JP2008224328A - 位置演算システム、位置演算装置および位置演算方法 - Google Patents

位置演算システム、位置演算装置および位置演算方法 Download PDF

Info

Publication number
JP2008224328A
JP2008224328A JP2007060748A JP2007060748A JP2008224328A JP 2008224328 A JP2008224328 A JP 2008224328A JP 2007060748 A JP2007060748 A JP 2007060748A JP 2007060748 A JP2007060748 A JP 2007060748A JP 2008224328 A JP2008224328 A JP 2008224328A
Authority
JP
Japan
Prior art keywords
image
connected component
ring image
light
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007060748A
Other languages
English (en)
Inventor
Yasuji Seko
保次 瀬古
Hiroyuki Hotta
宏之 堀田
Yasuyuki Saguchi
泰之 佐口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP2007060748A priority Critical patent/JP2008224328A/ja
Publication of JP2008224328A publication Critical patent/JP2008224328A/ja
Withdrawn legal-status Critical Current

Links

Images

Abstract

【課題】 光源からの光でレンズの球面収差により形成される光のリング像の大きさが十分でない場合であっても、リング像の中心位置を算出することができる位置演算システム、位置演算装置および位置演算方法を提供する。
【解決手段】 位置演算システムは、光源1〜4と、光源からの光で球面収差により光のリング像11を形成するレンズ12と、リング像を撮像するイメージセンサ13と、撮像素子による撮像画像に対して連結成分解析を行って演算対象領域を設定し、この演算対象領域の輝度分布に基づいて算出したリング像の中心位置を用いて光源位置の演算を行う演算装置14とを備える。リング像の中心位置は、例えば演算対象領域の輝度分布において輝度値を二値化することにより抽出したリング像のエッジ点に基づいて算出することができる。
【選択図】 図1

Description

本発明は位置演算システム、位置演算装置および位置演算方法に関するものである。
従来から、発光体(あるいは輝度の高い対象物)の3次元位置を計測する手段としては、デジタルカメラ2台で発光体を撮影し、カメラ2台間の距離を基線とした三角測量の原理で発光体の座標を算出する方法がよく知られている。また、発光体の位置計測を高精度に行う方法として光干渉法がよく知られている。代表的な光干渉法としては、レーザ光源から出た光をビームスプリッターなどを用いて2つに分割し、その一方を対象物に照射し、他方を参照光としてミラーに照射して元の光路に戻し、対象物からの反射光と参照光とを重ね合わせて干渉させる方法がある。
また、光の干渉を用いた別の技術として特許文献1に記載のものがある。特許文献1には、LED光源を一つのカメラで撮像することにより、その3次元位置を計測する技術が開示されている。この技術は、レンズの球面収差を利用して、点光源を光のリング像に変換し、そのリング像のサイズから光源までの距離を計測し、リング像の中心位置から光源が存在する方向を決定することで、光源の3次元座標を計測するものである。
特開2004−212328号公報
本発明の目的は、光源からの光でレンズの球面収差により形成される光のリング像の大きさが十分でない場合であっても、リング像の中心位置を算出することができる位置演算システム、位置演算装置および位置演算方法を提供することにある。
本発明は、上記目的を達成するため、以下の位置演算システム、位置演算装置および位置演算方法を提供する。
<1> 光源と、前記光源からの光で球面収差により光のリング像を形成するレンズと、前記リング像を撮像する撮像素子と、前記撮像素子による撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度の分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算する演算装置とを備えた位置演算システム。
<2>前記リング像の中心位置が、前記演算対象領域の輝度の分布において輝度値を二値化することにより抽出した前記リング像の前記二値の境界位置に基づいて算出されることを特徴とする上記<1>記載の位置演算システム。
<3> 前記二値化のしきい値として、前記演算対象領域の輝度分布において、輝度の分布を所定単位面積からなる単位画素の2次元配列で表現したときに、画素数が極大を示す2つの輝度値の間の値を用いることを特徴とする上記<2>記載の位置演算システム。
<4> 前記二値化のしきい値として、前記演算対象領域の画素の平均輝度値を用いることを特徴とする上記<2>記載の位置演算システム。
<5> 前記リング像の中心位置が、前記演算対象領域の輝度の分布において画素数が極大を示す2つの輝度値のうち高輝度側の輝度値に対応する画素位置から算出されることを特徴とする上記<1>記載の位置演算システム。
<6> 前記連結成分解析が、前記撮像画像より低解像度の画像に対して行う第1の連結成分解析と、前記第1の連結成分解析から得られた連結成分領域に対応する前記撮像画像領域に対して行う第2の連結成分解析とを含むことを特徴とする上記<1>〜<5>のいずれかに記載の位置演算システム。
<7> 前記演算対象領域が、前記リング像外周の接線で構成される領域であることを特徴とする上記<1>〜<6>のいずれかに記載の位置演算システム。
<8> 光源からの光でレンズの球面収差により形成した光のリング像の撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度の分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算することを特徴とする位置演算装置。
<9> 前記連結成分解析が、前記撮像画像より低解像度の画像に対して行う第1の連結成分解析と、前記第1の連結成分解析から得られた連結成分領域に対応する前記撮像画像領域に対して行う第2の連結成分解析とを含むことを特徴とする上記<8>記載の位置演算装置。
<10> 光源からの光でレンズの球面収差により形成した光のリング像の撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度の分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算することを特徴とする位置演算方法。
<11> コンピュータに、
光源からの光でレンズの球面収差により形成した光のリング像の撮像画像を入力する手順と、
前記撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算する手順
を実行させるための位置演算プログラム。
請求項1に係る位置演算システムによれば、本発明を利用しない場合に比べて、光源からの光でレンズの球面収差により形成される光のリング像の大きさにかかわらず、リング像の中心位置を算出することができる。
請求項2に係る位置演算システムによれば、二値化することによって、二値化しない場合に比べて画像が単純化されるため、演算のためのアルゴリズムも単純化できる。
請求項3に係る位置演算システムによれば、本発明を用いない場合に比べて、リング像を含む領域全体の画素数のバランスを考慮した上でしきい値が設定でき、リング像の輝度が十分でない場合であっても、リング像の中心位置を算出することができる。
請求項4に係る位置演算システムによれば、本発明を用いない場合に比べて、リング像を含む領域全体の輝度値の大きさを考慮した上でしきい値が設定でき、リング像の輝度が十分でない場合であっても、リング像の中心位置を算出することができる。
請求項5に係る位置演算システムによれば、二値化した場合、極大を示す2つの輝度値のうち高輝度側がリング像に対応するため、リング像を含む領域をより適切に検出することができる。
請求項6に係る位置演算システムによれば、予め解像度が低い画像について解析するため、処理が早くなる。
請求項7に係る位置演算システムによれば、本発明を適用しない場合に比べて、リング像を含む領域として不要な情報を少なくすることができる。
請求項8に係る位置演算装置によれば、本発明を利用しない場合に比べて、光源からの光でレンズの球面収差により形成される光のリング像の大きさにかかわらず、リング像の中心位置を安定して算出することができる。
請求項9に係る位置演算装置によれば、予め解像度が低い画像について解析するため、処理が早くなる。
請求項10に係る位置演算方法によれば、本発明を利用しない場合に比べて、光源からの光でレンズの球面収差により形成される光のリング像の大きさにかかわらず、リング像の中心位置を安定して算出することができる。
請求項11に係る位置演算プログラムによれば、本発明を利用しない場合に比べて、光源からの光でレンズの球面収差により形成される光のリング像の大きさにかかわらず、リング像の中心位置を安定して算出することができる。
以下、本発明の実施例を図面にしたがって説明する。
図1は本発明に係る位置演算システムの一実施例を示す図で、(a)はシステム構成図、(b)は撮像された光のリング像の概念図ある。図1(a)に示すように、本位置演算システムは、互いの位置関係が判明している4個のLED光源1〜4と、光源からの光を透過して球面収差により光のリング像11を形成するレンズ12と、リング像11を撮像する撮像素子としてのイメージセンサ13と、イメージセンサ13による撮像画像(元画像)に対して連結成分解析を行い、撮像画像に含まれる複数の連結成分領域の中からリング像11に対応する連結成分領域を検出するとともに、撮像画像においてリング像11に対応する連結成分領域を含む演算対象領域を設定し、演算対象領域の輝度の分布(以下、単に「輝度分布」と記す)に基づいてそれぞれのリング像11の中心位置を算出し、その中心位置を用いて光源位置(3次元座標)を演算する演算装置14とを備える。
本例では、LED光源1〜4はそれぞれ発光波長が例えば900nmであり、同一平面上に存在し、矩形部材としてのカード5の4つの頂点位置に配置される。カード5は、例えば一辺の長さ5〜10cmの正方形であるが、長方形でもよい。LED光源1〜4は、カード5に搭載した図示しない発光制御装置により発光が制御される。
光源1〜4の位置M1〜M4は、図示のようにカード上における座標系(以下、マーカー座標系と記載する)(Xm,Ym,Zm)の原点をp0として、それぞれ(Xm1,Ym1,Zm1)、(Xm2,Ym2,Zm2)、(Xm3,Ym3,Zm3)、(Xm4,Ym4,Zm4)で示される。レンズ12は、図示のように、球面側を向かい合わせに配置した2つの半球レンズを備えるが、これに限定されることなく、例えば1つの半球レンズで構成することもでき、またこれ以外のレンズを用いてもよい。このように本願における「レンズ」は1つまたは複数の光学レンズを含むものとして用いられる。イメージセンサ13はCCDやCMOS等で構成することができる。カメラ10は、レンズ12とイメージセンサ13を含んで構成される。カメラ座標系は図示のように(Xc,Yc,Zc)、センサ座標系は(u,v)で示される。演算装置14は、例えばパソコン(PC)等のコンピュータを用いることができる。
カメラ10は、見かけ上は通常のカメラと同じようであるが、レンズとイメージセンサの位置に工夫がある。レンズ12には球面収差の大きなレンズとして、半径22mmの半球レンズ2個を互いに球面側を向かい合わせた構造のレンズを使用した。イメージセンサ13はレンズ12の焦点位置よりもレンズ側(光源側)に配置した。また、イメージセンサ13には12mm×14mmサイズのCMOSセンサ(1280画素×960画素)を使用した。イメージセンサ13の前面には850nmより長波長だけを透過するフィルター(図示しない)を設置した。このようにして、光源からの光でレンズ12の球面収差により形成されたリング像11をイメージセンサ13で撮像する。撮像されたリング像は、図1(b)に示すように、光源1〜4に対応して4つできる。次に光のリング像の形成原理について説明する。
図2は、レンズによる光のリング像の形成の様子を示す図であり、(a)、(b)は球面側を向かい合わせに配置した2つの半球レンズを用いる場合、(c)、(d)は1つの半球レンズを用いる場合を示す。
2つの半球レンズを用いる場合、図2(a)に示すように、LED光源20から発せられた光線は、球面側を向かい合わせに配置した2つの半球レンズ12a,12bを備えたレンズ12によって集光され、イメージセンサ13上に図2(b)に示すような光のリング像11を形成する。その原理は次のとおりである。図2(a)において、光源20から放射された光は、図の光線の軌跡に示すように半球レンズ12aの第1面である平面に入射する。ここで光はスネルの法則に従って屈折する。次に光は半球レンズ12aの球面形状の第2面に到達し、屈折する。続いて光は半球レンズ12bの球面形状の第1面に入射し、屈折する。さらに光は半球レンズ12bの第2面である平面に到達し、屈折する。このようにして半球レンズ12a,12bを通過した光は、イメージセンサ13上において、図2(b)に示すような光密度が高い光集中領域であるリング像11を形成する。リング像11は例えば円形状または楕円形状を有する。
1つの半球レンズを用いる場合、図2(c)に示すように、LED光源20から発せられた光線は、1つの半球レンズ12cを備えたレンズ12によって集光され、イメージセンサ13上に図2(d)に示すような光のリング像11を形成する。その原理は上記の場合と同様に次のとおりである。図2(c)において、光源20から放射された光は、図の光線の軌跡に示すように半球レンズ12cの第1面である平面に入射する。ここで光はスネルの法則に従って屈折する。次に光は半球レンズ12cの球面形状の第2面に到達し、屈折する。このようにして半球レンズ12cを通過した光は、イメージセンサ13上において、図2(d)に示すような光密度が高い光集中領域であるリング像11を形成する。
以上の原理の詳細は前述の特許文献1に記載のとおりである。
図3は、リング像の撮像画像から光源の位置(3次元座標)を演算するための方法の一例を示すフロー図である。本例では、図1の演算装置14において、イメージセンサ13による撮像画像(元画像)に対して連結成分解析を行い、撮像画像に含まれる複数の連結成分領域の中からリング像11に対応する連結成分領域を検出するとともに、撮像画像においてリング像11に対応する連結成分領域を含む演算対象領域を設定し、演算対象領域の輝度分布に基づいてそれぞれのリング像11の中心位置を算出し、その中心位置を用いてそれぞれの光源の3次元座標を演算する。まず、図示のように、ステップ31にて、イメージセンサ13で撮像した元画像を入力する。本例においては、撮像画像は、演算処理に適するように、所定単位面積の単位画素を2次元状に配置して表現した、画素マトリックス画像として表現されている。次に、ステップ32にて、この元画像に対して連結成分解析を行い、連結されている成分を解析する。
連結成分解析(connected component analysis)は、画像の中の同じクラスの画素からなるクラスタを識別する方法として知られている。具体的には、隣接するデータ要素を解析し、それが連結成分の一部を構成しているか否かを判定し、さらにセグメント化する場合も含む。例えば本願の光のリング像のように囲みを形成している画素はすべて連結されており、したがって連結成分を構成していると判定する。本例において、連結成分解析は例えば次のようにして行われる。まず、画像をあるしきい値で二値化し、1と0の白黒画像にする。画像の左上から横方向(右)に各画素の輝度(白黒)値をスキャンし、1の値を持つピクセルに対し番号を割り当てていく。1行が終わると次の行に移動し、同様に左から右方向にスキャンする。画素に番号を割り付ける場合に、その画素の左と上の値を参照し、それらがある番号を持っている場合には、その番号を割り付ける。右下まで番号を割り付けた後、再度左上から横方向にスキャンし、各画素において、前後左右の画素の番号を参照し、異なる番号を有する場合には同一番号を付与し、その領域が統一された番号を持つようにする。これにより、画像の連続した白領域に同一番号を付与する。これにより連結されている成分が検出される。そして、撮像画像においてリング像11に対応する連結成分領域を含む演算対象領域を設定する。。
この連結成分解析は段階的に行うことができ、例えば、所望する解像度より小さい解像度の画像(例えば元画像の縮小画像)に対して行う第1の連結成分解析と、第1の連結成分解析から得られた連結成分領域に対応する元画像領域に対して行う第2の連結成分解析とを含むことができる。ここで、第1の連結成分解析における縮小画像は元画像の数分の一画像(例えば1/4画像)とすることができる。
また、演算対象領域は、例えば図4(a)に示すようにリング像を含む最小矩形領域41とすることができるが、これに限定されず、例えば図4(b)に示すようにリング像外周の接線で構成される領域42とすることができる。図4(a)、(b)の例はリング像が3つの場合であるが、それ以外の数の場合も同様に適用可能である。
次に、図3に戻って、ステップ33にて、演算対象領域を1つ選択する。そして、ステップ34にて、この演算対象領域の輝度分布において各画素の輝度値を二値化し、リング像のエッジ点(二値化したときの境界位置)を抽出する。図5(a)、(b)は、演算対象領域の各画素値を二値化する場合のしきい値の選び方を説明するための図である。まず、図5(a)は、横軸を輝度値(輝度レベル)、縦軸を画素数として作成した、最小矩形領域(演算対象領域)51についての輝度分布(輝度ヒストグラム)を示す図である。図5(b)は、横軸を画素位置、縦軸を輝度値として作成した、最小矩形領域(演算対象領域)51についての輝度分布を示す図である。二値化のためのしきい値は、例えば図5(a)に示すように、演算対象領域の輝度分布(輝度ヒストグラム)において画素数の第1ピーク(極大)(高輝度側)および第2ピーク(極大)(低輝度側)の2つの輝度値の間の値とすることができる。また、このしきい値は、例えば図5(b)に示すように、演算対象領域の画素の平均輝度値とすることができる。
続いて、ステップ35にて、抽出したリング像のエッジ点に対しハフ変換を行うことによりリング像の中心位置を算出する。これを図6(a)、(b)を用いて説明する。まず、ハフ変換による円パラメータを検出するため、図6(a)に示すように、円の最外周のエッジ点から3点(n1,n2,n3)を選び、円中心(x、y)と半径rを計算する。その値をある値で割って、図6(b)に示す投票空間ボックスX,Y,Rを算出する。エッジ点3点から得られるX,Y,Rがすでに存在している場合には、そこへの投票数に1を加える。同じX,Y,Rが存在しない場合には図6(b)のテーブルの末尾にX,Y,Rを追加し、投票数に1を加える。最大投票数を獲得した円をその領域で検出される円パラメータとする。本例では、図6(b)におけるリストNo.2のX,Y,Rが相当する。このようにしてリング像の中心位置を決定する。
エッジの3点(n1、n2、n3)は、n1、n2、n3がこの順に並んでいたとすると、弧n1n2がm以上、弧n2n3がm以上、弧n1n2n3が3m以下になるように選定することが好ましい。このような選定方法により、円を決定する上で、近すぎず遠すぎない適当な距離を持ったエッジ点3点を抽出することができる。これにより重なった円であっても各円を抽出でき、かつ適切な精度を得ることができる。
上記3点の1組から円中心位置と半径を計算し、その結果を図6(b)のようなテーブル形式で表現された(X,Y,R)の場所に投票する。その際、投票するボックスサイズを画素サイズそのものである(x,y,r)とすると投票される数が少なくなり最多得票ボックスを決定することが難しくなる場合があるので、これを適当な大きなのボックスとするために、(x,y,r)をボックスサイズで割り算した。この場合、X=round(x/sizeX),Y=round(y/sizeY),R=round(r/sizeR)である。これにより、最多得票数の値を容易に決定できるようになる。
リング像の中心位置の算出はハフ変換によるものに限定されない。例えば、演算対象領域の輝度分布において画素数がピークを示す高輝度側の輝度値に対応する画素位置からリング像の中心位置を計算することでもよい。
次に、ステップ36にて、リング像を検出しない場合は後述のステップ38に移行し、リング像を検出した場合は、ステップ37にて、それを消去して前述のステップ35に戻る。ステップ38では、他の連結成分があるかどうかをみて、ある場合は前述のステップ33に戻り、ない場合は次のステップ39に移行する。ステップ39では、上記で算出したリング像の中心位置を用いて光源の位置(3次元座標)を演算する。
光源の位置の演算方法は例えば次のようにして行われる。いま、図1(a)において、LED光源1〜4を搭載した一辺の長さaの正方形カード5について考える。図示のように、カード5はその中心p0のマーカー座標系(Xm,Ym,Zm)で表され、この場合、光源1の位置M1(Xm1,Ym1,Zm1)、光源2の位置M2(Xm2,Ym2,Zm2)、光源3の位置M3(Xm3,Ym3,Zm3)、光源4の位置M4(Xm4,Ym4,Zm4)である。カメラ10側をセンサ座標系(u,v)、カメラ座標系(Xc,Yc,Zc)で表す。カメラ座標における空間点(Xc,Yc,Zc)を次式(1)のように規格化射影する。
Figure 2008224328
カメラのレンズ歪みの補正を加えると、次式(2)となる。
Figure 2008224328
ここで、r=un+vn、ki,liは係数である。カメラの内部パラメータから、実際に撮像される画像点のセンサ座標が次式(3)のように得られる。
Figure 2008224328
マーカー座標とセンサ座標との関係は射影行列Pを用いて次式(4)となる。
Figure 2008224328
上式において右辺は定数λ倍の不定性があるので、P33=1とおける。未知数は8個である。マーカー座標Xm,Ymなどと、これに対応する画像点のセンサ座標(u,v)を代入すると光源1個につき、次式(5)が得られる。
Figure 2008224328
光源4個から得た式を次式(6)のように変形すると、射影行列Pが求められる。
Figure 2008224328
射影行列Pは次式(7)のようにカメラ内部行列と外部行列(回転R、並進t)の積で表される。
Figure 2008224328
式(6)からP11〜P32が求められる。これを式(7)に代入する。右辺第1項は既知なので、右辺第2項[R1 R2 T]が得られる。右辺第2項はカメラの外部行列で、LEDカードに対するカメラの回転角度と並進距離を表している。カメラ側から考えると、LEDカードの角度を位置を表しており、これから個々の光源の3次元位置を算出することができる。回転角度R1、R2と並進Tを求め、R3=R1×R2から3つの回転角度を得る。回転と並進がLEDカードの位置と角度を与える。さらに精度を上げるために、LEDカードの回転と並進の6自由度を変化させて、センサに射影される光源座標(up,vp)を計算し、実際に得たリング像の中心位置(uc,vc)と最も近くなる位置を求める。これを最適解とする。例えば、次式(8)に示す誤差関数を最小にする最適解を求める。
Figure 2008224328
なお、複数のLED光源搭載のカードが複数存在し、画像入力時に多数のリング像が抽出される場合はリング像のグループ分けを行うことができる。この場合、各グループ内でリング像の番号付けを行い、リング像の番号と発光点の3次元位置関係の対応付をして、発光点カードの3次元位置と3軸角度を変化させてその画像の位置を算出し、実際に撮像したリング像の位置に最も近い3次元位置と3軸角度を求めることができる。
上述の方法はコンピュータプログラムとして提供することができる。すなわち、この位置演算プログラムは、コンピュータに、光源からの光でレンズの球面収差により形成した光のリング像の撮像画像を入力する手順と、前記撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算する手順を実行させるためのものである。また、この位置演算プログラムは、これを記録したコンピュータ読み取り可能な記録媒体として提供することもできる。
本発明に係る位置演算システムの一実施例を示す図で、(a)はシステム構成図、(b)は撮像された光のリング像の概念図ある。 レンズによる光のリング像の形成の様子を示す図であり、(a)、(b)は球面側を向かい合わせに配置した2つの半球レンズを用いる場合、(c)、(d)は1つの半球レンズを用いる場合を示す。 リング像の撮像画像から光源の位置(3次元座標)を演算するための方法の一例を示すフロー図である。 (a)、(b)は、連結成分解析により検出する演算対象領域の構成例を示す図である。 (a)、(b)は、演算対象領域を二値化する場合のしきい値の選び方を説明するための図である。 (a)、(b)は、抽出したリング像のエッジ点に対し行うハフ変換を説明するための図である。
符号の説明
1〜4 光源
5 カード
10 カメラ
11 リング像
12 レンズ
13 イメージセンサ
14 演算装置

Claims (11)

  1. 光源と、前記光源からの光で球面収差により光のリング像を形成するレンズと、前記リング像を撮像する撮像素子と、前記撮像素子による撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度の分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算する演算装置とを備えた位置演算システム。
  2. 前記リング像の中心位置が、前記演算対象領域の輝度の分布において輝度値を二値化することにより抽出した前記リング像の前記二値の境界位置に基づいて算出されることを特徴とする請求項1記載の位置演算システム。
  3. 前記二値化のしきい値として、前記演算対象領域の輝度分布において、輝度の分布を所定単位面積からなる単位画素の2次元配列で表現したときに、画素数が極大を示す2つの輝度値の間の値を用いることを特徴とする請求項2記載の位置演算システム。
  4. 前記二値化のしきい値として、前記演算対象領域の画素の平均輝度値を用いることを特徴とする請求項2記載の位置演算システム。
  5. 前記リング像の中心位置が、前記演算対象領域の輝度の分布において画素数が極大を示す2つの輝度値のうち高輝度側の輝度値に対応する画素位置から算出されることを特徴とする請求項1記載の位置演算システム。
  6. 前記連結成分解析が、前記撮像画像より低解像度の画像に対して行う第1の連結成分解析と、前記第1の連結成分解析から得られた連結成分領域に対応する前記撮像画像領域に対して行う第2の連結成分解析とを含むことを特徴とする請求項1〜5のいずれかに記載の位置演算システム。
  7. 前記演算対象領域が、前記リング像外周の接線で構成される領域であることを特徴とする請求項1〜6のいずれかに記載の位置演算システム。
  8. 光源からの光でレンズの球面収差により形成した光のリング像の撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度の分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算することを特徴とする位置演算装置。
  9. 前記連結成分解析が、前記撮像画像より低解像度の画像に対して行う第1の連結成分解析と、前記第1の連結成分解析から得られた連結成分領域に対応する前記撮像画像領域に対して行う第2の連結成分解析とを含むことを特徴とする請求項8記載の位置演算装置。
  10. 光源からの光でレンズの球面収差により形成した光のリング像の撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度の分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算することを特徴とする位置演算方法。
  11. コンピュータに、
    光源からの光でレンズの球面収差により形成した光のリング像の撮像画像を入力する手順と、
    前記撮像画像に対して連結成分解析を行い、該連結成分解析により得られる前記撮像画像に含まれる複数の連結成分領域の中から該リング像に対応する連結成分領域を検出するとともに、前記撮像画像において該リング像に対応する連結成分領域を含む演算対象領域を設定し、前記演算対象領域の輝度分布に基づいて該リング像の中心位置を算出し、該中心位置を用いて前記光源の位置を演算する手順
    を実行させるための位置演算プログラム。
JP2007060748A 2007-03-09 2007-03-09 位置演算システム、位置演算装置および位置演算方法 Withdrawn JP2008224328A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007060748A JP2008224328A (ja) 2007-03-09 2007-03-09 位置演算システム、位置演算装置および位置演算方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007060748A JP2008224328A (ja) 2007-03-09 2007-03-09 位置演算システム、位置演算装置および位置演算方法

Publications (1)

Publication Number Publication Date
JP2008224328A true JP2008224328A (ja) 2008-09-25

Family

ID=39843142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007060748A Withdrawn JP2008224328A (ja) 2007-03-09 2007-03-09 位置演算システム、位置演算装置および位置演算方法

Country Status (1)

Country Link
JP (1) JP2008224328A (ja)

Similar Documents

Publication Publication Date Title
US10791320B2 (en) Non-uniform spatial resource allocation for depth mapping
US9432655B2 (en) Three-dimensional scanner based on contours from shadow images
US9817159B2 (en) Structured light pattern generation
JP6484072B2 (ja) 物体検出装置
JP6394081B2 (ja) 画像処理装置、画像処理システム、画像処理方法、及びプログラム
WO2016158856A1 (ja) 撮像システム、撮像装置、撮像方法、及び撮像プログラム
US20120242795A1 (en) Digital 3d camera using periodic illumination
US20070176927A1 (en) Image Processing method and image processor
US20110019243A1 (en) Stereoscopic form reader
WO2012053521A1 (ja) 光学情報処理装置、光学情報処理方法、光学情報処理システム、光学情報処理プログラム
US20170140537A1 (en) System and method for scoring clutter for use in 3d point cloud matching in a vision system
JP2020197797A (ja) 画像処理装置及び画像処理方法
US20160245641A1 (en) Projection transformations for depth estimation
WO2012029658A1 (ja) 撮像装置、画像処理装置、画像処理方法及び画像処理プログラム
JP2007508557A (ja) 三次元物体を走査するための装置
US9924066B2 (en) Image processing apparatus, information processing method, and program
JP5857712B2 (ja) ステレオ画像生成装置、ステレオ画像生成方法及びステレオ画像生成用コンピュータプログラム
WO2022050279A1 (ja) 三次元計測装置
US9979858B2 (en) Image processing apparatus, image processing method and program
JP2007298376A (ja) 境界の位置決定装置、境界の位置を決定する方法、当該装置としてコンピュータを機能させるためのプログラム、および記録媒体
JP2020004085A (ja) 画像処理装置、画像処理方法及びプログラム
JP2008224328A (ja) 位置演算システム、位置演算装置および位置演算方法
JP7298687B2 (ja) 物体認識装置及び物体認識方法
TWI480507B (zh) 三維模型重建方法及其系統
JP2011059009A (ja) 位置計測対象物、位置計測システム、位置計測用演算装置およびプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100218

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20111007