JP2008210707A - 燃料電池 - Google Patents

燃料電池 Download PDF

Info

Publication number
JP2008210707A
JP2008210707A JP2007047825A JP2007047825A JP2008210707A JP 2008210707 A JP2008210707 A JP 2008210707A JP 2007047825 A JP2007047825 A JP 2007047825A JP 2007047825 A JP2007047825 A JP 2007047825A JP 2008210707 A JP2008210707 A JP 2008210707A
Authority
JP
Japan
Prior art keywords
diffusion layer
cell
unit cell
fuel
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007047825A
Other languages
English (en)
Inventor
Shigetaka Hamada
成孝 濱田
Nobuyuki Orihashi
信行 折橋
Shinya Sano
真也 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007047825A priority Critical patent/JP2008210707A/ja
Publication of JP2008210707A publication Critical patent/JP2008210707A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

【課題】単電池を複数積層して構成した燃料電池において、積層方向端部側に配置された単電池における水の滞留を抑制する。
【解決手段】電解質膜の両側に触媒層を配置した膜・電極接合体を、両側から各々拡散層を介して一対のセパレータで挟んで単電池10を構成し、単電池10を複数積層して燃料電池1を構成する。アノード側に配置したセパレータの拡散層側の面に燃料ガス流路を設ける一方、カソード側に配置したセパレータの拡散層側の面に酸化ガス流路を設ける。複数の単電池10は、積層方向端部側に配置される第1の単電池10aと、第1の単電池10aより中央側に配置される第2の単電池10bと、を含み、第1の単電池10aにおいて、酸化ガス流路側の拡散層の通気性よりも燃料ガス流路側の拡散層の通気性を小さく設定する。
【選択図】図1

Description

本発明は、燃料電池に関し、特に、膜・電極接合体が両側から拡散層及びセパレータにより挟まれた単電池を複数積層した燃料電池に関する。
従来より、電解質膜の両面に触媒層(電極)を設けて構成した膜・電極接合体と、この膜・電極接合体を拡散層を介して挟持するセパレータと、を有する燃料電池が提案され、実用化されている。かかる燃料電池を含む燃料電池システムにおいては、燃料電池の膜・電極接合体を構成する一方の触媒層(アノード電極)に燃料ガスを、他方の触媒層(カソード電極)に酸化ガスを、各々拡散層を介して供給して電気化学反応を起こすことにより発電を行っている。
現在においては、膜・電極接合体とセパレータとを有する単電池を複数積層した積層体を備える燃料電池が提案されている。このように単電池を複数積層した燃料電池では、単電池の積層方向端部に酸化ガスや燃料ガスの供給部が設けられている。各供給部に酸化ガス及び燃料ガスが供給されると、これら酸化ガス及び燃料ガスが各単電池の膜・電極接合体に供給されて発電が行われる。この際、膜・電極接合体を構成する電解質膜の機能を維持するために酸化ガス及び燃料ガスとともに水分も供給される。
このような燃料電池においては、膜・電極接合体を構成する電解質膜の機能を維持するために供給された水や発電時に生じた水が、各セパレータのガス流路内に過剰に滞留し、触媒層及び拡散層内のガス拡散性を減少させて発電性能を低下させる(フラッディングを起こす)場合がある。このため、近年においては、燃料電池の積層方向端部に配置される単電池のカソード側拡散層の撥水性を、他の単電池のカソード側拡散層の撥水性より低くすることにより、フラッディングを抑制する技術が提案されている(例えば、特許文献1参照。)。
特開2001−357869号公報
ところで、燃料電池の発電時においては、燃料電池の積層方向端部の温度が中央部の温度よりも低くなるため、積層方向端部側に配置された単電池になるほどカソード側とアノード側の温度差に起因する水蒸気分圧の差が大きくなり、カソード側からアノード側への水蒸気の移動量が大きくなる。このため、燃料電池の積層方向端部(特に総マイナス側の端部)側に配置された単電池には水が溜まり易くなる。特許文献1に記載されたような技術を採用しても、カソード側からアノード側への水蒸気の移動に起因した水の滞留を抑制することはできなかった。
本発明は、かかる事情に鑑みてなされたものであり、単電池を複数積層して構成した燃料電池において、積層方向端部側に配置された単電池における水の滞留を抑制することを目的とする。
前記目的を達成するため、本発明に係る燃料電池は、電解質膜の両側に触媒層が配置された膜・電極接合体が、両側から各々拡散層を介して一対のセパレータにより挟まれて単電池が構成され、単電池が複数積層されてなる燃料電池であって、アノード側に配置されるセパレータの拡散層側の面には、燃料ガスが流通する燃料ガス流路が設けられ、カソード側に配置されるセパレータの拡散層側の面には、酸化ガスが流通する酸化ガス流路が設けられ、複数の単電池は、積層方向の少なくとも一方の端部側に配置される第1の単電池と、第1の単電池より中央側に配置される第2の単電池と、を含み、第1の単電池は、酸化ガス流路側の拡散層の通気性よりも燃料ガス流路側の拡散層の通気性が小さく設定されてなるものである。
かかる構成を採用すると、積層方向の少なくとも一方の端部側に配置された第1の単電池において、酸化ガス流路側の拡散層から燃料ガス流路側の拡散層への水蒸気の移動量を抑制することができる。従って、第1の単電池における水の滞留を抑制することが可能となる。
前記燃料電池において、各単電池における酸化ガス流路側の拡散層の気孔率に対する燃料ガス流路側の拡散層の気孔率の割合を燃料ガス通気率とし、第1の単電池における燃料ガス通気率を第2の単電池における燃料ガス通気率よりも低く設定することができる。
かかる構成を採用すると、第1の単電池における燃料ガス通気率(酸化ガス流路側の拡散層の気孔率に対する燃料ガス流路側の拡散層の気孔率の割合)を第2の単電池における燃料ガス通気率よりも低く設定するので、燃料電池の発電時において第2の単電池よりも低温となり水が溜まり易い第1の単電池における水の滞留を効果的に抑制することが可能となる。
また、前記燃料電池において、第1及び第2の単電池における酸化ガス流路側の拡散層の気孔率を略同一に設定する一方、第1の単電池における燃料ガス流路側の拡散層の気孔率を第2の単電池における燃料ガス流路側の拡散層の気孔率よりも小さく設定することができる。
このようにすると、第1及び第2の単電池における燃料ガス流路側の拡散層の気孔率を異ならせるだけで、燃料ガス通気率の調整を容易に行うことが可能となる。
また、前記燃料電池において、第1の単電池として、総マイナス側の端部に配置される単電池を採用することが好ましい。
このようにすると、燃料電池の発電時において最も水が溜まり易い総マイナス側の端部に配置された単電池における水の滞留を効果的に抑制することが可能となる。
本発明によれば、単電池を複数積層して構成した燃料電池において、積層方向端部側に配置された単電池における水の滞留を抑制することが可能となる。
以下、図1〜図4を参照して、本発明の実施の形態に係る燃料電池について説明する。以下の各実施形態に係る燃料電池は、車載に好適な固体高分子型の燃料電池である。
まず、図1を用いて、本実施形態に係る燃料電池1の構成の概要について説明する。燃料電池1は、複数の単電池10を積層したスタック本体2を備えており、スタック本体2の両端に位置する単電池10の外側に、出力端子付の集電板3、絶縁板4及び端板5がこの順に配置されて構成されている。両端板5の間には図示していない締結板が架け渡され、これら締結板が各々端板5にボルト固定されることにより、単電池10の積層方向に所定の圧縮力が加えられるようになっている。なお、本実施形態における燃料電池1は、図1に示すように、スタック本体2を構成する単電池10の積層方向が鉛直方向に対して直交するように燃料電池車両に搭載されている。
次に、図2を用いて、単電池10の構成について説明する。単電池10は、電解質膜11と、電解質膜11の両面に設けられた各電極(アノード電極及びカソード電極)用の触媒層12と、から膜・電極接合体15が形成されている。膜・電極接合体15の触媒層12の外側には、拡散層13が配設されるとともに、拡散層13を介して両側から膜・電極接合体15を挟持するセパレータ14が配設されている。拡散層13とセパレータ14との間には、図示していないシール部材が装着されている。
膜・電極接合体15の電解質膜11は、固体高分子材料のイオン交換膜から構成される。電解質膜11は、水素ガス等の燃料ガスから供給された水素イオンをアノード電極からカソード電極へと移動させる機能を有する。
膜・電極接合体15の触媒層12は、電解質膜11に隣接配置され、例えば、固体電解質と、炭素粒子と、炭素粒子に担持された触媒とから構成されている。触媒としては、例えば、白金又は白金合金等が好適に用いられる。アノード側の触媒層12では、燃料ガス中の水素(H2)が表面で活性な2個の水素原子(水素活性種:H*)に解離され、水素活性種から水素イオン(H+)と電子(e-)とを生成する。生成された電子は回路に供給され、水素イオンは電解質膜11によりカソード側へ移動する。カソード側の触媒層12では、電解質膜11により移動した水素イオンと、回路からの電子と、酸化ガス中の酸素(O2)とが反応して、水が生成される。
膜・電極接合体15の両側の拡散層13は、通気性を有する多孔質構造体からなる。拡散層13では、各セパレータ14から供給される燃料ガス又は酸化ガスを拡散透過させて膜・電極接合体15へ供給するとともに、反応により生成された水等の生成ガスを透過させて各セパレータ14側へ放出する。なお、拡散層13は、触媒層12及びセパレータ14を導通させる機能も有している。
拡散層13を構成する導電性多孔質構造体としては、燃料ガス及び酸化剤ガス並びに水に対して安定であって、導電性を有する材料からなる多孔質構造体を用いることができる。例えば、カーボンペーパ、カーボン織布等の多孔質材料や多孔質材料に各種の添加剤やペースト等を添加・含浸させたもの等を使用することができる。
セパレータ14は、積層された各々の単電池10同士を区切る境界であり、シール部材を介して各拡散層13に隣接配置されている。各セパレータ14は、隣接する単電池10間でアノード電極とカソード電極とが接触することによる単電池10同士の短絡を防止する機能と、隣接する単電池10同士を導通させる機能と、各拡散層13に燃料ガス又は酸化ガスを供給する機能と、を有する。
セパレータ14の各拡散層13側の面には溝状の燃料ガス流路14a及び酸化ガス流路14bが形成されている。また、セパレータ14には、燃料ガス流路14aに連通する燃料ガス入口側マニホールド14c及び燃料ガス出口側マニホールド14dと、酸化ガス流路14bに連通する酸化ガス入口側マニホールド14e及び酸化ガス出口側マニホールド14fと、が設けられている。
燃料ガス入口側マニホールド14c及び酸化ガス入口側マニホールド14eは、外部から燃料ガス及び酸化ガスを導入するためのものであり、燃料ガス出口側マニホールド14d及び酸化ガス出口側マニホールド14fは、燃料ガス及び酸化ガスを外部に排出するためのものである。積層状態では、マニホールド14c〜14fは連続孔に形成され、端板5に設けられた図示していない端部開口と連通されている。各端部開口には、図示していない各ガスの供給用配管及び排出用配管が接合されている。
なお、セパレータ14は、電子伝導性が高く、耐食性に優れており、しかもガス雰囲気において金属イオンを放出しないという特性を有する必要がある。かかる条件を満足する材料として、例えば、カーボン等の炭素質材料やステンレス鋼等の金属材料が採用される。
このような構成を有する単電池10が積層された燃料電池1では、互いに隣接する単電池10間に、図示しない冷却水路が設けられており、発電時の燃料電池1の温度が調整されている。
ところで、前記した冷却水により燃料電池1全体を冷却していても、図3に示すように、単電池10の積層方向に温度分布が生じ、図1に示した積層方向端部側に配置される単電池(以下「端部単電池」という)10aは、積層方向中央側に配置される単電池(以下「中央単電池」という)10bと比較して低温となる。また、各単電池10内においても、酸化ガスが供給されるセパレータ14側と燃料ガスが供給されるセパレータ14側との間で、図4に示すように温度差が生じる。このため、燃料電池1の端部単電池(特に総マイナス側の端部単電池)10aにおいてはカソード側とアノード側の温度差に起因する水蒸気分圧の差が大きくなるため、カソード側からアノード側への水蒸気の移動量が大きくなり、中央単電池10bと比較して水が溜まり易くなる。
そこで、本実施形態に係る燃料電池1においては、第1の単電池としての端部単電池10aにおける一対の拡散層13の通気性が、端部単電池10aより積層方向中央側に配置されている第2の単電池としての中央単電池10bにおける一対の拡散層13の通気性と異なるように調整されている。
具体的には、全ての単電池10において、酸化ガス流路14b側に配置される拡散層13の気孔率を略同一に設定するとともに、中央単電池10bにおいて、カソード側である酸化ガス流路14b側に配置される拡散層13の気孔率と、アノード側である燃料ガス流路14a側に配置される拡散層13の気孔率と、を略同一に設定する。一方、端部単電池10aにおいて、カソード側である酸化ガス流路14b側に配置される拡散層13の気孔率よりも、アノード側である燃料ガス流路14a側に配置される拡散層13の気孔率を小さくする。
これにより、端部単電池10aにおいては、酸化ガス流路14b側の拡散層13の通気性よりも燃料ガス流路14a側の拡散層13の通気性が小さく設定されている。また、各単電池10において、酸化ガス流路14b側の拡散層13の気孔率に対する燃料ガス流路14a側の拡散層13の気孔率の割合を「燃料ガス通気率」と定義したとき、端部単電池10aにおける燃料ガス通気率が、中央単電池10bにおける燃料ガス通気率よりも低く設定されることとなる。
このような通気性(気孔率及び燃料ガス通気率)の調整は、例えば、発電時における中央単電池10bの最高温度、中央単電池10bと端部単電池10aとの温度差、端部単電池10aのカソード側とアノード側との温度差等を勘案して適宜実施することができる。
なお、本実施形態における拡散層13の「気孔率」とは、拡散層13の表面積に対する気孔面積の割合を意味する。拡散層13の気孔率の調整は、多孔質基材の材料の変更、添加剤やペースト等の種類や量の変更、被覆層の配設等により実現させることができる。また、本実施形態においては、拡散層13の気孔率を変更することにより拡散層13の通気性を調整した例を示したが、例えば、拡散層13の厚さを変更することにより拡散層13の通気性を調整することもできる。
続いて、図5を用いて、本実施形態に係る燃料電池1の作用効果について説明する。
まず、単電池10をN枚積層した燃料電池1において、端部単電池10aのアノード側の拡散層13の気孔率を、カソード側の拡散層13の気孔率の約1/2に設定するとともに、中央単電池10bの全ての拡散層13の気孔率を端部単電池10aのカソード側の拡散層13と略同一に設定して、燃料電池1の発電を実施した。定常状態に達した後、全ての単電池10内の燃料ガス流路14a内に滞留している水分量を測定し、結果を図5の曲線A(実線)に示した。
次に、本実施形態に係る燃料電池1の比較対象となる燃料電池(比較燃料電池)を構成する。かかる比較燃料電池は、全ての単電池10においてアノード側の拡散層13の気孔率をカソード側の拡散層13の気孔率と略同一に設定したもの(すなわち、端部単電池10aのアノード側の拡散層13の気孔率をカソード側の拡散層13の気孔率と略同一に設定したもの)である。そして、比較燃料電池の発電を実施し、定常状態に達した後、全ての単電池10内の燃料ガス流路14a内に滞留している水分量を測定し、結果を図5の曲線B(破線)に示した。
図5から明らかなように、端部単電池10aの一対の拡散層13の気孔率を異ならせた本実施形態に係る燃料電池1においては、端部単電池10aの一対の拡散層13の気孔率が同等の比較燃料電池と比較して、積層方向端部(特に総マイナス側端部)側の端部単電池10a内に滞留する水分が格段に少なくなっている。
以上の実施形態に係る燃料電池1によれば、端部単電池10aにおいて、酸化ガス流路14b側の拡散層13の通気性よりも燃料ガス流路14a側の拡散層13の通気性が小さく設定されているため、酸化ガス流路14b側の拡散層13から燃料ガス流路14a側の拡散層13への水蒸気の移動量を抑制することができる。従って、端部単電池10aにおける水の滞留を抑制することが可能となる。
また、以上の実施形態に係る燃料電池1においては、端部単電池10aにおける燃料ガス通気率(酸化ガス流路14b側の拡散層13の気孔率に対する燃料ガス流路14a側の拡散層13の気孔率の割合)を中央単電池10bにおける燃料ガス通気率よりも低く設定するので、燃料電池1の発電時において中央単電池10bよりも低温となり水が溜まり易い端部単電池(特に総マイナス側の端部単電池)10aにおける水の滞留を効果的に抑制することが可能となる。
また、以上の実施形態に係る燃料電池1においては、全ての単電池10における酸化ガス流路14b側の拡散層13の通気性を略同一に設定しているため、端部単電池10a及び中央単電池10bにおける燃料ガス流路14a側の拡散層13の通気性を異ならせるだけで、燃料ガス通気率の調整を容易に行うことが可能となる。
なお、以上の実施形態においては、燃料電池1の端部単電池10aの拡散層13の通気性を調整した例について説明したが、端部単電池10a付近の複数の単電池の拡散層13について通気性を調整することもできる。また、燃料電池1の総マイナス側の端部に配置される端部単電池10aのみについて、拡散層13の通気性を調整することもできる。
本発明の実施形態に係る燃料電池を示す斜視図である。 図1に示す燃料電池を構成する単電池の分解斜視図である。 発電時における燃料電池の積層方向の温度分布を示すグラフである。 発電時における単電池のアノード側とカソード側の温度差を示す説明図である。 本発明の実施形態に係る燃料電池及び比較燃料電池の各単電池における含水量を示すグラフである。
符号の説明
1…燃料電池、10…単電池、10a…端部単電池(第1の単電池)、10b…中央単電池(第2の単電池)、11…電解質膜、12…触媒層、13…拡散層、14…セパレータ、14a…燃料ガス流路、14b…酸化ガス流路、15…膜・電極接合体。

Claims (4)

  1. 電解質膜の両側に触媒層が配置された膜・電極接合体が、両側から各々拡散層を介して一対のセパレータにより挟まれて単電池が構成され、前記単電池が複数積層されてなる燃料電池であって、
    アノード側に配置される前記セパレータの前記拡散層側の面には、燃料ガスが流通する燃料ガス流路が設けられ、
    カソード側に配置される前記セパレータの前記拡散層側の面には、酸化ガスが流通する酸化ガス流路が設けられ、
    前記複数の単電池は、積層方向の少なくとも一方の端部側に配置される第1の単電池と、前記第1の単電池より中央側に配置される第2の単電池と、を含み、
    前記第1の単電池は、前記酸化ガス流路側の前記拡散層の通気性よりも前記燃料ガス流路側の前記拡散層の通気性が小さく設定されてなる、
    燃料電池。
  2. 前記各単電池における前記酸化ガス流路側の前記拡散層の気孔率に対する前記燃料ガス流路側の前記拡散層の気孔率の割合を燃料ガス通気率とし、前記第1の単電池における前記燃料ガス通気率が前記第2の単電池における前記燃料ガス通気率よりも低く設定されてなる、
    請求項1に記載の燃料電池。
  3. 前記第1及び第2の単電池における前記酸化ガス流路側の前記拡散層の気孔率が略同一に設定される一方、前記第1の単電池における前記燃料ガス流路側の前記拡散層の気孔率が前記第2の単電池における前記燃料ガス流路側の前記拡散層の気孔率よりも小さく設定されてなる、
    請求項2に記載の燃料電池。
  4. 前記第1の単電池は、前記燃料電池の総マイナス側の端部に配置されるものである、
    請求項1から3の何れか一項に記載の燃料電池。
JP2007047825A 2007-02-27 2007-02-27 燃料電池 Pending JP2008210707A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007047825A JP2008210707A (ja) 2007-02-27 2007-02-27 燃料電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007047825A JP2008210707A (ja) 2007-02-27 2007-02-27 燃料電池

Publications (1)

Publication Number Publication Date
JP2008210707A true JP2008210707A (ja) 2008-09-11

Family

ID=39786827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007047825A Pending JP2008210707A (ja) 2007-02-27 2007-02-27 燃料電池

Country Status (1)

Country Link
JP (1) JP2008210707A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523757A (ja) * 2007-12-11 2011-08-18 ユーティーシー パワー コーポレイション 燃料電池スタックの拡散層における液体水透過性の調整

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011523757A (ja) * 2007-12-11 2011-08-18 ユーティーシー パワー コーポレイション 燃料電池スタックの拡散層における液体水透過性の調整

Similar Documents

Publication Publication Date Title
EP1517392B1 (en) Solid high polymer type cell assembly
JP6745920B2 (ja) 活性領域の入口領域内の反応ガスチャネルにおいて幅が変化するバイポーラプレート、燃料電池スタック、このようなバイポーラプレートを有する燃料電池システム、および乗り物
JP2005005196A (ja) 燃料電池システム
US20100285386A1 (en) High power fuel stacks using metal separator plates
JP5124900B2 (ja) スタック構造を有する燃料電池
US20040157111A1 (en) Fuel cell
JP2001307749A (ja) 固体高分子型燃料電池および固体高分子型燃料電池スタック
JP2006147425A (ja) 固体高分子型燃料電池用電解質膜およびその製造方法並びに固体高分子型燃料電池
JP2009117221A (ja) スタック構造を有する燃料電池
US20180145342A1 (en) Flow field for fuel cell including graphene foam
JP5341321B2 (ja) 固体高分子型燃料電池用電解質膜・電極構造体
JP2008210707A (ja) 燃料電池
JP2009043688A (ja) 燃料電池
JP2004349013A (ja) 燃料電池スタック
JP2005166420A (ja) 燃料電池スタック
JP2004185904A (ja) 燃料電池
JP2013114899A (ja) 燃料電池用スタック
JP2004111118A (ja) 燃料電池スタック
JP5694103B2 (ja) 燃料電池セル及び燃料電池
JP3945136B2 (ja) ガス流路を有する固体高分子電解質型燃料電池
JP2008034381A (ja) 燃料電池
JP2008016415A (ja) 燃料電池用電極およびその製造方法、並びに、この燃料電池用電極を備える燃料電池
JP2009048905A (ja) 燃料電池
JP2006012546A (ja) 燃料電池
JP2009231082A (ja) 燃料電池