JP2008222495A - Ozone generation apparatus - Google Patents

Ozone generation apparatus Download PDF

Info

Publication number
JP2008222495A
JP2008222495A JP2007063633A JP2007063633A JP2008222495A JP 2008222495 A JP2008222495 A JP 2008222495A JP 2007063633 A JP2007063633 A JP 2007063633A JP 2007063633 A JP2007063633 A JP 2007063633A JP 2008222495 A JP2008222495 A JP 2008222495A
Authority
JP
Japan
Prior art keywords
discharge tube
dielectric discharge
gas
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007063633A
Other languages
Japanese (ja)
Other versions
JP4999503B2 (en
Inventor
Masaki Kuzumoto
昌樹 葛本
Hiroyuki Kukihara
弘行 荊原
Hajime Nakatani
元 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2007063633A priority Critical patent/JP4999503B2/en
Publication of JP2008222495A publication Critical patent/JP2008222495A/en
Application granted granted Critical
Publication of JP4999503B2 publication Critical patent/JP4999503B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ozone generation apparatus where a high voltage electrode does not corrode in emergency stop and the like so that gas pressure is not applied to a dielectric discharge tube. <P>SOLUTION: The ozone generation apparatus where an ozonized gas being an ozone-containing gas is generated by electric discharge from an oxygen-containing raw material gas comprises the cylindrical dielectric discharge tube 3 where a gas flow plug 16 with a gas flow port 17 is located at an end of the flowing side of the raw material gas and where another end is closed, the cylindrical high voltage electrode 1 located at the inside of the dielectric discharge tube 3 and applied with AC voltage, a grounding electrode 2 being a metallic cylindrical tube and being located at the outside of the dielectric discharge tube 3 with specified intervals, a high voltage power supply 8 to apply AC voltage to the high voltage electrode 1 and a raw material gas supply part 11 to flow the raw material gas between the dielectric discharge tube 3 and the grounding electrode 2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、水処理設備等に利用されるオゾン化ガスを工業的に生成するオゾン発生装置に関するものである。   The present invention relates to an ozone generator for industrially generating ozonized gas used in water treatment facilities and the like.

所定濃度のオゾンを含むガスであるオゾン化ガスには、脱臭、殺菌作用があり、水処理設備等に使用されている。オゾン化ガスを工業的に生成する方法としては、酸素または酸素を含む原料ガスを微小空間に流通させ、微小空間に電界を加えて無声放電を発生させ、この放電エネルギーにより生成する方法が一般的である。
無声放電を発生させる微小空間は、ステンレスなどの金属管などで構成される接地電極の中に、内部に高圧電極を有するガラスなどからなる誘電体放電管を挿入して、接地電極と誘電体放電管の間に形成される。高圧電極は、誘電体放電管の内面にアルミなどの金属を溶射などにより形成した薄膜である。
一般にオゾン発生装置はガス圧力を高くして動作させる場合に効率が高いため、接地電極および誘電体放電管などは高圧タンク内に収納されている。
Ozonized gas, which is a gas containing ozone at a predetermined concentration, has a deodorizing and sterilizing action and is used in water treatment facilities and the like. As a method for industrially generating ozonized gas, a method is generally used in which oxygen or a source gas containing oxygen is circulated in a minute space, an electric field is applied to the minute space to generate a silent discharge, and this discharge energy is generated. It is.
In the minute space that generates silent discharge, a dielectric discharge tube made of glass or the like having a high-voltage electrode inside is inserted into a ground electrode composed of a metal tube such as stainless steel. Formed between the tubes. The high voltage electrode is a thin film formed by spraying a metal such as aluminum on the inner surface of a dielectric discharge tube.
In general, since an ozone generator is highly efficient when operated at a high gas pressure, a ground electrode, a dielectric discharge tube, and the like are housed in a high-pressure tank.

放電空間にだけ原料ガスが流れ、誘電体放電管の内部にはガスが通過しないように、誘電体放電管はその一端を密閉する。放電により発生するオゾンや窒素酸化物など(オゾン等と呼ぶ)は、ガス流の下流側に多いので、これらのオゾン等が誘電体放電管の内部にできるだけ侵入しないように、下流側の端を密閉する。
上流側は開放しているが、オゾン等がガス流に逆らって上流側に移動して、上流側の開放端から誘電体放電管の内部に入ることはなく、ガスが流れている間は高圧電極がオゾン等により腐食することはない。オゾン発生装置の運転を停止する際にも、放電を停止してガスだけを流す状態を所定の時間だけ保持した後で、ガス流を止めるので、放電により発生したオゾン等が誘電体放電管の内部に入ることはない。
放電場で生成されたオゾンや窒素酸化物などのオゾン等により高圧電極が腐食しないように、誘電体放電管を密閉するものもある。(例えば、特許文献1を参照)
The dielectric discharge tube is sealed at one end so that the source gas flows only in the discharge space and does not pass through the dielectric discharge tube. Since ozone and nitrogen oxides (referred to as ozone, etc.) generated by the discharge are often downstream in the gas flow, the downstream end should be placed so that these ozone etc. do not enter the dielectric discharge tube as much as possible. Seal.
Although the upstream side is open, ozone or the like moves upstream against the gas flow and does not enter the inside of the dielectric discharge tube from the open end on the upstream side. The electrode is not corroded by ozone or the like. Even when the operation of the ozone generator is stopped, the gas flow is stopped after holding the state in which the discharge is stopped and only the gas is allowed to flow for a predetermined period of time. Never go inside.
In some cases, the dielectric discharge tube is hermetically sealed so that the high voltage electrode is not corroded by ozone generated by the discharge field or ozone such as nitrogen oxides. (For example, see Patent Document 1)

特開平11−35303号公報。JP-A-11-35303.

ガス流の下流側の端を閉じた誘電体放電管は、前述のように通常の運転状態および手順にしたがった起動停止を行っていれば、高圧電極が腐食することはない。しかし、電極の破損や水漏れなどの突発事故が発生するなどして、点検や修理などのために、オゾン発生装置を停止後すぐに高圧タンクの内部を大気に開放すると、大気中の水分が入り込み、高圧電極の表面で窒素酸化物と水が反応して硝酸が生成され、短時間で高圧電極の腐食が進む。また、オゾン発生装置を所定の手順をふまないで停止させた場合でも同様である。これらのことを、発明者らは発見した。   The dielectric discharge tube whose end on the downstream side of the gas flow is closed will not corrode the high-voltage electrode if it is started and stopped according to the normal operation state and procedure as described above. However, if a sudden accident such as electrode breakage or water leakage occurs and the inside of the high-pressure tank is released to the atmosphere immediately after stopping the ozone generator for inspection or repair, moisture in the atmosphere Nitrogen oxide and water react on the surface of the high voltage electrode to produce nitric acid, and the high voltage electrode corrodes in a short time. The same applies to the case where the ozone generator is stopped without taking a predetermined procedure. The inventors have discovered these.

誘電体放電管を密閉すると、ガス圧力と大気圧との差分の圧力が誘電体放電管にかかる。圧力をかけられた誘電体を電場にさらすと、絶縁耐力が低下することが知られている。また、圧力すなわち機械的ストレスがかかるこことは、誘電体放電管が割れる確率が増えて、信頼性が低下する。
この発明に係るオゾン発生装置は、誘電体放電管にガス圧力がかからないようにして、非常停止などの際にも高圧電極が腐食することがないようなオゾン発生装置を得ることを目的とするものである。
When the dielectric discharge tube is sealed, a pressure difference between the gas pressure and the atmospheric pressure is applied to the dielectric discharge tube. It is known that the dielectric strength decreases when a dielectric under pressure is exposed to an electric field. Moreover, the probability that the dielectric discharge tube breaks is increased from that where pressure, that is, mechanical stress is applied, and reliability is lowered.
The ozone generator according to the present invention aims to obtain an ozone generator in which gas pressure is not applied to the dielectric discharge tube so that the high-voltage electrode is not corroded even in an emergency stop or the like. It is.

この発明に係るオゾン発生装置は、酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、原料ガスが流れてくる側の一端にガス流通口を設けたガス流通栓を設置し、もう一端は密閉された円筒状の誘電体放電管と、該誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、前記誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、前記高圧電極に交流電圧を印加する高圧電源と、前記誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入りオゾン化ガスが出る密閉可能な高圧容器と、前記誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたものである。   An ozone generator according to the present invention is an ozone generator that generates an ozonized gas, which is a gas containing ozone, from a source gas containing oxygen by discharge, and has a gas distribution port at one end on the side from which the source gas flows. A gas discharge plug provided and a cylindrical dielectric discharge tube sealed at the other end; a high voltage electrode provided in a cylindrical shape inside the dielectric discharge tube to which an AC voltage is applied; and the dielectric A ground electrode which is a metal cylindrical tube provided outside the body discharge tube at a predetermined interval; a high voltage power source for applying an AC voltage to the high voltage electrode; the dielectric discharge tube; the high voltage electrode; and the ground electrode. A high-pressure container capable of sealing and containing an ozonized gas, a source gas supply unit for supplying source gas flowing between the dielectric discharge tube and the ground electrode to the high-pressure container, and the high-pressure vessel Power supply and raw materials It is obtained by a controller for controlling the scan supply unit.

また、酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、一端が開放されもう一端は密閉されている円筒状の誘電体放電管と、該誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、前記高圧電極を覆って保護する保護部と、前記誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、前記高圧電極に交流電圧を印加する高圧電源と、前記誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入り、オゾン化ガスが出る密閉可能な高圧容器と、前記誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたものである。   Further, an ozone generator for generating an ozonized gas, which is a gas containing ozone, from a source gas containing oxygen by discharge, a cylindrical dielectric discharge tube having one end opened and the other end sealed, A high voltage electrode provided in a cylindrical shape inside the dielectric discharge tube to which an AC voltage is applied, a protective portion that covers and protects the high voltage electrode, and a predetermined interval outside the dielectric discharge tube A ground electrode that is a cylindrical metal tube, a high-voltage power source that applies an AC voltage to the high-voltage electrode, the dielectric discharge tube, the high-voltage electrode, and the ground electrode are housed, source gas is contained, and ozonized gas is contained. A sealable high-pressure vessel, a source gas supply unit that supplies a source gas flowing between the dielectric discharge tube and the ground electrode to the high-pressure vessel, and a control unit that controls the high-pressure power source and the source gas supply unit And with Than is.

さらに、酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、原料ガスが流れてくる側の一端にガス流通口を設けたガス流通栓を設置し、もう一端は開放された円筒状の第一の誘電体放電管と、一端が開放されもう一端が密閉された円筒状の第二の誘電体放電管と、前記第一の誘電体放電管の開放端と前記第二の誘電体放電管の開放端を気密を保って塞ぎ、前記第一の誘電体放電管及び前記第二の誘電体放電管の内部を連通させる絶縁物からなる円筒状の連結部材と、前記第一の誘電体放電管及び前記第二の誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、前記第一の誘電体放電管及び前記第二の誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、前記高圧電極に交流電圧を印加する高圧電源と、前記第一の誘電体放電管、前記第二の誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入りオゾン化ガスが出る密閉可能な高圧容器と、前記第一の誘電体放電管及び前記第二の誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたものである。   Furthermore, it is an ozone generator that generates ozonized gas, which is ozone-containing gas, from oxygen-containing source gas by discharge, and is provided with a gas distribution stopper with a gas distribution port at one end on the side where the source gas flows A cylindrical first dielectric discharge tube with the other end open, a cylindrical second dielectric discharge tube with one end open and the other end sealed, and the first dielectric discharge tube A cylindrical shape made of an insulating material that closes the open end of the second dielectric discharge tube in an airtight manner and connects the inside of the first dielectric discharge tube and the second dielectric discharge tube. A connecting member, a high-voltage electrode provided in a cylindrical shape within the first dielectric discharge tube and the second dielectric discharge tube, to which an alternating voltage is applied, the first dielectric discharge tube, Metal provided at a predetermined interval outside the second dielectric discharge tube A cylindrical ground electrode, a high-voltage power supply for applying an alternating voltage to the high-voltage electrode, the first dielectric discharge tube, the second dielectric discharge tube, the high-voltage electrode, and the ground electrode; A sealable high-pressure vessel in which source gas enters and ozonized gas exits, and source gas flowing between the first dielectric discharge tube and the second dielectric discharge tube and the ground electrode is supplied to the high-pressure vessel. A source gas supply unit, and a control unit that controls the high-voltage power source and the source gas supply unit are provided.

この発明に係るオゾン発生装置は、酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、原料ガスが流れてくる側の一端にガス流通口を設けたガス流通栓を設置し、もう一端は密閉された円筒状の誘電体放電管と、該誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、前記誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、前記高圧電極に交流電圧を印加する高圧電源と、前記誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入りオゾン化ガスが出る密閉可能な高圧容器と、前記誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたものなので、オゾン発生装置を非常停止させる場合でも高圧電極を腐食させることがないという効果が有る。   An ozone generator according to the present invention is an ozone generator that generates an ozonized gas, which is a gas containing ozone, from a source gas containing oxygen by discharge, and has a gas distribution port at one end on the side from which the source gas flows. A gas discharge plug provided and a cylindrical dielectric discharge tube sealed at the other end; a high voltage electrode provided in a cylindrical shape inside the dielectric discharge tube to which an AC voltage is applied; and the dielectric A ground electrode which is a metal cylindrical tube provided outside the body discharge tube at a predetermined interval; a high voltage power source for applying an AC voltage to the high voltage electrode; the dielectric discharge tube; the high voltage electrode; and the ground electrode. A high-pressure container capable of sealing and containing an ozonized gas, a source gas supply unit for supplying source gas flowing between the dielectric discharge tube and the ground electrode to the high-pressure container, and the high-pressure vessel Power supply and raw materials Since that a control unit for controlling the scan supply unit, advantageous effect is attained that never corrode high voltage electrode even for emergency stop ozone generator.

また、酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、一端が開放されもう一端は密閉されている円筒状の誘電体放電管と、該誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、前記高圧電極を覆って保護する保護部と、前記誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、前記高圧電極に交流電圧を印加する高圧電源と、前記誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入り、オゾン化ガスが出る密閉可能な高圧容器と、前記誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたものなので、オゾン発生装置を非常停止させる場合でも高圧電極を腐食させることがないという効果が有る。   Further, an ozone generator for generating an ozonized gas, which is a gas containing ozone, from a source gas containing oxygen by discharge, a cylindrical dielectric discharge tube having one end opened and the other end sealed, A high voltage electrode provided in a cylindrical shape inside the dielectric discharge tube to which an AC voltage is applied, a protective portion that covers and protects the high voltage electrode, and a predetermined interval outside the dielectric discharge tube A ground electrode that is a cylindrical metal tube, a high-voltage power source that applies an AC voltage to the high-voltage electrode, the dielectric discharge tube, the high-voltage electrode, and the ground electrode are housed, source gas is contained, and ozonized gas is contained. A sealable high-pressure vessel, a source gas supply unit that supplies a source gas flowing between the dielectric discharge tube and the ground electrode to the high-pressure vessel, and a control unit that controls the high-pressure power source and the source gas supply unit And with Since it such, the effect is there that never corrode high voltage electrode even for emergency stop ozone generator.

さらに、酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、原料ガスが流れてくる側の一端にガス流通口を設けたガス流通栓を設置し、もう一端は開放された円筒状の第一の誘電体放電管と、一端が開放されもう一端が密閉された円筒状の第二の誘電体放電管と、前記第一の誘電体放電管の開放端と前記第二の誘電体放電管の開放端を気密を保って塞ぎ、前記第一の誘電体放電管及び前記第二の誘電体放電管の内部を連通させる絶縁物からなる円筒状の連結部材と、前記第一の誘電体放電管及び前記第二の誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、前記第一の誘電体放電管及び前記第二の誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、前記高圧電極に交流電圧を印加する高圧電源と、前記第一の誘電体放電管、前記第二の誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入りオゾン化ガスが出る密閉可能な高圧容器と、前記第一の誘電体放電管及び前記第二の誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたものなので、オゾン発生装置を非常停止させる場合でも高圧電極を腐食させることがないという効果が有る。   Furthermore, it is an ozone generator that generates ozonized gas, which is ozone-containing gas, from oxygen-containing source gas by discharge, and is provided with a gas distribution stopper with a gas distribution port at one end on the side where the source gas flows A cylindrical first dielectric discharge tube with the other end open, a cylindrical second dielectric discharge tube with one end open and the other end sealed, and the first dielectric discharge tube A cylindrical shape made of an insulating material that closes the open end of the second dielectric discharge tube in an airtight manner and connects the inside of the first dielectric discharge tube and the second dielectric discharge tube. A connecting member, a high-voltage electrode provided in a cylindrical shape within the first dielectric discharge tube and the second dielectric discharge tube, to which an alternating voltage is applied, the first dielectric discharge tube, Metal provided at a predetermined interval outside the second dielectric discharge tube A cylindrical ground electrode, a high-voltage power supply for applying an alternating voltage to the high-voltage electrode, the first dielectric discharge tube, the second dielectric discharge tube, the high-voltage electrode, and the ground electrode; A sealable high-pressure vessel in which source gas enters and ozonized gas exits, and source gas flowing between the first dielectric discharge tube and the second dielectric discharge tube and the ground electrode is supplied to the high-pressure vessel. Since the raw material gas supply unit and the control unit for controlling the high voltage power source and the raw material gas supply unit are provided, there is an effect that the high voltage electrode is not corroded even when the ozone generator is emergency stopped.

実施の形態1.
図1は、この発明の実施の形態1に係るオゾン発生装置の構造を説明する図である。図2から図5に、誘電体放電管の構造を説明する図を示す。図2が、ガスの流れに平行な断面での断面図である。図3が、ガスの流れに垂直な断面での断面図である。図4が、ガス流の上流側から誘電体放電管を見た矢視図である。図2におけるAA断面での断面図が図3であり、図2におけるCの方向から見た矢視図が、図4である。図3におけるBB断面が図2となる。
Embodiment 1 FIG.
FIG. 1 is a view for explaining the structure of an ozone generator according to Embodiment 1 of the present invention. 2 to 5 are diagrams for explaining the structure of the dielectric discharge tube. FIG. 2 is a sectional view in a section parallel to the gas flow. FIG. 3 is a sectional view in a section perpendicular to the gas flow. FIG. 4 is an arrow view of the dielectric discharge tube as viewed from the upstream side of the gas flow. FIG. 3 is a cross-sectional view taken along the line AA in FIG. 2, and FIG. The BB cross section in FIG. 3 becomes FIG.

高圧容器である高圧タンク100の水平方向の中央部に複数の高圧電極1と接地電極2との組が収容されている。高圧電極1は誘電体放電管3の内面にアルミやニッケルなどの導電性が高い金属の膜として形成される。接地電極2は、ステンレスなどの金属管で構成される。誘電体放電管3と接地電極2はどちらも円筒状の形状であり、誘電体放電管3と接地電極2は同心になるように配置される。誘電体放電管3と接地電極2との間にできる空間が、放電空間4である。放電空間4の断面を偏りがないドーナツ状にするために、誘電体放電管3の両端に近い位置にスペーサ4Aを設ける。   A set of a plurality of high-voltage electrodes 1 and ground electrodes 2 is housed in a horizontal central portion of a high-pressure tank 100 that is a high-pressure vessel. The high voltage electrode 1 is formed on the inner surface of the dielectric discharge tube 3 as a metal film having high conductivity such as aluminum or nickel. The ground electrode 2 is composed of a metal tube such as stainless steel. Both the dielectric discharge tube 3 and the ground electrode 2 have a cylindrical shape, and the dielectric discharge tube 3 and the ground electrode 2 are arranged so as to be concentric. A space formed between the dielectric discharge tube 3 and the ground electrode 2 is a discharge space 4. Spacers 4A are provided at positions close to both ends of the dielectric discharge tube 3 in order to make the discharge space 4 have a donut-shaped cross section.

高圧タンク100は、円筒を横向きに置いたような外形である。円形の断面には、複数の誘電体放電管3と接地電極2の組が必要な間隔をあけて、所定数だけ配置される。円筒状の接地電極2はその両端で、接地電極2の内部にガスが通るように接地電極2の位置に穴があけられた平板5Aが取り付けられる。2枚の平板5Aと接地電極2とが合わさって、軸方向に複数の貫通穴(接地電極2の内面)が設けられた外形が円筒状の構造体5Bになる。この構造体5Bは密閉でき、接地電極2を冷却するための冷却水6が充填される。高圧タンク100の下側に設けた冷却水用ヘッダ7により、冷却水6が構造体5Bの内部に供給されかつ排出される。   The high-pressure tank 100 has an external shape such that a cylinder is placed sideways. A predetermined number of sets of a plurality of dielectric discharge tubes 3 and ground electrodes 2 are arranged on the circular cross section at a necessary interval. At both ends of the cylindrical ground electrode 2, a flat plate 5 </ b> A having a hole in the position of the ground electrode 2 is attached so that gas passes through the ground electrode 2. The two flat plates 5A and the ground electrode 2 are combined to form a cylindrical structure 5B having an outer shape provided with a plurality of through holes (inner surfaces of the ground electrode 2) in the axial direction. The structure 5B can be sealed and filled with cooling water 6 for cooling the ground electrode 2. The cooling water 6 is supplied to and discharged from the structure 5B by the cooling water header 7 provided below the high-pressure tank 100.

高圧タンク100の図における左下に原料ガス入口101があり、右下にオゾン化ガス出口102がある。原料ガス入口101から入った原料ガスは、無声放電が発生している放電空間4を通過して、放電により生成されたオゾンを含むオゾン化ガスになり、オゾン化ガス出口102から排出される。高圧タンク100の左上には、高圧電源8からの高圧配線9を高圧タンク100内に導入するために、高電圧線導入口103が設けられている。高電圧線導入口103には、接地されている高圧タンク100と高圧配線9の間を十分に絶縁し、かつガスが漏れないような対策をとる。原料ガス入口101とオゾン化ガス出口102にはそれぞれ、バルブ10(図示せず)があり、原料ガスの圧力と流量を調整できる。また、2個のバルブ10を閉めれば、高圧タンク100は密閉される。2個のバルブ10は、原料ガス供給部11により制御される。原料ガス供給部11は、原料ガスの流量及び圧力も制御する。原料ガス供給部11と高圧電源3は、制御部12により制御される。   In the figure of the high-pressure tank 100, there is a raw material gas inlet 101 at the lower left, and an ozonized gas outlet 102 at the lower right. The raw material gas that has entered from the raw material gas inlet 101 passes through the discharge space 4 where silent discharge is generated, becomes ozonized gas containing ozone generated by the discharge, and is discharged from the ozonized gas outlet 102. A high voltage line inlet 103 is provided on the upper left of the high pressure tank 100 in order to introduce the high voltage wiring 9 from the high voltage power supply 8 into the high pressure tank 100. At the high voltage line inlet 103, measures are taken to sufficiently insulate the grounded high pressure tank 100 and the high voltage wiring 9 from each other and prevent gas from leaking. Each of the source gas inlet 101 and the ozonized gas outlet 102 has a valve 10 (not shown), which can adjust the pressure and flow rate of the source gas. If the two valves 10 are closed, the high-pressure tank 100 is sealed. The two valves 10 are controlled by the source gas supply unit 11. The source gas supply unit 11 also controls the flow rate and pressure of the source gas. The source gas supply unit 11 and the high voltage power source 3 are controlled by the control unit 12.

原料ガスは空気とする。なお、酸素を使用してもよい。酸素を含むガスであり、放電で有害物質が発生せず、コストが許容できるガスであれば、原料ガスはどのようなガスを使用してもよい。
ガラスなどからなる一端が密閉された円筒状の誘電体放電管3は、その内面にアルミやニッケルなどの金属を蒸着した給電膜すなわち高圧電極1を有する。高圧電極1も円筒状の形状になる。高圧電極1には給電ブラシ13を介して給電棒14が接続される。給電棒14は、ヒューズ15を介して高圧配線9に接続される。ヒューズ15は、誘電体放電管3で絶縁破壊が発生するなどして、高圧電極1と接地電極2の間に過度の電流が流れる状況が発生した場合に、即座に過度の電流を遮断するためのものである。このヒューズ15は、誘電体放電管3の開放端を塞ぐガス流通量制御栓16により誘電体放電管3に取り付けられる。給電ブラシ13及び給電棒14は腐食に強いステンレス製とし、高圧配線9とヒューズ15は腐食に強い被覆を設ける。誘電体放電管3の開放端は、原料ガスが流れて来る側に配置する。
The source gas is air. Oxygen may be used. Any gas may be used as the source gas as long as it is a gas that contains oxygen, does not generate harmful substances by discharge, and is acceptable in cost.
A cylindrical dielectric discharge tube 3 made of glass or the like and sealed at one end has a power supply film, ie, a high-voltage electrode 1, on which an metal such as aluminum or nickel is deposited. The high voltage electrode 1 also has a cylindrical shape. A power supply rod 14 is connected to the high voltage electrode 1 through a power supply brush 13. The power feeding rod 14 is connected to the high voltage wiring 9 through the fuse 15. The fuse 15 immediately cuts off an excessive current when a situation occurs in which an excessive current flows between the high-voltage electrode 1 and the ground electrode 2 due to dielectric breakdown occurring in the dielectric discharge tube 3. belongs to. The fuse 15 is attached to the dielectric discharge tube 3 by a gas flow rate control plug 16 that closes the open end of the dielectric discharge tube 3. The power supply brush 13 and the power supply rod 14 are made of stainless steel resistant to corrosion, and the high voltage wiring 9 and the fuse 15 are provided with a coating resistant to corrosion. The open end of the dielectric discharge tube 3 is disposed on the side from which the source gas flows.

ガス流通量制御栓16は、耐食性が高いフッ素樹脂製とする。ガス流通量制御栓16には、僅かなガスが流通できるようにガス流通口17を設ける。高圧タンク100の内部は、動作中は2気圧程度に加圧する。ガス流通口17の大きさは、加圧された誘電体放電管3を大気圧中において、誘電体放電管3の内部の圧力が大気圧になるのに要する時間が数分から数十分になるような大きさとする。誘電体放電管3としては、ホウケイ酸ガラスなどのガラス管、アルミナセラミックスや二酸化チタンセラミックスなどのセラミックス管、外側面に誘電体を皮膜した金属管などを用いる。   The gas flow rate control plug 16 is made of a fluororesin having high corrosion resistance. The gas flow rate control plug 16 is provided with a gas flow port 17 so that a small amount of gas can flow. The inside of the high-pressure tank 100 is pressurized to about 2 atmospheres during operation. The size of the gas flow port 17 is such that the time required for the pressure inside the dielectric discharge tube 3 to become atmospheric pressure is several minutes to several tens of minutes when the pressurized dielectric discharge tube 3 is at atmospheric pressure. The size is as follows. As the dielectric discharge tube 3, a glass tube such as borosilicate glass, a ceramic tube such as alumina ceramics or titanium dioxide ceramics, a metal tube with a dielectric coated on the outer surface, or the like is used.

次に動作を説明する。図5に、オゾン発生装置の起動手順及び停止手順を説明する図を示す。図6にオゾン発生装置が非常停止した場合の動作を説明する図を示す。なお、図5と図6は、動作の概念を説明する仮想的な図である。図5と図6では、放電電力量、ガス流量、高圧タンク100内のガス圧力、誘電体放電管3内部の圧力、誘電体放電管3の上流側(入口付近と略す)と下流側(出口付近と略す)のその内部のオゾン濃度について、その時間変化を示す。オゾン濃度は縦軸を対数軸とする。なお、放電により窒素酸化物なども生成されるが、窒素酸化物などの濃度はオゾン濃度にほぼ比例するので、オゾン濃度だけを示す。   Next, the operation will be described. In FIG. 5, the figure explaining the starting procedure and stopping procedure of an ozone generator is shown. FIG. 6 shows a diagram for explaining the operation when the ozone generator is brought to an emergency stop. 5 and 6 are virtual diagrams for explaining the concept of operation. 5 and 6, the discharge power amount, the gas flow rate, the gas pressure in the high-pressure tank 100, the pressure in the dielectric discharge tube 3, the upstream side (abbreviated as the vicinity of the inlet) and the downstream side (outlet) of the dielectric discharge tube 3. The time variation of the ozone concentration in the inside of the abbreviation is abbreviated. The ozone concentration has a logarithmic axis on the vertical axis. In addition, although nitrogen oxide etc. are produced | generated by discharge, since the density | concentration of nitrogen oxide etc. is substantially proportional to ozone concentration, only ozone concentration is shown.

オゾン発生装置が停止中は、高圧タンク100内の圧力を大気圧よりも高くして密閉して、高圧タンク100の内部に外部から空気及び水分が入らないようにしている。オゾン発生装置を起動する場合には、図5の左半分に示すように、まず、高圧タンク100内に所定の圧力(2気圧程度)及び所定の流量で原料ガスを送り込む。所定時間が経過して、誘電体放電管3の内部の圧力が高圧タンク100内の圧力と同じになると、高圧電極1と接地電極2の間のギャップ長で放電が発生するような所定の大きさの交流電圧を高圧電極1に印加する。放電空間4に無声放電が発生し、オゾンが生成される。出口付近のオゾン濃度は所定値であり、所定の濃度のオゾンを含むオゾン化ガスが所定の量だけ製造される。定常的なガス流があるので、放電で生成されたオゾンはガス流の上流側である入口付近にはほとんど来ない。そのため、入口付近のオゾン濃度は低い。さらに、ガス流通口17の断面積は誘電体放電管3の断面積に比較して十分に小さいので、圧力差がない状態でガス流通口17を通過するガス量は非常に小さくなる。そのため、誘電体放電管3の内部にはオゾン等はほとんど入らない。したがって、誘電体放電管3の内部のオゾン濃度は、放電を開始する前の値(大気中に自然に存在するオゾン濃度)に保たれる。窒素酸化物に関しても同様である。
なお、誘電体放電管3の内部に入るオゾン等の量が許容できる範囲(腐食を引き起こすことがない範囲)であることを、ほとんど入らないと表現する。
While the ozone generator is stopped, the pressure in the high-pressure tank 100 is made higher than the atmospheric pressure to seal it so that air and moisture do not enter the high-pressure tank 100 from the outside. When starting the ozone generator, as shown in the left half of FIG. 5, first, the raw material gas is fed into the high-pressure tank 100 at a predetermined pressure (about 2 atmospheres) and a predetermined flow rate. When a predetermined time elapses and the pressure inside the dielectric discharge tube 3 becomes the same as the pressure in the high-pressure tank 100, a predetermined magnitude is set such that discharge occurs with the gap length between the high-voltage electrode 1 and the ground electrode 2. The AC voltage is applied to the high voltage electrode 1. Silent discharge occurs in the discharge space 4 and ozone is generated. The ozone concentration in the vicinity of the outlet is a predetermined value, and an ozonized gas containing ozone having a predetermined concentration is produced in a predetermined amount. Since there is a steady gas flow, the ozone generated by the discharge hardly comes near the inlet upstream of the gas flow. Therefore, the ozone concentration near the entrance is low. Furthermore, since the cross-sectional area of the gas flow port 17 is sufficiently smaller than the cross-sectional area of the dielectric discharge tube 3, the amount of gas passing through the gas flow port 17 in a state where there is no pressure difference is very small. Therefore, almost no ozone or the like enters the dielectric discharge tube 3. Therefore, the ozone concentration inside the dielectric discharge tube 3 is maintained at the value before starting discharge (the ozone concentration naturally existing in the atmosphere). The same applies to nitrogen oxides.
In addition, it expresses that it hardly enters that the quantity of ozone etc. which enter the inside of the dielectric discharge tube 3 is an allowable range (a range which does not cause corrosion).

オゾン発生装置を停止する場合には、図5の右半分に示すように、まず、高圧電極1に交流電圧を印加することを停止し、放電を発生させなくする。原料ガスの供給は、オゾンや窒素酸化物が高圧タンク100の外に排出されるまで、そのまま継続する。放電停止後ガスを流通しておく時間はタンクの大きさ(容量:V(m))と流通するガス量(Q(m/s))に依存するが、タンク内のガスが完全に置換される時間t1(=V/Q(s))よりも数倍以上長く設定しておけばよい。ガス出口のオゾンの濃度計を計測し、十分小さな値(たとえば0.1ppm)になってからガスを止める方法も有効である。
放電が停止になるとオゾンが生成しなくなるので、出口付近のオゾン濃度が低下する。所定時間が経過して、入口付近および出口付近のオゾン濃度が十分に低下している状態で、原料ガスを高圧タンク100内に送り込むことを停止し、タンク出入り口のバルブ10を閉じる。ガス供給を停止すると、ガスを流すための圧力分だけ、高圧タンク100内の圧力が低下し、さらにゆっくりとガス圧力が低下していく。タンク内のガス圧力が常に大気圧よりも高くなるようにする。このように、所定の手順でオゾン発生装置が停止する場合には、入口付近のオゾン濃度は低い状態が保たれるので、ガス流の上流端を開放した従来の誘電体放電管でも高圧電極が腐食することはない。
さらに、ガス流通量制御栓16を有する誘電体放電管3では、高圧タンク100内の圧力が低下しても、所定の時間は誘電体放電管3内部の圧力が高圧タンク100内の圧力よりも高く保たれる。この時間内では誘電体放電管3から気体が出るだけであり、オゾン等が誘電体放電管3内部に入る事はない。また、圧力が同じになった後でも、ガス流通口17は十分に小さいので、オゾン等は誘電体放電管3内部にほとんど入らない。
When the ozone generator is stopped, as shown in the right half of FIG. 5, first, the application of the AC voltage to the high-voltage electrode 1 is stopped to prevent the discharge. The supply of the source gas is continued as it is until ozone and nitrogen oxides are discharged out of the high-pressure tank 100. The time for which the gas is circulated after the discharge is stopped depends on the size of the tank (capacity: V (m 3 )) and the amount of the circulated gas (Q (m 3 / s)). What is necessary is just to set several times or more longer than the time t1 (= V / Q (s)) to be replaced. It is also effective to measure the ozone concentration meter at the gas outlet and stop the gas after it reaches a sufficiently small value (for example, 0.1 ppm).
Since ozone is no longer generated when the discharge is stopped, the ozone concentration near the outlet is lowered. In a state where the ozone concentration in the vicinity of the inlet and the outlet is sufficiently lowered after a predetermined time has passed, the supply of the raw material gas into the high-pressure tank 100 is stopped, and the tank inlet / outlet valve 10 is closed. When the gas supply is stopped, the pressure in the high-pressure tank 100 is lowered by the pressure for flowing the gas, and the gas pressure is further slowly lowered. The gas pressure in the tank is always higher than atmospheric pressure. As described above, when the ozone generator is stopped in a predetermined procedure, the ozone concentration near the inlet is kept low, so that the high-pressure electrode is not provided in the conventional dielectric discharge tube with the upstream end of the gas flow open. There is no corrosion.
Furthermore, in the dielectric discharge tube 3 having the gas flow rate control plug 16, even if the pressure in the high-pressure tank 100 decreases, the pressure in the dielectric discharge tube 3 is higher than the pressure in the high-pressure tank 100 for a predetermined time. Kept high. During this time, only gas is emitted from the dielectric discharge tube 3, and ozone or the like does not enter the dielectric discharge tube 3. Further, even after the pressure becomes the same, the gas circulation port 17 is sufficiently small, so that ozone and the like hardly enter the dielectric discharge tube 3.

オゾン発生装置を非常停止して大気に開放する場合には、図6に示すように、放電の停止と、ガス流の停止及び大気への開放がほぼ同時に発生する。大気に開放されると、高圧タンク100内の圧力は大気圧になる。放電により発生したオゾン等が高圧タンク内に残っているので、ガス流が止まり大気に開放されると、オゾン等が高圧タンク内外に拡散し、入口付近のオゾン濃度が増加する。入口付近のオゾン濃度が高くなっても、大気に開放されてから所定の時間は誘電体放電管3内部の圧力が大気圧よりも高く保たれ、この時間内では誘電体放電管3から気体が出るだけであり、オゾン等が誘電体放電管3内部に入ることはない。誘電体放電管3内部の圧力が大気圧になるには数分から数十分の時間があるので、オゾンが大気に拡散して入口付近のオゾン濃度が低くなっており、かつガス流通口17は十分に小さいので、オゾン等および大気中の水分は誘電体放電管3内部にほとんど入らない。また、オゾン濃度が低くなっていない場合でも、誘電体放電管3内部の圧力が大気圧になるまでの数分から数十分の時間で、高圧電極を腐食から保護するための何らかの対策を取ることが可能である。   When the ozone generator is stopped emergencyly and opened to the atmosphere, as shown in FIG. 6, the stop of the discharge, the stop of the gas flow, and the release to the atmosphere occur almost simultaneously. When released to the atmosphere, the pressure in the high-pressure tank 100 becomes atmospheric pressure. Since ozone generated by the discharge remains in the high-pressure tank, when the gas flow stops and is released to the atmosphere, ozone diffuses into and out of the high-pressure tank, and the ozone concentration near the inlet increases. Even if the ozone concentration near the entrance increases, the pressure inside the dielectric discharge tube 3 is kept higher than the atmospheric pressure for a predetermined time after being opened to the atmosphere, and during this time, gas is discharged from the dielectric discharge tube 3. It only exits, and ozone or the like does not enter the dielectric discharge tube 3. Since it takes several minutes to several tens of minutes for the pressure inside the dielectric discharge tube 3 to become atmospheric pressure, ozone diffuses into the atmosphere, the ozone concentration near the inlet is low, and the gas circulation port 17 is sufficiently Since it is small, ozone or the like and moisture in the atmosphere hardly enter the dielectric discharge tube 3. Even if the ozone concentration is not low, take some measures to protect the high-pressure electrode from corrosion in a few minutes to several tens of minutes until the pressure inside the dielectric discharge tube 3 reaches atmospheric pressure. Is possible.

これに対して、従来の誘電体放電管では、その内部の圧力とオゾン濃度は、入口付近と同じになる。そのため、大気に開放されるとすぐにその内部の圧力が大気圧まで低下し、オゾン、窒素酸化物および大気中の水分が誘電体放電管の内部にも外部と同様に拡散する。その結果、窒素酸化物と水から生成された硝酸により高圧電極を腐食する。
誘電体放電管3の内部と外部の圧力差は、高圧タンク100の内部圧力が変化した後の所定時間にだけ発生し、常時は誘電体放電管3に圧力がかかることはない。また、誘電体放電管3に圧力がかかる時間には放電させることはない。このため、密閉した誘電体放電管よりも、その信頼性は格段に高い。
On the other hand, in the conventional dielectric discharge tube, the internal pressure and ozone concentration are the same as the vicinity of the inlet. For this reason, as soon as it is opened to the atmosphere, the internal pressure drops to atmospheric pressure, and ozone, nitrogen oxides and moisture in the atmosphere diffuse into the dielectric discharge tube as well as outside. As a result, the high voltage electrode is corroded by nitric acid generated from nitrogen oxides and water.
The pressure difference between the inside and the outside of the dielectric discharge tube 3 is generated only for a predetermined time after the internal pressure of the high-pressure tank 100 is changed, and the pressure is not applied to the dielectric discharge tube 3 at all times. Further, the dielectric discharge tube 3 is not discharged during the time when pressure is applied. For this reason, its reliability is much higher than that of a sealed dielectric discharge tube.

ガス流通量制御栓16は、バイトン、EPDゴム、シリコンなどの絶縁物を用いても同様の効果を奏する。また、ステンレスや鉄、アルミ、同などの金属材料を用いてもよい。十分な耐腐食性を持つものであり、放電に悪影響を与えない材料であれば、どのような材料を使用してもよい。
ガス流通量制御栓16は、ヒューズ15を誘電体放電管3に固定する役割も持っていたが、必ずしもそうする必要はない。片端を閉じた管を使用したが、両端が開放された管を用いて、両端に栓をするようにしてもよい。両端に栓をする場合は、ガス流の上流側の栓に通気口を設け、下流側の線には通気口を設けない。
高圧電極は誘電体放電管の内面に蒸着した金属膜としたが、円筒状の導電性を有する金属を誘電体放電管の内部に挿入してもよい。高圧電極と接地電極が同心に配置され、高圧電極と接地電極との間の間隔が放電を発生させるのに適切かつ均等な間隔にできれば、高圧電極はどのように配置してもよい。
以上のことは、他の実施の形態でもあてはまる。
The gas flow rate control plug 16 has the same effect even when an insulator such as Viton, EPD rubber, or silicon is used. Further, a metal material such as stainless steel, iron, aluminum, or the like may be used. Any material may be used as long as it has sufficient corrosion resistance and does not adversely affect the discharge.
Although the gas flow rate control plug 16 has a role of fixing the fuse 15 to the dielectric discharge tube 3, it is not always necessary to do so. Although a tube with one end closed is used, a tube open at both ends may be used to plug both ends. When plugging both ends, vents are provided in the plug on the upstream side of the gas flow, and vents are not provided in the downstream line.
Although the high-voltage electrode is a metal film deposited on the inner surface of the dielectric discharge tube, a cylindrical metal having conductivity may be inserted into the dielectric discharge tube. The high-voltage electrode and the ground electrode may be arranged in any manner as long as the high-voltage electrode and the ground electrode are concentrically arranged, and the distance between the high-voltage electrode and the ground electrode can be appropriately and evenly spaced to generate discharge.
The above also applies to other embodiments.

実施の形態2.
この実施の形態2は、誘電体放電管の構造を両端に栓をしたものに変更した実施の形態である。図7に、この発明の実施の形態2に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図を示す。全体構造は、実施の形態1と同じである。
Embodiment 2. FIG.
In the second embodiment, the structure of the dielectric discharge tube is changed to one having plugs at both ends. FIG. 7 shows a cross-sectional view in a cross section parallel to the gas flow for explaining the structure of the dielectric discharge tube included in the ozone generator according to Embodiment 2 of the present invention. The overall structure is the same as in the first embodiment.

実施の形態1の場合と比較して相違する点だけを説明する。誘電体放電管3Aの両端が開放しており、下流側の端にはガス封じ栓18を備えている。ガス封じ栓18は、ガスの流通を完全に遮断するものである。なお、上流側には、実施の形態1と同じガス流通量制御栓16を使用する。   Only the differences from the first embodiment will be described. Both ends of the dielectric discharge tube 3A are open, and a gas sealing plug 18 is provided at the downstream end. The gas sealing plug 18 completely shuts off the gas flow. Note that the same gas flow rate control plug 16 as in the first embodiment is used on the upstream side.

この実施の形態2に係るオゾン発生装置は、実施の形態1と同様に動作し、同様の効果がある。   The ozone generator according to the second embodiment operates in the same manner as in the first embodiment and has the same effect.

実施の形態3.
この実施の形態3は、実施の形態2の誘電体放電管をさらに上流側の栓の構造を変更したものである。図8に、この発明の実施の形態3に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図を示す。全体構造は、実施の形態1と同じである。
Embodiment 3 FIG.
In the third embodiment, the structure of the plug on the upstream side of the dielectric discharge tube of the second embodiment is further changed. FIG. 8 shows a sectional view in a section parallel to the gas flow for explaining the structure of the dielectric discharge tube included in the ozone generator according to Embodiment 3 of the present invention. The overall structure is the same as in the first embodiment.

実施の形態2の場合と比較して相違する点だけを説明する。ガス流通量制御栓16Aは、ヒューズ15ではなく給電棒14Aを誘電体放電管3Aに固定する。なお、図8ではヒューズ15を誘電体放電管3Aの近くに配置しているが、ヒューズを誘電体放電管から離して設置する場合や、ヒューズを有しない場合にも、ガス流通量制御栓16Aは使用できる。   Only the differences from the second embodiment will be described. The gas flow control plug 16A fixes the power supply rod 14A, not the fuse 15, to the dielectric discharge tube 3A. In FIG. 8, the fuse 15 is disposed near the dielectric discharge tube 3A. However, the gas flow rate control plug 16A is also used when the fuse is installed away from the dielectric discharge tube or when the fuse is not provided. Can be used.

この実施の形態3に係るオゾン発生装置は、実施の形態1と同様に動作し、同様の効果がある。   The ozone generator according to the third embodiment operates in the same manner as in the first embodiment and has the same effect.

実施の形態4.
この実施の形態4は、1本の接地電極の中に直列に2本の誘電体放電管を配置し、高圧電極に電圧を印加中はガス流通栓を閉じるようにした場合である。図9に、この発明の実施の形態4に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図を示す。
Embodiment 4 FIG.
In the fourth embodiment, two dielectric discharge tubes are arranged in series in one ground electrode, and the gas flow plug is closed while a voltage is applied to the high voltage electrode. FIG. 9 shows a cross-sectional view in a cross section parallel to the gas flow for explaining the structure of the dielectric discharge tube included in the ozone generator according to Embodiment 4 of the present invention.

誘電体放電管を2本にする理由について説明する。オゾン発生量は、放電電極(誘電体放電管)の表面積に比例するため、オゾン発生量を増大する時には、誘電体放電管の数を大きくするか、誘電体放電管の長さを長くすればよい。高圧タンクの径を大きくするとメンテナンスなどで不都合が発生するので、高圧タンクの径には適正な大きさがあり、誘電体放電管の数にも適正な数がある。誘電体放電管の長さを長くすることもコスト的に上限がある。誘電体放電管は、外径、内径、真円度、直線性などに関して所定の精度を満足する必要がある。長くなると所定の精度を得るためのコストが高くなるので、許容できるコストで製造できる誘電体放電管の長さには上限がある。図9に示すように1本の接地電極の中に2本の誘電体放電管を配置すると、1本の接地電極の中に1本の誘電体放電管を2組備える場合よりも、単位オゾン発生量あたりの高圧タンク及び接地電極などの製造コストが安くなり、安価にオゾン発生装置を製造できる。   The reason for using two dielectric discharge tubes will be described. Since the amount of ozone generated is proportional to the surface area of the discharge electrode (dielectric discharge tube), when increasing the amount of ozone generated, the number of dielectric discharge tubes can be increased or the length of the dielectric discharge tube can be increased. Good. If the diameter of the high-pressure tank is increased, inconvenience occurs in maintenance and the like. Therefore, the diameter of the high-pressure tank has an appropriate size, and the number of dielectric discharge tubes also has an appropriate number. Increasing the length of the dielectric discharge tube also has an upper limit in cost. The dielectric discharge tube needs to satisfy a predetermined accuracy with respect to the outer diameter, inner diameter, roundness, linearity, and the like. Since the cost for obtaining a predetermined accuracy increases as the length increases, there is an upper limit to the length of the dielectric discharge tube that can be manufactured at an acceptable cost. As shown in FIG. 9, when two dielectric discharge tubes are arranged in one ground electrode, the unit ozone is larger than the case where two sets of one dielectric discharge tube are provided in one ground electrode. Manufacturing costs such as a high-pressure tank and a ground electrode per generation amount are reduced, and an ozone generator can be manufactured at a low cost.

図9において、図における左から右にガスが流れるとする。図における左側を上流側と呼び、右側を下流側と呼ぶ。上流側の誘電体放電管3Bは、両端が開放されており、上流側にガス流通口17を開閉できるガス流通量制御栓16Bを設け、下流側にガス封じ栓18を設ける。下流側の誘電体放電管3Cは、両端が開放されており、上流側にガス流通口17を開閉できるガス流通量制御栓16Cを設け、下流側にガス封じ栓18Aを設ける。誘電体放電管3Bと誘電体放電管3Cは、高圧電極1に高電圧を印加できるように、高圧配線9が接続される側が接地電極2の両端になる向きに挿入する。そのため、ガス流通量制御栓16Bとガス封じ栓18Aには、気密を保ちながらヒューズ15を誘電体放電管3Bまたは誘電体放電管3Cに取付ける役目も持つ。   In FIG. 9, it is assumed that gas flows from left to right in the figure. The left side in the figure is called the upstream side, and the right side is called the downstream side. Both ends of the upstream dielectric discharge tube 3B are open, and a gas flow rate control plug 16B capable of opening and closing the gas flow port 17 is provided on the upstream side, and a gas sealing plug 18 is provided on the downstream side. The downstream side dielectric discharge tube 3C is open at both ends, and is provided with a gas flow rate control plug 16C capable of opening and closing the gas flow port 17 on the upstream side, and with a gas sealing plug 18A on the downstream side. The dielectric discharge tube 3 </ b> B and the dielectric discharge tube 3 </ b> C are inserted so that the side to which the high voltage wiring 9 is connected becomes both ends of the ground electrode 2 so that a high voltage can be applied to the high voltage electrode 1. Therefore, the gas flow control plug 16B and the gas sealing plug 18A also serve to attach the fuse 15 to the dielectric discharge tube 3B or the dielectric discharge tube 3C while maintaining airtightness.

ガス流通量制御栓16Bとガス流通量制御栓16Cは、高圧電極1に電圧が印加されている間はガス流通口17を閉じてガスを通さず、電圧が印加されていない時は所定の流量でガスを通すものである。ガスを通す場合は、実施の形態1と同様に、動作時のガス圧力が数分から数十分の所定時間で大気圧になる程度のガス流が通るものとする。   The gas flow rate control plug 16B and the gas flow rate control plug 16C close the gas flow port 17 while the voltage is applied to the high-voltage electrode 1 so as not to pass the gas, and when the voltage is not applied, the predetermined flow rate is applied. The gas is passed through. In the case of passing the gas, as in the first embodiment, the gas flow is such that the gas pressure during operation becomes atmospheric pressure in a predetermined time of several minutes to several tens of minutes.

次に動作を説明する。図10は、この発明の実施の形態5に係るオゾン発生装置の動作を説明する図である。図10では、放電電力量、ガス流通量制御栓16Bとガス流通量制御栓16Cの開または閉の状態、ガス流量、高圧タンク100内のガス圧力、誘電体放電管3内部の圧力、高圧タンク100内の各部及び誘電体放電管3B、3C内部のオゾン濃度について、その時間変化を示す。高圧タンク100内の各部のオゾン濃度は、上流側の誘電体放電管3Bの上流側(入口付近と呼ぶ)と、2本の誘電体放電管3B、3Cの間(中間付近と呼ぶ)と、下流側の誘電体放電管3Cの下流側(出口付近と呼ぶ)の3点について示す。また、比較のために、ガス流通口17を常に開いている場合での下流側の誘電体放電管3C内部のオゾン濃度を、破線で示す。   Next, the operation will be described. FIG. 10 is a diagram for explaining the operation of the ozone generator according to Embodiment 5 of the present invention. In FIG. 10, the discharge power amount, the gas flow rate control plug 16B and the gas flow rate control plug 16C are opened or closed, the gas flow rate, the gas pressure in the high pressure tank 100, the pressure in the dielectric discharge tube 3, the high pressure tank The time change is shown about the ozone density | concentration inside each part in 100, and dielectric discharge tube 3B, 3C. The ozone concentration of each part in the high-pressure tank 100 is determined between the upstream side of the dielectric discharge tube 3B on the upstream side (referred to as the vicinity of the inlet) and between the two dielectric discharge tubes 3B and 3C (referred to as the vicinity of the middle). Three points on the downstream side (referred to as the vicinity of the outlet) of the downstream dielectric discharge tube 3C will be described. For comparison, the ozone concentration inside the dielectric discharge tube 3C on the downstream side when the gas flow port 17 is always open is indicated by a broken line.

この実施の形態5に係るオゾン発生装置を起動する場合には、図10の左半分に示すように、まず、高圧タンク100内に所定の圧力及び所定の流量で原料ガスを送り込む。高圧電極には電圧を印加せず、ガス流通量制御栓16Bとガス流通量制御栓16Cのガス流通口17は開いており、しだいに誘電体放電管3B、3Cの内部の圧力が上昇する。誘電体放電管3B、3Cの内部の圧力は、上流側でも下流側でも同じである。所定時間が経過して、誘電体放電管3B、3Cの内部の圧力が高圧タンク100内の圧力と同じになると、高圧電極1と接地電極2の間のギャップ長で放電が発生するような所定の大きさの交流電圧を高圧電極1に印加する。電圧を印加すると、ガス流通量制御栓16Bとガス流通量制御栓16Cのガス流通口17を閉じる。電圧が印加されると、放電空間4に無声放電が発生し、所定の濃度のオゾンを含むオゾン化ガスが所定の量だけ製造される。出口付近のオゾン濃度は所定値であり、中間付近のガス濃度は出口付近のほぼ半分である。定常的なガス流があるので、放電で生成されたオゾンはガス流の上流側である入口付近にはほとんど来ない。そのため、入口付近のオゾン濃度は低い。   When starting the ozone generator according to the fifth embodiment, as shown in the left half of FIG. 10, first, the raw material gas is fed into the high-pressure tank 100 at a predetermined pressure and a predetermined flow rate. No voltage is applied to the high voltage electrode, and the gas flow port 17 of the gas flow rate control plug 16B and the gas flow rate control plug 16C is open, and the pressure inside the dielectric discharge tubes 3B and 3C gradually increases. The pressure inside the dielectric discharge tubes 3B and 3C is the same on the upstream side and the downstream side. When a predetermined time has passed and the pressure inside the dielectric discharge tubes 3B and 3C becomes the same as the pressure in the high-pressure tank 100, a predetermined discharge is generated with the gap length between the high-voltage electrode 1 and the ground electrode 2 An AC voltage of the magnitude is applied to the high-voltage electrode 1. When the voltage is applied, the gas flow port 17 of the gas flow rate control plug 16B and the gas flow rate control plug 16C are closed. When a voltage is applied, a silent discharge is generated in the discharge space 4 and an ozonized gas containing ozone having a predetermined concentration is produced in a predetermined amount. The ozone concentration near the outlet is a predetermined value, and the gas concentration near the middle is approximately half that near the outlet. Since there is a steady gas flow, the ozone generated by the discharge hardly comes near the inlet upstream of the gas flow. Therefore, the ozone concentration near the entrance is low.

高圧電極に電圧を印加して放電が始まるとガス流通口17が閉じるので、下流側の誘電体放電管3Cでもオゾン等がその内部に入ることは無く、誘電体放電管3B、3Cの内部のオゾン濃度は、原料ガスと同じオゾン濃度に保たれる。高圧電極に電圧を印加している時にガス流通口を閉じることによるこの効果は、接地電極内に1本の誘電体放電管を配置する場合でも同様である。
ガス流通量制御栓16Bとガス流通量制御栓16Cのガス流通口17を常に開いている場合には、図10において破線で示すように、オゾン発生装置の動作中に下流側にある誘電体放電管3Cの内部のオゾン濃度がしだいに上昇して、高圧電極1の腐食をもたらす可能性がある。放電発生中にガス流通口17を閉じれば、オゾン発生装置の動作中に、下流側にある誘電体放電管3Cの内部のオゾン濃度が上昇することはなく、高圧電極1が腐食することが無い。
When a voltage is applied to the high-voltage electrode and the discharge starts, the gas flow port 17 is closed. Therefore, ozone or the like does not enter the dielectric discharge tube 3C on the downstream side, and the inside of the dielectric discharge tubes 3B and 3C does not enter. The ozone concentration is kept at the same ozone concentration as the source gas. This effect by closing the gas flow port when a voltage is applied to the high-voltage electrode is the same even when one dielectric discharge tube is arranged in the ground electrode.
When the gas flow rate control plug 16B and the gas flow rate control port 16C of the gas flow rate control plug 16C are always open, as shown by the broken line in FIG. 10, the dielectric discharge on the downstream side during the operation of the ozone generator. There is a possibility that the ozone concentration inside the tube 3C gradually increases and the high voltage electrode 1 is corroded. If the gas circulation port 17 is closed during the generation of discharge, the ozone concentration inside the dielectric discharge tube 3C on the downstream side will not increase during the operation of the ozone generator, and the high voltage electrode 1 will not corrode. .

オゾン発生装置を停止する場合には、図10の右半分に示すように、まず、高圧電極1に交流電圧を印加することを停止し、放電を発生させなくする。高圧電極1に交流電圧を印加しなくなると、ガス流通量制御栓16Bとガス流通量制御栓16Cのガス流通口17が開く。原料ガスの供給は、そのまま継続する。放電を停止するとオゾン等が発生しなくなるので、中間付近及び出口付近のオゾン濃度が短時間で大きく低下する。ガス流通口17が開いているが、ガス流通口17は小さく、中間付近のオゾン濃度が低下するまでの時間は短く、誘電体放電管3B、3Cの内外の圧力差は無いので、下流側の誘電体放電管3Cでもオゾン等が誘電体放電管3B、3Cの内部にほとんど入らない。上流側の誘電体放電管3Bは、入口付近のオゾン濃度は低いので、オゾン等が誘電体放電管3Bの内部にほとんど入らない。   When the ozone generator is stopped, as shown in the right half of FIG. 10, first, the application of the AC voltage to the high-voltage electrode 1 is stopped to prevent the discharge. When no AC voltage is applied to the high voltage electrode 1, the gas flow rate control plug 16B and the gas flow port 17 of the gas flow rate control plug 16C are opened. The supply of the raw material gas is continued as it is. When the discharge is stopped, ozone and the like are not generated, so the ozone concentration near the middle and near the outlet is greatly reduced in a short time. Although the gas flow port 17 is open, the gas flow port 17 is small, the time until the ozone concentration near the middle decreases is short, and there is no pressure difference inside and outside the dielectric discharge tubes 3B and 3C. Even in the dielectric discharge tube 3C, ozone and the like hardly enter the dielectric discharge tubes 3B and 3C. The upstream dielectric discharge tube 3B has a low ozone concentration in the vicinity of the entrance, so that ozone and the like hardly enter the dielectric discharge tube 3B.

所定時間が経過して、中間付近及び出口付近のオゾン濃度が十分に低下している状態で、原料ガスを高圧タンク100内に送り込むことを停止し、ガスバルブを閉じて高圧タンク100を密閉する。原料ガスの供給を停止すると、高圧タンク100内の圧力はガス流を発生させるために加えていた圧力分だけ低下する。大気圧よりも高い誘電体放電管3B、3Cの内部の圧力はしだいに低下して、さらに所定の時間後に高圧タンク100内の圧力と同じになる。この段階でも、オゾン等が誘電体放電管3B、3Cの内部に入らない。   In a state where the ozone concentration in the vicinity of the middle and the outlet is sufficiently lowered after a predetermined time has passed, the feed of the source gas into the high pressure tank 100 is stopped, the gas valve is closed, and the high pressure tank 100 is sealed. When the supply of the source gas is stopped, the pressure in the high-pressure tank 100 is reduced by the pressure applied to generate the gas flow. The pressure inside the dielectric discharge tubes 3B and 3C higher than the atmospheric pressure gradually decreases and becomes the same as the pressure in the high-pressure tank 100 after a predetermined time. Even at this stage, ozone or the like does not enter the dielectric discharge tubes 3B and 3C.

オゾン発生装置を非常停止して大気に開放する場合には、図11に示すように、電圧印加の停止と、ガス流の停止及び大気への開放がほぼ同時に発生する。電圧を印加しなくなると、ガス流通量制御栓16Bとガス流通量制御栓16Cのガス流通口17が開く。誘電体放電管3B、3Cの内部の圧力は大気圧よりも高く、数分から数十分という所定の時間の間は、誘電体放電管3B、3Cの内部からガスが出て、オゾン等および大気中の水分は誘電体放電管3B、3C内部に入らない。これは、実施の形態1の場合での動作と同様である。   When the ozone generator is stopped emergencyly and opened to the atmosphere, as shown in FIG. 11, the stop of voltage application, the stop of gas flow, and the release to the atmosphere occur almost simultaneously. When no voltage is applied, the gas flow port 17 of the gas flow rate control plug 16B and the gas flow rate control plug 16C is opened. The pressure inside the dielectric discharge tubes 3B and 3C is higher than the atmospheric pressure, and during a predetermined time of several minutes to several tens of minutes, gas is discharged from the inside of the dielectric discharge tubes 3B and 3C, and ozone and the like The moisture inside does not enter the dielectric discharge tubes 3B and 3C. This is the same as the operation in the case of the first embodiment.

ガス流通口17を高圧電極1に電圧を印加していない場合に開くと、高圧電極1に電圧を印加しなくなってから中間付近のオゾン等の濃度が低下するまでのごく短い時間ではあるが、下流側の誘電体放電管3Cの内部には開いたガス流通口17からオゾン等が入りこみ、オゾン発生装置の起動と停止の回数が非常に大きくなると高圧電極を腐食する可能性がある。この可能性をさらに小さくするための対策について説明する。
高圧電極に電圧を印加しなくなり高圧タンクからオゾン等が排出されるまでの所定時間が経過後にガス流通口17を開くようにすれば、高圧タンク内にオゾン等が残っている状態ではガス流通口が閉じているので、誘電体放電管3B、3Cの内部にオゾン等が入ることをほぼ完全に防止できる。高圧電極に電圧を印加しないでガス流を流す時に電圧を印加している時よりもガスの圧力を少し下げるようにすれば、高圧電極に電圧を印加しなくなってガス流通口が開いても、暫くの間は誘電体放電管3B、3Cの内部からガスが出る状態になるので、オゾン等が誘電体放電管3B、3Cの内部に入らない。
これらの対策は、接地電極内に1本の誘電体放電管を配置する場合に適用しても同様の効果が得られる。
If the gas flow port 17 is opened when no voltage is applied to the high-voltage electrode 1, it is a very short time from when no voltage is applied to the high-voltage electrode 1 until the concentration of ozone or the like in the middle decreases. If the ozone or the like enters into the inside of the dielectric discharge tube 3C on the downstream side from the open gas flow port 17, and the number of times of starting and stopping the ozone generator becomes very large, the high voltage electrode may be corroded. A measure for further reducing this possibility will be described.
If the gas circulation port 17 is opened after a predetermined time has elapsed until no voltage is applied to the high-voltage electrode and ozone is discharged from the high-pressure tank, the gas circulation port is maintained in a state where ozone or the like remains in the high-pressure tank. Is closed, so that ozone or the like can be almost completely prevented from entering the dielectric discharge tubes 3B and 3C. If the gas pressure is slightly lower than when applying a voltage when applying a gas flow without applying a voltage to the high-voltage electrode, no voltage will be applied to the high-voltage electrode and the gas flow port will open. For a while, gas is emitted from the inside of the dielectric discharge tubes 3B and 3C, so that ozone or the like does not enter the inside of the dielectric discharge tubes 3B and 3C.
Even if these countermeasures are applied when a single dielectric discharge tube is arranged in the ground electrode, the same effect can be obtained.

実施の形態5.
実施の形態5は、誘電体放電管の内面にある高圧電極の上に、耐オゾン性、耐窒素酸化物性のある保護材料で覆う場合である。図12に、この発明の実施の形態5に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。全体構造は、実施の形態1と同じである。
高圧電極1の上を誘電体放電管3と同種のガラス19でコーティングしている。高圧電極1は極めて安定なガラス19により覆われてコーティングされているため、腐食の心配はない。また、誘電体放電管の一方だけを封じるので、誘電体放電管に圧力がかかることも無い。ガラス19が、高圧電極1を覆って保護する保護部である。
Embodiment 5. FIG.
The fifth embodiment is a case where the high voltage electrode on the inner surface of the dielectric discharge tube is covered with a protective material having ozone resistance and nitrogen oxide resistance. FIG. 12 is a sectional view in a section parallel to the gas flow for explaining the structure of the dielectric discharge tube included in the ozone generator according to Embodiment 5 of the present invention. The overall structure is the same as in the first embodiment.
The high voltage electrode 1 is coated with the same kind of glass 19 as the dielectric discharge tube 3. Since the high-voltage electrode 1 is covered and coated with a very stable glass 19, there is no concern about corrosion. Further, since only one of the dielectric discharge tubes is sealed, no pressure is applied to the dielectric discharge tube. The glass 19 is a protective part that covers and protects the high-voltage electrode 1.

この実施の形態5に係るオゾン発生装置は、実施の形態1と同様に動作し、同様の効果がある。なお、高圧電極が保護部により保護されているので、誘電体放電管の開放端を原料ガスの流れの下流側に向けても、オゾン等により高圧電極が腐食することは無い。
この実施の形態ではガラスのコーティングの場合について示したが、アルミナなどのセラミックの溶射でコーティングしても同様の効果を奏する。また、その他のセラミックや絶縁性の材料でコーティングしておいても良い。このように高圧電極の上を絶縁性の材料でコーティングしておくと、窒素酸化物から生成される硝酸やオゾンから高圧電極を保護できると同時に、高圧電極1の端部で発生しやすい沿面放電も抑制することができ、効果的である。
The ozone generator according to the fifth embodiment operates in the same manner as in the first embodiment and has the same effect. In addition, since the high voltage electrode is protected by the protection part, even if the open end of the dielectric discharge tube is directed downstream of the flow of the raw material gas, the high voltage electrode is not corroded by ozone or the like.
In this embodiment, the case of glass coating is shown, but the same effect can be obtained by coating by spraying ceramic such as alumina. Further, it may be coated with other ceramics or insulating materials. By coating the high voltage electrode with an insulating material in this way, the high voltage electrode can be protected from nitric acid and ozone generated from nitrogen oxides, and at the same time, creeping discharge that is likely to occur at the end of the high voltage electrode 1 Can also be suppressed, which is effective.

実施の形態6.
実施の形態6は、2本の放電体誘電管をパイプ状の連結部材で繋ぐように実施の形態4を変更した場合である。図13に、この発明の実施の形態6に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図を示す。
Embodiment 6 FIG.
The sixth embodiment is a case where the fourth embodiment is changed so that two discharge dielectric tubes are connected by a pipe-shaped connecting member. FIG. 13 shows a cross-sectional view in a cross section parallel to the gas flow for explaining the structure of the dielectric discharge tube included in the ozone generator according to Embodiment 6 of the present invention.

実施の形態4の場合である図9と異なる点だけを説明する。上流側が第一の誘電体放電管であり、下流側が第二の誘電体放電管である。上流側の誘電体放電管3Dの下流端と下流側の誘電体放電管3Eの上流端は開放されており、これらの間を円筒管である連結部材20が繋いでいる。連結部材20は、耐食性が高いフッ素樹脂製などガス流通量制御栓と同じ素材とする。なお、耐食性が高ければ、ガス流通量制御栓と異なる素材でもよい。
両側の誘電体放電管3D、3Eの開放端に対して連結部材20は栓の役割を果し、誘電体放電管3D及び誘電体放電管3Eと連結部材20の間では気密が保たれる。連結部材20は、上流側の誘電体放電管3Dと下流側の誘電体放電管3Eの内部空間を連通する。上流側の誘電体放電管3Dの上流端には、実施の形態1と同様なガス流通栓16を設ける。下流側の誘電体放電管3Eの下流端は、ガス封じ栓18Aにより密閉する。以上の構成により、2本の誘電体放電管3D、3Eが1本の長い誘電体放電管と同等な働きをすることになる。
Only differences from FIG. 9 which is the case of the fourth embodiment will be described. The upstream side is the first dielectric discharge tube, and the downstream side is the second dielectric discharge tube. The downstream end of the upstream dielectric discharge tube 3D and the upstream end of the downstream dielectric discharge tube 3E are open, and a connecting member 20 that is a cylindrical tube is connected between them. The connecting member 20 is made of the same material as the gas flow rate control plug such as a fluororesin having high corrosion resistance. In addition, if the corrosion resistance is high, a material different from the gas flow rate control plug may be used.
The connecting member 20 serves as a plug with respect to the open ends of the dielectric discharge tubes 3D and 3E on both sides, and airtightness is maintained between the dielectric discharge tube 3D and the dielectric discharge tube 3E and the connecting member 20. The connecting member 20 communicates the internal space of the upstream dielectric discharge tube 3D and the downstream dielectric discharge tube 3E. At the upstream end of the upstream dielectric discharge tube 3D, a gas flow plug 16 similar to that of the first embodiment is provided. The downstream end of the downstream dielectric discharge tube 3E is sealed with a gas sealing plug 18A. With the above configuration, the two dielectric discharge tubes 3D and 3E function in the same manner as one long dielectric discharge tube.

この実施の形態6に係るオゾン発生装置は、実施の形態1と同様に動作同様に動作し、同様の効果がある。2本の誘電体放電管を連結部材により繋ぐことにより、放電空間の長さを1本の誘電体放電管の場合よりも長くでき、単位オゾン発生量あたりの高圧タンク及び接地電極などの製造コストが安くなり、安価にオゾン発生装置を製造できる。   The ozone generator according to the sixth embodiment operates in the same manner as in the first embodiment and has the same effects. By connecting two dielectric discharge tubes with a connecting member, the length of the discharge space can be made longer than in the case of a single dielectric discharge tube, and the manufacturing costs of high-pressure tanks and ground electrodes per unit ozone generation amount are increased. The ozone generator can be manufactured at low cost.

この発明の実施の形態1に係るオゾン発生装置の構造を説明する図である。It is a figure explaining the structure of the ozone generator which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。It is sectional drawing in the cross section parallel to the flow of gas explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 1 of this invention has. この発明の実施の形態1に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに垂直な断面での断面図である。It is sectional drawing in a cross section perpendicular | vertical to the gas flow explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 1 of this invention has. この発明の実施の形態1に係るオゾン発生装置が有する誘電体放電管の構造を説明するガス流の上流側から見た矢視図である。It is the arrow line view seen from the upstream of the gas flow explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 1 of this invention has. オゾン発生装置の起動手順及び停止手順を説明する図である。It is a figure explaining the starting procedure and stop procedure of an ozone generator. この発明の実施の形態1に係るオゾン発生装置が非常停止した場合の動作を説明する図である。It is a figure explaining operation | movement at the time of the emergency stop of the ozone generator which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。It is sectional drawing in a cross section parallel to the flow of gas explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 2 of this invention has. この発明の実施の形態3に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。It is sectional drawing in a cross section parallel to the flow of gas explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 3 of this invention has. この発明の実施の形態4に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。It is sectional drawing in a cross section parallel to the flow of gas explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 4 of this invention has. この発明の実施の形態4に係るオゾン発生装置の動作を説明する図である。It is a figure explaining operation | movement of the ozone generator which concerns on Embodiment 4 of this invention. この発明の実施の形態4に係るオゾン発生装置が非常停止した場合の動作を説明する図である。It is a figure explaining operation | movement at the time of the emergency stop of the ozone generator which concerns on Embodiment 4 of this invention. この発明の実施の形態5に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。It is sectional drawing in a cross section parallel to the gas flow explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 5 of this invention has. この発明の実施の形態6に係るオゾン発生装置が有する誘電体放電管の構造を説明するガスの流れに平行な断面での断面図である。It is sectional drawing in a cross section parallel to the flow of gas explaining the structure of the dielectric discharge tube which the ozone generator which concerns on Embodiment 6 of this invention has.

符号の説明Explanation of symbols

100:高圧タンク
101:原料ガス入口
102:オゾン化ガス出口
103:高電圧線導入口
1 :高圧電極
2 :接地電極
3 :誘電体放電管
3A:誘電体放電管
3B:誘電体放電管
3C:誘電体放電管
3D:誘電体放電管
3E:誘電体放電管
4 :放電空間
4A:スペーサ
5A:平板
5B:構造体
6 :冷却水
7 :冷却水用ヘッダ
8 :高圧電源
9 :高圧配線
10 :バルブ
11 :原料ガス供給部
12 :制御部
13 :給電ブラシ
14 :給電棒
14A:給電棒
15 :ヒューズ
16:ガス流通量制御栓
16A:ガス流通量制御栓
16B:ガス流通量制御栓
16C:ガス流通量制御栓
17 :ガス流通口
18 :ガス封じ栓
18A:ガス封じ栓
19 :ガラス(保護部)
20 :連結部材
DESCRIPTION OF SYMBOLS 100: High pressure tank 101: Source gas inlet 102: Ozonized gas outlet 103: High voltage wire inlet 1: High voltage electrode 2: Ground electrode 3: Dielectric discharge tube 3A: Dielectric discharge tube 3B: Dielectric discharge tube 3C: Dielectric discharge tube 3D: Dielectric discharge tube 3E: Dielectric discharge tube 4: Discharge space 4A: Spacer 5A: Flat plate 5B: Structure 6: Cooling water 7: Header for cooling water 8: High-voltage power supply 9: High-voltage wiring 10: Valve 11: Source gas supply unit 12: Control unit 13: Power supply brush 14: Power supply rod 14A: Power supply rod 15: Fuse
16: Gas flow control plug 16A: Gas flow control plug 16B: Gas flow control plug 16C: Gas flow control plug 17: Gas flow port 18: Gas seal plug 18A: Gas seal plug 19: Glass (protection part)
20: Connecting member

Claims (8)

酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、
原料ガスが流れてくる側の一端にガス流通口を設けたガス流通栓を設置し、もう一端は密閉された円筒状の誘電体放電管と、
該誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、
前記誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、
前記高圧電極に交流電圧を印加する高圧電源と、
前記誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入りオゾン化ガスが出る密閉可能な高圧容器と、
前記誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、
前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたオゾン発生装置。
An ozone generator that generates, by discharge, an ozonized gas that is a gas containing ozone from a source gas containing oxygen,
A gas flow plug with a gas flow port provided at one end on the side where the source gas flows, and a cylindrical dielectric discharge tube sealed at the other end,
A high-voltage electrode provided in a cylindrical shape inside the dielectric discharge tube to which an alternating voltage is applied;
A ground electrode which is a metal cylindrical tube provided at a predetermined interval outside the dielectric discharge tube;
A high voltage power source for applying an AC voltage to the high voltage electrode;
Containing the dielectric discharge tube, the high-voltage electrode and the ground electrode, and a sealable high-pressure vessel in which a raw material gas enters and an ozonized gas exits;
A source gas supply unit for supplying source gas flowing between the dielectric discharge tube and the ground electrode to the high pressure vessel;
The ozone generator provided with the control part which controls the said high voltage | pressure power supply and the said source gas supply part.
1個の前記接地電極の内部に直列に2本の前記誘電体放電管を配置することを特徴とする請求項1に記載のオゾン発生装置。 The ozone generator according to claim 1, wherein the two dielectric discharge tubes are arranged in series inside one ground electrode. 前記高圧電極に交流電圧が印加されている場合に、前記ガス流通口を閉じることを特徴とする請求項1または請求項2に記載のオゾン発生装置。 The ozone generator according to claim 1 or 2, wherein the gas circulation port is closed when an AC voltage is applied to the high-voltage electrode. 前記高圧電極に交流電圧が印加されなくなった後の所定時間も、前記ガス流通口を閉じることを特徴とする請求項3に記載のオゾン発生装置。 The ozone generator according to claim 3, wherein the gas circulation port is also closed for a predetermined time after an AC voltage is no longer applied to the high-voltage electrode. 前記制御部が、前記高圧電極に交流電圧が印加されなくなった後の所定時間に、前記高圧容器内のガス圧力を前記高圧電極に交流電圧を印加していた時よりも小さくするように前記原料ガス供給部を制御することを特徴とする請求項3に記載のオゾン発生装置。 The raw material so that the control unit makes the gas pressure in the high-pressure vessel smaller than when the AC voltage is applied to the high-voltage electrode at a predetermined time after the AC voltage is no longer applied to the high-voltage electrode. The ozone generator according to claim 3, wherein the gas supply unit is controlled. 前記制御部が、オゾン発生装置を停止させる際に、前記高圧電源が交流電圧を前記高圧電極に印加することを停止し、それから所定時間後に前記原料ガス供給部が原料ガスを供給することを停止するように制御することを特徴とする請求項1から請求項5の何れかに記載のオゾン発生装置。 When the control unit stops the ozone generator, the high-voltage power supply stops applying an alternating voltage to the high-voltage electrode, and then the source gas supply unit stops supplying the source gas after a predetermined time. It controls so that it may carry out, The ozone generator in any one of Claims 1-5 characterized by the above-mentioned. 酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、
一端が開放されもう一端は密閉されている円筒状の誘電体放電管と、
該誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、
前記高圧電極を覆って保護する保護部と、
前記誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、
前記高圧電極に交流電圧を印加する高圧電源と、
前記誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入り、オゾン化ガスが出る密閉可能な高圧容器と、
前記誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、
前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたオゾン発生装置。
An ozone generator that generates, by discharge, an ozonized gas that is a gas containing ozone from a source gas containing oxygen,
A cylindrical dielectric discharge tube with one end open and the other end sealed;
A high-voltage electrode provided in a cylindrical shape inside the dielectric discharge tube to which an alternating voltage is applied;
A protective part for covering and protecting the high-voltage electrode;
A ground electrode which is a metal cylindrical tube provided at a predetermined interval outside the dielectric discharge tube;
A high voltage power source for applying an AC voltage to the high voltage electrode;
The dielectric discharge tube, the high-pressure electrode and the ground electrode are housed, a source gas enters, and a sealable high-pressure container from which ozonized gas exits,
A source gas supply unit for supplying source gas flowing between the dielectric discharge tube and the ground electrode to the high pressure vessel;
The ozone generator provided with the control part which controls the said high voltage | pressure power supply and the said source gas supply part.
酸素を含む原料ガスからオゾンを含むガスであるオゾン化ガスを放電により生成するオゾン発生装置であって、
原料ガスが流れてくる側の一端にガス流通口を設けたガス流通栓を設置し、もう一端は開放された円筒状の第一の誘電体放電管と、
一端が開放されもう一端が密閉された円筒状の第二の誘電体放電管と、
前記第一の誘電体放電管の開放端と前記第二の誘電体放電管の開放端を気密を保って塞ぎ、前記第一の誘電体放電管及び前記第二の誘電体放電管の内部を連通させる絶縁物からなる円筒状の連結部材と、
前記第一の誘電体放電管及び前記第二の誘電体放電管の内部に円筒状に設けられて交流電圧が印加される高圧電極と、
前記第一の誘電体放電管及び前記第二の誘電体放電管の外側に所定の間隔をおいて設けられた金属円筒管である接地電極と、
前記高圧電極に交流電圧を印加する高圧電源と、
前記第一の誘電体放電管、前記第二の誘電体放電管、前記高圧電極及び前記接地電極を収容し、原料ガスが入りオゾン化ガスが出る密閉可能な高圧容器と、
前記第一の誘電体放電管及び前記第二の誘電体放電管と前記接地電極の間を流れる原料ガスを前記高圧容器に供給する原料ガス供給部と、
前記高圧電源及び前記原料ガス供給部を制御する制御部とを備えたオゾン発生装置。
An ozone generator that generates, by discharge, an ozonized gas that is a gas containing ozone from a source gas containing oxygen,
A gas flow plug provided with a gas flow port at one end on the side where the source gas flows, and a cylindrical first dielectric discharge tube with the other end opened,
A cylindrical second dielectric discharge tube with one end open and the other end sealed;
The open end of the first dielectric discharge tube and the open end of the second dielectric discharge tube are closed in an airtight manner, and the inside of the first dielectric discharge tube and the second dielectric discharge tube is sealed. A cylindrical connecting member made of an insulating material to be communicated;
A high-voltage electrode provided in a cylindrical shape inside the first dielectric discharge tube and the second dielectric discharge tube and to which an alternating voltage is applied;
A ground electrode which is a metal cylindrical tube provided at a predetermined interval outside the first dielectric discharge tube and the second dielectric discharge tube;
A high voltage power source for applying an AC voltage to the high voltage electrode;
Containing the first dielectric discharge tube, the second dielectric discharge tube, the high-voltage electrode and the ground electrode, and a sealable high-pressure vessel in which a raw material gas enters and an ozonized gas exits;
A source gas supply unit for supplying source gas flowing between the first dielectric discharge tube and the second dielectric discharge tube and the ground electrode to the high pressure vessel;
The ozone generator provided with the control part which controls the said high voltage | pressure power supply and the said source gas supply part.
JP2007063633A 2007-03-13 2007-03-13 Ozone generator Expired - Fee Related JP4999503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007063633A JP4999503B2 (en) 2007-03-13 2007-03-13 Ozone generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007063633A JP4999503B2 (en) 2007-03-13 2007-03-13 Ozone generator

Publications (2)

Publication Number Publication Date
JP2008222495A true JP2008222495A (en) 2008-09-25
JP4999503B2 JP4999503B2 (en) 2012-08-15

Family

ID=39841539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007063633A Expired - Fee Related JP4999503B2 (en) 2007-03-13 2007-03-13 Ozone generator

Country Status (1)

Country Link
JP (1) JP4999503B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243484A (en) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp Current interrupting element and high-voltage device using current interrupting element
CN103958399A (en) * 2012-11-19 2014-07-30 住友精密工业株式会社 Tube-type ozone generation device and manufacturing method therefor
JP5872117B1 (en) * 2014-11-27 2016-03-01 三菱電機株式会社 Ozone generator
CN108069403A (en) * 2017-12-13 2018-05-25 广州畅驰机电设备有限公司 A kind of self cooling high-concentrated ozone system of low temperature
US10221068B2 (en) 2014-06-27 2019-03-05 Mitsubishi Electric Corporation Ozone generating system and operation method thereof
US10544045B2 (en) 2014-09-22 2020-01-28 Mitsubishi Electric Corporation Ozone generation system and method for operating same
CN112236387A (en) * 2018-05-30 2021-01-15 三菱电机株式会社 Ozone generator
JP7451061B2 (en) 2021-06-03 2024-03-18 東芝三菱電機産業システム株式会社 Pressure adjustment method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351446U (en) * 1976-10-06 1978-05-01
JPS5742509A (en) * 1980-08-26 1982-03-10 Hitachi Ltd Ozone generator
JPH03164405A (en) * 1989-11-21 1991-07-16 Toshiba Corp Ozonizer
JPH09278405A (en) * 1996-04-12 1997-10-28 Toshiba Fa Syst Eng Kk Ozonizer discharging device
JPH1135303A (en) * 1997-07-17 1999-02-09 Meidensha Corp Ozonizer
JP2005255432A (en) * 2004-03-10 2005-09-22 Fuji Electric Systems Co Ltd Method for generating ozone and ozone generating apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5351446U (en) * 1976-10-06 1978-05-01
JPS5742509A (en) * 1980-08-26 1982-03-10 Hitachi Ltd Ozone generator
JPH03164405A (en) * 1989-11-21 1991-07-16 Toshiba Corp Ozonizer
JPH09278405A (en) * 1996-04-12 1997-10-28 Toshiba Fa Syst Eng Kk Ozonizer discharging device
JPH1135303A (en) * 1997-07-17 1999-02-09 Meidensha Corp Ozonizer
JP2005255432A (en) * 2004-03-10 2005-09-22 Fuji Electric Systems Co Ltd Method for generating ozone and ozone generating apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011243484A (en) * 2010-05-20 2011-12-01 Mitsubishi Electric Corp Current interrupting element and high-voltage device using current interrupting element
CN103958399A (en) * 2012-11-19 2014-07-30 住友精密工业株式会社 Tube-type ozone generation device and manufacturing method therefor
US10221068B2 (en) 2014-06-27 2019-03-05 Mitsubishi Electric Corporation Ozone generating system and operation method thereof
US10544045B2 (en) 2014-09-22 2020-01-28 Mitsubishi Electric Corporation Ozone generation system and method for operating same
JP5872117B1 (en) * 2014-11-27 2016-03-01 三菱電機株式会社 Ozone generator
WO2016084181A1 (en) * 2014-11-27 2016-06-02 三菱電機株式会社 Ozone generator
EP3205623A4 (en) * 2014-11-27 2018-05-30 Mitsubishi Electric Corporation Ozone generator
US10112832B2 (en) 2014-11-27 2018-10-30 Mitsubishi Electric Corporation Ozone generator
CN108069403A (en) * 2017-12-13 2018-05-25 广州畅驰机电设备有限公司 A kind of self cooling high-concentrated ozone system of low temperature
CN112236387A (en) * 2018-05-30 2021-01-15 三菱电机株式会社 Ozone generator
CN112236387B (en) * 2018-05-30 2023-11-10 三菱电机株式会社 Ozone generator
JP7451061B2 (en) 2021-06-03 2024-03-18 東芝三菱電機産業システム株式会社 Pressure adjustment method

Also Published As

Publication number Publication date
JP4999503B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP4999503B2 (en) Ozone generator
CA2081014A1 (en) Method and apparatus for producing ozone by corona discharge
JP5872117B1 (en) Ozone generator
JP2010049829A (en) Static eliminator and static elimination method
JP2013225421A (en) Multiple gas plasma jet apparatus
JP2013049015A (en) Water treatment apparatus
KR20010005441A (en) Device for producing plasma at a low temperature
US20030226751A1 (en) Corona discharge ozone generator
JP6067190B2 (en) Ozone generation system and operation method thereof
KR20200081083A (en) Controlling system for ozone generating and apparatus of the same
JP5961899B2 (en) Atmospheric pressure plasma generator
CN110461082B (en) Device and method for reducing NOx content in flame of air plasma torch
JP5180460B2 (en) Ozone generator
JP2012121754A (en) Ozone generator
WO2013065356A1 (en) Ozone liquid generation device
KR100485108B1 (en) Ozone generator
US8372345B2 (en) Integrated ozone generator system
JP6567844B2 (en) Nitrous oxide gas decomposition apparatus and method
JP7449747B2 (en) Ion source gas piping structure and ion source gas piping system
JP4000381B2 (en) Ozone generator
JP5879530B2 (en) Liquid processing equipment
WO2023199604A1 (en) Liquid treatment apparatus and liquid treatment method
RU32497U1 (en) Ozonizer
WO2020110913A1 (en) Water treatment device
US20150274526A1 (en) Ozone generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20120314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees