JP2000266261A - Aseismatic propulsion construction method and pipe joint - Google Patents

Aseismatic propulsion construction method and pipe joint

Info

Publication number
JP2000266261A
JP2000266261A JP11071430A JP7143099A JP2000266261A JP 2000266261 A JP2000266261 A JP 2000266261A JP 11071430 A JP11071430 A JP 11071430A JP 7143099 A JP7143099 A JP 7143099A JP 2000266261 A JP2000266261 A JP 2000266261A
Authority
JP
Japan
Prior art keywords
pipe
propulsion
joint
annular space
propulsion force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11071430A
Other languages
Japanese (ja)
Other versions
JP3324550B2 (en
Inventor
Tetsuji Shimoyasu
哲二 下保
Yoshihiko Yamamoto
吉彦 山本
Yoshiki Okamoto
芳樹 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP07143099A priority Critical patent/JP3324550B2/en
Publication of JP2000266261A publication Critical patent/JP2000266261A/en
Application granted granted Critical
Publication of JP3324550B2 publication Critical patent/JP3324550B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement
    • F16L27/127Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position
    • F16L27/1275Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position by means of at least an external threaded bolt
    • F16L27/12751Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position by means of at least an external threaded bolt the threaded bolt extending longitudinally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L27/00Adjustable joints, Joints allowing movement
    • F16L27/12Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement
    • F16L27/127Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position
    • F16L27/1275Adjustable joints, Joints allowing movement allowing substantial longitudinal adjustment or movement with means for locking the longitudinal adjustment or movement in the final mounted position by means of at least an external threaded bolt

Abstract

PROBLEM TO BE SOLVED: To provide an aseismatic pipe joint and its propulsion construction method capable of inserting a pipe and the joint in a condition ensuring a sufficient shrinkage amount which is the most important matter of aseismatic property regardless of a bore. SOLUTION: A plurality of propulsive force transmitting disk springs 3 arranged so as to stop a deflection amount to within a prescribed range even by receiving propulsive force are interposed between the external periphery of a spigot 1 of a connecting ductile cast iron pipe 10A and a side end face 21 of a socket 2 of the following pipe 10B, as mixing of sediment is prevented, the propulsive force is transmitted from the following pipe to the leading pipe by utilizing a spring constant, to press-in the pipe to be advanced together, even when all the pipes are loaded with excessive external force by an earthquake or the like by repeating connecting and pressing, by providing an annular space S in all joints of a pipe line after burying, needless to say, in a direction extracting the pipe also in a press-in direction, construction is executed by a procedure formed with the pipe line having aseismatic property of the highest level. Strength is changed by adjusting series/parallel arrangement of the disk spring interpolated corresponding to the propulsive force changed with a progress of construction, the pipe is propelled while maintaining always a fixed annular space in the joint.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は水道、ガス、下水道
などに用いる流体輸送用管路を非開削で布設する二工程
式推進工法またはパイプインパイプ工法およびその耐震
推進管継手に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a two-step propulsion method or a pipe-in-pipe method for laying a pipe for fluid transport used for water supply, gas, sewerage and the like without cutting, and a seismic propulsion pipe joint thereof.

【0002】[0002]

【従来の技術】従来、ダクタイル鋳鉄管などの埋設管路
施工は、地面を開削して布設する開削工法が一般的であ
ったが、昨今では幹線道路に留まらず、一般道路におい
ても交通量が増加したため、開削工法のために交通を遮
断することは困難になってきている。そこで発進立坑と
到達立坑だけを開削し、鞘管としてヒューム管や鋼管な
どを推進した後に、ダクタイル鋳鉄管を挿入する二工程
式推進工法や既設管を鞘管として、その中に口径の小さ
い新管を挿入して管路更新するパイプインパイプ工法な
どの推進工法が一般的に用いられている。一方、阪神大
震災からの教訓などによって管路に非定常的な外力が直
撃したときでも、継手の引き抜き側、押し込み側両方に
伸縮可能な継手を有する耐震管路が求められるようにな
った。
2. Description of the Related Art Conventionally, for laying ducts such as ductile cast iron pipes, a digging method in which the ground is cut and laid is generally used. Due to the increase, it is becoming difficult to cut off traffic due to the excavation method. Therefore, only the starting shaft and the reaching shaft are excavated, and a fume pipe or steel pipe is propelled as a sheath pipe, then a two-step propulsion method of inserting ductile cast iron pipe is used. A propulsion method such as a pipe-in-pipe method in which a pipe is inserted to update a pipe line is generally used. On the other hand, even when an unsteady external force directly hits the pipeline due to lessons learned from the Great Hanshin Earthquake, seismic pipelines that have joints that can expand and contract on both the pull-out side and the push-in side of the joint have been required.

【0003】上記パイプインパイプ工法に用いられてき
た耐震継手としては、図9に示すようなパイプインパイ
プ工法用PII形継手と呼ばれものがある。挿し口10
1、受口102、ゴム輪103、ロックリング104、
セットボルト105で構成されており、パイプインパイ
プ工法は、図10に示すように埋設された既設管203
に、これよりも径の小さい新管204を発進立坑201
から油圧ジャッキ205により到達立坑202まで挿入
する工法である。該油圧ジャッキ205は後部に反力受
け206が当接され、前部には押角207を介して新管
204を押圧するようになっている。また、新管204
の先頭には挿入抵抗を小さくするための先導ソリ208
が装着されている。
As a seismic joint used in the pipe-in-pipe method, there is a PII type joint for a pipe-in-pipe method as shown in FIG. Insert 10
1, socket 102, rubber ring 103, lock ring 104,
The pipe-in-pipe method uses the existing pipe 203 buried as shown in FIG.
And a new pipe 204 having a smaller diameter
This is a construction method in which the hydraulic jack 205 is used to insert the shaft up to the reaching shaft 202. The hydraulic jack 205 has a rear portion against which a reaction force receiver 206 abuts, and a front portion which presses the new pipe 204 via a push angle 207. In addition, Shinkan 204
Is a leading sled 208 for reducing insertion resistance.
Is installed.

【0004】新管の接合方法は、まずロックリング10
4およびゴム輪103を受口内面に装着し、油圧ジャッ
キ205を作動させて受口102に挿し口101を挿入
し、セットボルト105を締め付け、これによって先行
の新管の後部に次々と新管が接合されていき、この接合
された新管の上記ロックリング104の側面と挿し口1
01に設けたロックリング溝106の側端面107にて
推進力が伝達される。この図では既設管に新管を挿入し
て更新しているが、管路新設のためまず鞘管を推進し、
さらに鞘管内にパイプインパイプ工法で新管を挿入する
二工程式推進工法も通常行われている。
[0004] The joining method of a new pipe is as follows.
4 and the rubber ring 103 are mounted on the inner surface of the receiving port, the hydraulic jack 205 is operated, the insertion port 101 is inserted into the receiving port 102, and the set bolt 105 is tightened. Are joined, and the side of the lock ring 104 of the joined new tube and the insertion port 1 are joined.
The propulsion force is transmitted at the side end surface 107 of the lock ring groove 106 provided in the lock ring 01. In this figure, a new pipe is inserted into the existing pipe to update it.
Further, a two-stage propulsion method of inserting a new pipe into the sheath pipe by a pipe-in-pipe method is also usually performed.

【0005】[0005]

【発明が解決しようとする課題】上記パイプインパイプ
工法用PII形継手の構成では、推進工が終了した後は、
図9に示すようにロックリング104の側面と挿し口1
01に設けたロックリング溝106の側端面107が接
触した状態、つまり継手が押し込まれた状態となってい
るから、引き抜き代のみは確保されているが、挿し口が
受口に入り込む方向には動かないため、継手が両方向に
伸縮する必要がある耐震管継手としての性能を半ばしか
満たしていないという問題点がある。
In the construction of the PII type joint for the pipe-in-pipe method, after the propulsion work is completed,
As shown in FIG.
01 is in a state where the side end faces 107 of the lock ring groove 106 are in contact with each other, that is, in a state where the joint is pushed in, so only the pull-out allowance is secured, but in a direction in which the insertion port enters the receiving port. Since it does not move, there is a problem that the joint only partially fulfills the performance as a seismic pipe joint which needs to expand and contract in both directions.

【0006】推進工法に使用する管継手として、縮み
側、伸び側の両方に移動できるように一定の間隔を維持
する従来技術としては、図11(A)(B)(C)に示
すような特開平3−39594号がある。この発明の要
旨は推進管の挿し口301、受口302の間へ着脱自在
のスペーサ治具303を介装して推進力を伝え、所定の
位置に推進した後にこのスペーサ治具303を取り外し
て所定間隔を形成するものである。
[0006] As a conventional pipe joint used in the propulsion method, a conventional technique for maintaining a constant interval so as to be able to move to both the contraction side and the extension side is shown in FIGS. 11 (A), (B) and (C). JP-A-3-39594 is known. The gist of the present invention is that a removable spacer jig 303 is interposed between the insertion port 301 and the receiving port 302 of the propulsion pipe to transmit a propulsive force, and after propulsion to a predetermined position, the spacer jig 303 is removed. A predetermined interval is formed.

【0007】しかしこの方式では発進坑内でスペーサ治
具を挿し口−受口間に取り付ける負担と大量のスペーサ
治具を要し、布設完了後、全管路に亘ってすべてのスペ
ーサ治具を取り外さなければならず、具体的には拡径面
圧ジャッキ304を収縮させて本体枠303を縮径した
後取り外すなど特殊な用具や煩わしい作業を必要とす
る。第一に、管径が少なくともφ800mm以上なけれ
ば管内へ作業員が潜入できないため、実施上の最大の制
約となる。
However, in this method, a load for mounting the spacer jig between the opening and the receiving port and a large amount of spacer jigs are required in the starting pit, and after the installation is completed, all the spacer jigs are removed over the entire pipeline. Specifically, special tools and cumbersome operations are required, such as removing the body frame 303 after contracting the diameter-increased surface pressure jack 304 to reduce its diameter. First, since the worker cannot infiltrate into the pipe unless the pipe diameter is at least φ800 mm or more, this is the greatest restriction in implementation.

【0008】本発明は上記のような問題点を解決するた
めに、二工程式推進工法およびパイプインパイプ工法に
用いることができ、口径に関わらずに耐震性の最大の要
件である十分な伸縮量を確保した状態で管および継手を
挿入することができる耐震管継手およびその推進工法の
提供を目的とする。
The present invention can be used for the two-step propulsion method and the pipe-in-pipe method to solve the above-mentioned problems. It is an object of the present invention to provide an earthquake-resistant pipe joint capable of inserting a pipe and a joint in a state where the amount is secured, and a method of propulsion thereof.

【0009】[0009]

【課題を解決するための手段】本発明に係る耐震推進工
法は、地面より掘削した発進立坑から先行の管の後部に
次々と管を接合して軸線方向に押圧し非開削で管路を新
設または更新する二工程式推進工法およびパイプインパ
イプ工法であって、継合する管10Aの挿し口1に外装
した押圧フランジ11と他方の管10Bの受口2の開口
部の側端面21との間に該推進力を受けても撓み量が所
定の範囲内に留まるように配列した複数の推進力伝達用
さらばね3を介装し、該ばね定数を利用して後続の管か
ら先行する管へ推進力を伝達して軸線方向へ押し込んで
共に前進し、継合と押圧とを繰り返して所定の位置まで
各管を押し込み、すべての管に地震等による過大な外力
が負荷されたとしても、埋設後の管路のすべての継手に
管を引き抜く方向には言うまでもなく、押し込む方向に
も環状空間Sを設けたことによって前記の課題を解決し
た。
In the seismic propulsion method according to the present invention, pipes are joined one after another from the starting shaft excavated from the ground to the rear of the preceding pipe, and are pressed in the axial direction to form a new pipe without cutting. Alternatively, a two-step type propulsion method and a pipe-in-pipe method to be renewed, in which the pressing flange 11 provided outside the insertion port 1 of the pipe 10A to be joined and the side end face 21 of the opening of the receiving port 2 of the other pipe 10B. A plurality of propulsion force transmitting springs 3 arranged so that the amount of deflection stays within a predetermined range even if the propulsion force is received in between. Even if the external force due to an earthquake or the like is applied to all the pipes by transmitting the propulsion force and pushing in the axial direction to advance together, repeating the joining and pressing, pushing each pipe to the predetermined position, Direction of pulling out pipes to all joints of buried pipeline Not to mention also the pushing direction has solved the above problems by providing an annular space S.

【0010】また、この二工程式推進工法およびパイプ
インパイプ工法に使用する耐震管継手としては、挿し口
1の外周面12に固着した押圧フランジ11、該押圧フ
ランジ11の頂面に一端を固定して庇状に突出する混入
防止カバー31、該混入防止カバー31の内周面と挿し
口1の外周面12間の環状空間へ内蔵された推進力伝達
用さらばね3、および前記環状空間と管外との連通を遮
断する混入防止ゴム32よりなり、該推進力伝達用さら
ばね3が推進工程の進行とともに変動する推進力に対応
して常にほぼ一定の許容撓み量内に留まるように調整し
て配列したことによって前記の課題を解決した。
As a seismic pipe joint used in the two-step propulsion method and the pipe-in-pipe method, a pressing flange 11 fixed to the outer peripheral surface 12 of the insertion port 1 and one end is fixed to the top surface of the pressing flange 11. Mixing cover 31 projecting like an eaves, and a propulsion force transmitting flat spring 3 built into an annular space between the inner peripheral surface of the mixing prevention cover 31 and the outer peripheral surface 12 of the insertion opening 1. The thrust spring 3 for transmitting the propulsion force is adjusted so as to always stay within a substantially constant allowable bending amount in accordance with the propulsion force fluctuating with the progress of the propulsion process. The above-mentioned problem was solved by arranging in the above manner.

【0011】[0011]

【発明の実施の形態】以下本発明の実施例をダクタイル
鋳鉄管を適用したもので図面に基づいて説明する。図1
は本発明における耐震管継手の構造を表す断面図であ
り、継手形式は水道の耐震継手として通常使用されてい
るNS形継手であり、挿し口1と受口2からなる。前記
挿し口1は、ダクタイル鋳鉄管10Aの先端部外周面に
挿し口突起13が一体に設けられており、この挿し口突
起13は、挿し口1の外周面12にリング状に成形され
ている。挿し口1の後方寄りの外周面上に押圧フランジ
11が一体的に設けられている。この押圧フランジ11
の背面部14には適当な間隔でバックアップ用の補強リ
ブ15が設けられており、前記押圧フランジ11と補強
リブ15は金属製で溶接などの方法により取り付けられ
ている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings, in which a ductile cast iron pipe is applied. FIG.
FIG. 1 is a sectional view showing the structure of a seismic pipe joint according to the present invention. The joint type is an NS type joint which is generally used as a seismic joint of water supply, and has an insertion port 1 and a receiving port 2. The insertion port 1 is provided with an insertion projection 13 integrally on the outer peripheral surface of the distal end portion of the ductile cast iron pipe 10A, and the insertion projection 13 is formed in a ring shape on the outer peripheral surface 12 of the insertion port 1. . A pressing flange 11 is integrally provided on the outer peripheral surface of the insertion port 1 on the rear side. This pressing flange 11
A back-up reinforcing rib 15 is provided at an appropriate interval on the back surface 14 of the base member, and the pressing flange 11 and the reinforcing rib 15 are made of metal and attached by a method such as welding.

【0012】受口2の内周面22には、シール用のゴム
輪4を収めるゴム輪溝41とロックリング溝51が設け
られている。前記溝51には、一つ割りの環状体で成形
されたロックリング5がロックリング心出し用ゴム52
を介して挿嵌されており、このロックリング5と挿し口
突起13が地震などによる大きな引き抜き力が作用した
場合に、掛かり合うことにより離脱を阻止するのであ
る。
A rubber ring groove 41 for accommodating the rubber ring 4 for sealing and a lock ring groove 51 are provided on the inner peripheral surface 22 of the receiving port 2. The groove 51 is provided with a lock ring centering rubber 52 formed of a single annular body.
When the lock ring 5 and the insertion port projection 13 are subjected to a large withdrawal force due to an earthquake or the like, the lock ring 5 and the insertion port projection 13 engage with each other to prevent the lock ring 5 from being detached.

【0013】推進力伝達用さらばね3は挿し口1の外周
面上に固定した押圧フランジ11と受口2の開口した側
端面21との間に介装し、その上面は混入防止カバー3
1によって被覆され、混入防止ゴム32によって外部か
らの土砂や水分の混入を防止した環状空間内に内装され
る。推進力伝達用さらばね3の要件は推進工法の全工期
を通じてその推進に当たって所定の許容された範囲内で
しか撓みを生じず、最初に設定した環状空間の管軸方向
の長さをほとんど失うことなく、管路が完成する全長に
亘って伸縮可能な環状空間を全ての管継手内に形成する
ことである。
The propulsion force transmitting spring 3 is interposed between the pressing flange 11 fixed on the outer peripheral surface of the insertion opening 1 and the open side end surface 21 of the receiving opening 2.
1 and is enclosed in an annular space in which the intrusion of earth and sand or moisture from the outside is prevented by the intrusion prevention rubber 32. The requirement of the thrust spring 3 for transmitting the propulsion force is that the propulsion during the entire construction period of the propulsion method causes deflection only within a predetermined allowable range during the propulsion and almost loses the initially set length of the annular space in the tube axis direction. Instead, an annular space that can expand and contract over the entire length of the completed pipe is formed in all the pipe joints.

【0014】本発明の実施例としては特定のばね定数を
等しく具えたさらばねを適用し、さらばねの配列の調整
によってばね定数を外力の変動に対応して変換する方式
をとった。図2(A)(B)(C)はさらばねの特性
(機械設計図表便覧 共立出版社)を示したものであ
り、さらばねを複数個重ねる方法として図(A)のよう
に並列に重ね合わせるものと図(B)のように直列に重
ね合わせるものがある。並列に重ね合わせた場合には、
図(C)のように一定の撓み量1mmを生じるために必
要な荷重はその枚数に比例して増加するのに対し、直列
の場合はたとえば4×103kgfの一定荷重に対し撓
み量は重ねた枚数に比例して1mmから4mmまで増加
する。本発明では、基本的にはさらばねを当初の推進力
程度では撓みを生じないように計算して直列に配置し、
以下、工事の進行と同時に増加する推進力に対応して順
次並列に強化して常に一定以下の撓み量に抑制し、最終
段階の最大推進力下にあっても管継手内に伸縮可能な環
状空間を確保することを要件とする。
As an embodiment of the present invention, a flat spring having a specific spring constant is applied, and a method of converting the spring constant in accordance with a change in external force by adjusting the arrangement of the flat springs is adopted. 2 (A), 2 (B) and 2 (C) show characteristics of flat springs (Kyoritsu Publishing Co., Ltd., handbook of mechanical design charts). As shown in FIG. Some of them are superimposed and others are superimposed in series as shown in FIG. When superimposed in parallel,
As shown in FIG. 3 (C), the load required to produce a constant amount of deflection of 1 mm increases in proportion to the number of sheets, whereas in the case of series connection, the amount of deflection is constant for a constant load of 4 × 10 3 kgf, for example. It increases from 1 mm to 4 mm in proportion to the number of stacked sheets. In the present invention, basically, the flat springs are calculated and arranged in series so as not to bend at about the initial propulsion,
In the following, in order to cope with the increasing propulsion force at the same time as the construction progresses, it will be strengthened in parallel in order to keep the amount of flexure below a certain level and to be able to expand and contract inside the pipe joint even under the maximum propulsion force at the final stage. It is necessary to secure space.

【0015】図3は推進工法の進捗とともにばね定数を
調整する実施形態の一例を示したものであり、それぞれ
管を挿入する際の先頭部、中間部、最後部を図(A)
(B)(C)でそれぞれ表している。図(A’)
(B’)(C’)はそれぞれの推進力伝達用さらばね付
近の拡大図である。先頭近傍での抵抗は、先行管の自重
による既設管、鞘管との摩擦抵抗と考えると推進力は小
さくて済むから、図(A)に示すようにさらばねを直列
に配置すれば充分押し込み力に耐え、押し込み代を確保
できる。中間では先行する管の本数が増えるために図
(B)のようにさらばねを並列に重ね合わせることによ
って押し込み力に耐え押し込み代を確保できる。最後管
ではすべての管の自重による摩擦抵抗が加わるので推進
力が最大となり、押し込み力も先頭近傍の継手部に比べ
るとかなり大きくなるために、図(C)のようにさらば
ねを並列に重ね合わせることで押し込み力に耐え押し込
み力を確保できる。このように後続の継手となるにつれ
てさらばねの重ね合わせる枚数を変えることによって微
妙な調整ができ、推進力に対してほぼ一定の押し込み代
を確保することができる。この実施形態では最初の直列
構造に部分的な並列構造を付加して強化したが、直列、
並列方式を適宜組み合わせて最も合理的な耐震構造を形
成するために異なった配列を採り得ることは言うまでも
ない。
FIG. 3 shows an example of an embodiment in which the spring constant is adjusted along with the progress of the propulsion method. FIG. 3 (A) shows a leading portion, an intermediate portion, and a trailing portion when a pipe is inserted.
(B) and (C) respectively. Figure (A ')
(B ′) and (C ′) are enlarged views in the vicinity of the respective propulsion force transmitting springs. Considering that the resistance near the head is the frictional resistance between the existing pipe and the sheath pipe due to the weight of the preceding pipe, the propulsion force is small, so if the springs are arranged in series as shown in FIG. It can withstand the force and secure the pushing allowance. In the middle, since the number of preceding tubes increases, by overlapping the flat springs in parallel as shown in FIG. (B), it is possible to withstand the pushing force and secure the pushing allowance. In the last tube, the frictional resistance due to the weight of all the tubes is added, so the propulsion force is maximized, and the pushing force is considerably larger than the joint near the head. Therefore, as shown in FIG. By doing so, it can withstand the pushing force and secure the pushing force. As described above, fine adjustment can be performed by changing the number of superposed springs as the subsequent joint is formed, and a substantially constant pushing allowance for the propulsion force can be secured. In this embodiment, the initial series structure was strengthened by adding a partial parallel structure.
It goes without saying that different arrangements can be adopted to form the most reasonable seismic structure by appropriately combining the parallel systems.

【0016】図4は本発明の施工の全体図、図5(A)
(B)は図4におけるA−A、B−B断面図を示す。ダ
クタイル鋳鉄管10はX方向からY方向へ油圧ジャッキ
により鞘管6内に挿入され、順次接合と挿入を繰り返す
ことにより推進される。鞘管6は、ダクタイル鋳鉄管1
0を布設するために、新たに推進された管、もしくは老
朽化した既設管であり、ヒューム管や鋼管などが考えら
れる。またパイプインパイプ工法用ローラ7は、通常パ
イプインパイプ工法に用いられており、鞘管と推進管の
間隙に収まって芯出しを行い、ローラで管をサポートす
ることによって推進力(摩擦抵抗力)を低減させる。こ
の図では受口を設けたダクタイル鋳鉄管を後続の管とし
て順次接合と挿入を繰り返して推進しているが、挿し口
を設けたダクタイル鋳鉄管を後続の管として推進する、
つまりY方向からX方向へ推進することも可能である。
FIG. 4 is an overall view of the construction according to the present invention, and FIG.
4B is a cross-sectional view taken along the lines AA and BB in FIG. The ductile cast iron pipe 10 is inserted into the sheath pipe 6 from the X direction to the Y direction by a hydraulic jack, and is propelled by repeating joining and insertion sequentially. The sheath tube 6 is a ductile cast iron tube 1
In order to lay 0, it is a newly propelled pipe or an aging pipe, such as a fume pipe or a steel pipe. The pipe-in-pipe method roller 7 is usually used in the pipe-in-pipe method, and is set in the gap between the sheath pipe and the propulsion pipe to perform centering. ). In this figure, the ductile iron pipe provided with the inlet is successively joined and inserted repeatedly as a subsequent pipe, and is promoted.However, the ductile iron pipe provided with the insertion port is promoted as the subsequent pipe,
That is, it is also possible to propel from the Y direction to the X direction.

【0017】図6(A)〜(C)は本発明を実施する時
の手順を示したそれぞれの断面図であり 図(A)において挿し口1にあらかじめ混入防止カバ
ー31を取り付けておき、受口2の内周面22にゴム輪
4、ロックリング5、ロックリング心出し用ゴム52を
装着する。 図(B)において挿し口1の外周面12と混入防止カ
バー31の間に、推進力伝達用さらばね3を嵌入する。 図(C)において挿し口1を受口2に挿入し、継合さ
れる。
FIGS. 6A to 6C are cross-sectional views showing a procedure for carrying out the present invention. In FIG. The rubber ring 4, the lock ring 5, and the lock ring centering rubber 52 are mounted on the inner peripheral surface 22 of the mouth 2. In FIG. 2B, the propulsion force transmitting spring 3 is fitted between the outer peripheral surface 12 of the insertion opening 1 and the mixing prevention cover 31. In FIG. (C), the insertion port 1 is inserted into the reception port 2 and joined.

【0018】図7(A)(B)は本実施例における確保
された継手伸縮量について示す。推進力伝達用さらばね
3が一定の環状空間を維持したまま管路の継合がすべて
終了するので、継手が押し込まれる側には押し込み余裕
量L1が、引き抜かれる側には引き抜き余裕量L2が確
保された状態となり、(財)国土開発技術センター「地
下埋設管路耐震継手の技術基準」(案)に規定されてい
るように、管長の1%以上の押し込み代および引き抜き
代を確保することも容易である。引き抜き力が作用した
場合には、最終的には挿し口突起13とロックリング5
が掛かり合うことにより、引き抜き力に耐える構造とな
っている。また、管の継合および継手伸縮量を確保する
手段は、すべて発進坑内の管外面側から行うため、作業
員が管内に入ることができない口径φ800mm未満の
中小口径においても適用可能である。
FIGS. 7A and 7B show the secured joint expansion and contraction amount in this embodiment. Since the connection of all the pipes is completed while the propulsion force transmitting spring 3 maintains a constant annular space, a pushing allowance L1 is provided on the side where the joint is pushed, and a pull-out allowance L2 is provided on the side where the joint is pulled out. Once it has been secured, secure the push-in and pull-out allowances of 1% or more of the pipe length as prescribed by the National Land Development Technology Center "Technical Standards for Seismic Joints for Underground Pipes" (draft) (draft). Is also easy. When a pulling force is applied, the insertion projection 13 and the lock ring 5
, The structure withstands the pulling force. Further, since the means for joining the pipes and securing the amount of expansion and contraction of the joints are all performed from the outer surface side of the pipes in the starting pit, the present invention can be applied even to small and medium-sized bores having a diameter of less than φ800 mm, in which a worker cannot enter the pipes.

【0019】図8は他の実施形態を表すもので、地震な
どにより継手部に大きな力が作用した場合、グラウト材
の圧縮強度が高いために押圧フランジ11によって継手
部が自由に伸縮しない可能性が考えられる。そこで図示
するように押圧フランジ11の背側面14にスポンジな
どのクッション材33を押圧フランジ11と連設させる
ことにより、グラウト材の圧縮強度が高い場合において
も確実に継手部の伸縮が可能となる。
FIG. 8 shows another embodiment. When a large force acts on the joint due to an earthquake or the like, there is a possibility that the joint is not freely expanded and contracted by the pressing flange 11 because the compressive strength of the grout material is high. Can be considered. Therefore, as shown in the figure, by connecting a cushion material 33 such as a sponge to the back side surface 14 of the pressing flange 11 and the pressing flange 11, the joint can be reliably expanded and contracted even when the grout material has a high compressive strength. .

【0020】[0020]

【発明の効果】推進工終了後、管継手には管を引き抜く
方向には言うまでもなく、押し込む方向にも環状空間S
が維持されることにより継手伸縮量が確保できるため、
地震などにより地盤が大きく変動した場合でも継手部は
地盤変動に追従して管路の破壊を阻止し、パイプインパ
イプ工法または二工程式推進工法によって管路を構築し
たとしても、管路の耐震性を最高レベルにすることが可
能である。また、継手伸縮量を確保する手段は、推進工
事と同時に発進坑内で行うために、作業員が管内に入る
ことができない口径φ800mm未満の管であっても、
推進工法用耐震管継手として使用でき、管内面の接水部
に機能を付加しないために、現行の管継手の機能を損な
うことはない。
After the propulsion is completed, the annular space S is inserted into the pipe joint not only in the direction in which the pipe is pulled out but also in the direction in which the pipe is pushed in.
Since the joint expansion and contraction amount can be secured by maintaining
Even if the ground fluctuates significantly due to an earthquake or the like, the joints follow the ground deformation and prevent the destruction of the pipeline, and even if the pipeline is constructed by the pipe-in-pipe method or the two-step propulsion method, the seismic resistance of the pipeline Sex can be at the highest level. Also, the means for securing the joint expansion / contraction amount is performed in the starting pit at the same time as the propulsion work, so that even if the pipe has a diameter of less than φ800 mm, the worker cannot enter the pipe,
It can be used as a seismic pipe joint for the propulsion method, and does not impair the function of the existing pipe joint because it does not add a function to the water contact part on the inner surface of the pipe.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の管継手の断面図である。FIG. 1 is a sectional view of a pipe joint according to the present invention.

【図2】さらばねの配列方法(A)並列、(B)直列と
その加重−撓み線図(C)である。
FIG. 2 is a diagram (C) showing a method of arranging the flat springs (A) in parallel, (B) in series, and a load-deflection diagram thereof.

【図3】推進工法の先頭部(A)およびその拡大図
(A’)、中間部(B)およびその拡大図(B’)、最
後部(C)およびその拡大図(C’)における推進力伝
達用さらばねの配列の調整を例示する断面図である。
FIG. 3 shows the propulsion at the beginning (A) and its enlarged view (A ′), the middle section (B) and its enlarged view (B ′), the last section (C) and its enlarged view (C ′) of the propulsion method. It is sectional drawing which illustrates adjustment of arrangement | positioning of a force transmission spring.

【図4】施工方法の全体を示す断面図である。FIG. 4 is a sectional view showing the entire construction method.

【図5】図4におけるA-A断面の矢視図(A)とB-B
断面の矢視図(B)である
FIG. 5 is a sectional view taken along line AA in FIG. 4 (A) and BB.
It is an arrow view (B) of a section.

【図6】(A)〜(C)によって本発明の管継手の接合
手順を示すそれぞれの断面図である。
FIGS. 6A to 6C are cross-sectional views showing a joining procedure of the pipe joint according to the present invention by FIGS.

【図7】本実施例における確保された押し込み余裕量を
示す断面図(A)と確保された引き抜き余裕量を示す断
面図(B)である。
FIGS. 7A and 7B are a cross-sectional view and a cross-sectional view, respectively, showing a secured push-in margin and a secured pull-out margin in the present embodiment.

【図8】本発明の他の実施形態を示す断面図である。FIG. 8 is a cross-sectional view showing another embodiment of the present invention.

【図9】従来技術の一部正面断面図である。FIG. 9 is a partial front sectional view of a conventional technique.

【図10】パイプインパイプ工法を示す正面断面図であ
る。
FIG. 10 is a front sectional view showing a pipe-in-pipe method.

【図11】別の従来技術を示す一部正面断面図(A)と
要部の側面図(B)および正面図(C)である。
FIG. 11 is a partial front sectional view (A), a side view (B) and a front view (C) of a main part showing another conventional technique.

【符号の説明】[Explanation of symbols]

1 挿し口 2 受口 3 推進力伝達用さらばね 10 ダクタイル鋳鉄管 11 押圧フランジ 12 外周面 21 側端面 31 混入防止カバー 32 混入防止ゴム 33 クッション材 S 環状空間 REFERENCE SIGNS LIST 1 insertion port 2 receiving port 3 flat spring for transmitting propulsion force 10 ductile cast iron pipe 11 pressing flange 12 outer peripheral surface 21 side end surface 31 mixing prevention cover 32 mixing prevention rubber 33 cushion material S annular space

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡本 芳樹 大阪府大阪市西区北堀江1丁目12番19号 株式会社栗本鐵工所内 Fターム(参考) 2D063 BA26 BA27 BA31 3H104 JA08 JB02 JC08 JC09 KA04 KB03 LF16 LG02 MA08  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Yoshiki Okamoto 1-12-19 Kitahorie, Nishi-ku, Osaka-shi, Osaka F-term in Kurimoto Iron Works Co., Ltd. 2D063 BA26 BA27 BA31 3H104 JA08 JB02 JC08 JC09 KA04 KB03 LF16 LG02 MA08

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 地面より掘削した発進立坑から先行の管
の後部に次々と管を接合して軸線方向に押圧し非開削で
管路を新設または更新する二工程式推進工法およびパイ
プインパイプ工法において、継合する管10Aの挿し口
1に外装した押圧フランジ11と他方の管10Bの受口
2の開口部の側端面21との間に、該推進力を受けても
撓み量が所定の範囲内に留まるように配列した複数の推
進力伝達用さらばね3を介装し、該ばね定数を利用して
後続の管から先行する管へ推進力を伝達して軸線方向へ
押し込んで共に前進し、継合と押圧とを繰り返して所定
の位置まで各管を押し込み、埋設後の管路のすべての継
手に押込み可能な環状空間Sを設けて、引き抜き、押し
込みの二方向に伸縮可能な耐震性を具えたことを特徴と
する耐震推進工法。
1. A two-step propulsion method and a pipe-in-pipe method in which pipes are successively joined to a rear part of a preceding pipe from a starting shaft excavated from the ground and pressed in the axial direction to newly establish or renew a pipe without cutting. In this case, the amount of flexure between the pressing flange 11 provided at the insertion port 1 of the pipe 10A to be joined and the side end face 21 of the opening of the receiving port 2 of the other pipe 10B is a predetermined amount even when the propulsion force is received. A plurality of propulsion force transmitting springs 3 arranged so as to stay within the range are interposed, and the propulsion force is transmitted from the succeeding tube to the preceding tube by utilizing the spring constant and pushed in the axial direction to advance together. Each pipe is pushed to a predetermined position by repeating joining and pressing, and an annular space S that can be pushed is provided in all joints of the buried pipe, and the seismic resistance can be extended and retracted in two directions of pulling and pushing. An earthquake-resistant propulsion method characterized by having a characteristic.
【請求項2】 二工程式推進工法およびパイプインパイ
プ工法用の管継手において、挿し口1の外周面12に固
着した押圧フランジ11、該押圧フランジ11の頂面に
一端を固定して庇状に突出する混入防止カバー31、該
混入防止カバー31の内周面と挿し口1の外周面12間
の環状空間へ内蔵された推進力伝達用さらばね3、およ
び前記環状空間と管外との連通を遮断する混入防止ゴム
32よりなり、該推進力伝達用さらばね3が推進工程の
進行とともに変動する推進力に対応して常にほぼ一定の
許容撓み量内に留まるように調整して配列したことを特
徴とする耐震推進工法用の管継手。
2. A pipe joint for a two-step propulsion method and a pipe-in-pipe method, wherein a pressing flange 11 fixed to an outer peripheral surface 12 of an insertion port 1 and one end is fixed to a top surface of the pressing flange 11 to form an eaves-like shape. , A thrust spring 3 for transmitting a propulsion force built into an annular space between the inner peripheral surface of the intrusion prevention cover 31 and the outer peripheral surface 12 of the insertion opening 1, and a connection between the annular space and the outside of the tube. The thrust spring 3 for transmitting the propulsion force is arranged and adjusted so as to always stay within a substantially constant allowable bending amount corresponding to the propulsion force fluctuating with the progress of the propulsion process. A pipe joint for an earthquake-resistant propulsion method.
【請求項3】 請求項2において、推進力伝達用さらば
ね3は同一のばね定数を具えた複数個よりなり、推進工
事の初期の推進力程度では撓みを生じない直列に配置
し、中期、後期と推進力が増強するとともに順次直列を
構成する単品を並列に重ね合わせて強化し、完成時には
何れの継手部においても常に一定の環状空間Sを確保す
るようにさらばねの数と直列、並列の組み合わせを調整
することを特徴とする耐震推進工法用の管継手。
3. The thrust spring 3 for transmitting a propulsion force according to claim 2, comprising a plurality of springs having the same spring constant. In the latter period, the propulsion force is strengthened, and the individual parts constituting the series are sequentially superimposed and strengthened in parallel, and when completed, the number of flat springs is serially and in parallel with the number of flat springs so that a constant annular space S is always secured at any joint. A pipe joint for an earthquake-resistant propulsion method characterized by adjusting the combination of
【請求項4】 請求項2または3において、挿し口1の
押圧フランジ11の背面部14に環状のクッション材3
3を周設したことを特徴とする耐震推進工法用の管継
手。
4. An annular cushion material 3 according to claim 2, wherein the back surface portion 14 of the pressing flange 11 of the insertion opening 1 is provided on the back surface portion 14.
3. A pipe joint for an earthquake-resistant propulsion method, wherein 3 is provided.
JP07143099A 1999-03-17 1999-03-17 Seismic propulsion method and pipe fittings Expired - Fee Related JP3324550B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07143099A JP3324550B2 (en) 1999-03-17 1999-03-17 Seismic propulsion method and pipe fittings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07143099A JP3324550B2 (en) 1999-03-17 1999-03-17 Seismic propulsion method and pipe fittings

Publications (2)

Publication Number Publication Date
JP2000266261A true JP2000266261A (en) 2000-09-26
JP3324550B2 JP3324550B2 (en) 2002-09-17

Family

ID=13460310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07143099A Expired - Fee Related JP3324550B2 (en) 1999-03-17 1999-03-17 Seismic propulsion method and pipe fittings

Country Status (1)

Country Link
JP (1) JP3324550B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304031A (en) * 2007-06-11 2008-12-18 Kurimoto Ltd Pipe jacking guide structure and pipe jacking technique
WO2009040223A2 (en) * 2007-09-21 2009-04-02 Voss Automotive Gmbh Connection device for media lines
US8925573B2 (en) 2007-12-21 2015-01-06 Voss Automotive Gmbh Heatable media line
US9702492B2 (en) 2007-10-26 2017-07-11 Voss Automotive Gmbh Line connector and line set for fluid media
US9890889B2 (en) 2007-12-21 2018-02-13 Voss Automotive Gmbh Line connector and ready-made media line

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008304031A (en) * 2007-06-11 2008-12-18 Kurimoto Ltd Pipe jacking guide structure and pipe jacking technique
WO2009040223A2 (en) * 2007-09-21 2009-04-02 Voss Automotive Gmbh Connection device for media lines
WO2009040223A3 (en) * 2007-09-21 2009-06-11 Voss Automotive Gmbh Connection device for media lines
US20110036081A1 (en) * 2007-09-21 2011-02-17 Voss Automotive Gmbh Connection device for media lines
US8555624B2 (en) 2007-09-21 2013-10-15 Voss Automotive Gmbh Connection device for media lines
US9702492B2 (en) 2007-10-26 2017-07-11 Voss Automotive Gmbh Line connector and line set for fluid media
US8925573B2 (en) 2007-12-21 2015-01-06 Voss Automotive Gmbh Heatable media line
US9890889B2 (en) 2007-12-21 2018-02-13 Voss Automotive Gmbh Line connector and ready-made media line

Also Published As

Publication number Publication date
JP3324550B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
JP4318696B2 (en) Saya tube propulsion method
JP3324550B2 (en) Seismic propulsion method and pipe fittings
JP3710391B2 (en) Sheath pipe propulsion method and pipe joint structure used for it
JP4248213B2 (en) Seismic pipe joints in the sheath pipe propulsion method
JP3470146B2 (en) Sheath tube type propulsion method and its driving force transmission device
JP2000266260A (en) Aseismatic propulsion construction method and pipe joint
JP3916411B2 (en) Seismic pipe joint for propulsion method with propulsion jig
JP3441927B2 (en) Slip-on type earthquake-resistant pipe joint and its joining method
JP2005344505A (en) Sheath pipe jacking method and pipe joint structure used for the same
JP3698975B2 (en) Sheath pipe propulsion method and pipe joint used for it
JP3963733B2 (en) In-pipe insertion method and pipe joint structure used therefor
JP4740176B2 (en) Pipe joint structure in sheath pipe propulsion method
JP3758918B2 (en) Pipe joint for earthquake-proof propulsion method with propulsion jig
JP3639989B2 (en) Structure of pipe joints for sheath pipe propulsion method
JP3756876B2 (en) Propulsion method and earthquake-resistant propulsion pipe fittings used in it
JP3470145B2 (en) Sheath tube type propulsion method and its thrust transmission device
JP3821619B2 (en) Seismic joint structure for pipe-in-pipe method
JP3398060B2 (en) Propulsion method and pipe joints used for it
JP3517381B2 (en) Carriage for sheath insertion method
JP3373396B2 (en) Propulsion method and pipe joint structure
JP3365489B2 (en) Seismic propulsion method and pipe fittings
JP3916413B2 (en) Pipe promotion method
JP3789331B2 (en) Propulsion method and pipe joint structure used therefor
JP3368844B2 (en) Seismic pipe and propulsion method for propulsion method
JPH11193892A (en) Separation preventive pipe joint

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees