JP2008223860A - Pipe joint structure for sleeve jacking method - Google Patents

Pipe joint structure for sleeve jacking method Download PDF

Info

Publication number
JP2008223860A
JP2008223860A JP2007062073A JP2007062073A JP2008223860A JP 2008223860 A JP2008223860 A JP 2008223860A JP 2007062073 A JP2007062073 A JP 2007062073A JP 2007062073 A JP2007062073 A JP 2007062073A JP 2008223860 A JP2008223860 A JP 2008223860A
Authority
JP
Japan
Prior art keywords
ring
pipe
spacing member
propulsive force
receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007062073A
Other languages
Japanese (ja)
Other versions
JP4740176B2 (en
Inventor
Koji Fujita
弘司 藤田
Yoshihiko Yamamoto
吉彦 山本
Tetsuji Shimoyasu
哲二 下保
Yoshinori Yoshida
義徳 吉田
Naoki Tomita
直岐 冨田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2007062073A priority Critical patent/JP4740176B2/en
Publication of JP2008223860A publication Critical patent/JP2008223860A/en
Application granted granted Critical
Publication of JP4740176B2 publication Critical patent/JP4740176B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To prevent pressure loss of a rubber ring 6 without enlarging diameter of SII type joint for jacking. <P>SOLUTION: A space retention material 8 is fitted in a front side of a flange 20 with a roller 24 of a spigot 1, and a propulsion force transmission member 30 is provided in a front side of the space retention material 8. The propulsion force transmission member 30 comprises a ring shape member 31 abutted on a front side end surface of the space retention material 8, and a projection member 32 passing through a pressing ring 9 from the member 31 and abutting on a socket end surface 2a. Propulsion force is directly transmitted to a socket 2 via the space retention material 8 and the propulsion force transmission member 30, and there is no risk of pressure loss of the rubber ring or the like by the propulsion force and press-in of the spigot not to obstacle water tightness of the rubber ring. When the transmission member 32 passes through the pressing ring 9, it is not necessary to project the transmission member 32 to an outside of the pressing ring 9. The space retention member 8 has strength to transmit propulsion force, and contracts or breakage against strong compression force such as earthquake to allow insertion of the spigot to the socket. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、水道、ガス、下水道等に用いる流体輸送用配管を非開削で布設するさや管推進工法に使用する耐震推進管継手構造に関するものである。   The present invention relates to a seismic-proof propulsion pipe joint structure used for a pipe propulsion method in which a pipe for transporting fluid used for water supply, gas, sewerage, etc. is laid without opening.

ダクタイル鋳鉄管等の流体輸送用配管を埋設する工法としては、地面を開削して布設する開削工法が一般的であったが、近来は幹線道路だけではなく一般道路においても交通量が増加しているので、開削工法のために交通を遮断することは困難となっている。このため、発進立坑と到達立坑だけを開削し、さや管(鞘管)としてヒューム管や鋼管等を推進埋設した後にダクタイル鋳鉄管を挿入するさや管推進工法や、既設管をさや管として、その中に口径の小さい新管を挿入して管路を更新するパイプインパイプ工法(PIP工法)等の推進工法が広く採用されるようになった。   As a method of embedding fluid transport pipes such as ductile cast iron pipes, the open-cut method of excavating and laying the ground has been common, but nowadays traffic volume has increased not only on main roads but also on general roads. Therefore, it is difficult to block traffic due to the open-cut method. For this reason, only the starting and reaching shafts are excavated, and a fume pipe or steel pipe is pushed and buried as a sheath pipe (sheath pipe), then a ductile cast iron pipe is inserted, or an existing pipe is used as a sheath pipe. A propulsion method such as a pipe-in-pipe method (PIP method) in which a new pipe having a small diameter is inserted therein to renew the pipe line has been widely adopted.

そのパイプインパイプ工法は、図9に示すように、発進坑Sと到達坑Rとの間の地中W内に埋設されている既設管P’内にこれよりも径の小さな新管Pを挿入敷設するものであり、発進坑Sには油圧ジャッキJが設置され、この油圧ジャッキJの後部は反力受けHに当接し、前部は押角Bを介して新管Pを押圧するようになっている。新管Pは、その先端部の挿し口1を先行の新管Pの後端部の受口2に挿入することによって順次接合され、既設管P’内に押し込まれて行く。なお、先頭の新管Pの先端部には挿入抵抗を小さくするための先導ソリK等が取り付けられる。   In the pipe-in-pipe method, as shown in FIG. 9, a new pipe P having a smaller diameter than that in the existing pipe P ′ embedded in the underground W between the start pit S and the arrival mine R is provided. The hydraulic jack J is installed in the starting pit S, the rear part of the hydraulic jack J abuts against the reaction force receiving H, and the front part presses the new pipe P through the pushing angle B. It has become. The new pipe P is sequentially joined by inserting the insertion port 1 at the tip end thereof into the receiving port 2 at the rear end part of the preceding new pipe P, and is pushed into the existing pipe P ′. A leading sled K for reducing the insertion resistance is attached to the tip of the leading new pipe P.

このパイプインパイプ工法における既設管等もさや管P’の一つであるため、この明細書(「特許請求の範囲」の記載も含む)においては、図9に示す、上記さや管推進工法、パイプインパイプ工法等のように、さや管P’の中に新管Pを推進挿入して二重管構造とする工法を、特に特定しない限り、総称して「さや管推進工法」と言う。   Since the existing pipe in this pipe-in-pipe construction method is one of the sheath pipes P ′, in this specification (including the description of “Claims”), the sheath pipe propulsion method shown in FIG. Unless otherwise specified, a construction method that pushes and inserts a new pipe P into a sheath pipe P ′ to form a double pipe structure, such as a pipe-in-pipe construction method, is generally referred to as a “sheath pipe construction method”.

一方、近年、管路にも耐震性が要求され、その耐震性を有する管継手構造として、例えば、図10、図11に示すように、受口2に対し挿し口1を所要範囲において伸縮可能(抜き差し可能)としたものがある。この管継手は、ロックリング5付きの受口2に突起3付きの挿し口1がゴム輪6を介在して挿入され、受口2の端面(フランジ)2aと押し輪9をTボルト7が貫通し、その先端のナット7aのねじ込みにより、押し輪9が受口端面2aに近づいて、そのゴム輪6が押し込まれて水密性が高められる。また、受口2から出た挿し口1外周面にローラ24付フランジ20が嵌められ、このフランジ20と前記押し輪9の間に間隔保持材8が介在されたものである(特許文献1 図10参照)。
特開2002−276284号公報
On the other hand, in recent years, pipe lines are also required to have earthquake resistance. As a pipe joint structure having such earthquake resistance, for example, as shown in FIGS. 10 and 11, the insertion opening 1 can be expanded and contracted within a required range. (Can be inserted and removed). In this pipe joint, an insertion port 1 with a projection 3 is inserted into a receiving port 2 with a lock ring 5 through a rubber ring 6, and an end surface (flange) 2 a of the receiving port 2 and a push ring 9 are connected by a T bolt 7. By passing through and screwing in the nut 7a at the tip, the push ring 9 approaches the receiving end face 2a, and the rubber ring 6 is pushed in to improve the watertightness. Further, a flange 20 with a roller 24 is fitted on the outer peripheral surface of the insertion port 1 that has come out from the receiving port 2, and a spacing member 8 is interposed between the flange 20 and the push ring 9 (Patent Document 1). 10).
JP 2002-276284 A

この管継手構造は、推進時、フランジ20のローラ24がさや管P’の内面を転動して管Pを案内しつつ、間隔保持材8により、同図に示すように、挿し口1の先端(突起3)を伸縮代Lの中程に維持する。地震等の地盤変動時には、挿し口1の引き抜き力に対しては、挿し口1がその突起3がロックリング5に当接する伸び代L分、後退して(引き抜かれて)、その力を吸収すると共に、突起3とロックリング5の係止によってそれ以上の引抜きを阻止し、挿し口1の挿し込み力に対しては、間隔保持材8が収縮又は圧壊することにより、挿し口1がその先端が受口2内面の奥端段部2bに突き当たる縮み代L分、軸方向に移動するとともに、その先端と奥端段部2bの係止によってそれ以上の縮みを阻止し、その地盤変動を吸収して、継手の破損を防止する。 In this pipe joint structure, during propulsion, the roller 24 of the flange 20 rolls on the inner surface of the sheath pipe P ′ to guide the pipe P, and as shown in FIG. The tip (projection 3) is maintained in the middle of the expansion / contraction allowance L. When the ground changes due to an earthquake or the like, with respect to the pulling-out force of the insertion slot 1, the insertion slot 1 is retracted (pulled out) by an extension allowance L 1 in which the projection 3 abuts against the lock ring 5. In addition to absorbing, the engagement between the projection 3 and the lock ring 5 prevents further withdrawal, and the insertion force of the insertion port 1 causes the insertion port 1 to contract or collapse due to the spacing member 8 contracting or crushing. The tip moves in the axial direction by a shrinkage allowance L 2 that abuts against the inner end 2 of the receiving port 2 , and further shrinkage is prevented by locking the tip and the inner end step 2 b, and the ground Absorbs fluctuations and prevents joint damage.

この管継手構造を用いた推進工法において、押し輪9はTボルト7に対しその軸方向に移動可能のため、後行きの管Pからその先行きの管Pへの推進力は、その管Pの挿し口1、フランジ20、間隔保持材8、押し輪9、ゴム輪6及び受口2を介してその前の管(先行管)Pに伝えられることとなる。
このため、推進力が大きいと、押し輪9がさらに押し込まれてゴム輪6の圧損などが生じる恐れがある。また、地震等の地盤変動による間隔保持材8の収縮又は圧壊時、押し輪9が少なからず押し込まれてゴム輪6の圧損などが生じる恐れがある。このゴム輪6の損傷は、この継手部の水密性の劣化に繋がり、問題である。
In the propulsion method using this pipe joint structure, the pusher wheel 9 is movable in the axial direction with respect to the T-bolt 7, so that the propulsive force from the backward pipe P to the forward pipe P is It is transmitted to the previous pipe (preceding pipe) P through the insertion port 1, the flange 20, the spacing member 8, the push ring 9, the rubber ring 6 and the receiving port 2.
For this reason, if the propulsive force is large, the push ring 9 may be further pushed in, and the rubber ring 6 may have a pressure loss. Further, when the spacing member 8 contracts or collapses due to ground fluctuation such as an earthquake, there is a possibility that the push ring 9 is pushed in not a little and pressure loss of the rubber ring 6 occurs. This damage to the rubber ring 6 leads to deterioration of the water tightness of the joint part, which is a problem.

この推進時及び挿し口1の押し込み時のゴム輪の圧損防止手段として、図10に示すように、Tボルト7の先端と間隔保持材8の間に保護リング4を設けるとともに、Tボルト7をナット4aにより受口2端面に圧接固定してその軸方向に移動不能とし、間隔保持材8からの力を、保護リング4、Tボルト7、受口2を介して先行管Pに伝えて、ゴム輪6に及ぼさないようにした技術がある(特許文献1 段落0030、図10参照)。   As a means for preventing pressure loss of the rubber ring at the time of propulsion and when the insertion port 1 is pushed in, as shown in FIG. 10, a protective ring 4 is provided between the tip of the T bolt 7 and the spacing member 8 and the T bolt 7 is attached. The nut 4a is pressed against the end face of the receiving port 2 so that it cannot move in the axial direction, and the force from the spacing member 8 is transmitted to the preceding pipe P through the protective ring 4, the T bolt 7, and the receiving port 2, There is a technique that does not affect the rubber ring 6 (see Patent Document 1, paragraph 0030, FIG. 10).

しかし、この技術において、Tボルト7のねじ切り長さが規格されており、ナット4aをねじ込めない場合がある。すなわち、規格のTボルト7に新たにねじ切りを行わなければならず、煩雑である。   However, in this technique, the threading length of the T bolt 7 is standardized, and the nut 4a may not be screwed. That is, the standard T-bolt 7 must be newly threaded, which is complicated.

また、図11に示すように、保護リング4を断面コ字状のものとし、この保護リング4を、間隔保持材8と受口端面2aとの間に、押し輪9を跨ぐとともにその両端の端片を間隔保持材8の端面と受口端面2aに当てがって、間隔保持材8からの力を、保護リング4、受口2を介し先行管Pに伝えて、ゴム輪6に及ぼさないようにした技術がある(特許文献1 段落0030、図11参照)。   Further, as shown in FIG. 11, the protection ring 4 has a U-shaped cross section, and the protection ring 4 is straddled between the spacing member 8 and the receiving end face 2a, and the push ring 9 is straddled. The end piece is applied to the end face of the spacing member 8 and the receiving end surface 2a, and the force from the spacing member 8 is transmitted to the preceding pipe P through the protective ring 4 and the receiving port 2 and is exerted on the rubber ring 6. There is a technique which does not exist (see Patent Document 1, paragraph 0030, FIG. 11).

しかし、この技術は、保護リング4が押し輪9より外側(管Pの径方向)に突出することとなり、その保護リング4とさや管P’内面との接触を防止するため、フランジ20のローラ24はその保護リング4よりさらに外側に突出させることとなる。このように保護リング4及びローラ24が突出すれば、その分、さや管P’内面との間隙が必要となり、さや管P’が一定径であれば、その中に挿し入れる新管Pの径は小さくなる。新管Pは、輸送量の面からできるだけ径の大きいことが好ましい。   However, in this technique, the protective ring 4 protrudes outward (in the radial direction of the pipe P) from the push ring 9, and the roller of the flange 20 is used to prevent contact between the protective ring 4 and the sheath P '. 24 is projected further outward than the protective ring 4. If the protective ring 4 and the roller 24 protrude in this way, a gap with the inner surface of the sheath P 'is required, and if the sheath P' has a constant diameter, the diameter of the new tube P to be inserted therein. Becomes smaller. The new pipe P is preferably as large as possible in terms of transportation.

この発明は、保護リング4の外側への突出を招くことなく、上記Tボルト7へのナット4aのねじ込み等以外の構造でもってゴム輪6の圧損を防止することを課題とする。   An object of the present invention is to prevent pressure loss of the rubber ring 6 with a structure other than screwing the nut 4a into the T-bolt 7 without causing the protective ring 4 to protrude outward.

上記課題を達成するために、この発明は、上記コ字状保護リングのように、間隔保持材からの推進力を受口端面に直接に伝達するとともに、その伝達部材を押し輪に貫通させることとしたのである。
このように、間隔保持材からの推進力を受口端面に直接に伝達すれば、その推進力及び挿し口の押し込みによって、ゴム輪の圧損などが生じる恐れはなく、そのゴム輪の水密性に支障が生じることはない。
また、伝達部材が押し輪を貫通すれば、その伝達部材を押し輪9より外側に突出させる必要もない。
In order to achieve the above object, the present invention, like the U-shaped protective ring, transmits the propulsive force from the spacing member directly to the receiving end face and allows the transmission member to penetrate the push ring. It was.
In this way, if the propulsive force from the spacing member is transmitted directly to the receiving end face, there is no risk of pressure loss of the rubber ring due to the propulsive force and the pushing of the insertion port, and the water tightness of the rubber ring is improved. There will be no hindrance.
Further, if the transmission member penetrates the push wheel, it is not necessary to project the transmission member outside the push wheel 9.

この発明の構成としては、管の挿し口の先端外周面に突起が、管の受口の内面に前記突起が係止するロックリングがそれぞれ設けられ、管の挿し口を先行する管の受口に挿入して継合わせつつさや管内に管路を新設する推進工法における両管の管継手構造において、受口に挿し口がゴム輪を介在して挿入され、その挿し口の先端が受口内面の奥端段部に突き当たってそれ以上の挿し込みが阻止され、逆に、挿し口が引き抜きされると、前記突起がロックリングに係止してそれ以上の抜け出しが阻止されて、挿し口は、その挿し口の先端が受口内面の奥端段部に突き当る点から前記突起がロックリングに係止する点までの所要長さが移動可能であり、ゴム輪は挿し口の外周面に嵌めた押し輪で押され、その押し輪に受口端面に設けたボルトが貫通して、そのボルトの先端部にナットがねじ込まれ、そのナットのねじ込みにより、押し輪が受口端面に近づいてゴム輪を押し、受口の外側の挿し口外周にフランジが設けられ、このフランジと押し輪の間に間隔保持材が介在されて、その間隔保持材により挿し口の先端は前記所要長さの中程に維持され、かつ、その間隔保持材は、推進力を伝達する強さを有するとともに、地震などの大きな圧縮力に対しては収縮又は圧壊して、受口に対する挿し口の挿し込みを許容するものであり、前記間隔保持材の押し輪に対向する端面と受口端面との間に、その間の全周囲に亘り所要間隔をもって、押し輪を貫通する推進力伝達部材を介在した構成を採用することができる。   As a configuration of the present invention, a protrusion is provided on the outer peripheral surface of the distal end of the tube insertion opening, and a lock ring is provided on the inner surface of the tube reception opening. In the pipe joint structure of the two pipes in the propulsion method that newly installs the pipe line in the sheath pipe while being inserted into the joint, the insertion port is inserted into the receiving port via a rubber ring, and the tip of the insertion port is the inner surface of the receiving port When the insertion port is pulled out, the projection is locked to the lock ring to prevent further removal, and the insertion port is The required length from the point where the tip of the insertion port hits the back end step portion of the inner surface of the receiving port to the point where the projection is locked to the lock ring is movable, and the rubber ring is moved to the outer peripheral surface of the insertion port. It is pushed by the fitted push ring, and the bolt provided on the receiving end face penetrates the push ring. Then, a nut is screwed into the tip of the bolt, and when the nut is screwed in, the push ring approaches the receiving end surface and pushes the rubber ring, and a flange is provided on the outer periphery of the insertion port outside the receiving port. A spacing member is interposed between the press ring and the spacing member, and the tip of the insertion port is maintained at the middle of the required length by the spacing member, and the spacing member has a strength for transmitting a propulsive force. And the end face facing the push ring of the spacing member and the receiving end face that allow the insertion of the insertion opening into the receiving opening by contracting or crushing against a large compressive force such as an earthquake. In between, the structure which interposed the propulsive force transmission member which penetrates a push ring with a required space | interval over the perimeter in the meantime can be employ | adopted.

上記「間隔保持材の押し輪に対向する端面と受口端面との間に、その間の全周囲に亘り所要間隔をもって、押し輪を貫通する推進力伝達部材を介在」とは、各推進力伝達部材を全周囲に等間隔に設けたり、後述の図3、図4、図7、図8で示す実施形態のように、等間隔の複数の推進力伝達部材の一群を全周囲に等間隔に設けたりした介在等を言う。要は、推進力伝達部材により、管の全周囲に均等に推進力が伝達される介在を言う。   The above-mentioned “a propulsive force transmission member penetrating the push ring is interposed between the end face of the spacing member facing the push ring and the receiving end face with a required interval all around the end face” means that each propulsion force is transmitted. Members are provided at equal intervals around the entire circumference, or a group of a plurality of equally spaced propulsion force transmitting members are equally spaced around the entire circumference as in the embodiments shown in FIGS. 3, 4, 7, and 8 to be described later. This refers to the intervention that was provided. The point is that the propulsive force is evenly transmitted to the entire circumference of the pipe by the propulsive force transmitting member.

この構成において、上記間隔保持材の押し輪に対向する端面には、推進力及び押し込み力の反力が推進力伝達部材から加わるため、その間隔保持材は、従来のように、その端面全周に保護リングを当てがうことが好ましい。このため、推進力伝達部材は、その保護リングと、この保護リングから押し輪を貫通して受口端面に当接する突状部材とからなるものとすることが好ましい。   In this configuration, since the reaction force of the propulsive force and the pushing force is applied from the propulsive force transmitting member to the end face of the gap holding member facing the push ring, the gap holding member has the entire circumference of the end face as in the conventional case. It is preferable to apply a protective ring. For this reason, it is preferable that a propulsion force transmission member shall consist of the protection ring and the protruding member which penetrates a push ring from this protection ring, and contact | abuts to a receiving end surface.

また、上記推進力伝達部材と間隔保持材は挿し口外周面上をその周方向に滑り、かつ、推進力伝達部材と間隔保持材との間又は間隔保持材とフランジとの間において、前記間隔保持材が周方向に滑るようになっておれば、先行する管に対し後行きの管がその軸周りに回転することができるため、管のローリングの懸念がある長距離推進には有効となる。   Further, the propulsive force transmission member and the spacing member slide on the outer peripheral surface of the insertion port in the circumferential direction, and the spacing is between the propulsion force transmission member and the spacing member or between the spacing member and the flange. If the holding material is designed to slide in the circumferential direction, the backward tube can rotate around its axis with respect to the preceding tube, which is effective for long-distance propulsion that may cause tube rolling. .

この発明は、以上のように、押し輪を貫通した部材によって、間隔保持材からの推進力を受口端面に直接に伝達するようにしたので、その伝達部材を押し輪より外側に突出させる必要もない。このため、この部材の取付けによって、さや管内に挿入する新管の径を小さくする必要もない。   In the present invention, as described above, the propulsive force from the spacing member is directly transmitted to the receiving end face by the member penetrating the push ring, so that the transmission member needs to protrude outward from the push ring. Nor. For this reason, it is not necessary to reduce the diameter of the new pipe inserted into the sheath by attaching this member.

一実施形態を図1乃至図3に示し、この実施形態は、ダクタイル鋳鉄管PのSII形継手構造であって、従来と同様に、挿し口1の先端に突起3、受口2の内面にロックリング5がそれぞれ設けられ、ゴム輪6及びバックアップリング6aを介在して挿し口1を受口2に挿し込んだ後、押し輪9をゴム輪6に当てがい、Tボルト(締付ボルト)7を受口2端面2aのフランジ及び押し輪9に貫通し、その先端にナット7aをねじ込んで締結することにより、ゴム輪6を押し込んでシールしている。
そのナット7aのねじ込み量によってゴム輪6の押し込み量を調整する。この押し込み量は、同一呼び径の管Pであっても、その挿し口1、受口2の寸法公差により異なり、その公差に基づき、適宜に設定する。
押し輪9にはその全周に亘ってその周方向に長い長孔10が形成されている。
An embodiment is shown in FIGS. 1 to 3, and this embodiment is a SII type joint structure of a ductile cast iron pipe P, and a projection 3 at the tip of the insertion port 1 and an inner surface of the receiving port 2 as in the prior art. A lock ring 5 is provided, and after inserting the insertion port 1 into the receiving port 2 through the rubber ring 6 and the backup ring 6a, the push ring 9 is applied to the rubber ring 6 and a T-bolt (clamping bolt). 7 is passed through the flange of the receiving end 2 end surface 2a and the push ring 9, and a nut 7a is screwed to the tip of the push ring 9 to fasten the rubber ring 6 to be sealed.
The pushing amount of the rubber ring 6 is adjusted by the screwing amount of the nut 7a. This push-in amount varies depending on the dimensional tolerance of the insertion port 1 and the receiving port 2 even for the pipes P having the same nominal diameter, and is appropriately set based on the tolerance.
The push ring 9 is formed with a long hole 10 extending in the circumferential direction over the entire circumference.

受口2の外側の挿し口1外周には環状のフランジ20が嵌め込まれ、このフランジ20は、断面L字状で4等分などの適宜に分割されてサドルバンド状となっており、その分割片21の両端に締結片22、中程にリブ23がそれぞれ設けられている。隣り合う分割片21、21の締結片22、22間にはローラ24が回転自在に設けられているとともに、ボルト・ナット25が挿通されており、そのボルト・ナット25を締結することにより、フランジ20が縮径して挿し口1の外周面に圧接される(特許文献1 段落0027等参照)。   An annular flange 20 is fitted on the outer periphery of the insertion port 1 outside the receiving port 2, and this flange 20 has an L-shaped cross-section and is divided into four equal parts or the like to form a saddle band. Fastening pieces 22 are provided at both ends of the piece 21, and ribs 23 are provided in the middle. A roller 24 is rotatably provided between the fastening pieces 22 and 22 of the adjacent divided pieces 21 and 21, and a bolt / nut 25 is inserted. By fastening the bolt / nut 25, a flange is provided. 20 is reduced in diameter and is pressed against the outer peripheral surface of the insertion port 1 (see paragraph 0027 of Patent Document 1).

フランジ20と押し輪9の間には間隔保持材8が設けられており、圧縮応力が1〜30kgf/cm2 (≒0.1〜3MPa)の樹脂発泡体で(樹脂単体の5倍以上の膨張率)、発泡倍率を変えることにより弾性限界応力が変化するものである。これらの材質の例を示すと、ポリスチレン、ポリウレタン等が代表的である。この間隔保持材8は円環状であるが、周方向に分割されていてもよく、その際、間欠的でもよい。要は、推進力に抗する強さを有すればよい。 A spacing member 8 is provided between the flange 20 and the push ring 9 and is a resin foam having a compressive stress of 1 to 30 kgf / cm 2 (≈0.1 to 3 MPa) (more than 5 times that of a single resin). The elastic limit stress changes by changing the expansion coefficient) and the expansion ratio. Typical examples of these materials are polystyrene and polyurethane. The spacing member 8 has an annular shape, but may be divided in the circumferential direction, and may be intermittent. In short, it is sufficient to have strength against driving force.

上記間隔保持材8の押し輪9に対向する端面8aと受口端面2aとの間に推進力伝達部材30が介在されている。この推進力伝達部材30は、図2、図3に示すように、間隔保持材8の端面8a全周に亘って当てがわれる上記保護リング4に相当する部材31を有し、その部材31からその周囲適宜間隔に受口端面2aに向かう突状部材32からなる。
その各突状部材32の大きさ、突出長さ、間隔等は、上記押し輪9の長孔10の大きさ、間隔、推進力の伝達度合等を考慮して適宜に決定すればよいが、リング状推進力伝達部材30の中心に対して対称位置に各突状部材32が位置するようにして、受口端面2aの全周に均等に突状部材32から力が加わるようにすることが好ましい。
A propulsive force transmitting member 30 is interposed between the end face 8a of the spacing member 8 facing the push ring 9 and the receiving end face 2a. As shown in FIGS. 2 and 3, the propulsive force transmission member 30 has a member 31 corresponding to the protective ring 4 applied over the entire circumference of the end surface 8 a of the spacing member 8. It consists of a projecting member 32 toward the receiving end face 2a at appropriate intervals around the periphery.
The size, projecting length, interval, etc. of each projecting member 32 may be appropriately determined in consideration of the size, interval, propulsive force transmission degree, etc. of the long hole 10 of the push ring 9, Each projecting member 32 is positioned symmetrically with respect to the center of the ring-shaped propulsion force transmitting member 30 so that force is uniformly applied from the projecting member 32 to the entire circumference of the receiving end surface 2a. preferable.

また、この推進力伝達部材30も、フランジ20と同様に分割したものとして、その分割片の両端を締結することによりリング状とする。その分割数は任意であり、例えば、図3に示すように、2分割、図4に示すように、4分割等とする。両部材31、32は鋳造によって一体成形しても良いし、一方の部材31に他方の部材32を溶接等によって接合しても良い。   Further, the propulsive force transmitting member 30 is also divided like the flange 20 and is formed into a ring shape by fastening both ends of the divided piece. The number of divisions is arbitrary. For example, as shown in FIG. 3, it is divided into two parts, as shown in FIG. Both members 31 and 32 may be integrally formed by casting, or the other member 32 may be joined to one member 31 by welding or the like.

この実施形態の構成は以上のとおりであり、図9に示した推進工法において、従来と同様にして、管Pの挿し口1を先行する管Pの受口2に挿入して、SII形継手を構成する。
その継手部の構成後(組立て後)、又は構成前に予め、挿し口1の外周面にフランジ20及び間隔保持材8及び推進力伝達部材30を嵌め、まず、その推進力伝達部材30の突状部材32を押し輪9の長孔10を貫通させて受口端面2aに当接する。
The configuration of this embodiment is as described above. In the propulsion method shown in FIG. 9, the insertion port 1 of the pipe P is inserted into the receiving port 2 of the preceding pipe P in the same manner as in the prior art, and the SII joint Configure.
The flange 20, the spacing member 8, and the propulsive force transmission member 30 are fitted in the outer peripheral surface of the insertion port 1 in advance after the joint portion is configured (after assembly) or before the configuration. The shaped member 32 passes through the long hole 10 of the push ring 9 and comes into contact with the receiving end surface 2a.

この状態で、ジャッキJで推進力を加えると、間隔保持材8が推進力伝達部材30のリング状部材31に当接する規定胴付寸法Lの位置まで挿し口1が挿入されて図2に示す状態となり、さらなるジャッキJの推進力によって推進される(特許文献1 段落0028〜同0029 図7参照)。
このとき、押し輪9と受口2端面の間隔は、推進力に推進力伝達部材30が抗して一定に維持されるため、ゴム輪6に推進力が加わることが無いため、水密性能に影響はない。
In this state, the addition of thrust in the jack J, is inserted inserted port 1 to the position of the specified cylinder with dimension L 2 of space holding member 8 comes into contact with the ring-shaped member 31 of the driving force transmitting member 30 in FIG. 2 It becomes a state shown, and is further propelled by the propulsive force of the jack J (see Patent Document 1, paragraphs 0028 to 0029 FIG. 7).
At this time, since the propulsive force transmitting member 30 resists the propulsive force and is kept constant, the distance between the push wheel 9 and the receiving end 2 end surface is kept constant. There is no effect.

また、この推進は、仮にローリングを生じても、推進力伝達部材30と間隔保持材8は挿し口1外周面に固定されておらず、かつ、推進力伝達部材30と間隔保持材8との間又は間隔保持材8とフランジ20との間において、間隔保持材8が周方向に滑り、管Pと先行する管Pとが相対的に回転して、いずれかのローラ24で管Pを支持し、推進力が過大になることを防止できるため、ローリングの懸念がある長距離推進には有効である。このとき、推進力伝達部材30、間隔保持材8と挿し口1外周面の間、推進力伝達部材30と間隔保持材8との間、間隔保持材8とフランジ20との間は、その間の界面に適宜に(全部又は選択的に)滑材を塗布することができる。管Pの所要長さの敷設が終了すれば、さや管P’と新管Pの間にエアモルタル等が打設される。   Further, in this propulsion, even if rolling occurs, the propulsive force transmitting member 30 and the spacing member 8 are not fixed to the outer peripheral surface of the insertion port 1, and the propulsive force transmitting member 30 and the spacing member 8 are not fixed. The gap holding member 8 slides in the circumferential direction between the gap holding member 8 and the flange 20, the pipe P and the preceding pipe P rotate relatively, and the pipe P is supported by one of the rollers 24. However, since it is possible to prevent the propulsive force from becoming excessive, it is effective for long-distance propulsion in which there is a concern about rolling. At this time, between the propulsive force transmission member 30, the spacing member 8 and the outer peripheral surface of the insertion port 1, between the propulsion member 30 and the spacing member 8, and between the spacing member 8 and the flange 20, A lubricant can be applied to the interface as appropriate (all or selectively). When the laying of the required length of the pipe P is completed, an air mortar or the like is placed between the sheath pipe P ′ and the new pipe P.

推進力伝達部材30は、押し輪9を貫通して推進力を押し輪9に伝えることなく受口端面2aに伝達する構成であれば、何れでも良く、例えば、図5〜図7に示すように、推進力伝達部材30の突状部材32をねじ棒で構成し、そのねじ棒32をリング状部材31にねじ込み、ナット32aによって締結固定する等とし得る。この場合も、同様に分割したものとし、その分割片の両端を締結することによりリング状として、例えば、図7に示すように2分割、図8に示すように、4分割等とその分割数も任意である。   The propulsive force transmitting member 30 may be any configuration as long as it passes through the push wheel 9 and transmits the propulsive force to the receiving end surface 2a without transmitting the propulsive force to the push wheel 9. For example, as shown in FIGS. Further, the projecting member 32 of the propulsive force transmitting member 30 may be constituted by a screw rod, and the screw rod 32 may be screwed into the ring-shaped member 31 and fastened and fixed by a nut 32a. In this case as well, it is divided in the same manner, and is formed into a ring shape by fastening both ends of the divided piece, for example, two divisions as shown in FIG. 7, four divisions as shown in FIG. Is also optional.

上記実施形態は、SII形継手の場合であったが、この発明は、S形継手等のゴム輪6が、挿し口1の外周面に嵌めた押し輪9で押され、その押し輪9に受口端面に設けたボルト7が貫通して、そのボルト7の先端部にナット7aがねじ込まれ、そのナット7aのねじ込みにより、押し輪9が受口端面2aに近づいてゴム輪6を押す態様の各種の管継手に採用し得ることは勿論である。   The above embodiment is a case of the SII type joint. However, in the present invention, the rubber ring 6 such as the S type joint is pushed by the push ring 9 fitted to the outer peripheral surface of the insertion slot 1, and the push ring 9 The bolt 7 provided on the receiving end face penetrates, and a nut 7a is screwed into the tip of the bolt 7, and the push ring 9 approaches the receiving end face 2a and pushes the rubber ring 6 by the screwing of the nut 7a. Of course, it can be employed for various pipe joints.

一実施形態の概略斜視図Schematic perspective view of one embodiment 図1のX−X線断面図XX sectional view of FIG. 同実施形態の推進力伝達部材の斜視図The perspective view of the propulsion force transmission member of the embodiment 他例の推進力伝達部材の斜視図Perspective view of another example of propulsive force transmission member 他の実施形態の概略斜視図Schematic perspective view of another embodiment 図5のX−X線断面図XX sectional view of FIG. 同実施形態の推進力伝達部材の斜視図The perspective view of the propulsion force transmission member of the embodiment 他例の推進力伝達部材の斜視図Perspective view of another example of propulsive force transmission member さや管推進工法の概略図Schematic of sheath tube propulsion method 従来例の要部断面図Cross section of the main part of the conventional example 従来の他例の要部断面図Cross-sectional view of the main part of another conventional example

符号の説明Explanation of symbols

P’ さや管(既設管)
P 新管
1 挿し口
2 受口
2a 受口端面
3 突起
5 ロックリング
6 止水ゴム輪
7 Tボルト
8 間隔保持材
8a 間隔保持材端面
20 フランジ
24 ローラ
30 推進力伝達部材
31 推進力伝達部材のリング状部材
32 推進力伝達部材の突状部材
P 'sheath pipe (existing pipe)
P New tube 1 Insert 2 Receiving port 2a Receiving end surface 3 Protrusion 5 Lock ring 6 Water stop rubber ring 7 T bolt 8 Spacing retaining member 8a Spacing retaining member end surface 20 Flange 24 Roller 30 Propulsion transmitting member 31 Propulsion transmitting member 31 Ring-shaped member 32 Protruding member of propulsive force transmitting member

Claims (3)

管(P)の挿し口(1)の先端外周面に突起(3)が、管(P)の受口(2)の内面に前記突起(3)が係止するロックリング(5)がそれぞれ設けられ、前記管(P)の挿し口(1)を先行する管(P)の受口(2)に挿入して継合わせつつさや管(P’)内に管路を新設する推進工法における前記両管(P、P)の管継手構造において、
上記受口(2)に挿し口(1)がゴム輪(6)を介在して挿入され、その挿し口(1)の先端が受口(2)内面の奥端段部(2b)に突き当たってそれ以上の挿し込みが阻止され、逆に、挿し口(1)が引き抜きされると、前記突起(3)がロックリング(5)に係止してそれ以上の抜け出しが阻止されて、挿し口(1)は、その挿し口(1)の先端が受口(2)内面の奥端段部(2b)に突き当る点から前記突起(3)がロックリング(5)に係止する点までの所要長さ(L)が移動可能であり、
上記ゴム輪(6)は上記挿し口(1)の外周面に嵌めた押し輪(9)で押され、その押し輪(9)に上記受口(2)端面に設けたボルト(7)が貫通して、そのボルト(7)の先端部にナット(7a)がねじ込まれ、そのナット(7a)のねじ込みにより、前記押し輪(9)が前記受口端面(2a)に近づいて前記ゴム輪(6)を押し、
上記受口(2)から出た挿し口(1)外周面にフランジ(20)が設けられ、このフランジ(20)と上記押し輪(9)の間に間隔保持材(8)が介在されて、その間隔保持材(8)によって上記挿し口(1)の先端は上記所要長さ(L)の中程に位置されており、
上記間隔保持材(8)は、推進力を伝達する強さを有するとともに、地震などの大きな圧縮力に対しては収縮又は圧壊して、受口(2)に対する挿し口(1)の挿し込みを許容するものであり、
上記間隔保持材(8)の上記押し輪(9)に対向する端面(8a)と受口(2)の端面(2a)との間に、その間の全周囲に亘り所要間隔をもって、前記押し輪(9)を貫通する推進力伝達部材(30)を介在し、この推進力伝達部材(30)により、推進力が押し輪(9)に加わらないようにしたことを特徴とする管継手構造。
A protrusion (3) is formed on the outer peripheral surface of the distal end of the insertion opening (1) of the tube (P), and a lock ring (5) is engaged with the inner surface of the receiving port (2) of the tube (P). In the propulsion method, the pipe (P) insertion port (1) is inserted into the receiving port (2) of the preceding pipe (P) and joined to the sheath pipe (P ′) with a new pipe line. In the pipe joint structure of the two pipes (P, P),
The insertion port (1) is inserted into the receiving port (2) with the rubber ring (6) interposed, and the tip of the insertion port (1) hits the back end step (2b) on the inner surface of the receiving port (2). When the insertion slot (1) is pulled out, the protrusion (3) is locked to the lock ring (5) and further slipping out is prevented. The opening (1) has a point that the protrusion (3) engages with the lock ring (5) from the point where the tip of the insertion opening (1) abuts the back end step (2b) of the inner surface of the receiving opening (2). The required length (L) is movable,
The rubber ring (6) is pushed by a push ring (9) fitted to the outer peripheral surface of the insertion opening (1), and a bolt (7) provided on the end face of the receiving opening (2) is attached to the push ring (9). A nut (7a) is screwed into the front end of the bolt (7), and the push ring (9) approaches the receiving end face (2a) by screwing the nut (7a). (6) Press
A flange (20) is provided on the outer peripheral surface of the insertion port (1) protruding from the receiving port (2), and a spacing member (8) is interposed between the flange (20) and the push ring (9). The tip of the insertion port (1) is positioned in the middle of the required length (L) by the spacing member (8),
The spacing member (8) has a strength to transmit a propulsive force, and contracts or collapses against a large compressive force such as an earthquake, and the insertion port (1) is inserted into the receiving port (2). Is acceptable,
Between the end face (8a) of the spacing member (8) facing the push ring (9) and the end face (2a) of the receiving port (2), the push ring has a necessary gap over the entire circumference between them. A pipe joint structure characterized in that a propulsive force transmitting member (30) penetrating (9) is interposed, and the propulsive force is not applied to the push wheel (9) by the propulsive force transmitting member (30).
上記推進力伝達部材(30)を、上記間隔保持材(8)の押し輪(9)に対向する端面(8a)全周に亘り当てがった保護リング(31)と、この保護リング(31)から上記押し輪(9)を貫通して受口端面(2a)に当接する突状部材(32)とからなるものとしたことを特徴とする請求項1に記載の管継手構造。   A protective ring (31) applied over the entire circumference of the end surface (8a) facing the push ring (9) of the spacing member (8), and the protective ring (31). The pipe joint structure according to claim 1, characterized in that it comprises a projecting member (32) penetrating the push ring (9) from and in contact with the receiving end face (2a). 上記推進力伝達部材(30)と間隔保持材(8)は挿し口(1)外周面上をその周方向に滑り、かつ、推進力伝達部材(30)と間隔保持材(8)との間又は間隔保持材(8)とフランジ(20)との間において、前記間隔保持材(8)が周方向に滑るようになっていることを特徴とする請求項1又は2に記載の管継手構造。   The propulsive force transmitting member (30) and the spacing member (8) slide on the outer peripheral surface of the insertion port (1) in the circumferential direction, and between the propulsive force transmitting member (30) and the spacing member (8). The pipe joint structure according to claim 1 or 2, wherein the spacing member (8) slides in the circumferential direction between the spacing member (8) and the flange (20). .
JP2007062073A 2007-03-12 2007-03-12 Pipe joint structure in sheath pipe propulsion method Active JP4740176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007062073A JP4740176B2 (en) 2007-03-12 2007-03-12 Pipe joint structure in sheath pipe propulsion method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007062073A JP4740176B2 (en) 2007-03-12 2007-03-12 Pipe joint structure in sheath pipe propulsion method

Publications (2)

Publication Number Publication Date
JP2008223860A true JP2008223860A (en) 2008-09-25
JP4740176B2 JP4740176B2 (en) 2011-08-03

Family

ID=39842725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007062073A Active JP4740176B2 (en) 2007-03-12 2007-03-12 Pipe joint structure in sheath pipe propulsion method

Country Status (1)

Country Link
JP (1) JP4740176B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032632A (en) * 2009-07-29 2011-02-17 Nippon Chutetsukan Kk Jacking force transmission device for pipe jacking and laying method
JP2020159370A (en) * 2019-03-25 2020-10-01 日本鋳鉄管株式会社 Propulsive force transmission device for earthquake-resistant pipe propulsion laying method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344505A (en) * 2005-06-24 2005-12-15 Kurimoto Ltd Sheath pipe jacking method and pipe joint structure used for the same
JP2006118655A (en) * 2004-10-25 2006-05-11 Kubota Corp Joint structure for pipe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118655A (en) * 2004-10-25 2006-05-11 Kubota Corp Joint structure for pipe
JP2005344505A (en) * 2005-06-24 2005-12-15 Kurimoto Ltd Sheath pipe jacking method and pipe joint structure used for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032632A (en) * 2009-07-29 2011-02-17 Nippon Chutetsukan Kk Jacking force transmission device for pipe jacking and laying method
JP2020159370A (en) * 2019-03-25 2020-10-01 日本鋳鉄管株式会社 Propulsive force transmission device for earthquake-resistant pipe propulsion laying method
JP7199275B2 (en) 2019-03-25 2023-01-05 日本鋳鉄管株式会社 Propulsion force transmission device for seismic pipe propulsion installation method

Also Published As

Publication number Publication date
JP4740176B2 (en) 2011-08-03

Similar Documents

Publication Publication Date Title
US6176523B1 (en) Joint for variable wall thickness conduit
JP4318696B2 (en) Saya tube propulsion method
JP4740176B2 (en) Pipe joint structure in sheath pipe propulsion method
JP3710391B2 (en) Sheath pipe propulsion method and pipe joint structure used for it
KR101658756B1 (en) Propulsion Pipe
JP7299042B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP2001330185A (en) Aseismatic joint and aseismatic pipeline
JP7144241B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP3470146B2 (en) Sheath tube type propulsion method and its driving force transmission device
JP2005344505A (en) Sheath pipe jacking method and pipe joint structure used for the same
JP7199275B2 (en) Propulsion force transmission device for seismic pipe propulsion installation method
JP2011080600A (en) Sheath pipe jacking method
JP2003202093A (en) Quake-resistant pipe joint in sheath pipe propelling construction method
JP2021046775A (en) Propulsion power transmission device for propulsion laying method
JP3698975B2 (en) Sheath pipe propulsion method and pipe joint used for it
JP3963733B2 (en) In-pipe insertion method and pipe joint structure used therefor
JP4290052B2 (en) Seismic pipe fittings
JP4471682B2 (en) Seismic pipe fittings
JP2005257046A (en) Earthquake-resistant fitting
JP3365489B2 (en) Seismic propulsion method and pipe fittings
JP2000266261A (en) Aseismatic propulsion construction method and pipe joint
JP3894742B2 (en) Saya tube propulsion method
JP3373396B2 (en) Propulsion method and pipe joint structure
JP3756876B2 (en) Propulsion method and earthquake-resistant propulsion pipe fittings used in it
JP3398060B2 (en) Propulsion method and pipe joints used for it

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4740176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3