JP2008212809A - Centrifugal separation method for iron making dust-containing slurry - Google Patents

Centrifugal separation method for iron making dust-containing slurry Download PDF

Info

Publication number
JP2008212809A
JP2008212809A JP2007052975A JP2007052975A JP2008212809A JP 2008212809 A JP2008212809 A JP 2008212809A JP 2007052975 A JP2007052975 A JP 2007052975A JP 2007052975 A JP2007052975 A JP 2007052975A JP 2008212809 A JP2008212809 A JP 2008212809A
Authority
JP
Japan
Prior art keywords
slurry
iron
dust
zinc
centrifuge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007052975A
Other languages
Japanese (ja)
Other versions
JP4910783B2 (en
Inventor
Tsumoru Hamada
積 濱田
Satoru Nagai
悟 長井
Masayuki Tateyama
政幸 立山
Kimihiko Murakami
公彦 村上
Koji Matsumoto
光司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Nippon Steel Nisshin Co Ltd
Tomoe Engineering Co Ltd
Original Assignee
Kurita Water Industries Ltd
Tomoe Engineering Co Ltd
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd, Tomoe Engineering Co Ltd, Nisshin Steel Co Ltd filed Critical Kurita Water Industries Ltd
Priority to JP2007052975A priority Critical patent/JP4910783B2/en
Publication of JP2008212809A publication Critical patent/JP2008212809A/en
Application granted granted Critical
Publication of JP4910783B2 publication Critical patent/JP4910783B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Of Solids By Using Liquids Or Pneumatic Power (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a centrifugal separation method for iron making dust-containing slurry by which iron and zinc in iron making dust-containing slurry can efficiently be separated. <P>SOLUTION: In the centrifugal separation method for iron making dust by which iron making dust comprising zinc and iron is subjected to centrifugal separation by a centrifugal separator, the centrifugal force of the centrifugal separator is controlled to 80 to 150 G. It is preferable that the concentration of the slurry is controlled to 3 to 18 wt.%, and the feed of the slurry to the centrifugal separator is controlled to 200×10<SP>-4</SP>L/cm<SP>2</SP>hr to 400×10<SP>-4</SP>L/cm<SP>2</SP>hr per Σ. As the centrifugal separator, a decanter type centrifugal separator is preferable. As the iron making dust-containing slurry, slurry in which blast furnace exhaust gas or converter exhaust gas is dust-collected by a wet system or the like can be cited. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、製鉄ダストを含んだスラリーを遠心分離する製鉄ダスト含有スラリーの遠心分離方法に係り、特に亜鉛の分離効率の高い製鉄ダスト含有スラリーの遠心分離方法に関する。   The present invention relates to a method for centrifuging an iron-making dust-containing slurry for centrifuging a slurry containing iron-making dust, and more particularly to a method for centrifuging an iron-making dust-containing slurry with high zinc separation efficiency.

高炉排ガスや転炉排ガスを湿式集塵したスラリーなどの製鉄ダスト含有スラリーには鉄だけでなく亜鉛が含まれている。この亜鉛を遠心分離により回収することが特開2004−105801号に記載されている。
特開2004−105801号
Steelmaking dust-containing slurries such as slurry obtained by wet collection of blast furnace exhaust gas and converter exhaust gas contain not only iron but also zinc. JP-A-2004-105801 describes that this zinc is recovered by centrifugation.
JP 2004-105801 A

製鉄ダスト含有スラリーに含まれる鉄分は、有価分として製鉄工程に再利用することが望ましい。一方、同時に含有される亜鉛は、高炉内張りレンガの損傷の原因になるとともに炉壁付着物の生成を助長するため、原料として不適当である。   It is desirable to reuse the iron contained in the iron-making dust-containing slurry as a valuable component in the iron-making process. On the other hand, the zinc contained at the same time is not suitable as a raw material because it causes damage to the blast furnace lining bricks and promotes the formation of furnace wall deposits.

そこで本発明は、製鉄ダスト含有スラリー中の鉄と亜鉛とを効率よく分離することができる製鉄ダスト含有スラリーの遠心分離方法を提供することを目的とするものである。   Then, an object of this invention is to provide the centrifugation method of the iron-making dust containing slurry which can isolate | separate iron and zinc in an iron-making dust containing slurry efficiently.

本発明の製鉄ダスト含有スラリーの遠心分離方法は、亜鉛と鉄とを含んだ製鉄ダストのスラリーを遠心分離機で遠心分離する製鉄ダストの遠心分離方法において、遠心分離機の遠心力を80〜150Gとすることを特徴とするものである。遠心分離機に供給するスラリーの濃度を3〜18重量%とし、遠心分離機の遠心沈降面積(以下、これを「Σ」という。)あたりのスラリーの供給量を200×10−4〜400×10−4L/cmhrとすることが好ましい。また、採用する遠心分離機としては、デカンタ型遠心分離機が好ましい。 The method for centrifuging iron-containing dust-containing slurry according to the present invention is a method for centrifuging iron-making dust in which a slurry of iron-making dust containing zinc and iron is centrifuged with a centrifuge. It is characterized by that. The concentration of the slurry supplied to the centrifuge is 3 to 18% by weight, and the amount of slurry supplied per centrifuge sedimentation area (hereinafter referred to as “Σ”) is 200 × 10 −4 to 400 ×. It is preferable to set it as 10 <-4 > L / cm < 2 > hr. Moreover, as a centrifuge to employ | adopt, a decanter type centrifuge is preferable.

なお、Σは、遠心沈降機のスケールアップに用いる面積の単位をもつ値であって、重力沈降を仮定した場合に必要な沈降面積に相当する。一般に下記算出式で算出できる。   Note that Σ is a value having a unit of area used for the scale-up of the centrifugal sedimentator, and corresponds to a sedimentation area required when gravity sedimentation is assumed. Generally, it can be calculated by the following calculation formula.

Σ=2πωLe(3/4R+1/4r)/g
上記式において、πは円周率、ωは回転角速度、Leはフィードポイントからフロントハブまでの距離(スラリー入口から分離液出口までの距離)、Rは遠心分離機の回転筒内径、rは回転軸から液面までの距離、gは重力の加速度を表わす。
Σ = 2πω 2 Le (3 / 4R 2 + 1 / 4r 2 ) / g
In the above equation, π is the circular ratio, ω is the rotational angular velocity, Le is the distance from the feed point to the front hub (distance from the slurry inlet to the separation liquid outlet), R is the inner diameter of the rotating cylinder of the centrifuge, and r is the rotation The distance from the axis to the liquid level, g, represents the acceleration of gravity.

本発明によると、酸化鉄と酸化亜鉛を両者の粒径差に基づいて効率よく遠心分離することができる。特に、デカンタ型遠心分離機を用いることにより、効率よく遠心分離することができる。   According to the present invention, iron oxide and zinc oxide can be efficiently centrifuged based on the particle size difference between the two. In particular, it can be efficiently centrifuged by using a decanter type centrifuge.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明で遠心分離の処理対象とするスラリーは、亜鉛と鉄とを含んだ製鉄ダストのスラリーである。この製鉄ダストは、製鉄所において発生するダストであり、特に高炉において発生するダスト及び製鋼工程で発生するダストである。   The slurry to be centrifuged in the present invention is an iron-making dust slurry containing zinc and iron. This iron-making dust is dust generated in an ironworks, particularly dust generated in a blast furnace and dust generated in a steelmaking process.

通常、この製鉄ダストはベンチュリースクラバなどの湿式集塵装置で捕集され、シックナーで濃縮され、さらにフィルタープレスで脱水され、回収工程に送られている。本発明では、上記の湿式集塵工程からのダスト含有スラリーを主たる処理対象スラリーとする。   Usually, the iron dust is collected by a wet dust collector such as a venturi scrubber, concentrated by a thickener, dehydrated by a filter press, and sent to a recovery process. In this invention, let the dust containing slurry from said wet dust collection process be a main process target slurry.

通常、これらのスラリー中のダストは鉄(金属鉄及び酸化鉄)を多量に含有すると共に、さらに亜鉛(金属亜鉛及び酸化亜鉛)も相当量含有している。なお、高炉ダストの場合、炭素も多量に含有されている。   Usually, the dust in these slurries contains a large amount of iron (metallic iron and iron oxide), and also contains a considerable amount of zinc (metallic zinc and zinc oxide). In the case of blast furnace dust, carbon is also contained in a large amount.

高炉ダストは、通常の場合、酸化鉄(FeとFeOの合量)30〜50重量%、、酸化亜鉛1〜5重量%、炭素30〜55重量%を含んでいる。 The blast furnace dust usually contains 30 to 50% by weight of iron oxide (total amount of Fe 2 O 3 and FeO), 1 to 5% by weight of zinc oxide, and 30 to 55% by weight of carbon.

この高炉ダスト中の酸化鉄の粒径は1〜100μm、酸化亜鉛の粒径は10μm以下であり、細粒ダストに亜鉛が多く含まれていることが分かっている。   The particle size of iron oxide in the blast furnace dust is 1 to 100 μm, the particle size of zinc oxide is 10 μm or less, and it is known that the fine particle dust contains a large amount of zinc.

転炉ダストは、通常の場合、酸化鉄(FeとFeOの合量)60〜70重量%、酸化亜鉛0.2〜0.5重量%、炭素1〜2重量%を含んでいる。 Converter dust usually contains 60 to 70% by weight of iron oxide (total amount of Fe 2 O 3 and FeO), 0.2 to 0.5% by weight of zinc oxide, and 1 to 2% by weight of carbon. .

湿式集塵装置から取り出されるこれらの製鉄ダストのスラリー濃度は、通常1〜5重量%程度である。   The slurry concentration of these iron making dusts taken out from the wet dust collector is usually about 1 to 5% by weight.

本発明では、このようなスラリーをシックナーで沈澱濃縮し、工水等でスラリー濃度を希釈調整後、遠心分離機で遠心分離する。用いる遠心分離機としては、湿式サイクロンよりデカンタ型遠心分離機が好適である。周知の通り、湿式サイクロンは液体自身に流速を付与して遠心力を確保するため、比重,粘性などスラリー性状の変動が分離効率に大きく影響するためである。一方、デカンタ型遠心分離機は、原液スラリーを高速回転する回転ボウル内に導入して、遠心効果により比重の重い固形物(ケーキ)を、回転ボウル内壁へ沈降分離し、同時に回転ボウルと若干の差速を有して回転するスクリュウコンベヤによって、沈降固形物を傾斜部(ビーチゾーン)側に移送し、さらに固形物をこのビーチゾーンをスクリュウコンベヤにて掻揚して脱液し、回転ボウルに設けられるケーキ排出口から機外に排出するよう構成されている。   In the present invention, such a slurry is concentrated by precipitation with a thickener, the slurry concentration is adjusted by dilution with industrial water or the like, and then centrifuged with a centrifuge. As the centrifuge to be used, a decanter type centrifuge is preferable to a wet cyclone. As is well known, the wet cyclone secures centrifugal force by applying a flow rate to the liquid itself, so that fluctuations in slurry properties such as specific gravity and viscosity greatly affect the separation efficiency. On the other hand, the decanter type centrifuge introduces the stock solution slurry into a rotating bowl that rotates at high speed, and separates and solidifies a heavy solid (cake) with a centrifugal effect on the inner wall of the rotating bowl by the centrifugal effect. The settling solids are transferred to the inclined part (beach zone) side by a screw conveyor that rotates with a differential speed, and the solids are decanted by the screw conveyor and drained into a rotating bowl. It is comprised so that it may discharge | emit out of the machine from the cake discharge port provided.

本発明では、この遠心分離機に製鉄ダスト含有スラリーを供給して遠心力を80〜150G、好ましくは100〜150Gで遠心分離を行う。遠心分離機に供給する製鉄ダスト含有スラリーの濃度は3〜18重量%、好ましくは5〜10重量%とし、遠心分離機の遠心沈降面積あたりのスラリー供給量を200×10−4〜400×10−4L/cmhrとすることが好ましい。 In the present invention, the iron-containing dust-containing slurry is supplied to the centrifugal separator, and centrifugal separation is performed at a centrifugal force of 80 to 150G, preferably 100 to 150G. The concentration of the iron-containing dust-containing slurry supplied to the centrifuge is 3 to 18% by weight, preferably 5 to 10% by weight, and the slurry supply amount per centrifugal sedimentation area of the centrifuge is 200 × 10 −4 to 400 × 10 6. -4 L / cm 2 hr is preferable.

遠心分離機の遠心力が80Gよりも低いと、高比重固形物(粗粒ダスト)の分離が不十分であり、鉄及び亜鉛等の固形物の分離効率が低下する。また、80G以下では安定運転ができない。一方、150Gよりも高い場合には亜鉛が多く含まれる低比重固形物(細粒ダスト)も選鉱液から分離され、高比重固形物(粗粒ダスト)とともに回収されるため分離効率が悪くなる。また、遠心分離機に供給するスラリー濃度が3重量%よりも低いと、固液分離が促進されるため処理効率が悪く、18重量%よりも高いと、高比重固形物(粗粒ダスト)の分離が不十分となり、鉄と亜鉛との分離効率が悪くなる。更に、遠心分離機の遠心沈降面積あたりのスラリー供給量が200×10−4L/cmhrよりも小さいと鉄と亜鉛との分離効率が悪くなり、400×10−4L/cmhrよりも大きいと、機械的負荷が高くなりすぎて連続運転ができない可能性がある。 When the centrifugal force of the centrifuge is lower than 80G, the separation of high specific gravity solids (coarse dust) is insufficient, and the separation efficiency of solids such as iron and zinc is lowered. Moreover, stable operation is not possible below 80G. On the other hand, when it is higher than 150G, the low specific gravity solid (fine dust) containing a large amount of zinc is also separated from the beneficiation liquid and recovered together with the high specific gravity solid (coarse dust), resulting in poor separation efficiency. Also, if the slurry concentration supplied to the centrifuge is lower than 3% by weight, the solid-liquid separation is promoted, so that the processing efficiency is poor. If it is higher than 18% by weight, the high specific gravity solids (coarse dust) Separation becomes insufficient, and the separation efficiency between iron and zinc deteriorates. Furthermore, when the slurry supply amount per centrifugal sedimentation area of the centrifuge is smaller than 200 × 10 −4 L / cm 2 hr, the separation efficiency between iron and zinc is deteriorated, and 400 × 10 −4 L / cm 2 hr. If it is larger than that, the mechanical load becomes too high, and continuous operation may not be possible.

〔実験例〕高炉ダストとして、組成が酸化鉄(FeとFeOの合量)32〜38重量%、酸化亜鉛1.4〜3.8重量%、炭素32〜41重量%のダストを含んだスラリーを遠心分離機で処理した。遠心分離機の回転数、スラリー濃度、スラリー供給量を種々変えて分離効率を測定した。用いた遠心分離機は巴工業株式会社製のデカンタ型遠心分離機PTM006である。スラリーについてはタンク中で所定濃度となるように水を添加し、十分に攪拌したものをポンプによって遠心分離機に供給した。 [Experimental example] As blast furnace dust, dust having a composition of iron oxide (total amount of Fe 2 O 3 and FeO) of 32 to 38% by weight, zinc oxide of 1.4 to 3.8% by weight, and carbon of 32 to 41% by weight The contained slurry was processed in a centrifuge. Separation efficiency was measured by changing the number of rotations of the centrifuge, slurry concentration, and slurry supply amount. The centrifuge used was a decanter centrifuge PTM006 manufactured by Sakai Kogyo Co., Ltd. As for the slurry, water was added so as to have a predetermined concentration in the tank, and the mixture was sufficiently stirred and supplied to the centrifuge by a pump.

(1) 遠心力と亜鉛除去率の関係を求める試験
スラリー濃度が3〜9重量%のスラリーを700L/hr又は900L/hrで供給し、遠心力を100G,150G又は200Gとして遠心分離を行い、亜鉛除去率を測定した。遠心力100G、供給量700L/hrのときΣあたりの供給量は189×10-4/cmhr、遠心力100G、供給量900L/hrのときΣあたりの供給量は243×10-4/cmhrとなる。なお、Σ値は遠心力に比例する。
(1) Test for determining the relationship between centrifugal force and zinc removal rate A slurry having a slurry concentration of 3 to 9% by weight is supplied at 700 L / hr or 900 L / hr, and centrifuged at 100 G, 150 G, or 200 G, and centrifuged. The zinc removal rate was measured. When the centrifugal force is 100 G and the supply amount is 700 L / hr, the supply amount per Σ is 189 × 10 −4 / cm 2 hr, when the centrifugal force is 100 G and the supply amount is 900 L / hr, the supply amount per Σ is 243 × 10 −4 / cm 2 hr. The Σ value is proportional to the centrifugal force.

なお、亜鉛除去率は、供給するスラリー中の全亜鉛の量と、固形物として回収したケーキ中の全亜鉛の量から計算される。   The zinc removal rate is calculated from the amount of total zinc in the supplied slurry and the amount of total zinc in the cake recovered as a solid.

結果を第1図に示す。第1図の通り、遠心力を高くすると亜鉛除去率は低下する。これは、遠心力が高くなると、ダストの沈降量が増え、ケーキ中に取り込まれる亜鉛量が増加するためである。第1図より、遠心力は150G以下が好ましいことが認められる。   The results are shown in FIG. As shown in FIG. 1, when the centrifugal force is increased, the zinc removal rate decreases. This is because as the centrifugal force increases, the amount of dust settling increases and the amount of zinc taken into the cake increases. From FIG. 1, it is recognized that the centrifugal force is preferably 150 G or less.

(2) 供給量とケーキの固形物濃度との関係を求める試験
スラリーとして、濃度3.0重量%、4.1重量%、4.7重量%、7.0重量%、10.5重量%、12.5重量%、の6種類のものを用いた。各スラリーの供給量を500〜1500L/hrの範囲(Σあたりの供給量で135×10−4L/cmhr〜405×10−4L/cmhr)で変化させ、ケーキの固形物濃度を測定した。結果を第2図に示す。
(2) Test for determining the relationship between the amount supplied and the solid content of the cake As a slurry, the concentration was 3.0 wt%, 4.1 wt%, 4.7 wt%, 7.0 wt%, 10.5 wt% Six types of 12.5% by weight were used. The supply amount of the slurry varied from 500~1500L / hr (135 × 10 -4 L / cm 2 hr~405 × 10 -4 L / cm 2 hr at a feed rate per sigma), solid cake Concentration was measured. The results are shown in FIG.

第2図の通り、供給量を多くするとケーキの固形物濃度が上昇する。これは、供給量を多くすると、液の機内滞留時間が短くなり、粒径の小さい炭素分が沈降しにくくなり、ケーキ中の鉄などの高比重分の割合が相対的に増大するためである。第2図より、供給量はΣあたりの供給量で200×10−4L/cmhr以上(流量としては、740L/hr以上)が好ましいことが認められる。 As shown in FIG. 2, increasing the supply amount increases the cake solids concentration. This is because when the supply amount is increased, the residence time of the liquid in the machine is shortened, and the carbon component having a small particle size is difficult to settle, and the ratio of high specific gravity such as iron in the cake is relatively increased. . From FIG. 2, it is recognized that the supply amount per Σ is preferably 200 × 10 −4 L / cm 2 hr or more (the flow rate is 740 L / hr or more).

(3) 供給量と固形物(SS)回収率の関係
上記(2)の試験において、測定した各供給液条件における供給量と固形物回収率の関係を第3図に示す。いずれの供給液条件でも供給量を多くすると固形物回収率は低下している。これは、供給量を多くすると液の機内での滞留時間が短くなり、固形物が沈降せずに分離液側に流出するためである。第3図より、固形物回収率70%以上を得るためには、供給量はΣあたりの供給量で400×10−4L/cmhr以下(流量として約1500L/hr以下)が好ましいことが認められる。
(3) Relationship between supply amount and solid matter (SS) recovery rate FIG. 3 shows the relationship between the supply amount and the solid matter recovery rate in each of the supply liquid conditions measured in the test of (2) above. Under any supply liquid condition, the solids recovery rate decreases when the supply amount is increased. This is because when the supply amount is increased, the residence time of the liquid in the machine is shortened, and the solid matter flows out to the separation liquid side without being settled. From FIG. 3, in order to obtain a solids recovery rate of 70% or more, the supply amount is preferably 400 × 10 −4 L / cm 2 hr or less (approx. 1500 L / hr or less as a flow rate) per Σ. Is recognized.

(4) 供給量と亜鉛除去率の関係
スラリーとして、濃度3.0重量%、4.1重量%、4.7重量%、7.0重量%、10.5重量%、12.5重量%、の6種類のものを用いた上記(2)の試験において、各供給液条件における供給量と亜鉛除去率の関係を第4図に示す。いずれの供給条件でも供給量を多くすると亜鉛除去率は上昇傾向を示す。これは、供給量を多くすると液の滞留時間が短くなるために、亜鉛分が沈降せずに分離液側に流出するためである。供給量がΣあたりの供給量で200×10−4L/cmhr以上で全ての供給液条件で亜鉛除去率は80%以上となった。第4図より、供給量はΣあたりの供給量で260×10−4L/cmhr以上がさらに好ましいことが認められる。
(4) Relation between supply amount and zinc removal rate As slurry, the concentration is 3.0 wt%, 4.1 wt%, 4.7 wt%, 7.0 wt%, 10.5 wt%, 12.5 wt% FIG. 4 shows the relationship between the supply amount and the zinc removal rate under each supply liquid condition in the test (2) using the above six types. When the supply amount is increased under any supply condition, the zinc removal rate tends to increase. This is because when the supply amount is increased, the residence time of the liquid is shortened, so that the zinc content does not settle and flows out to the separation liquid side. When the supply amount was 200 × 10 −4 L / cm 2 hr or more in terms of the supply amount per Σ, the zinc removal rate was 80% or more under all supply liquid conditions. From FIG. 4, it is recognized that the supply amount per Σ is more preferably 260 × 10 −4 L / cm 2 hr or more.

(5) 供給液濃度と亜鉛除去率の関係
上記(2)に示した各スラリーをΣあたりの供給量で200×10−4L/cmhr以上としたとき供給液濃度と亜鉛除去率の関係を第5図に示す。第5図の通り、供給液濃度を高くすると亜鉛除去率は低下傾向を示す。これは、濃度が高いと供給液の固形物の分散が不十分となり、亜鉛分が鉄分と共に沈降するためであると考えられる。
第5図より、75%以上の亜鉛除去率を得るためには、スラリー濃度18重量%以下が好ましいことが認められる。
(5) Relationship between supply liquid concentration and zinc removal rate When each slurry shown in (2) above is 200 × 10 −4 L / cm 2 hr or more in terms of supply amount per Σ, The relationship is shown in FIG. As shown in FIG. 5, when the supply liquid concentration is increased, the zinc removal rate tends to decrease. This is considered to be because when the concentration is high, the solids in the feed liquid are not sufficiently dispersed and the zinc content settles together with the iron content.
From FIG. 5, it is recognized that a slurry concentration of 18% by weight or less is preferable in order to obtain a zinc removal rate of 75% or more.

(6) 実験例のまとめ
(i) 遠心力は低い方が亜鉛除去率は高くなる。最も適正な遠心力は約100Gである。
(ii) 供給量を多くするとケーキの固形物濃度、亜鉛除去率は共に上昇傾向を示し、SS回収率は低下傾向を示す。
(iii) 供給液濃度を高くすると亜鉛除去率は低下傾向を示す。
(6) Summary of experimental examples
(i) The lower the centrifugal force, the higher the zinc removal rate. The most appropriate centrifugal force is about 100G.
(ii) When the supply amount is increased, both the solids concentration of the cake and the zinc removal rate show an upward trend, and the SS recovery rate shows a downward trend.
(iii) When the feed solution concentration is increased, the zinc removal rate tends to decrease.

〔実施例〕
高炉ダストとして、組成が酸化鉄(FeとFeOの合量)31〜38重量%、酸化亜鉛2.7〜4重量%、炭素37〜44重量%のダストを含んだスラリーを遠心分離機(巴工業株式会社製のデカンタ型遠心分離機PTM470)で処理した。
〔Example〕
As a blast furnace dust, a slurry containing iron oxide (total amount of Fe 2 O 3 and FeO) of 31 to 38% by weight, zinc oxide of 2.7 to 4% by weight and carbon of 37 to 44% by weight is centrifuged. (A decanter type centrifuge PTM470 manufactured by Sakai Kogyo Co., Ltd.).

処理条件は次のとおり。
遠心力:100G(ω:590rpm)
スラリー濃度:7〜18
Σあたりの供給量:200×10−4L/cmhr〜240×10−4L/cm
r(16.7〜20m/hr)
処理の結果、酸化鉄の回収率は100%であり、亜鉛除去率は84.5%であった。
The processing conditions are as follows.
Centrifugal force: 100G (ω: 590rpm)
Slurry concentration: 7-18
Supply amount per Σ: 200 × 10 −4 L / cm 2 hr to 240 × 10 −4 L / cm 2 h
r (16.7-20m 3 / hr)
As a result of the treatment, the iron oxide recovery rate was 100% and the zinc removal rate was 84.5%.

遠心力と亜鉛除去率の関係を求める試験結果を示すグラフである。It is a graph which shows the test result which calculates | requires the relationship between a centrifugal force and a zinc removal rate. 供給量とケーキの固形物濃度との関係を求める試験結果を示すグラフである。It is a graph which shows the test result which calculates | requires the relationship between a supply amount and the solid substance density | concentration of a cake. 供給量と固形物回収率との関係を求める試験結果を示すグラフである。It is a graph which shows the test result which calculates | requires the relationship between a supply amount and a solid substance recovery rate. 供給量と亜鉛除去率との関係を求める試験結果を示すグラフである。It is a graph which shows the test result which calculates | requires the relationship between a supply amount and a zinc removal rate. 供給液濃度と亜鉛除去率との関係を求める試験結果を示すグラフである。It is a graph which shows the test result which calculates | requires the relationship between a supply liquid density | concentration and a zinc removal rate.

Claims (3)

亜鉛と鉄とを含んだ製鉄ダストのスラリーを遠心分離機で遠心分離する製鉄ダストの遠心分離方法において、
遠心分離機の遠心力を80〜150Gとすることを特徴とする製鉄ダスト含有スラリーの遠心分離方法。
In the method of centrifugal separation of steelmaking dust, the slurry of ironmaking dust containing zinc and iron is centrifuged with a centrifuge.
A method for centrifuging iron-containing dust-containing slurry, wherein the centrifugal force of the centrifuge is 80 to 150 G.
請求項1において、スラリー濃度を3〜18重量%とし、遠心分離機の遠心沈降面積あたりのスラリー供給量を200×10−4〜400×10−4L/cmhrとすることを特徴とする製鉄ダスト含有スラリーの遠心分離方法。 The slurry concentration is 3 to 18% by weight in claim 1, and the slurry supply amount per centrifugal sedimentation area of the centrifuge is 200 × 10 −4 to 400 × 10 −4 L / cm 2 hr. A method of centrifuging an iron-making dust-containing slurry. 請求項1または2において、遠心分離機はデカンタ型遠心分離機であることを特徴とする製鉄ダスト含有スラリーの遠心分離方法。   3. The method for centrifuging iron-containing dust-containing slurry according to claim 1 or 2, wherein the centrifuge is a decanter type centrifuge.
JP2007052975A 2007-03-02 2007-03-02 Method for centrifuging slurry containing steelmaking dust Active JP4910783B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007052975A JP4910783B2 (en) 2007-03-02 2007-03-02 Method for centrifuging slurry containing steelmaking dust

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007052975A JP4910783B2 (en) 2007-03-02 2007-03-02 Method for centrifuging slurry containing steelmaking dust

Publications (2)

Publication Number Publication Date
JP2008212809A true JP2008212809A (en) 2008-09-18
JP4910783B2 JP4910783B2 (en) 2012-04-04

Family

ID=39833498

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007052975A Active JP4910783B2 (en) 2007-03-02 2007-03-02 Method for centrifuging slurry containing steelmaking dust

Country Status (1)

Country Link
JP (1) JP4910783B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528885A (en) * 2009-06-04 2012-11-15 ゲノマチカ, インク. Method for separating components of fermentation broth
WO2015105472A1 (en) * 2014-01-09 2015-07-16 Олег Игореви НОСОВСКИЙ Method for comprehensive treatment of slurries from metallurgical and mining-enrichment enterprises
RU2566706C2 (en) * 2014-03-17 2015-10-27 Олег Игоревич Носовский Complex processing of metallurgical and mining slimes
JP2021115511A (en) * 2020-01-24 2021-08-10 中部リサイクル株式会社 Method for producing zinc-containing solid matter from molten fly ash

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125603A (en) * 1975-01-28 1976-11-02 Nippon Steel Corp A method of separating metal-containing power
JPS5381406A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Treating method for secondary ash of blast furnace
JPS5381479A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Treating method of blast furnace dust
JPS62289246A (en) * 1986-05-22 1987-12-16 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Mineral separator
JPH03245856A (en) * 1990-02-23 1991-11-01 Sumitomo Coal Mining Co Ltd Centrifugal sifting apparatus
JP2005021841A (en) * 2003-07-04 2005-01-27 Hamada Heavy Industries Ltd Processing method of zinc-containing dust, and producing method of zinc carbonate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51125603A (en) * 1975-01-28 1976-11-02 Nippon Steel Corp A method of separating metal-containing power
JPS5381406A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Treating method for secondary ash of blast furnace
JPS5381479A (en) * 1976-12-28 1978-07-18 Nippon Steel Corp Treating method of blast furnace dust
JPS62289246A (en) * 1986-05-22 1987-12-16 ナシヨナル・リサ−チ・デイベロツプメント・コ−ポレイシヨン Mineral separator
JPH03245856A (en) * 1990-02-23 1991-11-01 Sumitomo Coal Mining Co Ltd Centrifugal sifting apparatus
JP2005021841A (en) * 2003-07-04 2005-01-27 Hamada Heavy Industries Ltd Processing method of zinc-containing dust, and producing method of zinc carbonate

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012528885A (en) * 2009-06-04 2012-11-15 ゲノマチカ, インク. Method for separating components of fermentation broth
WO2015105472A1 (en) * 2014-01-09 2015-07-16 Олег Игореви НОСОВСКИЙ Method for comprehensive treatment of slurries from metallurgical and mining-enrichment enterprises
RU2566706C2 (en) * 2014-03-17 2015-10-27 Олег Игоревич Носовский Complex processing of metallurgical and mining slimes
JP2021115511A (en) * 2020-01-24 2021-08-10 中部リサイクル株式会社 Method for producing zinc-containing solid matter from molten fly ash
JP7208179B2 (en) 2020-01-24 2023-01-18 中部リサイクル株式会社 Method for producing zinc-containing solids from molten fly ash

Also Published As

Publication number Publication date
JP4910783B2 (en) 2012-04-04

Similar Documents

Publication Publication Date Title
JP6828036B2 (en) Aluminum melting and black dross recycling systems and methods
JP4910783B2 (en) Method for centrifuging slurry containing steelmaking dust
JP6533122B2 (en) Method of manufacturing titanium tetrachloride
JP2006212569A (en) Slurry concentrating method
WO2007000113A1 (en) A mineral element separating method and an apparatus therefor
US2701056A (en) Method and apparatus for classifying and concentrating materials
Merkl et al. Properties of decanter centrifuges in the mining industry
CA1197071A (en) Recovery of phosphorus from waste ponds
CN110564971A (en) Method for recovering zinc from blast furnace gas mud
US4595492A (en) Recovery of phosphorus from dilute waste streams
JP5076062B2 (en) Method and apparatus for treating wet zinc smelting residue
JP4751100B2 (en) Copper recovery method by flotation
JP3768919B2 (en) Method for treating oil-adhered particles
CN101693296B (en) Process of using aluminum chip to prepare aluminum powder
JP7009710B2 (en) How to recover valuables from steelmaking slag
JP2005095810A (en) Method for separating granular mixture
CN112076897A (en) Method for treating fine particles in screen sedimentation centrifuge
US3900314A (en) Process for recovering dissolved copper from solutions containing copper
CN108636988A (en) The corundum slag solid waste comprehensive utilization of resources that vanadium iron production generates
CN216473305U (en) Metal particulate recovery device in converter wet dedusting
CN208562289U (en) Seperator is used in the processing of one vegetable oil
JPH1017313A (en) Improvement of grade of kish and its production
FR2787781A1 (en) Improved separation of solids from a liquid, using a magnetic ballast which can be easily recovered and reused
CN215310777U (en) Device for separating residual iron powder in acidolysis titanium liquid
CN215507257U (en) Hydrocyclone used in extremely-low-grade ilmenite beneficiation process

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120102

R150 Certificate of patent or registration of utility model

Ref document number: 4910783

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250