰反射性ビーズは、ロードマーキングや道路標識などに広く使用されているもので、容易に入手可能である。
反射ビーズは、入射光がその方向へ反射が可能なように、被測定材料の表面に部分的に埋設させて接着される。
このため、被測定材料の表面に接着剤を均一に塗布し、接着剤塗布面に反射ビーズを均一に散布して接着させる方法や、その面を反射ビーズが飛散している反射ビーズ分散気体と接触させて、反射ビーズを付着させる方法などが採用される。
反射ビーズの付着密度は、被測定材料に応じて適宜選択すべきであるが、多くの場合、被測定材料の表面積1cm当り、約1000個〜10000個の範囲が適当である。
<Regarding the application of retroreflective beads to the material to be measured>
According to the method of the present invention, first, retroreflective beads are uniformly attached to the surface of the material to be measured. As the retroreflective beads (hereinafter, sometimes simply referred to as “reflective beads”), transparent glass beads alone or glass beads having a reflective film in a partially embedded portion can be used. The diameter of the reflective beads is usually 40 to 200 μm, preferably 50 to 150 μm. Such retroreflective beads are widely used for road marking, road signs, and the like, and are easily available.
The reflective beads are partially embedded in the surface of the material to be measured and bonded so that incident light can be reflected in that direction.
For this reason, the adhesive is uniformly applied to the surface of the material to be measured, and the reflective beads are uniformly spread and adhered to the adhesive application surface, and the reflective bead dispersion gas in which the reflective beads are scattered on the surface. For example, a method of attaching the reflective beads by contacting them is adopted.
The adhesion density of the reflective beads should be appropriately selected according to the material to be measured. In many cases, the range of about 1000 to 10,000 is appropriate per 1 cm 2 of the surface area of the material to be measured.

<光照射及び反射光の測定について>
本発明では、通常、少なくともひずみ発生前と発生後に2回にわたり、被測定物体の反射ビーズを付与した面に光を照射し、その反射光を測定する。反射光の測定では各箇所における反射光量を見るが、これは、単位面積当りの反射ビーズの総面積と比例するので、該総面積を求めることで反射光量を知ることもできる。
光の照射手段としては、例えば垂直落射照明装置(LSGA斜照明装置、SZ−VIA/垂直落射装置アタッチメント、TL−3−100 6V20W型トランス)などが採用されるが、これらに限定されるものではない。光の照射に際しては、光線が被測定物体の反射ビーズ付着面に対して直角に入射するよう調整する。
反射光量を見るには、光照射した面をデジタルカメラで撮影するのが好ましい。デジタルカメラで撮影する際、各試験片における反射ビーズの付着面積、圧縮で変化する単位面積当りの反射ビーズ総面積で反射光量が変わるため、そのような微妙な色合いの変化を一定に保つことは難しい。そこで、毎回圧縮前の試験片で、実際の撮影状況に適切なホワイトバランスをデジタルカメラに記憶させておき、色合いを調整するのが好ましい。
これらの撮影作業は、試験片のひずみ発生途中で行うこともでき、例えば、被測定物体に段階的に増大する荷重を加えつつ、荷重ごとに撮影してひずみを測定することもできる。
<Measurement of light irradiation and reflected light>
In the present invention, usually, at least twice before and after the occurrence of strain, the surface of the object to be measured which is provided with the reflective beads is irradiated with light, and the reflected light is measured. In the measurement of reflected light, the amount of reflected light at each location is seen, but this is proportional to the total area of the reflective beads per unit area, so the amount of reflected light can also be known by obtaining the total area.
As the light irradiation means, for example, a vertical epi-illumination device (LSGA oblique illumination device, SZ-VIA / vertical epi-illuminator attachment, TL-3-100 6V20W type transformer) or the like is adopted, but the present invention is not limited to these. Absent. When irradiating light, adjustment is made so that the light beam is incident at a right angle to the reflective bead attachment surface of the object to be measured.
In order to see the amount of reflected light, it is preferable to photograph the light-irradiated surface with a digital camera. When photographing with a digital camera, the amount of reflected light varies depending on the reflective bead adhesion area on each specimen and the total reflected bead area per unit area that changes with compression. difficult. Therefore, it is preferable to adjust the color tone by storing a white balance suitable for the actual shooting situation in the digital camera with the test piece before compression each time.
These photographing operations can also be performed in the course of strain generation of the test piece. For example, the strain can be measured by photographing each load while applying a load that increases stepwise to the object to be measured.

<ひずみの測定について>
ひずみの測定は、反射光から単位面積当りの反射光量(換言すれば、反射ビーズの総面積)を測定することで行う。例えば、測定前工程として、デジタルカメラにてプログラムモードで撮影した画像をPCに取り込み、画像解析ソフト(Adobe Photoshop 6.0など)で加工し、各画像をグレースケール化する。その後、画像解析ソフト(Scion Imageなど)を用いて、撮影範囲内の反射ビーズ総面積を測定することで、反射光の強さを間接的に定量化することができる。この方法は、例えば、変形前の画像撮影時と変形後の画像撮影時にかなりの時間差があった場合には、このようにして面積を測定して反射光の強さ(反射光の量)を求めた方が照明光の強さや環境条件の変化の影響を受けにくいという利点がある。
図6〜図9は、このように撮影した画像であり、図6及び図7は圧縮変形前後の画像、図8及び図9は曲げ変形前後の画像である。変形前後の画像における単位面積当り反射ビーズの占める総面積、すなわち反射ビーズの密度を測定・対比することによって各部分のひずみを知ることができる。
<Measurement of strain>
The strain is measured by measuring the amount of reflected light per unit area (in other words, the total area of the reflective beads) from the reflected light. For example, as a pre-measurement process, an image photographed in a program mode with a digital camera is taken into a PC, processed with image analysis software (Adobe Photoshop 6.0 or the like), and each image is converted to gray scale. Then, the intensity of the reflected light can be indirectly quantified by measuring the total area of the reflective beads in the imaging range using image analysis software (Scion Image or the like). In this method, for example, when there is a considerable time difference between the time of capturing an image before deformation and the time of capturing an image after deformation, the area is measured in this way to determine the intensity of reflected light (the amount of reflected light). The obtained one has the advantage that it is less susceptible to changes in the intensity of illumination light and environmental conditions.
FIGS. 6 to 9 are images taken in this way, FIGS. 6 and 7 are images before and after compression deformation, and FIGS. 8 and 9 are images before and after bending deformation. By measuring and comparing the total area occupied by the reflective beads per unit area in the images before and after the deformation, that is, the density of the reflective beads, the distortion of each part can be known.

<画像合成によるひずみ変化の画像表示について>
反射ビーズを用いた変形測定を違う視点でとらえると、反射ビーズの挙動そのものに着目し、ひずみ発生時の力の分布を画像化することができる。
例えば、材料の圧縮試験を行い、圧縮条件ごとにデジタルカメラで撮影して得られた複数の画像を、Adobe Photoshop 6.0などのレイヤー機能を用い重ね合わせて合成すると、反射ビーズが木材の変形に伴い、その力の分布を示すかのように様々な模様を作り出す。
<Image display of strain change by image composition>
If the deformation measurement using the reflective beads is viewed from a different viewpoint, it is possible to focus on the behavior of the reflective beads and to visualize the force distribution at the time of strain generation.
For example, when a material compression test is performed and a plurality of images obtained by photographing with a digital camera for each compression condition are combined by using a layer function such as Adobe Photoshop 6.0, the reflective beads are deformed by wood. Along with this, various patterns are created as if showing the distribution of force.

その一例として、図10に、圧縮前の木材とある程度ひずませた木材の中心を基準として合成した写真画像を示す。図10には、反射ビーズが模様を描かない部分も確認できるが、その部分は木材の変形が起こっていないと考えてよい。この写真画像では、横圧縮の場合、荷重側の軟らかい早材から圧縮され硬い晩材に力が伝達され、次の年輪界に力が伝達されていくことがわかる。また、図10の合成写真画像では左上から右下に年輪界が走っている。それとは相反する形で反射ビーズの挙動が確認できない部分がある。この部分は、荷重方向に対して年輪界が直交していないので各年輪に対して力が伝わる時間が異なると考えられる。つまり、反射ビーズの挙動が起きなかった部分は荷重を与えても力が伝達するのに時間がかかり、反射ビーズの挙動が大きい部分は力の伝達が早くひずみが起こっていると推定できる。  As an example, FIG. 10 shows a photographic image synthesized with reference to the center of wood before compression and wood distorted to some extent. In FIG. 10, although the part where the reflective bead does not draw a pattern can be confirmed, it may be considered that the part is not deformed by the wood. In this photographic image, it can be seen that in the case of lateral compression, the force is transmitted from the soft early material on the load side to the hard late material, and the force is transmitted to the next annual ring field. In the composite photograph image of FIG. 10, the annual ring world runs from the upper left to the lower right. There is a part in which the behavior of the reflective bead cannot be confirmed in an opposite manner. In this part, the annual ring field is not orthogonal to the load direction, so it is considered that the time during which force is transmitted to each annual ring is different. That is, it can be estimated that the portion where the behavior of the reflective bead does not occur takes time to transmit the force even when a load is applied, and the portion where the behavior of the reflective bead is large is transmitted quickly and is distorted.

また、図13の写真は、曲げ試験を行った板目面を撮影し、荷重を与える前と破壊寸前の画像を合成したもので、この画像も試験片の中央で重ね合わせて合成したものである。図13の合成写真では、中心部では反射ビーズの挙動は見られず、中心部を避けるように引張り側から荷重側に弧を描きながら移動しているように見える。これらは、木材にかかる力の分布を示していると考えられる。この写真合成による方法を確立することで木材以外の材料にも応用でき、光弾性実験のような高額で手間のかかる方法にかわる新しい変形測定になり得る。  Also, the photograph in FIG. 13 is a photograph of a plate surface subjected to a bending test, and is a composite of images before applying a load and before the breakage, and this image is also superimposed and synthesized at the center of the test piece. is there. In the composite photograph of FIG. 13, the behavior of the reflective bead is not seen in the central part, and it seems to move while drawing an arc from the tension side to the load side so as to avoid the central part. These are considered to indicate the distribution of force applied to the wood. Establishing this photosynthesis method can be applied to materials other than wood, and can be a new deformation measurement that replaces expensive and time-consuming methods such as photoelasticity experiments.

以下、本発明方法に従って、測定した実験例について詳述する。ただし、本発明の範囲はこれらの実験例によって限定されるものではない。  Hereinafter, experimental examples measured according to the method of the present invention will be described in detail. However, the scope of the present invention is not limited by these experimental examples.

[実施例1]
<実験装置>
実験装置として、図1に示すように、島津万能試験機(島津製作所、AGS−H)のクロスヘッド部にデジタルカメラ(オリンパスE−300)を取付けて使用した。試験機が圧縮を始めるとデジタルカメラはクロスヘッドの動きに伴って移動するが、その際、最初の観察位置とクロスヘッド移動後の観察位置がずれても常に定点観察を行えるように上下移動機構を取り付けた。デジタルカメラに接写レンズ、垂直落射照明装置(LSGA 斜照明装置、SZ−VIA/垂直落射装置アタッチメント、TL−3−100 6V20W型トランス)を取付け、反射ビーズの再帰性反射光を撮影できるようにした。予備実験より試験片を圧縮していくと試験片自体が接線方向に大きく変形することが分かったので、アルミ枠で変形を拘束した(内寸40×40×40mm,厚さ10mm)。
[Example 1]
<Experimental equipment>
As an experimental apparatus, as shown in FIG. 1, a digital camera (Olympus E-300) was attached to the crosshead portion of a Shimadzu universal testing machine (Shimadzu Corporation, AGS-H). When the test machine starts to compress, the digital camera moves with the movement of the crosshead. At that time, even if the observation position after the initial observation position and the crosshead movement are different, the vertical movement mechanism can always be used. Attached. A close-up lens and vertical epi-illuminator (LSGA oblique illumination device, SZ-VIA / vertical epi-illuminator attachment, TL-3-100 6V20W transformer) are attached to the digital camera so that the retroreflected light of the reflective beads can be photographed. . Since it was found from the preliminary experiment that the test piece itself was greatly deformed in the tangential direction when the test piece was compressed, the deformation was restrained by an aluminum frame (inner dimensions 40 × 40 × 40 mm, thickness 10 mm).

<供試材料>
供試材料としてはスギ(Cryptomeria japonica D.Don)を用いた。試験片の寸法は図2に示すように、(a)繊維方向40mm、接線方向39.5mm、放射方向39mmのものと(b)繊維方向40mm、接線方向39mm、放射方向39mmのものとの2種類用意した(寸法aの試験片をRED、寸法bの試験片をBLUEとし、試験片の区別した)。放射方向をアルミ枠の内寸よりも1mm小さくしたのは、圧縮治具をスムーズに誘導するためである。試験片を2種類用意したのは、接線方向の寸法を変えると圧縮治具との摩擦に変化が生じると予想し、荷重−ひずみ曲線に違いが現れるかを知るためである。また、アルミ枠具との空間は狭い方が撮影時ピントの一定に都合が良いことがわかったので、狭い隙間で生ずる摩擦を小さくするため、治具内側面にシリコンパットエアゾールを噴霧した。
上記各試験片の木口面表面にスプレーのり(住友スリーエム株式会社製、「スリーエムスプレーのり55」)を約1秒むらなく塗布し、試験片と再帰性反射ビーズの1種である自反射型ガラスビーズ(株式会社ユニオン製、自反射ユニオンビーズUB−24MSJ、平均径45μm、組成BaO−SiO2−TiO系ガラス、屈折率1.93±0.01、比重4.02±0.1)を、図3に示すボール型吹き付け装置に収め、エアスプレーで反射ビーズを巻き上げ、反射ビーズが試験片上面に降りかかるようにして付着させた。
<Sample material>
Sugi (Cryptomeria japonica D. Don) was used as a test material. As shown in FIG. 2, the dimensions of the test piece are (a) fiber direction 40 mm, tangential direction 39.5 mm, radial direction 39 mm and (b) fiber direction 40 mm, tangential direction 39 mm, radial direction 39 mm. Types were prepared (the test piece of size a was RED, the test piece of size b was BLUE, and the test pieces were distinguished). The reason why the radial direction is 1 mm smaller than the inner dimension of the aluminum frame is to guide the compression jig smoothly. Two types of test specimens were prepared in order to know whether the friction with the compression jig would change when the dimensions in the tangential direction were changed, and to know whether a difference appears in the load-strain curve. In addition, it was found that a narrow space with the aluminum frame was more convenient for focusing at the time of shooting, so silicon pad aerosol was sprayed on the inner surface of the jig in order to reduce friction generated in a narrow gap.
A spray paste (“3M spray paste 55” manufactured by Sumitomo 3M Co., Ltd.) is applied to the surface of the lip of each test piece evenly for about 1 second, and the self-reflective glass that is one of the test piece and the retroreflective beads. The beads (manufactured by Union Co., Ltd., self-reflection union beads UB-24MSJ, average diameter 45 μm, composition BaO—SiO 2 —TiO glass, refractive index 1.93 ± 0.01, specific gravity 4.02 ± 0.1) In the ball-type spraying device shown in FIG. 3, the reflective beads were rolled up by air spray, and adhered so that the reflective beads fell on the upper surface of the test piece.

<圧縮試験>
島津万能試験機(島津製作所、AGS−H)を用い、試験片の放射方向に横圧縮荷重を与えた。圧縮速度は0.5mm/分で一定とし、ひずみ0〜50%当りまでの横圧縮試験を実施した。
<Compression test>
Using a Shimadzu universal testing machine (Shimadzu Corporation, AGS-H), a lateral compression load was applied in the radial direction of the test piece. The compression speed was constant at 0.5 mm / min, and a lateral compression test was performed up to a strain of 0 to 50%.

<写真撮影>
前記の圧縮試験と並行して、反射ビーズを付着させた試験片表面を、接写レンズを取り付けたデジタルカメラで、ひずみ5%ごとに撮影した。撮影箇所は木口面の中央部を設定した。撮影面は垂直落射照明装置(LSGA斜照明装置、SZ−VIA/垂直落射装置アタッチメント、TL−3−100 6V20W型トランス)で照射し、明るさの調節目盛は、肉眼でも反射光が確認しやすい6に設定した。無負荷状態でカメラのピントを合わせ、縦11.5mm、横15.5mmを撮影範囲とした。画像解析時マイクロメータが読み取れる限界の接写倍率(1pixel:0.216μm)とした。
デジタルカメラで撮影する際、各試験片における反射ビーズの総面積、圧縮で変化する反射ビーズ総面積で反射光量が変わるため、そのような微妙な色合いの変化を一定に保つことは難しい。そこで毎回圧縮前の試験片で、実際の撮影状況に適切なホワイトバランスをデジタルカメラに記憶させた。
圧縮が進行すると試験片上面の単位面積当りの反射ビーズの総面積が増え、反射光の量も増加する。その際、反射光を純粋に目で確認できるようにするため、絞りとシャッター速度を自ら設定できるマニュアル(M)モードで撮影した。そして、反射光が増えても絞りとシャッター速度を変えずに撮影し、その画像の光の強さを肉眼で判断した。次に、マニュアル(M)モードで撮影後すぐ、被写体の明るさに応じて適正な絞りとシャッター速度をカメラが自動的に設定するプログラム(P)モードでも撮影を行った。反射光が増えても適正露出で撮影することで、後に画像解析を行うに当り反射ビーズ総面積を正確に計算できる。前記2つのモードを時間差なく撮影し、ひずみごとの画像として保存した。
<Photographing>
In parallel with the compression test, the surface of the test piece to which the reflective beads were attached was photographed every 5% with a digital camera equipped with a close-up lens. The shooting location was set at the center of the mouth. The imaging surface is illuminated by a vertical epi-illumination device (LSGA oblique illumination device, SZ-VIA / vertical epi-illuminator attachment, TL-3-100 6V20W type transformer), and the brightness adjustment scale makes it easy to confirm reflected light even with the naked eye. 6 was set. The camera was focused in an unloaded state, and the shooting range was 11.5 mm in length and 15.5 mm in width. The maximum close-up magnification (1 pixel: 0.216 μm) that can be read by the micrometer during image analysis was used.
When photographing with a digital camera, the amount of reflected light varies depending on the total area of the reflective beads in each test piece and the total area of the reflective beads that changes due to compression, so it is difficult to keep such a subtle change in hue constant. Therefore, the white balance appropriate for the actual shooting situation was stored in the digital camera with the test piece before compression each time.
As the compression proceeds, the total area of the reflective beads per unit area on the upper surface of the test piece increases, and the amount of reflected light also increases. At that time, in order to make the reflected light purely visible, the image was taken in the manual (M) mode in which the aperture and shutter speed can be set by itself. Even if the reflected light increased, the image was taken without changing the aperture and shutter speed, and the light intensity of the image was judged with the naked eye. Next, immediately after shooting in manual (M) mode, shooting was also performed in program (P) mode in which the camera automatically sets an appropriate aperture and shutter speed according to the brightness of the subject. Even if the amount of reflected light increases, it is possible to accurately calculate the total area of the reflective beads when performing image analysis later by photographing with appropriate exposure. The two modes were photographed with no time difference and stored as images for each strain.

<ひずみの測定>
測定の前工程として、プログラム(P)モードで撮影した画像をPCに取り込み、画像解析ソフト(Adobe Photoshop 6.0)で加工した。各画像をグレースケール化し、十字に4分割してそれぞれをTIFF形式で保存した。続いて画像解析ソフト(Scion Image)を用いて、撮影範囲内のガラスビーズ総面積を測定した。分割した4ヶ所での測定結果を合算し総面積とした(図4のフローチャート参照)。
<Measurement of strain>
As a pre-measurement step, an image photographed in the program (P) mode was taken into a PC and processed with image analysis software (Adobe Photoshop 6.0). Each image was grayscaled, divided into four crosses, and each was saved in TIFF format. Subsequently, the total area of the glass beads in the imaging range was measured using image analysis software (Scion Image). The measurement results at the four divided locations were added together to obtain the total area (see the flowchart in FIG. 4).

<画像解析ソフトの条件設定>
画像解析を行うに当たっては、画像から反射ビーズの部分だけを選択しなければならない。このため明度分布範囲(Density Slice値)の設定を行った。これは対象画像中の特定の明度分布範囲を画像上で指定する作業で、明度分布の上限、下限を指定することによって、ある明度の範囲だけを抽出することができる。
ランダムに選んだ試験片(BLUE 17)を用いて、Lower値を1に固定しUpper値を8階調ごとに変化させ、ひずみ0%、25%、51.61%(最大荷重)時の反射ビーズ層面積の変化を測定した。その結果を表1に示す。測定した数値をグラフで確認したところ、図5に示すとおり、各ひずみにおける反射ビーズ面積はUpper値96当りまで安定して増加した。しかし、それを過ぎると急激に反射ビーズ面積は増加の傾向をたどった。ここでは、反射ビーズ以外の明度分布を選択していると推定できる。従って、明度256階調のうち1(黒側)〜96(白側)の範囲内で抽出された画素を反射ビーズによる反射光とした。
<Condition settings for image analysis software>
In performing image analysis, only the portion of the reflective bead must be selected from the image. For this reason, the brightness distribution range (Density Slice value) was set. This is an operation of designating a specific brightness distribution range in the target image on the image. By designating an upper limit and a lower limit of the brightness distribution, only a certain brightness range can be extracted.
Using a randomly selected test piece (BLUE 17), the lower value is fixed to 1 and the upper value is changed every 8 gradations, and the reflection at the time of strain 0%, 25%, 51.61% (maximum load) The change in bead layer area was measured. The results are shown in Table 1. When the measured numerical value was confirmed by a graph, as shown in FIG. 5, the reflective bead area at each strain increased stably up to the Upper value of 96. However, after that, the reflective bead area followed an increasing trend. Here, it can be estimated that a brightness distribution other than the reflective beads is selected. Accordingly, pixels extracted within the range of 1 (black side) to 96 (white side) out of 256 gradations are used as reflected light by the reflective beads.

Figure 2008139273
Figure 2008139273

<反射ビーズ総面積の測定>
画像は画素から構成され、反射したビーズ部分の画素の面積を測定し、反射ビーズ面積に換算した。反射ビーズの反射光は反射膜の角度によって異なるため、最小のビーズ反射光面積の画素数を1pixelとし、同様にひずみが進行すると共に反射ビーズ同士が密集しその面積も大きくなるので、最大のビーズ反射光面積の画素数を99999pixelに設定した。
<Measurement of total area of reflective beads>
The image was composed of pixels, and the area of the pixel of the reflected bead portion was measured and converted to the reflected bead area. Since the reflected light of the reflective beads varies depending on the angle of the reflective film, the number of pixels of the minimum bead reflected light area is set to 1 pixel. Similarly, the distortion progresses and the reflective beads are densely packed to increase the area. The number of pixels of the reflected light area was set to 99999 pixels.

<試験片の観察>
図8、図9及び図11、図12は、試験片BLUE2、13RED6の木口面(マニュアルモード(M)、グレースケール化後)にビーズを付着させ、その面に光を当ててデジタルカメラで撮影した写真画像であって、図8と図9は圧縮試験の前と後の写真画像であり、図11と図12は、曲げ試験の前と後の写真画像である。このような画像を用いて反射ビーズの総面積を測定した。ひずみが大きくなると早材部が圧縮され、反射ビーズが密集し、年輪に沿って縞状の模様が現れた。また、その模様が画像内で均一に現れるのではなく、試験片上部から段階的に発生するのが分かった。今回、試験片木口面の中心を定点観察したので試験片上部から順々にひずみ、密集した反射ビーズが画像内に入り込んできたといえる。ひずみが進み、反射ビーズが密集してくると反射光も明るくなることが肉眼でもはっきり確認できた。
<Observation of specimen>
8, 9, 11, and 12, photographs are taken with a digital camera by attaching beads to the end surface of the test pieces BLUE2 and 13RED6 (after manual mode (M) and gray scale), and shining light on the surface. FIGS. 8 and 9 are photographic images before and after the compression test, and FIGS. 11 and 12 are photographic images before and after the bending test. The total area of the reflective beads was measured using such an image. As the strain increased, the early wood part was compressed, the reflective beads were dense, and a striped pattern appeared along the annual ring. Further, it was found that the pattern does not appear uniformly in the image but gradually occurs from the top of the test piece. This time, the center of the specimen's mouth was observed at a fixed point, so it can be said that the reflective beads, which were distorted sequentially from the top of the specimen, entered the image. It was clearly confirmed by the naked eye that the reflected light became brighter as the distortion progressed and the reflective beads became dense.

<解析結果>
まず、画像内で目印となる反射ビーズを上下2ヶ所選定し、ひずみごとにビーズ間の距離を測定した。ひずみが生じていないときの距離をA、ひずみが生じたときの距離をAnとし(A−An)×100/Aから撮影範囲ひずみを算出した。その結果図6(試験機表示ひずみに対するビーズ面積増加率と撮影範囲ひずみの関係)に示すように全体のひずみと撮影範囲のひずみにはいくらか誤差が生じていることが分かった。一方ひずみが生じていないときの反射ビーズ面積をB、ひずみが生じたときのガラスビーズ面積をBnとし(Bn−B)×100/Bから反射ビーズ面積増加率を算出した(下記の表2参照)。なお、試験機表示ひずみは万能試験機が表示した試験片全体の平均ひずみである。
<Analysis results>
First, two reflective beads were selected as top and bottom marks in the image, and the distance between the beads was measured for each strain. The distance at which the distortion is not generated A 0, to calculate the strain imaging range the distance and An from (A 0 -An) × 100 / A 0 when the strain occurs. As a result, as shown in FIG. 6 (relation between the bead area increase rate and the imaging range distortion with respect to the tester display distortion), it was found that there was some error in the overall distortion and the imaging range distortion. Meanwhile reflection bead area when the strain is not generated B 0, strained was calculated reflection bead area increase rate of the glass beads area from the Bn (Bn-B 0) × 100 / B 0 when the resulting (below (See Table 2). The tester display strain is an average strain of the entire test piece displayed by the universal tester.

図6に示すように反射ビーズも総面積(以下「ビーズ面積」と略す)は圧縮が始まっても万能試験機が表示する試験片全体のひずみが小さい時点ではほとんど変化をみせなかった。しかし、ひずみが10%を越えるとビーズ面積は徐々に増加し、約20%を過ぎると急激に増加した。これは圧縮側から順々にひずみ、密集したガラスビーズが画像内に入り込んできたことを証明するものである。つまり全体のひずみと局所的なひずみには時間差が生じることがいえる。  As shown in FIG. 6, the total area of the reflective beads (hereinafter abbreviated as “bead area”) hardly changed at the time when the strain of the entire test piece displayed by the universal testing machine was small even when compression started. However, the bead area gradually increased when the strain exceeded 10%, and rapidly increased when the strain exceeded about 20%. This proves that glass beads that are distorted in order from the compression side have entered the image. In other words, it can be said that there is a time difference between the overall strain and the local strain.

次に、観察範囲ひずみとビーズ面積増加率との関係を調べると、表2及び図7(撮影範囲のひずみと反射ビーズ総面積との関係)に示す通りであった。この2つの関係に近似曲線を与えると、比例関係にはならず2次関数曲線を描いた。
圧縮試験結果から、つぶれる早材の順序は予測不可能であるが、2次関数曲線の傾向、又は数式より解析することで、ひずみごとの詳細なデータを得ることができると考える。
しかし、いくつかの試験片では木材の弾性領域を越えると、圧縮治具を併用しているため接線方向に膨張する。このため圧縮が進むとカメラのピントがずれてしまい正しい解析ができない問題が発生することがあった。この解決策として弾性領域内はひずみゲージを併用し、弾性領域を越えた時にカメラのピントを合わせ撮影する方法を採用した。
Next, when the relationship between the observation range strain and the bead area increase rate was examined, it was as shown in Table 2 and FIG. 7 (relationship between the imaging range strain and the reflective bead total area). When approximate curves were given to these two relationships, a quadratic function curve was drawn instead of a proportional relationship.
From the compression test results, the order of the early materials to be crushed is unpredictable, but detailed data for each strain can be obtained by analyzing the tendency of the quadratic function curve or mathematical expression.
However, some test specimens expand in the tangential direction when they exceed the elastic region of wood because a compression jig is used together. For this reason, when the compression progresses, there is a problem that the camera is out of focus and cannot be correctly analyzed. As a solution to this problem, a strain gauge is used in the elastic area, and the camera is focused when the elastic area is exceeded.

Figure 2008139273
Figure 2008139273

以上詳述した一連の実験により、次のことが確認できた。
1)撮影画像より、早材がつぶれ反射ビーズが密集して縞状の模様が試験片上部から観察できる。
2)画像解析の結果より、試験片の圧縮が進行すると反射ビーズ面積が増加する。また、全体のひずみと局所的なひずみには時間差が生じる。
The series of experiments detailed above confirmed the following.
1) From the photographed image, the early wood is crushed and the reflective beads are dense, and a striped pattern can be observed from the top of the test piece.
2) From the result of image analysis, the area of the reflective bead increases as the test piece is compressed. In addition, there is a time difference between the overall strain and the local strain.

[実施例2]
反射ビーズを用いた木材の変形測定を違う視点で考えると、反射ビーズの挙動そのものに着目することができると考え、以下の実験を行った。
すなわち、上記と同様に圧縮試験を行い、同時にデジタルカメラで撮影した。得られた画像を、Adobe Photoshop 6.0のレイヤー機能を用い重ね合わせたところ、反射ビーズが木材の変形に伴い、その力の分布を示すかのように様々な模様を作り出した。試験片はスギ(Cryptomeria japonica D.Don)を用い、寸法は繊維方向1mm、接線方向1mm、放射方向2mmに設定した。圧縮前の木材とある程度ひずませた木材の中心を基準とし合成した画像が図10の写真である。この写真には反射ビーズが模様を描かない部分が確認できるが、その部分は木材変形が起っていないと考えられる。横圧縮の場合、荷重側の軟らかい早材から圧縮され硬い晩材に力が伝達され、次の年輪界に力が伝達されていくと考えられる。また、図10の写真では左上から右下に年輪界が走っている。それとは相反する形で反射ビーズの挙動が確認できない部分がある。つまり、荷重方向に対して年輪界が直交していないので各年輪に対して力が伝わる時間が異なると考えられる。反射ビーズの挙動が起きなかった部分には荷重を与えて力が伝達するのに時間がかかり、反射ビーズの挙動が大きい部分は力の伝達が早くひずみが起こっていると推定できる。
[Example 2]
Considering the measurement of deformation of wood using reflective beads from a different point of view, we thought that we could focus on the behavior of reflective beads themselves, and conducted the following experiments.
That is, a compression test was performed in the same manner as described above, and at the same time, images were taken with a digital camera. When the obtained images were overlaid using the layer function of Adobe Photoshop 6.0, the reflection beads produced various patterns as if they showed the distribution of force as the wood deformed. The specimen was Cryptomeria japonica D. Don, and the dimensions were set to 1 mm in the fiber direction, 1 mm in the tangential direction, and 2 mm in the radial direction. An image synthesized based on the center of the uncompressed wood and the wood distorted to some extent is the photograph in FIG. In this photograph, the part where the reflective bead does not draw a pattern can be confirmed, but it is thought that the part has no wood deformation. In the case of lateral compression, it is considered that the force is transmitted from the soft early material on the load side to the hard late material, and the force is transmitted to the next annual ring field. In addition, in the photograph of FIG. 10, the annual ring world runs from the upper left to the lower right. There is a part in which the behavior of the reflective bead cannot be confirmed in an opposite manner. That is, since the annual ring field is not orthogonal to the load direction, it is considered that the time during which the force is transmitted to each annual ring is different. It can be estimated that it takes time to transmit the force by applying a load to the portion where the behavior of the reflective bead does not occur, and that the portion where the behavior of the reflective bead is large is transmitted quickly and is distorted.

一方、図13の写真は、曲げ試験において板目面を撮影し、荷重を与える前と破壊寸前との画像を合成したもので、この画像も試験片の中央で重ね合わせた。試験片にスギ(Cryptomeria japonica D.Don)を用い、寸法は繊維方向300mm、接線方向12mm、放射方向12mmに設定した。スパンは280mmに設定した。興味深いことに、中心部では反射ビーズの挙動は見られず、中心部を避けるように引張り側から荷重側に弧を描きながら移動しているのが見える。これらは、木材にかかる力の分布を示しているようで大変興味深い。
以上の実験より、反射ビーズの挙動を合成画像で観察することにより、材料にかかる力分布をあらわす模様を確認することができることがわかった。
On the other hand, the photograph in FIG. 13 was obtained by photographing the surface of the plate in a bending test and synthesizing images before applying a load and immediately before breaking, and this image was also superimposed at the center of the test piece. Sugi (Cryptomeria japonica D. Don) was used for the test piece, and the dimensions were set to 300 mm in the fiber direction, 12 mm in the tangential direction, and 12 mm in the radial direction. The span was set to 280 mm. Interestingly, the behavior of the reflective bead is not seen in the center, and it can be seen that it moves while drawing an arc from the tension side to the load side so as to avoid the center. These are very interesting as they show the distribution of force on the wood.
From the above experiments, it was found that the pattern representing the force distribution applied to the material can be confirmed by observing the behavior of the reflective bead in the composite image.

本発明によれば、反射ビーズをうまく利用することにより、木材、金属、プラスチックスからなる構造材や部材などのひずみを簡便に測定することができ、特に、写真画像を合成することにより局所的なひずみの生じ方を知ることができるので、予め使用しようとする部材についてひずみの発生具合を確認したり、既に構造物などを構成している構造材に生じたひずみなどを容易にかつ低コストで測定することができる。  According to the present invention, it is possible to easily measure the strain of a structural material or member made of wood, metal, or plastics by making good use of reflective beads, and in particular, locally by combining photographic images. Since it is possible to know how to generate a large amount of distortion, it is easy to check the degree of occurrence of distortion for members to be used in advance, and to easily and low-cost the distortion that has already occurred in structural materials that make up structures. Can be measured.

実施例で使用した実験装置の模式図Schematic diagram of the experimental equipment used in the examples 実施例で使用した試験片の形状・寸法の説明図Explanatory drawing of the shape and dimensions of the test pieces used in the examples 実施例で使用したボール型反射ビーズ吹き付け装置の模式図Schematic diagram of the ball-type reflective bead spraying device used in the examples 反射ビーズの総面積を算出する画像解析のフローチャートFlow chart of image analysis to calculate total area of reflective beads 特定濃度分布範囲と反射ビーズ面積の関係を表わすグラフGraph showing the relationship between specific concentration distribution range and reflective bead area 試験機表示ひずみに対するビーズ面積増加率と撮影範囲ひずみの関係を表わすグラフGraph showing the relationship between the increase rate of the bead area and the imaging range distortion against the tester display strain 撮影範囲ひずみとビーズ面積の関係を表わすグラフA graph showing the relationship between distortion and shooting area 圧縮前の試験片のデジタル写真Digital photograph of specimen before compression 圧縮後の試験片のデジタル写真Digital photograph of the specimen after compression 圧縮試験片測定時の合成実体写真Synthetic entity photo when measuring compression specimen 曲げ試験前の試験片のデジタル写真Digital photograph of specimen before bending test 曲げ試験後の試験片のデジタル写真Digital photograph of specimen after bending test 曲げ試験片測定時の合成実体写真Synthetic entity photo when measuring bending specimen

符号の説明Explanation of symbols

1 万能試験機
2 上下・前後移動装置
3 アングル
4 試験片・圧縮治具
5 デジタルカメラ
6 垂直落射照明装置
1 Universal testing machine 2 Vertical / backward moving device 3 Angle 4 Test piece / Compression jig 5 Digital camera 6 Vertical epi-illumination device

Claims (6)

物体のひずみを測定するに当り、被測定物体の表面に再帰反射性ビーズを均一に付着させ、その面に光を照射して、該再帰反射性ビーズからの反射光の変化を調べることにより、ひずみを測定することを特徴とするひずみの測定方法。  In measuring the distortion of the object, the retroreflective beads are uniformly attached to the surface of the object to be measured, the surface is irradiated with light, and the change in the reflected light from the retroreflective beads is examined. A method for measuring strain, comprising measuring strain. 被測定物体の表面に接着剤を均一に塗布し、再帰反射性ビーズを分散させた気体を接着剤塗布面に接触させることにより、被測定物体の表面に再帰反射性ビーズを均一に付着させることを特徴とする請求項1記載のひずみの測定方法。  Apply the adhesive evenly to the surface of the object to be measured, and make the retroreflective beads evenly adhere to the surface of the object to be measured by bringing the gas in which the retroreflective beads are dispersed into contact with the adhesive application surface. The strain measuring method according to claim 1. ひずみ発生時にデジタルカメラで反射ビーズ付着面からの反射光を撮影し、その撮影画像から単位面積当りの反射ビーズの総面積を算出することにより、反射光の変化を調べることを特徴とする請求項1記載のひずみの測定方法。  The reflected light from the reflective bead-attached surface is photographed with a digital camera when distortion occurs, and the change in the reflected light is examined by calculating the total area of the reflective beads per unit area from the photographed image. The method for measuring strain according to 1. ひずみ発生前及び発生時にデジタルカメラで反射ビーズからの反射光を撮影し、各撮影画像を合成して、ひずみの経緯を観察することを特徴とする請求項1記載のひずみの測定方法。  The strain measurement method according to claim 1, wherein the reflected light from the reflective beads is photographed by a digital camera before and at the time of occurrence of the strain, the captured images are synthesized, and the history of the strain is observed. 再帰反射性ビーズを付着させた被測定物体の表面に光を照射する手段と、該再帰反射性ビーズからの反射光を撮影してデジタル画像にする手段と、撮影したデジタル画像を解析して単位面積当たりの反射ビーズの総面積を算出する手段とを備えることを特徴とするひずみの測定システム。  Means for irradiating light on the surface of the object to be measured with the retroreflective beads attached, means for photographing the reflected light from the retroreflective beads into a digital image, and analyzing the photographed digital image for unit And a means for calculating the total area of the reflective beads per area. 再帰反射性ビーズを付着させた被測定物体の表面に光を照射する手段と、該再帰反射性ビーズからの反射光を撮影してデジタル画像にする手段と、撮影したデジタル画像を合成してひずみの経緯を画像表示する手段とを備えることを特徴とするひずみの測定システム。  A means for irradiating light on the surface of the object to be measured with the retroreflective beads attached, a means for photographing the reflected light from the retroreflective beads into a digital image, and a combination of the photographed digital images for distortion And a means for displaying an image of the history of the distortion.
JP2006357309A 2006-12-20 2006-12-20 Method and system for measuring strain Pending JP2008139273A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006357309A JP2008139273A (en) 2006-12-20 2006-12-20 Method and system for measuring strain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006357309A JP2008139273A (en) 2006-12-20 2006-12-20 Method and system for measuring strain

Publications (1)

Publication Number Publication Date
JP2008139273A true JP2008139273A (en) 2008-06-19

Family

ID=39600883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006357309A Pending JP2008139273A (en) 2006-12-20 2006-12-20 Method and system for measuring strain

Country Status (1)

Country Link
JP (1) JP2008139273A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224605A (en) * 2007-03-15 2008-09-25 Sumitomo Chemical Co Ltd Measuring method and device of deformation behavior
CN108318518A (en) * 2018-01-31 2018-07-24 华侨大学 A kind of detection device for expansion type steel structure fire-proof coating heat-proof quality
CN108895978A (en) * 2018-07-18 2018-11-27 大连理工大学 A kind of fibre optical sensor strain sensitivity scaling method based on bare fibre
CN109945796A (en) * 2019-04-12 2019-06-28 四川大学 A kind of contactless measuring system and method for the microstrain of rock sample circumferential direction
CN113959353A (en) * 2021-10-20 2022-01-21 武汉奥绿新生物科技股份有限公司 Optical titanium nail detection platform

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008224605A (en) * 2007-03-15 2008-09-25 Sumitomo Chemical Co Ltd Measuring method and device of deformation behavior
CN108318518A (en) * 2018-01-31 2018-07-24 华侨大学 A kind of detection device for expansion type steel structure fire-proof coating heat-proof quality
CN108895978A (en) * 2018-07-18 2018-11-27 大连理工大学 A kind of fibre optical sensor strain sensitivity scaling method based on bare fibre
CN109945796A (en) * 2019-04-12 2019-06-28 四川大学 A kind of contactless measuring system and method for the microstrain of rock sample circumferential direction
CN109945796B (en) * 2019-04-12 2024-02-23 四川大学 Non-contact measurement system and method for circumferential micro-strain of rock sample
CN113959353A (en) * 2021-10-20 2022-01-21 武汉奥绿新生物科技股份有限公司 Optical titanium nail detection platform

Similar Documents

Publication Publication Date Title
JP5632650B2 (en) Inspection system and method using multi-image phase shift analysis
JP6358359B2 (en) Metal plate repair method and mold manufacturing method
TW201109646A (en) Inspection systems for glass sheets
CN107632029A (en) A kind of digital image correlation technique experimental provision based on X-ray transmission imaging
Li et al. Application of digital image correlation to full-field measurement of shrinkage strain of dental composites
JP2008139273A (en) Method and system for measuring strain
WO2017179535A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
CN104062178A (en) Method for accurately measuring modulus of high-modulus monofilament fiber
KR20120040981A (en) A mesuring method for stress-strain curve and a apparatus for the same
CN111307347A (en) Device and method for testing main stress of surface of test piece
Malesa et al. Application of digital image correlation (DIC) for tracking deformations of paintings on canvas
JP5842864B2 (en) Deformation behavior measurement method during impact fracture test of steel materials
JP5164086B2 (en) Method and apparatus for detecting distortion of an object
TW201013172A (en) Lens testing device with variable testing patterns
Conrad et al. GPU-based digital image correlation system for uniaxial and biaxial crack growth investigations
Hijazi et al. Contribution of the imaging system components in the overall error of the two-dimensional digital image correlation technique
Gadhe et al. Digital image correlation technique for strain measurement of aluminium plate
JP5557586B2 (en) Surface texture measuring device and surface texture measuring method
WO2006082932A1 (en) Defective particle measuring apparatus and defective particle measuring method
CN211401505U (en) Test piece surface principal stress testing arrangement
JP3417494B2 (en) Method and apparatus for inspecting surface undulation of glass substrate
CN112229820B (en) Method for measuring refractive index of dye cell
JP2001056272A (en) Measuring method of stress enlarging factor
Factor et al. Vickers microindentation of WC–12% Co thermal spray coating: Part 2: the between-operator reproducibility limits of microhardness measurement and alternative approaches to quantifying hardness of cemented-carbide thermal spray coatings
Reis et al. Noise reduction for DIC measurements