JP2008223107A - System and method for electrolyzing high temperature steam - Google Patents

System and method for electrolyzing high temperature steam Download PDF

Info

Publication number
JP2008223107A
JP2008223107A JP2007065860A JP2007065860A JP2008223107A JP 2008223107 A JP2008223107 A JP 2008223107A JP 2007065860 A JP2007065860 A JP 2007065860A JP 2007065860 A JP2007065860 A JP 2007065860A JP 2008223107 A JP2008223107 A JP 2008223107A
Authority
JP
Japan
Prior art keywords
oxygen
hydrogen
electrode chamber
steam
water vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007065860A
Other languages
Japanese (ja)
Inventor
Hakaru Ogawa
斗 小川
Seiji Fujiwara
斉二 藤原
Shigeo Kasai
重夫 笠井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2007065860A priority Critical patent/JP2008223107A/en
Publication of JP2008223107A publication Critical patent/JP2008223107A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the following problems: conventional electrolysis of high temperature steam requires the separation of hydrogen and steam because hydrogen-enriched steam and high temperature pure oxygen are generated and the recovery of the oxygen is difficult in the conventional electrolysis of high temperature steam. <P>SOLUTION: A steam electrolyzing apparatus 10 is constituted of a hydrogen pole chamber 11 having a hydrogen pole 14, an oxygen pole chamber 12 having an oxygen pole 15, and a proton-conductive solid electrolyte 13. Water supplied from a water supply part 1 is converted into high temperature steam in a temperature raising part 2, and the high temperature steam is supplied to the oxygen pole chamber 12. An electric power is supplied to the steam electrolyzing apparatus 10 from a power source 5, and steam electrolysis is performed in the apparatus 10. Hydrogen gas is generated in the hydrogen pole chamber 11, and oxygen-enriched steam wherein oxygen and high temperature steam are mixed is generated in the oxygen pole chamber 12. Since hydrogen and the oxygen-enriched steam are generated, the separation of hydrogen and steam is not required, and the reduction of partial pressure of oxygen is not required. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は高温水蒸気電解システムおよび高温水蒸気電解方法に関する。   The present invention relates to a high temperature steam electrolysis system and a high temperature steam electrolysis method.

従来知られている高温水蒸気電解方法は、酸素イオン導電性固体電解質を用いた電解セルに高温の水蒸気を供給して電解を行なっている。水素極を有する水素極室に高温水蒸気を導入すると、水素極電解反応である
O+2e→H+O2− ・・・(1)
が起こり、高温水蒸気は分解され水素、酸素イオンが発生する。発生した酸素イオンは酸素イオン導電性固体電解質を介して酸素極を有する酸素極室へ移動する。酸素極室では酸素極電解反応の
2−→1/2O+2e ・・・(2)
によって酸素と電子が発生し、電子は外部回路を介して水素極室へ移動する。水素極室で発生した水素は高温水蒸気と混合した水素富化水蒸気として水素極室から、また、酸素は酸素極室から排出される。
A conventionally known high-temperature steam electrolysis method performs electrolysis by supplying high-temperature steam to an electrolysis cell using an oxygen ion conductive solid electrolyte. When high-temperature steam is introduced into a hydrogen electrode chamber having a hydrogen electrode, H 2 O + 2e → H 2 + O 2− (1), which is a hydrogen electrode electrolysis reaction
The high temperature steam is decomposed and hydrogen and oxygen ions are generated. The generated oxygen ions move to the oxygen electrode chamber having the oxygen electrode through the oxygen ion conductive solid electrolyte. O 2- → 1 / 2O 2 + 2e oxygen electrode electrolysis reaction at the oxygen electrode chamber - (2)
As a result, oxygen and electrons are generated, and the electrons move to the hydrogen electrode chamber via an external circuit. Hydrogen generated in the hydrogen electrode chamber is discharged from the hydrogen electrode chamber as hydrogen-enriched water vapor mixed with high-temperature water vapor, and oxygen is discharged from the oxygen electrode chamber.

このような高温水蒸気電解方法として、酸素イオン導電性固体電解質を用いた高温水蒸気電解装置に加熱源で加熱した空気と水蒸気を供給して高温下で電解し、高温水蒸気電解セルから取り出される水素富化水蒸気から水素を回収するものがある(たとえば特許文献1参照)。
特開平6−93481号公報
As such a high-temperature steam electrolysis method, hydrogen enriched with hydrogen extracted from a high-temperature steam electrolysis cell by supplying air and steam heated by a heating source to a high-temperature steam electrolysis apparatus using an oxygen ion conductive solid electrolyte and performing electrolysis at a high temperature. There is one that recovers hydrogen from hydrogenated steam (see, for example, Patent Document 1).
JP-A-6-93481

従来の高温水蒸気電解装置では水素が水素富化水蒸気として排出されるため、水素と水蒸気を分離するプロセスが必要であった。また、従来の高温水蒸気電解装置では純酸素が生成するが、高温の純酸素は反応性が高いため、発生した酸素に空気を供給する等して酸素分圧を低減するプロセスが必要であった。   In the conventional high-temperature steam electrolysis apparatus, hydrogen is discharged as hydrogen-enriched steam, and thus a process for separating hydrogen and steam is necessary. In addition, pure oxygen is generated in the conventional high-temperature steam electrolysis apparatus, but since high-temperature pure oxygen has high reactivity, a process for reducing the oxygen partial pressure by supplying air to the generated oxygen is required. .

本発明は上述した課題を解決するためになされたものであり、水素と水蒸気の分離するプロセスと、生成した酸素の分圧を低減するプロセスを不要としうる高温水蒸気電解システムおよび高温水蒸気電解方法を提供することを目的とする。   The present invention has been made to solve the above-described problems, and includes a high-temperature steam electrolysis system and a high-temperature steam electrolysis method that can eliminate the process of separating hydrogen and steam and the process of reducing the partial pressure of generated oxygen. The purpose is to provide.

上述した目的を達成するため、本発明による高温水蒸気電解システムは、水供給部と、前記水供給部から供給される水を加熱して高温水蒸気とする昇温部と、容器、この容器内に隔壁として形成され酸素極室と水素極室を形成するガスを透過しないプロトン導電性固体電解質、このプロトン導電性固体電解質の前記水素極室に接した面に形成された多孔質の水素極、前記プロトン導電性固体電解質の前記酸素極室と接した面に形成された多孔質の酸素極を有し、前記昇温部から前記酸素極室に供給される高温水蒸気を電気分解し、前記酸素極室から酸素富化水蒸気を、前記水素極室から水素をそれぞれ排出する水蒸気電解装置と、前記水蒸気電解装置に電力を供給する電源と、前記酸素極室から排出された前記酸素富化水蒸気を冷媒と熱交換させ、前記酸素富化水蒸気を酸素と凝縮水として排出する凝縮器とを備えることを特徴とする。   In order to achieve the above-described object, a high-temperature steam electrolysis system according to the present invention includes a water supply unit, a temperature raising unit that heats water supplied from the water supply unit to form high-temperature steam, a container, A proton conductive solid electrolyte that is formed as a partition wall and does not transmit gas that forms an oxygen electrode chamber and a hydrogen electrode chamber; a porous hydrogen electrode formed on a surface of the proton conductive solid electrolyte in contact with the hydrogen electrode chamber; A porous oxygen electrode formed on a surface of the proton conductive solid electrolyte in contact with the oxygen electrode chamber; and electrolyzing high-temperature steam supplied from the temperature raising unit to the oxygen electrode chamber; A steam electrolyzer that discharges oxygen-enriched water vapor from the chamber and hydrogen from the hydrogen electrode chamber; a power source that supplies power to the water vapor electrolyzer; and the oxygen-enriched water vapor discharged from the oxygen electrode chamber as a refrigerant And heat exchange Allowed, characterized in that it comprises a condenser for discharging the oxygen-enriched water vapor as the oxygen and condensed water.

また、本発明による高温水蒸気電解方法は、容器内に隔壁として形成され酸素極室と水素極室を形成する分離ガス不透過なプロトン導電性固体電解質、このプロトン導電性固体電解質の前記水素極室に接した面に形成された多孔質の水素極、前記プロトン導電性固体電解質の前記酸素極室と接した面に形成された多孔質の酸素極を有する水蒸気電解装置に電力を供給し、水を加熱して高温水蒸気とし、前記酸素極室に前記高温水蒸気を供給して電気分解を行い前記酸素極室で酸素を、前記水素極室で水素を生成し、前記酸素極室から酸素富化水蒸気を、前記水素極室から水素をそれぞれ排出し、前記酸素富化水蒸気を冷媒と熱交換させて酸素と凝縮水に分離させることを特徴とする。   Further, the high temperature steam electrolysis method according to the present invention comprises a proton conductive solid electrolyte impermeable to separation gas which is formed as a partition in a container and forms an oxygen electrode chamber and a hydrogen electrode chamber, and the hydrogen electrode chamber of the proton conductive solid electrolyte. Power is supplied to a water vapor electrolysis apparatus having a porous hydrogen electrode formed on a surface in contact with the oxygen electrode and a porous oxygen electrode formed on a surface in contact with the oxygen electrode chamber of the proton conductive solid electrolyte. Is heated to high temperature water vapor, and the high temperature water vapor is supplied to the oxygen electrode chamber to perform electrolysis to produce oxygen in the oxygen electrode chamber and hydrogen in the hydrogen electrode chamber, and oxygen enrichment from the oxygen electrode chamber Water vapor is discharged from the hydrogen electrode chamber, respectively, and the oxygen-enriched water vapor is heat-exchanged with a refrigerant to be separated into oxygen and condensed water.

本発明によれば、水素と水蒸気の分離するプロセス及び生成した酸素の分圧を低減するプロセスを不要としうる高温水蒸気電解システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the high temperature steam electrolysis system which can make the process of isolate | separating hydrogen and water vapor | steam and the process of reducing the partial pressure of produced | generated oxygen unnecessary can be provided.

以下本発明の実施例について図面を参照しながら説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1、図2は本発明の実施例1による高温水蒸気電解システムとその変形例の構成を示すブロック図である。   1 and 2 are block diagrams showing the configuration of a high-temperature steam electrolysis system according to Embodiment 1 of the present invention and a modification thereof.

本実施例による高温水蒸気電解システムの構成について以下説明する。   The configuration of the high-temperature steam electrolysis system according to this embodiment will be described below.

水供給部1は配管L1を介して昇温部2と接続されている。昇温部2は原子炉の排熱等を熱源とし、配管L2を介して水蒸気電解装置10の酸素極室12と接続されている。   The water supply unit 1 is connected to the temperature raising unit 2 through a pipe L1. The temperature raising unit 2 is connected to the oxygen electrode chamber 12 of the steam electrolysis apparatus 10 through a pipe L2 using the exhaust heat of the reactor as a heat source.

水蒸気電解装置10は容器16内をガス不透過な電解質13によって分離して形成した水素極室11及び酸素極室12で構成され、電解質13の水素極室11に接した面には多孔質の水素極14が、また電解質13の酸素極室12と接した面には多孔質の酸素極15が設けられている。電解質13にはBaCeO、SrCeOなどを用いたプロトン導電性の固体電解質を用いる。水素極14、酸素極15には例えばプロトン導電性電解質を混入したニッケル基金属等の多孔質体を用いる。 The water vapor electrolysis apparatus 10 includes a hydrogen electrode chamber 11 and an oxygen electrode chamber 12 formed by separating the inside of a container 16 with a gas-impermeable electrolyte 13, and the surface of the electrolyte 13 in contact with the hydrogen electrode chamber 11 is porous. A porous oxygen electrode 15 is provided on the surface of the electrolyte 13 in contact with the oxygen electrode chamber 12. The electrolyte 13 is a proton conductive solid electrolyte using BaCeO 3 , SrCeO 3 or the like. For the hydrogen electrode 14 and the oxygen electrode 15, for example, a porous body such as a nickel-based metal mixed with a proton conductive electrolyte is used.

また、水蒸気電解装置10の酸素極15は電線E1を介して電源5の正極と、水素極14は電線E2を介して電源5の負極と接続されており、電源5によって電圧が印加される。   Further, the oxygen electrode 15 of the water vapor electrolysis apparatus 10 is connected to the positive electrode of the power source 5 via the electric wire E <b> 1, and the hydrogen electrode 14 is connected to the negative electrode of the power source 5 via the electric wire E <b> 2.

酸素極室12は配管L4を介して凝縮器3と接続されている。   The oxygen electrode chamber 12 is connected to the condenser 3 via a pipe L4.

凝縮器3は配管L4、配管L7が接続されており、この凝縮器3は配管L7内の冷媒と配管L4内の流体とを熱交換させる熱交換器である。配管L7内の冷媒には水等を用いる。配管L4は凝縮器3を介して配管L5、配管L6と接続されている。   The condenser 3 is connected to a pipe L4 and a pipe L7. The condenser 3 is a heat exchanger that exchanges heat between the refrigerant in the pipe L7 and the fluid in the pipe L4. Water or the like is used as the refrigerant in the pipe L7. The pipe L4 is connected to the pipe L5 and the pipe L6 via the condenser 3.

また、水蒸気電解装置10の水素極室11は配管L3を介して水素処理部4と接続されている。水素処理部4は、例えば高圧水素タンクや水素吸蔵合金等に水素を貯蔵する水素貯蔵プロセス等、供給される水素を使用するプロセスである。   In addition, the hydrogen electrode chamber 11 of the steam electrolysis apparatus 10 is connected to the hydrogen treatment unit 4 via a pipe L3. The hydrogen processing unit 4 is a process that uses supplied hydrogen, such as a hydrogen storage process that stores hydrogen in a high-pressure hydrogen tank, a hydrogen storage alloy, or the like.

また、図2に示す本実施例の変形例による高温水蒸気電解システムでは、配管L3内の流体と配管L8内の冷媒の熱交換を行う熱交換器8が配管L3に設けられている点が図1の実施例と異なっている。   Further, in the high-temperature steam electrolysis system according to the modification of the present embodiment shown in FIG. 2, the heat exchanger 8 that performs heat exchange between the fluid in the pipe L3 and the refrigerant in the pipe L8 is provided in the pipe L3. This is different from the first embodiment.

図1に示す本実施例による高温水蒸気電解システムの作用について以下説明する。   The operation of the high-temperature steam electrolysis system according to this embodiment shown in FIG. 1 will be described below.

水供給部1は配管L1を介して昇温部2に水を供給する。昇温部2は供給された水を昇温しておよそ600℃以上の高温水蒸気とし、配管L2を介して水蒸気電解装置10の酸素極室12へ供給する。   The water supply unit 1 supplies water to the temperature raising unit 2 through the pipe L1. The temperature raising unit 2 raises the temperature of the supplied water to form high-temperature steam at about 600 ° C. or higher, and supplies it to the oxygen electrode chamber 12 of the water vapor electrolysis apparatus 10 via the pipe L2.

酸素極室12に供給された高温水蒸気は酸素極15において酸素極電解反応
O→2H+1/2O+2e ・・・(3)
によって水素イオンと酸素、電子に分解され、酸素が発生する。酸素極室12内で発生した水素イオンはプロトン導電性電解質13を介して、また、電子は電線E1、電源5、電線E2を介して水素極14へ移動する。水素極14では、酸素極室12から移動してきた水素イオンと電子が、水素極反応
2H+2e→H・・・ (4)
によって水素となる。
The high-temperature water vapor supplied to the oxygen electrode chamber 12 is subjected to an oxygen electrode electrolysis reaction at the oxygen electrode 15 H 2 O → 2H + + 1 / 2O 2 + 2e (3)
Is decomposed into hydrogen ions, oxygen and electrons to generate oxygen. Hydrogen ions generated in the oxygen electrode chamber 12 move to the hydrogen electrode 14 via the proton conductive electrolyte 13 and electrons via the electric wire E1, the power source 5, and the electric wire E2. In the hydrogen electrode 14, hydrogen ions and electrons that have moved from the oxygen electrode chamber 12 are converted into hydrogen electrode reactions 2H + + 2e → H 2. (4)
To hydrogen.

水素極室11で発生した純水素は配管L3を介して水素処理部5へ供給される。   Pure hydrogen generated in the hydrogen electrode chamber 11 is supplied to the hydrogen treatment unit 5 through the pipe L3.

酸素極室12で発生した酸素は高温水蒸気と混合されて酸素富化水蒸気となり、配管L4を介して凝縮器3へ導入される。凝縮器3に導入された酸素富化水蒸気は配管L7内の冷媒と熱交換を行って冷却され、酸素と凝縮水に分離し、酸素は配管L5から、凝縮水は配管L6から排出される。このように、発生する高温の酸素を酸素富化水蒸気として排出し、その後に冷却して酸素と水に分離するため、酸素分圧を下げる必要がなくなる。   Oxygen generated in the oxygen electrode chamber 12 is mixed with high-temperature steam to become oxygen-enriched steam, and is introduced into the condenser 3 through the pipe L4. The oxygen-enriched water vapor introduced into the condenser 3 is cooled by exchanging heat with the refrigerant in the pipe L7, separated into oxygen and condensed water, oxygen is discharged from the pipe L5, and condensed water is discharged from the pipe L6. Thus, since the generated high-temperature oxygen is discharged as oxygen-enriched water vapor and then cooled and separated into oxygen and water, there is no need to lower the oxygen partial pressure.

なお、図2に示したように配管L6を水供給部1と昇温部2とを接続する配管L1へ接続し、凝縮器3から排出される凝縮水を配管L1へ導入して高温水蒸気電解に利用することも可能である。   As shown in FIG. 2, the pipe L6 is connected to the pipe L1 connecting the water supply unit 1 and the temperature raising unit 2, and the condensed water discharged from the condenser 3 is introduced into the pipe L1 to perform high temperature steam electrolysis. It is also possible to use it.

更に、熱交換器8によって配管L3内の水素の熱を回収することが可能で、配管L8内の冷媒が回収した熱を、たとえば配管L1内の水の昇温や、ランキンサイクル等の熱機関に利用できる。   Further, the heat of the hydrogen in the pipe L3 can be recovered by the heat exchanger 8, and the heat recovered by the refrigerant in the pipe L8 is used as a heat engine such as a temperature rise of water in the pipe L1 or a Rankine cycle. Available to:

本実施例によれば、プロトン導電性の電解質13を有する水蒸気電解装置10を用いて構成した高温水蒸気電解システムで水蒸気電解を行うことにより、水素ガスと酸素富化水蒸気を発生させ、水素と水蒸気の分離するプロセス及び生成した酸素の分圧を低減するプロセスを不要とすることができる。   According to the present embodiment, hydrogen gas and oxygen-enriched water vapor are generated by performing water vapor electrolysis in a high temperature water vapor electrolysis system configured using a water vapor electrolysis apparatus 10 having a proton conductive electrolyte 13, and hydrogen and water vapor are generated. The process of separating the gas and the process of reducing the partial pressure of the generated oxygen can be eliminated.

図3は実施例2による高温水蒸気電解システムの概略を示すブロック図である。本実施例の高温水蒸気電解システムでは、水素循環手段として配管L3の中途に設けられた分岐弁21と、この分岐弁21と水素極室11を接続する配管L21を設け、また酸素富化水蒸気循環手段として配管L4の中途に設けた分岐弁22と、この分岐弁22を配管L2に接続する配管L22を備えている点が実施例1と相違する。なお、実施例1と同一の構成には同一の符号を付し、重複する説明は省略する。   FIG. 3 is a block diagram showing an outline of the high-temperature steam electrolysis system according to the second embodiment. In the high-temperature steam electrolysis system of this embodiment, a branch valve 21 provided in the middle of the pipe L3 as a hydrogen circulation means, a pipe L21 connecting the branch valve 21 and the hydrogen electrode chamber 11, and an oxygen-enriched steam circulation are provided. The difference from the first embodiment is that a branch valve 22 provided in the middle of the pipe L4 and a pipe L22 that connects the branch valve 22 to the pipe L2 are provided as means. In addition, the same code | symbol is attached | subjected to the structure same as Example 1, and the overlapping description is abbreviate | omitted.

配管L3に設けられた分岐弁21は、水素極室11から配管L3へ排出された水素の一部を配管L21へ分岐し、分岐された水素は水素極室11へ供給される。   The branch valve 21 provided in the pipe L3 branches a part of the hydrogen discharged from the hydrogen electrode chamber 11 to the pipe L3 to the pipe L21, and the branched hydrogen is supplied to the hydrogen electrode chamber 11.

また、配管L4に設けられた分岐弁22は、酸素極室12から配管L4へ排出された酸素富化水蒸気の一部を配管L22へ分岐させる。配管L22に分岐された高温水蒸気は配管L2へ導入され、昇温部2から供給される高温水蒸気と共に酸素極室12へ供給される。   Further, the branch valve 22 provided in the pipe L4 branches a part of the oxygen-enriched water vapor discharged from the oxygen electrode chamber 12 to the pipe L4 to the pipe L22. The high temperature steam branched into the pipe L22 is introduced into the pipe L2, and is supplied to the oxygen electrode chamber 12 together with the high temperature steam supplied from the temperature raising unit 2.

本実施例による作用について、以下説明する。   The effect | action by a present Example is demonstrated below.

本実施例の水蒸気電解電圧Eは、ネルンストの式を用いた以下の式で算出することができる。
E=E+(RT/2F)×ln(PH2×PO2^0.5) ・・・(5)
The steam electrolysis voltage E of the present embodiment can be calculated by the following equation using the Nernst equation.
E = E 0 + (RT / 2F) × ln (P H2 × P O2 ^ 0.5) (5)

この式を用いるには水素極室11内の水素分圧PH2、酸素極室12内の酸素分圧PO2が必要であるが、水素極室11及び酸素極室12において高温水蒸気電解によって発生した水素の分圧、酸素の分圧を測定することは困難であるため、電解電圧を算出するのは難しい。そこで分岐弁21、22を制御して水素極室11から排出された水素の一部を水素極室11へ、また、酸素極室12から排出された酸素富化水蒸気の一部を酸素極室12へそれぞれ再度導入して水素極室11内の水素分圧及び酸素極室12内の酸素分圧を制御し、それによって電解電圧を安定させることができる。 In order to use this equation, the hydrogen partial pressure P H2 in the hydrogen electrode chamber 11 and the oxygen partial pressure P O2 in the oxygen electrode chamber 12 are required, and are generated by high-temperature steam electrolysis in the hydrogen electrode chamber 11 and the oxygen electrode chamber 12. Since it is difficult to measure the partial pressure of hydrogen and the partial pressure of oxygen, it is difficult to calculate the electrolysis voltage. Therefore, the branch valves 21 and 22 are controlled so that a part of the hydrogen discharged from the hydrogen electrode chamber 11 is transferred to the hydrogen electrode chamber 11 and a part of the oxygen-enriched water vapor discharged from the oxygen electrode chamber 12 is transferred to the oxygen electrode chamber. 12 is introduced again to control the hydrogen partial pressure in the hydrogen electrode chamber 11 and the oxygen partial pressure in the oxygen electrode chamber 12, thereby stabilizing the electrolysis voltage.

なお、本システムの水蒸気電解運転停止中において、分岐弁21において全ての水素を配管L21に導入して循環させ、また分岐弁22において全ての酸素富化水蒸気を配管L22に導入して循環させることにより、水素極室11を水素雰囲気に、酸素極室12を酸素雰囲気下に保ち、水素極14及び酸素極15の分解を防止することができる。   When the steam electrolysis operation of this system is stopped, all hydrogen is introduced into the pipe L21 and circulated in the branch valve 21, and all oxygen-enriched steam is introduced into the pipe L22 and circulated in the branch valve 22. Thus, the hydrogen electrode chamber 11 can be kept in a hydrogen atmosphere and the oxygen electrode chamber 12 can be kept in an oxygen atmosphere, and decomposition of the hydrogen electrode 14 and the oxygen electrode 15 can be prevented.

本実施例によれば、実施例1が有する効果に加えて、水素極室11の水素分圧および酸素極室12の酸素分圧を制御することにより水蒸気の電解電圧を安定させることができる。   According to the present embodiment, in addition to the effects of the first embodiment, the electrolysis voltage of water vapor can be stabilized by controlling the hydrogen partial pressure in the hydrogen electrode chamber 11 and the oxygen partial pressure in the oxygen electrode chamber 12.

また、水蒸気電解運転停止中において水素極室11及び酸素極室12をそれぞれ水素雰囲気下、酸素雰囲気下に保ち水素極14、酸素極15の分解を防止することができる。   In addition, while the steam electrolysis operation is stopped, the hydrogen electrode chamber 11 and the oxygen electrode chamber 12 can be kept under a hydrogen atmosphere and an oxygen atmosphere, respectively, and decomposition of the hydrogen electrode 14 and the oxygen electrode 15 can be prevented.

図4は実施例3による高温水蒸気電解システムの概略を示すブロック図である。なお、実施例1と同一の構成には同一の符号を付し、重複する説明は省略する。   FIG. 4 is a block diagram showing an outline of the high-temperature steam electrolysis system according to the third embodiment. In addition, the same code | symbol is attached | subjected to the structure same as Example 1, and the overlapping description is abbreviate | omitted.

図4に示した実施例3は、実施例1の構成に類似するが、凝縮器3内の配管L7の一端を水供給部1に、他端を昇温部2に接続している。配管L7内の冷媒には水を用いる。これによって配管L7内の水供給部1からの水は凝縮器3で配管L4内の酸素富化水蒸気と熱交換を行った後に昇温部2へ導入される。これによって酸素富化水蒸気の熱を回収して水の昇温に利用することができる。   The third embodiment shown in FIG. 4 is similar to the configuration of the first embodiment, but one end of the pipe L7 in the condenser 3 is connected to the water supply unit 1 and the other end is connected to the temperature raising unit 2. Water is used as the refrigerant in the pipe L7. Thus, the water from the water supply unit 1 in the pipe L7 is introduced into the temperature raising unit 2 after exchanging heat with the oxygen-enriched water vapor in the pipe L4 by the condenser 3. Thereby, the heat of the oxygen-enriched water vapor can be recovered and used for raising the temperature of the water.

本実施例によれば、実施例1の効果に加えて、水蒸気電解装置10から排出された酸素富化水蒸気の熱を水蒸気電解に再利用することができる。   According to the present embodiment, in addition to the effects of the first embodiment, the heat of the oxygen-enriched steam discharged from the steam electrolysis apparatus 10 can be reused for steam electrolysis.

なお、この変形例として、図4のように凝縮期3内の配管L7と水供給部1とを接続する代わりに、図5に示すように、配管L7に対して冷媒としての水を図示しない供給源から供給するようにしてもよい。   As a modified example, instead of connecting the pipe L7 in the condensation period 3 and the water supply unit 1 as shown in FIG. 4, water as a refrigerant is not shown in the pipe L7 as shown in FIG. You may make it supply from a supply source.

図6は本発明の第4の実施例による高温水蒸気電解システムの構成を示すブロック図である。本実施例では原子炉101によって水供給部1から供給される水の昇温を行い、また原子炉101とタービン104を用いて発電を行い水蒸気電解装置10への電力供給を行っている。なお、上述した実施例と同一の構成には同一の符号を付し、重複する説明は省略する。   FIG. 6 is a block diagram showing a configuration of a high-temperature steam electrolysis system according to a fourth embodiment of the present invention. In this embodiment, the temperature of the water supplied from the water supply unit 1 is raised by the nuclear reactor 101, and the power is supplied to the steam electrolyzer 10 by generating power using the nuclear reactor 101 and the turbine 104. In addition, the same code | symbol is attached | subjected to the structure same as the Example mentioned above, and the overlapping description is abbreviate | omitted.

原子炉101へは配管L101、L102が導入されており、配管L101、L102内の第1の熱媒、第2の熱媒を原子炉101で加熱する。   Pipes L <b> 101 and L <b> 102 are introduced into the nuclear reactor 101, and the first heat medium and the second heat medium in the pipes L <b> 101 and L <b> 102 are heated by the nuclear reactor 101.

配管L101は原子炉101、熱交換器102を熱媒が循環する閉ループとして形成されている。熱交換器102は配管L1内の流体と配管L101内の熱媒を熱交換させる。第1の熱媒は熱交換器102を通過した後にふたたび原子炉101で加熱される。   The pipe L101 is formed as a closed loop in which a heat medium circulates through the nuclear reactor 101 and the heat exchanger 102. The heat exchanger 102 exchanges heat between the fluid in the pipe L1 and the heat medium in the pipe L101. The first heat medium is heated again in the nuclear reactor 101 after passing through the heat exchanger 102.

配管L102は原子炉101、熱交換器103を熱媒が循環する閉ループとして形成されている。熱交換器103は配管L103内の流体と配管L102内の第2の熱媒を熱交換させる。配管L102内の第2の熱媒は熱交換器103で熱交換を行った後にふたたび原子炉101で加熱される。   The pipe L102 is formed as a closed loop in which a heat medium circulates through the nuclear reactor 101 and the heat exchanger 103. The heat exchanger 103 exchanges heat between the fluid in the pipe L103 and the second heat medium in the pipe L102. The second heat medium in the pipe L102 is heated in the nuclear reactor 101 again after heat exchange in the heat exchanger 103.

配管L103は内部の水が熱交換器103、タービン104、復水器106を通過する閉ループとして形成されている。   The pipe L103 is formed as a closed loop in which the internal water passes through the heat exchanger 103, the turbine 104, and the condenser 106.

タービン104には発電機105が接続されており、発電機105はタービン104の回転によって発電を行う。発電機105は電線E3を介して水蒸気電解装置10の水素極14、酸素極15と接続され、又電線E4を介して図示しない主変圧器と接続されている。   A generator 105 is connected to the turbine 104, and the generator 105 generates power by the rotation of the turbine 104. The generator 105 is connected to the hydrogen electrode 14 and the oxygen electrode 15 of the steam electrolysis apparatus 10 via the electric wire E3, and is connected to a main transformer (not shown) via the electric wire E4.

本実施例の作用について以下説明する。   The operation of this embodiment will be described below.

原子炉101は配管L101、L102内の第1の熱媒、第2の熱媒を昇温させる。配管L101内の第1の熱媒は熱交換器102内で、又配管L102内の第2の熱媒は熱交換器103内でそれぞれ配管L1、L103内の水と熱交換を行った後に再度原子炉101で加熱される。   The nuclear reactor 101 raises the temperature of the first heat medium and the second heat medium in the pipes L101 and L102. The first heat medium in the pipe L101 is exchanged in the heat exchanger 102, and the second heat medium in the pipe L102 is again exchanged with the water in the pipes L1 and L103 in the heat exchanger 103, respectively. Heated in the reactor 101.

配管L103内の水は配管L102内の熱媒との熱交換によって昇温して水蒸気となりタービン104へ供給され、その後に復水器106で凝縮されて水に戻り、再度熱交換器103へ導入される。タービン104は水蒸気の供給を受けて回転し、それによってタービン104に接続された発電機105が発電し、電線E3を介して水蒸気電解装置10の水素極14と酸素極15に電圧を印加し、また電線E4を介して図示しない主変圧器へ電力を供給する。   The water in the pipe L103 is heated by heat exchange with the heat medium in the pipe L102 to become steam, supplied to the turbine 104, then condensed in the condenser 106, returned to water, and introduced again into the heat exchanger 103. Is done. The turbine 104 is rotated by receiving the supply of water vapor, whereby the generator 105 connected to the turbine 104 generates electric power, and the voltage is applied to the hydrogen electrode 14 and the oxygen electrode 15 of the water vapor electrolysis apparatus 10 via the electric wire E3. In addition, power is supplied to a main transformer (not shown) via the electric wire E4.

水供給部1は配管L101を介して水蒸気電解装置10の酸素極室12に水を供給する。配管L1内の水は熱交換器102で配管L101内の熱媒と熱交換を行って高温水蒸気とされた後に酸素極室12へ導入される。   The water supply unit 1 supplies water to the oxygen electrode chamber 12 of the steam electrolysis apparatus 10 through the pipe L101. The water in the pipe L1 is heat-exchanged with the heat medium in the pipe L101 by the heat exchanger 102 to form high-temperature steam, and then introduced into the oxygen electrode chamber 12.

本実施例によれば、高温水蒸気の昇温手段と水蒸気電解装置の電源に原子炉の排熱を用いる高温水蒸気電解システムにおいて、水素と水蒸気を分離するプロセスと、生成した酸素の分圧を低減するプロセスの双方を不要とすることができる。   According to the present embodiment, in the high-temperature steam electrolysis system that uses the exhaust heat of the reactor as a power source for the high-temperature steam and the power source of the steam electrolysis apparatus, the process for separating hydrogen and steam and the partial pressure of the generated oxygen are reduced. Both processes can be made unnecessary.

以上、本発明について複数の実施例を説明してきたが、本発明は上記実施例に限定されるものでなく、発明の趣旨を逸脱しない範囲でいろいろの変形を採ることができる。当業者にあっては、具体的な実施例において本発明の技術思想および技術範囲から逸脱せずに種種の変形・変更を加えることが可能である。例えば、上記実施例2ないし3に説明した特徴を任意に組み合わせたところの高温水蒸気電解システムの構成であってもよい。   As mentioned above, although several Example was described about this invention, this invention is not limited to the said Example, A various deformation | transformation can be taken in the range which does not deviate from the meaning of invention. Those skilled in the art can make various modifications and changes in specific embodiments without departing from the technical idea and scope of the present invention. For example, it may be a configuration of a high temperature steam electrolysis system in which the features described in Examples 2 to 3 are arbitrarily combined.

本発明の実施例1による高温水蒸気電解システムの構成を示すブロック図。The block diagram which shows the structure of the high temperature steam electrolysis system by Example 1 of this invention. 本発明の実施例1の変形例による高温水蒸気電解システムの構成を示すブロック図。The block diagram which shows the structure of the high temperature steam electrolysis system by the modification of Example 1 of this invention. 本発明の実施例2による高温水蒸気電解システムの構成を示すブロック図。The block diagram which shows the structure of the high temperature steam electrolysis system by Example 2 of this invention. 本発明の実施例3による高温水蒸気電解システムの構成を示すブロック図。The block diagram which shows the structure of the high temperature steam electrolysis system by Example 3 of this invention. 本発明の実施例3の変形例による高温水蒸気電解システムの構成を示すブロック図。The block diagram which shows the structure of the high temperature steam electrolysis system by the modification of Example 3 of this invention. 本発明の実施例4による高温水蒸気電解システムの構成を示すブロック図。The block diagram which shows the structure of the high temperature steam electrolysis system by Example 4 of this invention.

符号の説明Explanation of symbols

1 水供給部
2 昇温部
3 凝縮器
4 水素処理部
5 電源
8、102、103 熱交換器
10 水蒸気電解装置
11 水素極室
12 酸素極室
13 電解質
14 水素極
15 酸素極
101 原子炉
104 タービン
105 発電機
106 復水器
L1、L2、L3、L4、L5、L6、L7、L8、L21、L22、L101、L102、L103、L104 配管
E1、E2、E3、E4 電線
DESCRIPTION OF SYMBOLS 1 Water supply part 2 Temperature rising part 3 Condenser 4 Hydrogen processing part 5 Power supply 8, 102, 103 Heat exchanger 10 Steam electrolysis apparatus 11 Hydrogen electrode chamber 12 Oxygen electrode chamber 13 Electrolyte 14 Hydrogen electrode 15 Oxygen electrode 101 Reactor 104 Turbine 105 Generator 106 Condenser L1, L2, L3, L4, L5, L6, L7, L8, L21, L22, L101, L102, L103, L104 Piping E1, E2, E3, E4 Electric wire

Claims (8)

水供給部と、
前記水供給部から供給される水を加熱して高温水蒸気とする昇温部と、
容器内に隔壁として形成され酸素極室と水素極室を形成するガスを透過しないプロトン導電性固体電解質、このプロトン導電性固体電解質の前記水素極室に接した面に形成された多孔質の水素極、前記プロトン導電性固体電解質の前記酸素極室と接した面に形成された多孔質の酸素極を有し、前記昇温部から前記酸素極室に供給される高温水蒸気を電気分解し、前記酸素極室から酸素富化水蒸気を、前記水素極室から水素をそれぞれ排出する水蒸気電解装置と、
前記水蒸気電解装置に電力を供給する電源と、
前記酸素極室から排出された前記酸素富化水蒸気を冷媒と熱交換させ、前記酸素富化水蒸気を酸素と凝縮水として排出する凝縮器と、
を備えることを特徴とする高温水蒸気電解システム。
A water supply,
A temperature raising unit that heats water supplied from the water supply unit to form high-temperature steam;
A proton conductive solid electrolyte that is formed as a partition in the container and does not transmit gas that forms the oxygen electrode chamber and the hydrogen electrode chamber, and porous hydrogen formed on the surface of the proton conductive solid electrolyte in contact with the hydrogen electrode chamber An electrode, a porous oxygen electrode formed on a surface of the proton conductive solid electrolyte in contact with the oxygen electrode chamber, electrolyzing high-temperature steam supplied from the temperature raising unit to the oxygen electrode chamber, A steam electrolyzer that discharges oxygen-enriched water vapor from the oxygen electrode chamber and hydrogen from the hydrogen electrode chamber;
A power source for supplying power to the steam electrolyzer;
A heat exchanger for exchanging the oxygen-enriched water vapor discharged from the oxygen electrode chamber with a refrigerant, and discharging the oxygen-enriched water vapor as oxygen and condensed water;
A high-temperature steam electrolysis system comprising:
前記凝縮器から排出される前記凝縮水を前記昇温部に供給する凝縮水供給手段を備えることを特徴とする請求項1に記載の高温水蒸気電解システム。   The high-temperature steam electrolysis system according to claim 1, further comprising condensed water supply means for supplying the condensed water discharged from the condenser to the temperature raising unit. 前記水素極室から排出される前記水素を第2の冷媒と熱交換させる熱交換器を備えることを特徴とする請求項1または請求項2に記載の高温水蒸気電解システム。   The high-temperature steam electrolysis system according to claim 1 or 2, further comprising a heat exchanger that exchanges heat between the hydrogen discharged from the hydrogen electrode chamber and a second refrigerant. 前記酸素極室から排出された酸素富化水蒸気の少なくとも一部を前記酸素極室に導入する酸素富化水蒸気循環手段を備えることを特徴とする請求項1乃至請求項3のうちいずれか1項に記載の高温水蒸気電解システム。   The oxygen-enriched water vapor circulation means for introducing at least a part of the oxygen-enriched water vapor discharged from the oxygen electrode chamber into the oxygen electrode chamber is provided. A high temperature steam electrolysis system as described in 1. 前記水素極室から排出された水素の少なくとも一部を前記水素極室に導入する水素循環手段を備えることを特徴とする請求項1乃至請求項4のうちいずれか1項に記載の高温水蒸気電解システム。   5. The high-temperature steam electrolysis according to claim 1, further comprising a hydrogen circulation unit that introduces at least part of the hydrogen discharged from the hydrogen electrode chamber into the hydrogen electrode chamber. system. 前記冷媒は水であり、この水を前記酸素富化水蒸気との熱交換後に前記昇温部へ導入する水導入手段を備えることを特徴とする請求項1乃至請求項5のうちいずれか1項に記載の高温水蒸気電解システム。   The said refrigerant | coolant is water, The water introduction means which introduces this water to the said temperature rising part after heat exchange with the said oxygen-enriched water vapor | steam is provided, The any one of Claims 1 thru | or 5 characterized by the above-mentioned. A high temperature steam electrolysis system as described in 1. 水供給部と、
第1の熱媒および第2の熱媒を加熱する原子炉と、
前記水供給部から供給される水を前記第1の熱媒と熱交換させて高温水蒸気とする昇温手段と、
容器内に隔壁として形成され酸素極室と水素極室を形成する分離ガス不透過なプロトン導電性固体電解質、このプロトン導電性固体電解質の前記水素極室に接した面に形成された多孔質の水素極、前記プロトン導電性固体電解質の前記酸素極室と接した面に形成された多孔質の酸素極を有し、前記昇温部から前記酸素極室に供給される高温水蒸気を電気分解し、前記酸素極室から酸素富化水蒸気を、前記水素極室から水素をそれぞれ排出する水蒸気電解装置と、
前記第2の熱媒と水を熱交換させて発生した水蒸気が供給されるタービンと、
前記タービンによって駆動され、電力を前記水蒸気電解装置に供給する発電機と、
前記酸素極室から排出された前記酸素富化水蒸気を冷媒と熱交換させ、前記酸素富化水蒸気を酸素と凝縮水として排出する凝縮器と、
を備えることを特徴とする高温水蒸気電解システム。
A water supply,
A nuclear reactor for heating the first heating medium and the second heating medium;
A temperature raising means that heat-exchanges water supplied from the water supply unit with the first heat medium to form high-temperature steam;
A proton conductive solid electrolyte that is formed as a partition in the container and forms an oxygen electrode chamber and a hydrogen electrode chamber and is impermeable to separation gas, and a porous electrode formed on the surface of the proton conductive solid electrolyte in contact with the hydrogen electrode chamber. A hydrogen electrode, a porous oxygen electrode formed on a surface of the proton conductive solid electrolyte in contact with the oxygen electrode chamber, and electrolyzing high-temperature water vapor supplied from the temperature raising unit to the oxygen electrode chamber; A steam electrolyzer for discharging oxygen-enriched water vapor from the oxygen electrode chamber and hydrogen from the hydrogen electrode chamber,
A turbine to which water vapor generated by heat exchange between the second heat medium and water is supplied;
A generator driven by the turbine to supply power to the steam electrolyzer;
A heat exchanger for exchanging the oxygen-enriched water vapor discharged from the oxygen electrode chamber with a refrigerant, and discharging the oxygen-enriched water vapor as oxygen and condensed water;
A high-temperature steam electrolysis system comprising:
容器内に隔壁として形成され酸素極室と水素極室を形成する分離ガス不透過なプロトン導電性固体電解質、このプロトン導電性固体電解質の前記水素極室に接した面に形成された多孔質の水素極、前記プロトン導電性固体電解質の前記酸素極室と接した面に形成された多孔質の酸素極を有する水蒸気電解装置に電力を供給し、
水を加熱して高温水蒸気とし、
前記酸素極室に前記高温水蒸気を供給して電気分解を行い前記酸素極室で酸素を、前記水素極室で水素を生成し、
前記酸素極室から酸素富化水蒸気を、前記水素極室から水素をそれぞれ排出し、
前記酸素富化水蒸気を冷媒と熱交換させて酸素と凝縮水に分離させることを特徴とする高温水蒸気電解方法。
A proton conductive solid electrolyte that is formed as a partition in the container and forms an oxygen electrode chamber and a hydrogen electrode chamber and is impermeable to separation gas, and a porous electrode formed on the surface of the proton conductive solid electrolyte in contact with the hydrogen electrode chamber. Supplying power to a water vapor electrolysis apparatus having a hydrogen electrode and a porous oxygen electrode formed on a surface of the proton conductive solid electrolyte in contact with the oxygen electrode chamber;
Heat the water to hot steam,
Electrolysis is performed by supplying the high temperature steam to the oxygen electrode chamber, oxygen is generated in the oxygen electrode chamber, and hydrogen is generated in the hydrogen electrode chamber,
Discharging oxygen-enriched water vapor from the oxygen electrode chamber and hydrogen from the hydrogen electrode chamber,
A high-temperature steam electrolysis method, wherein the oxygen-enriched water vapor is heat-exchanged with a refrigerant and separated into oxygen and condensed water.
JP2007065860A 2007-03-14 2007-03-14 System and method for electrolyzing high temperature steam Pending JP2008223107A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007065860A JP2008223107A (en) 2007-03-14 2007-03-14 System and method for electrolyzing high temperature steam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007065860A JP2008223107A (en) 2007-03-14 2007-03-14 System and method for electrolyzing high temperature steam

Publications (1)

Publication Number Publication Date
JP2008223107A true JP2008223107A (en) 2008-09-25

Family

ID=39842061

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007065860A Pending JP2008223107A (en) 2007-03-14 2007-03-14 System and method for electrolyzing high temperature steam

Country Status (1)

Country Link
JP (1) JP2008223107A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013081874A (en) * 2011-10-06 2013-05-09 Hitachi Zosen Corp Device for generating photocatalyst hydrogen and hydrogen production equipment
CN103261483A (en) * 2010-12-20 2013-08-21 法国原子能及替代能源委员会 Cell for producing hydrogen comprising high-temperature steam electrolysis cell
JP2013199675A (en) * 2012-03-23 2013-10-03 Tokyo Gas Co Ltd Electrochemical device and power storage system
WO2014036599A1 (en) * 2012-09-07 2014-03-13 Gamikon Pty Ltd Electrolysis apparatus
JP2017078204A (en) * 2015-10-20 2017-04-27 東京瓦斯株式会社 High temperature steam electrolytic cell and high temperature steam electrolytic system
WO2019238218A1 (en) * 2018-06-12 2019-12-19 Hoeller Electrolyzer Gmbh Method of operating a water electrolysis apparatus for generation of hydrogen and oxygen

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261483A (en) * 2010-12-20 2013-08-21 法国原子能及替代能源委员会 Cell for producing hydrogen comprising high-temperature steam electrolysis cell
JP2014503689A (en) * 2010-12-20 2014-02-13 コミッサリア ア レネルジー アトミーク エ オ ゼネルジ ザルタナテイヴ Hydrogen production cell including high temperature steam electrolysis cell
CN103261483B (en) * 2010-12-20 2016-04-27 法国原子能及替代能源委员会 Comprise the product hydrogen battery of high temperature steam electrolytic pond battery
KR101914052B1 (en) 2010-12-20 2018-11-01 꼼미사리아 아 레네르지 아토미끄 에뜨 옥스 에너지스 앨터네이티브즈 A Hydrogen Producing Cell Comprising a Cell of High Temperature Steam Electrolyzer
JP2013081874A (en) * 2011-10-06 2013-05-09 Hitachi Zosen Corp Device for generating photocatalyst hydrogen and hydrogen production equipment
JP2013199675A (en) * 2012-03-23 2013-10-03 Tokyo Gas Co Ltd Electrochemical device and power storage system
WO2014036599A1 (en) * 2012-09-07 2014-03-13 Gamikon Pty Ltd Electrolysis apparatus
CN104769160A (en) * 2012-09-07 2015-07-08 加米康私人有限公司 Electrolysis apparatus
JP2015531433A (en) * 2012-09-07 2015-11-02 ギャミコン.ピー.ティー.ワイ.エル.ティー.ディーGamikon Pty Ltd Electrolysis equipment
JP2017078204A (en) * 2015-10-20 2017-04-27 東京瓦斯株式会社 High temperature steam electrolytic cell and high temperature steam electrolytic system
WO2019238218A1 (en) * 2018-06-12 2019-12-19 Hoeller Electrolyzer Gmbh Method of operating a water electrolysis apparatus for generation of hydrogen and oxygen

Similar Documents

Publication Publication Date Title
JP7446372B2 (en) System for high temperature reversible electrolysis of water including a hydride tank combined with an electrolyzer
JP6584499B2 (en) Electrolysis method and electrolysis apparatus using recirculating cleaning medium
JP2008223107A (en) System and method for electrolyzing high temperature steam
JP2009513829A (en) Electrolysis
JP2009043487A (en) Generating system
US20230332302A1 (en) Heat recovery during electrolysis processes
JP2006307290A (en) Method for producing hydrogen
JP2008243594A (en) Fuel cell device
JP5132205B2 (en) Fuel cell device
JP2009120900A (en) High temperature steam electrolysis system and operation method thereof
JP2009001878A (en) High temperature steam electrolysis method and apparatus
US20160195270A1 (en) Arrangement of a carbon dioxide generation plant, a capture plant and an carbon dioxide utilization plant and method for its operation
JP2934517B2 (en) Direct reduction method of metal ore
JPS585974A (en) Combined cycle in fuel cell generation unit
JP2007314408A (en) Hydrogen production apparatus and hydrogen production method
JP5183118B2 (en) Power generation system
JPH0693482A (en) Pressurized high temperature steam electrolytic method
JP4660889B2 (en) Fuel cell power generation system and operation method thereof
JPH1064566A (en) Fuel cell power generator and waste heat recovery method therefor
JP5292865B2 (en) Water recovery method for fuel cell power generator and fuel cell power generator
KR102541651B1 (en) Apparatus and method for producing high-pressure steam using waste heat of fuel cell stack
JP2702030B2 (en) Fuel cell system
JP2002100382A (en) Fuel cell power generator
JPH04138671A (en) Fuel cell
WO2023007877A1 (en) High-temperature steam electrolysis device, hydrogen production method, and hydrogen production system