JP2008203055A - 静電容量センサ - Google Patents

静電容量センサ Download PDF

Info

Publication number
JP2008203055A
JP2008203055A JP2007038739A JP2007038739A JP2008203055A JP 2008203055 A JP2008203055 A JP 2008203055A JP 2007038739 A JP2007038739 A JP 2007038739A JP 2007038739 A JP2007038739 A JP 2007038739A JP 2008203055 A JP2008203055 A JP 2008203055A
Authority
JP
Japan
Prior art keywords
detection
electrode
sensor
contact
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007038739A
Other languages
English (en)
Inventor
Yukinori Kurumado
幸範 車戸
Keiichi Nagayama
恵一 永山
Masato Kasashima
正人 笠島
Hiroyuki Sueyasu
宏行 末安
Ryuichi Nakano
隆一 仲野
Taizo Kikuchi
泰三 菊地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Omron Corp
Original Assignee
Honda Motor Co Ltd
Omron Corp
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Omron Corp, Omron Tateisi Electronics Co filed Critical Honda Motor Co Ltd
Priority to JP2007038739A priority Critical patent/JP2008203055A/ja
Priority to US12/034,522 priority patent/US20080211519A1/en
Publication of JP2008203055A publication Critical patent/JP2008203055A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2417Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/955Proximity switches using a capacitive detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/9607Capacitive touch switches
    • H03K2217/960735Capacitive touch switches characterised by circuit details
    • H03K2217/96074Switched capacitor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

【課題】 静電容量型近接センサの機能を高度に発揮するとともに、タッチセンサとしても機能する簡素な静電容量センサを提供する。
【解決手段】 静電容量変化を検出する検出電極A,Bと、静電容量の検出範囲を制限すべく検出方向に開口部を向けたシールド電極Sと、グランド電極Gとを、長手方向に配設し、検出電極A,Bを、シールド電極S内の開口部に近い位置と遠い位置とに配設し、前記接触検知用電極を、前記シールド電極の検出方向に対する裏側に配設し、各電極が、自然状態においては離れた状態に維持され、当該センサ本体1が物体の接触によって検出方向から押されると、シールド電極Sとグランド電極Gとが接触し導通して、物体の接触が検出可能となるよう、各電極を非導電性の可撓体2で一体に連結する。
【選択図】 図1

Description

本発明は、静電容量センサに関し、詳しくは例えばドアなどの開閉体への人や物体の挟み込みを防止するために人や物体を検出するための静電容量センサに関する。
ドアなどの開閉体の制御システムにおいては、人体などの挟み込みを防止するため、自動閉動作の際には、このような挟み込みの発生或いは発生の恐れを検知して少なくとも開閉体の自動閉動作を停止し、或いはさらに反転動作させる挟み込み防止機能が設けられる。
そして従来、このような挟み込み防止のための挟み込み検知を行う検知装置の方式としては、間接検知と直接検知がある。間接検知は、開閉体の駆動モータの動作情報(回転位置や回転速度など)や駆動電流に基づいて、間接的に挟み込みを検知するもので、直接検知は、開閉体の開閉端部に接近又は接触する対象物(人体など)を検出するセンサを用いるものである。このうち、間接検知は、挟み込みをなるべく低い荷重で早めに、かつ確実に検知することが比較的困難であるという不利がある。一方、直接検知は、対象物を直接検知するので信頼性が高いという長所があるが、従来のこの種のセンサとしては感圧スイッチが用いられていたため、挟み込みをなるべく低い荷重で早めに検知することができなかった。というのは、感圧スイッチは、例えば導電性樹脂を用いたケーブル状のもので、対象物の圧力による変形によって内部の導電体が接触して導通することによって作動するものである。このため感圧スイッチは、対象物がある程度の圧力で接触してはじめて作動し、その時点でやっと挟み込み防止機能が働くことになるからである。
そこで発明者らは、車両のパワースライドドアなどにおける挟み込み検知装置として、基本的に静電容量センサを適用することを検討している。
なお、静電容量センサを車両(四輪自動車等)のパワースライドドアにおける挟み込み検知装置として適用した従来例としては、特許文献2がある。また、特許文献1には、窓やドアの挟み込み検知に静電容量センサを用いる挟み込み防止装置が記載されている。また、特許文献3には、静電容量センサにより挟み込み検知を行う自動ドア用安全装置が開示されている。
特開2001−32628号公報 特開2005−227244号公報 特開2001−32627号公報
ところで、上述した静電容量センサを車両のスライドドアなどの開閉体に適用して挟み込みを検知しようとすると、開閉体の全閉位置付近で、開閉体の周辺部材(例えば、車両のBピラーやフロントドアなど)に静電容量センサが反応して静電容量センサの出力(以下、場合によりセンサ出力という)が変化し、実際には人体などの挟み込みが発生していないのに、挟み込みが発生したと誤検知してしまうという問題があった。
ここでスライドドアとは、車両の側面等に設けられたスライド型のドアであり、四輪自動車の場合、一般的には後部座席用のドア(リヤドア)として設けられることが多い。
なお、前述の特許文献3には、許容値(検知判定のしきい値)を、例えば自動ドアの開方向への動作時に測定されたセンサ出力(即ち、学習データ)に基づいて設定し、自動ドアの閉方向への動作時には、センサ出力を前記許容値と比較することにより挟み込みを判定する技術、さらには、ドアの全閉位置付近では、前記学習データに基づいて前記許容値を漸次変化させる技術が開示されている。この技術によれば、原理的には、前記周辺部材による影響を上記許容値の変化によって打ち消し、開閉体の全閉位置付近で発生する前述の誤検知の可能性を低減できる。
しかしながら、実際に試行してみると全閉位置付近では、少しのドア位置の変化によってセンサ出力の変化が大きいため、指などの接近による僅かなセンサ出力の変化を捉えることが困難である。
また、静電容量センサは、誘電体でないと反応しないため、プラスチックなどの低誘電体は検知が難しい。例えば車両内へ運び込もうとするプラスチック製の品物がスライドドアに挟み込まれるといったことを防止するのが難しいという短所もある。
なお、開閉体の挟み込み防止などの安全装置用のセンサとしては、上述した問題(全閉位置で検出が困難である問題や、対象物が低誘電体であると検出できない問題)は、重大であり、鋭意解決する必要がある。
そこで本発明は、静電容量型の近接センサ(非接触センサ)としての本来の機能を発揮するとともに、人や物体の接触を検出する接触式センサ(タッチセンサ)としても機能する静電容量センサを提供することを目的としている。
本願の静電容量センサは、静電容量の変化を検出するコード型のセンサであって、
静電容量の変化を検出するための複数の検出電極と、静電容量の検出範囲を制限するために、前記複数の検出電極を取り囲み、検出方向に開口部を設けたシールド電極と、接触検知のための接触検知用電極とを、当該センサの長手方向に沿って配設し、
前記検出電極を、前記シールド電極内の開口部に近い位置と、前記シールド電極内の開口部から遠い位置とに配設し、
前記接触検知用電極を、前記シールド電極の検出方向に対する裏側に配設し、
前記検出電極相互、及び前記検出電極と前記シールド電極が、間隔をおいて離れた状態に維持されるように一体に連結されるとともに、前記シールド電極と前記接触検知用電極が、自然状態においては間隔をおいて離れた状態に維持され、当該センサが物体の接触によって検出方向から押されると、前記シールド電極と前記接触検知用電極が、相互に接触することを特徴とする。
本願の静電容量センサによれば、複数の検出電極により、差分式の高感度な静電容量変化の検出(誘電体の接近)が可能となり、人体などの誘電体を非接触で早めに検出できる。また、シールド電極が設けられているため、検出方向(シールド電極の開口側)に接近した誘電体のみを検出し、側面から接近した誘電体を誤検知することがない。
しかも、物体の接触によって検出方向から押されると、シールド電極と接触検知用電極が、相互に接触して物体の接触が検出可能となる。このため、静電容量センサでありながら、物体の接触を検出するタッチセンサとしても機能する。
次に、本願の好ましい態様は、前記接触検知用電極が、グランド電極として機能する構成である。この態様であると、グランド電極を別個に設ける必要がなくなる。また、外部からのノイズ耐性が向上し、より正確な検出ができる。
また、本願の好ましい別の態様は、前記検出電極とシールド電極が非導電性部材で保持されて一体に構成されているものである。この場合、各電極の相対位置が変化し難いため、各電極間の距離変化によって生まれる静電容量の変化の影響を低減でき、より正確な検出ができる。
また、本願の好ましい別の態様は、前記検出電極、シールド電極、及び接触検知用電極が非導電性部材で保持されて一体に構成され、変形できるよう構成されているものである。この場合、センサを取扱い易く、車体等への取り付けの手間が低減できる。
本発明によれば、静電容量型の近接センサ(非接触センサ)としての本来の機能を発揮するとともに、人や物体の接触を検出するタッチセンサとしても機能する静電容量センサが得られる。
以下、本発明の実施の形態を図面に基づいて説明する。
(第1形態例)
まず、第1形態例を説明する。
図1(a)は、静電容量センサのセンサ本体1の内部構成を示す図であり、図1(b)は、センサ本体1のタッチセンサとしての作動状態(検出対象物体によりセンサが変位した状態)を示す図である。また、図2(a)は、センサ本体1の全体を示す斜視図であり、図2(b)は、自動車に設置されたセンサ本体1及びその周辺構成を示す水平断面図である。また図3は、センサ本体1の内部構成や取付構造を示す図である。また図4は、センサ本体1を自動車に取り付けた例を示す斜視図である。また図5は、本例の静電容量センサを含む挟み込み検知装置(検出回路等含む)の概略を示すブロック図である。また、図6及び図7は、静電容量センサの検出回路20等の具体例を示す回路図である。また図8は、近接検知領域とタッチ検知領域を説明する図である。また図9は、検出回路20の動作を説明するタイミングチャートであり、図10は、検出回路20の動作を説明するデータ例を示す図である。
センサ本体1は、図1(a)に示すように、検出面の側が開口した断面略U字状のシールド電極Sと、このシールド電極Sの内側に配置された検出電極A,Bと、シールド電極Sの検出方向に対する裏側に配設されてグランドに接続されるグランド電極G(接触検知用電極としても機能する)と、各電極(各検出電極A,B、シールド電極S、及びグランド電極G)を一体に連結する低誘電率絶縁材2と、全体を覆うカバーとして機能する低誘電率絶縁材3とよりなる。
また、図3に示すように、本例では低誘電率絶縁材3はセンサ本体1をスライドドア10に設けられたブラケット11に固定するための部材としても機能している。検出電極A、検出電極B、シールド電極Sおよびグランド電極Gは、導電性を有する材料であれば使用できるので金属板などでも良いが、導電性の可撓体(例えば、天然ゴム、合成ゴム、又はエラストマをベースとし、適度な可撓性と導電性をもつ材料)より形成されるのが好ましい。低誘電率絶縁材2と、低誘電率絶縁材3は非導電性の可撓体にて形成されるのが好ましい。
本例では、検出電極A,Bと、シールド電極Sと、グランド電極Gとを一体形成しているが、全ての電極が一体に形成されていなくても良い。例えば、検出電極A,Bと、シールド電極Sとだけが一体に形成されており、グランド電極Gは別部材として自動車に装着されていても良い。また、例えば、検出電極A,Bとを一体形成し、シールド電極Sとグランド電極Gとを一体形成し、両方の部材を低誘電率絶縁材3を用いて一体化しても良い。
このセンサ本体1の各電極の内部には、前記導電性の可撓体よりも電気抵抗の小さい材料(例えば、銅線)よりなる導線4,5,6,7が、それぞれ配設されている。なお、これら導線4,5,6,7の設置位置は、検出方向(図1における上下方向)と直交する平面での曲げに対する当該センサの中立面(曲げ応力がゼロとなる面)付近に設定されている。
また図1の場合、シールド電極Sの下面は、V字型に下方に向かって若干突出した形状となっており、これに対向するグランド電極Gの上面には、上記シールド電極Sの下面がはまり込むことが可能となるようにV字状の凹部8が形成されている。
また、低誘電率絶縁材2は、各検出電極A,Bの周囲を覆い、各検出電極A,Bの間や、各検出電極A,Bとシールド電極Sの間を閉塞するように、配設されている。但し、シールド電極Sとグランド電極Gとの間には、低誘電率絶縁材2が配設されておらず、ここは空間となっている。
なお、低誘電率絶縁材2と低誘電率絶縁材3は、非導電性の可撓体(例えば、天然ゴム、合成ゴム、又はエラストマをベースとし、適度な可撓性をもち、導電性を持たない材料)よりなり、静電容量センサとしての検出動作に悪影響を及ぼさないように、誘電率の低いものとされている。
また上記センサ本体1は、例えば、低誘電率絶縁材3を除く各可撓体(シールド電極S、検出電極A,B、グランド電極G、低誘電率絶縁材2)を一体に成形し、この成形品の外周を覆うように低誘電率絶縁材3(可撓体)を装着することによって、一体物として製造される。
また上記センサ本体1は、図2(a)に示すようなコード型のもので、各可撓体と各導線が長手方向に配設された断面一様のものとなっている。但し、上記センサ本体1は、必ずしも長尺なものでなくてもよく、例えば断面寸法と比較して長手方向(断面に直交する方向)の長さが短いものであってもよいことはいうまでもない。
このような構成のセンサ本体1は、十分小型にすることが可能であるとともに、十分な可撓性を有し、長手方向において湾曲した形状とすることが容易であり、図3に示すようにスライドドア10の開閉端部の形状に沿って配置することが十分可能である。また、シールド電極Sのシールド作用により、上記センサ本体1は検出面側(即ち、スライドドア10の端部に対向し、スライドドア10に挟まれる可能性のある範囲の側)だけが高い感度を有し、他の面は基本的に対象物を検知しない面(不感面)となる。
ここで、検出電極A,Bは、検出面に対して比較的近い位置と遠い位置にそれぞれ配置されている。この場合、検出電極Aが、主電極に相当し、シールド電極S内の開口部に近い位置に配置されている。一方、検出電極Bが、比較電極に相当し、シールド電極S内の開口部から遠い位置であって、主電極(検出電極A)とシールド電極Sの間の位置(検出電極Aの裏側の位置)に配置されている。
また、検出電極A,B相互、及び検出電極A,Bとシールド電極Sは、低誘電率絶縁材2が介在していることによって、常に間隔をおいて離れた状態に維持される。特に、検出電極A,Bは、検出面に対向する方向において所定の距離差を持つように離れて配置され、かつシールド電極Sとも接触しないように離れた状態に配置されている(いいかえると、そのように配置されるように、低誘電率絶縁材2が、各電極を連結し相互に支持している)。
そして、シールド電極Sとグランド電極Gは、センサ本体1に外力が加わっていない自然状態では、検出面に対向する方向において所定の距離差を持つように離れて配置されている(いいかえると、そのように配置されるように、低誘電率絶縁材2が、各電極を連結し相互に支持している)。そして、センサ本体1の検出面が物体の接触により押されると、図1(b)に矢印で示すように、検出電極A,Bやシールド電極S及び低誘電率絶縁材2の押された部分(長手方向の一部)が奥側(図1では下方)に移動するように変形して、シールド電極Sの下面がグランド電極Gの上面にはまり込んで接触し、シールド電極Sとグランド電極Gのみが相互に導通する作動状態となる構成とされている。なお、物体が押す力がある程度の範囲内で斜めに加わっても、同様に作動状態になる。またこの作動状態は、例えば図1(b)に示すように、低誘電率絶縁材2や低誘電率絶縁材3の一部(この場合、検出方向において、シールド電極Sとグランド電極Gの間に位置する両側部分)が他の部位よりも変形しやすい形状にすることによって、左右方向外側に張り出すように変形することによって実現されるが、内側に張り出すように変形してもよい。変形しやすい形状の例としては、変形させたい部位を他部位よりも薄くしたり切り込みを設けるなどが有るが、これに限定されるものではない。
なお、センサ本体1は、図2(b)に示すように、車両におけるスライドドア10(リヤドア)の開閉端部にブラケット11を介して取り付けられている。なお図2(b)は、スライドドア10が閉じている状態を示しており、この閉状態でスライドドア10は、Bピラー12(フロントドア13とスライドドア10の中間に位置する、車体側の柱部)を挟むようにしてフロントドア13に僅かな隙間で接合している。また、スライドドア10の開閉端部には、フロントドア13の側に突出するヘム部14が形成され、閉状態においてこのヘム部14の先端がフロントドア13の内側に伸びることによって、スライドドア10とフロントドア13の接合部が車外に対して閉じられる。
そしてセンサ本体1は、ヘム部14よりも内側(車内側)に配置され、その検出面が、ヘム部14よりもさらにフロントドア13側に突出した位置になるように、フロントドア13側に突出するブラケット11の先端に例えば接着等によって取り付けられる。
なお実際には、図3の具体例に示すように、センサ本体1の周囲を覆う低誘電率絶縁材3(保護用のカバー)が、ブラケット11への取り付け部としても機能する構成でもよい。
また、センサ本体1とセンサ本体1の周辺部分(ブラケット11やヘム部14の全体、又はこれらのセンサ本体1側の部分)の表面には、例えばシリコンテープが貼着されて撥水加工が施されている。なお、撥水コーティングを施してもよいし、又は/及び、撥油コーティングなどの撥油加工を施してもよい。
このような加工が施されていると、この表面に水滴や油滴が付着し難く、付着したとしても撥水又は撥油作用によって分散して流れ落ち易く、誤動作を起こすような大きな水滴等或いは連続する水滴等が発生しないので、水滴等による誤動作の発生可能性が格段に低減される。
次に、センサ本体1に接続されてセンサ本体1の駆動及び信号処理を行う回路部について説明する。
この回路部は、図5又は図6〜7に示すように、検出電極Aのパルス駆動回路21A、検出電極Bのパルス駆動回路21B、検出電極Aの電荷積分回路22A、検出電極Bの電荷積分回路22B、差分回路23、検波回路24、平滑回路25、電圧調整回路26A、電圧調整回路26B、減算回路27、増幅回路28、及び判定回路29を備える。
ここで、パルス駆動回路21Aと電荷積分回路22Aは、電圧Vrを基準電圧として検出電極Aが構成する浮遊容量をスイッチドキャパシタ動作により電圧に変換する容量検出回路30A(容量検出回路A)を構成している。また、パルス駆動回路21Bと電荷積分回路22Bは、電圧Vrを基準電圧として検出電極Bが構成する浮遊容量をスイッチドキャパシタ動作により電圧に変換する容量検出回路30B(容量検出回路B)を構成している。また、減算回路27と増幅回路28は、減算増幅回路31を構成している。
またこの場合、増幅回路28までがセンサの検出回路20を構成し、増幅回路28の出力TP7が最終的なセンサ出力となっている。なお、基準電圧として使用される電圧Vrは、図示省略した分圧回路によって電源電圧(例えば5V)から生成される一定の電圧(例えば2.5V)である。
図6に示すように、パルス駆動回路21Aは、図示省略した駆動回路によって駆動されて、検出電極Aの接続を高速で切り替えるスイッチSW−A1よりなる。スイッチSW−A1は、コモン端子(C端子)、グランド端子(G端子)、Open端子(O端子)、及びDPA端子(D端子)を有し、コモン端子が検出電極Aに接続され、グランド端子が車両グランド(GND)に接続され、DPA端子が後述するOPアンプ35Aの反転入力に接続されている。またスイッチSW−A1は、図9の最上段に示すように、コモン端子がグランド端子に導通したGND状態と、コモン端子がOpen端子に導通したOpen状態と、コモン端子がDPA端子に導通したDPA接続状態とに、高速で周期的に切り替わる。なお、図6において符号Caで示すキャパシタンスは、検出電極Aとグランドとの間に形成される浮遊容量を示している。
パルス駆動回路21Bは、パルス駆動回路21AのスイッチSW−A1と同様のスイッチSW−B1よりなる。スイッチSW−B1は、コモン端子(C端子)が検出電極Bに接続され、グランド端子(G端子)が車両グランドに接続され、DPA端子(D端子)が後述するOPアンプ35Bの反転入力に接続されている。またスイッチSW−B1は、図9の最上段に示すように、スイッチSW−A1と同様に動作する。なお、図6において符号Cbで示すキャパシタンスは、検出電極Bとグランドとの間に形成される浮遊容量を示している。
電荷積分回路22Aは、OPアンプ(オペレーショナルアンプ)35Aと、OPアンプ35Aの帰還回路を構成するスイッチSW−A2及びコンデンサCfaと、OPアンプ35Aの非反転入力にパルス電圧(電圧値は電圧Vrと同じ値)を供給する電源回路36Aとを備える。
ここで、コンデンサCfaは、OPアンプ35Aの出力TP1と反転入力間に接続されている。また、スイッチSW−A2は、コンデンサCfaと並列に接続され、コンデンサCfaの両端子間(即ち、OPアンプ35Aの出力と反転入力間)を開閉するスイッチである。またスイッチSW−A2は、図示省略した駆動回路によって駆動され、図9の上から3段目に示すように、スイッチSW−A1がDPA接続状態となる前のOpen状態であるタイミングにおいて、On状態からOff状態に切り替わり、スイッチSW−A1がOpen状態からGND状態に切り替わるタイミングで、Off状態からOn状態に切り替わる。
また、電源回路36Aの出力は、図9の上から2段目に示すように周期的に変化する。即ち、スイッチSW−A2がOn状態からOff状態に切り替わるタイミングで、グランド電圧から充電電圧(電圧値は電圧Vrと同じ値)となり、スイッチSW−A1がDPA接続状態からOpen状態に切り替わった後のタイミングにおいて、充電電圧Vrからグランド電圧に切り替わる。
なお図示省略しているが、シールド電極Sにも同様のパルス電圧(電圧値は電圧Vrと同じ値)がスイッチSW−A1,−A2が切り替わるタイミングに同期して供給される。
スイッチSW−A1,−A2がDPAに接続されている間は、シールド電極Sにパルス電圧が供給される。これによって、シールド電極Sは検出電極A,Bと同電位となるため、シールド電極Sと検出電極A,Bとの間では電荷の充放電が生じない。この事はシールド電極Sと検出電極A,Bとの間の静電容量は等価的にゼロと見なせる。
電荷積分回路22Bは、電荷積分回路22Aと同様に、OPアンプ35Bと、その帰還回路を構成するスイッチSW−B2及びコンデンサCfbと、OPアンプ35Bの非反転入力にパルス電圧を供給する電源回路36Bとを備える。
ここで、コンデンサCfbは、OPアンプ35Bの出力TP2と反転入力間に接続されている。また、スイッチSW−B2は、コンデンサCfbと並列に接続され、コンデンサCfbの両端子間(即ち、OPアンプ35Bの出力と反転入力間)を開閉するスイッチである。またスイッチSW−B2は、図9の上から3段目に示すように、スイッチSW−A2と同様に動作する。また、電源回路36Bの出力は、電源回路36Aと同様に、図9の上から2段目に示すように変化する。
差分回路23は、図6に示すように、OPアンプ37と符合省略した抵抗よりなり、OPアンプ35Aの出力TP1(容量検出回路Aの出力)とOPアンプ35Bの出力TP2(容量検出回路Bの出力)の差分を演算して出力する回路である。この差分回路23は、前記電圧Vrを基準電圧としているため、出力TP1と出力TP2に差がないときには、その出力TP3は基準電圧Vrとなる。
検波回路24は、電圧Vrを基準電圧として差分回路23の出力TP3から信号電圧TP4を抽出する同期検波回路である。この検波回路24は、図9の上から4段目に示すように駆動されるSW−3(各検出電極通電タイミングでオンされるスイッチ)よりなる。
平滑回路25は、図6に示すように、OPアンプ38と符合省略した抵抗やコンデンサよりなる積分回路であり、LPF(ローパスフィルタ)として機能して、検波回路24の出力TP4から無用な高周波成分を除去し平滑化する回路である。
また、電圧調整回路26A,26Bは、図6に示すように、各検出電極A,Bとグランド間にそれぞれ接続された可変コンデンサVCa,VCbよりなる。これら可変コンデンサVCa,VCbの値は、検出方向に人などの検出対象物が存在していない非検出状態における各容量検出回路A,Bの出力電圧TP1,TP2が等しくなるように、予め設定される。
この電圧調整回路26A,26Bがないと、検出電極Aが検出面近くに配置されていて電荷放出量が多いため、非検出状態であるにもかかわらず、出力電圧TP1の方が出力電圧TP2よりも大きくなってしまう。そこで、これら電圧調整回路26A,26Bを設け、VCa<VCbとして、上記出力TP1,TP2が非検出状態において等しくなるように調整している。
次に、減算回路27は、図7に示すように、OPアンプ39と符合省略した抵抗よりなり、平滑回路25の出力TP5から電圧Vrに相当する値を減算し、この減算結果を増幅(プレ増幅)するものである。
また、増幅回路28は、図7に示すように、OPアンプ40と符合省略した抵抗よりなり、減算回路27の出力TP6からオフセット電圧に相当する値を減算し、この減算結果を増幅(最終増幅)するものである。オフセット電圧は、例えば図7に示すオフセット電圧調整回路41(出力電圧可変式)で生成される。このオフセット電圧調整回路41は、単なる分圧回路(出力電圧が一定のもの)であってもよい。
なお、増幅回路28の出力(OPアンプ40の出力)が、本例におけるセンサ出力TP7となっている。また、上記オフセット電圧は、最終的なセンサ出力TP7を、判定回路29に対応した所定レベルに調整するためのものである。例えば、非検出状態において、平滑回路TP5の出力が電圧Vr(例えば2.5V)のときに、センサ出力TP7が所定の初期値V0(例えば1V)になるように、上記オフセット電圧が設定される。
以上のように構成された検出回路を含む静電容量センサであると、非検出状態においては、電圧調整回路26A,26Bの作用により各容量検出回路30A,30Bの出力電圧TP1,TP2が等しいため、図9の「初期状態」の個所に示すように、センサの出力(TP3〜TP7までの出力)は基準電圧Vrに対応した値となり、最終的なセンサ出力TP7はこの場合初期値V0(例えば、1V)になる。そして、検出面に物体(誘電体)が接近すると、検出電極A,Bが検出面に対して距離差を持っているため、容量検出回路30Aの出力電圧TP1の方が、容量検出回路30Bの出力電圧TP2よりも大きくなり、その結果、図9の「近接検知状態」の個所に示すように、センサ出力TP7が増大して基準電圧Vrに対応した初期値V0よりも格段に大きくなる。また、検出面に物体(誘電体又は非誘電体)が接触してシールド電極Sとグランド電極Gが相互に導通する作動状態になると、シールド電極Sの駆動電位が低下する。検出電極A,検出電極B,シールド電極Sが同相同電位駆動の場合には各電極間に結合容量は発生しないが、シールド電極Sの駆動電位が低下すると、検出電極Aとシールド電極Sとの間および検出電極Bとシールド電極Sとの間において、それぞれ駆動電位差が発生する。これによって容量検出回路Aおよび容量検出回路Bの出力が飽和し出力差がほとんどゼロになりセンサ出力TP7が初期値V0よりも減少してほぼゼロになる。
このため、本例の静電容量センサは、物体の接触を検出するタッチセンサとしても機能する。なお、本願の静電容量センサは、同一の検出回路の出力TP7を物体の接近と接触に対する共通のセンサ出力としており、このセンサ出力TP7が物体の接近と接触に対して基本的に逆方向に変化して物体の接近又は接触を検出するものであるため、検出回路や信号処理の切り替え無しに物体の接近と接触をリアルタイムかつ連続的に検出できるという優れた特長を持つ。
なお、図10(a)は、誘電体がセンサ本体1に接近してきた場合の、センサ出力TP7の変化を示すデータ例である。誘電体がセンサ本体1に接近すると、既述したようにセンサ出力TP7が増加し、近接検知しきい値電圧を超えた時点で近接検知状態となる。そして、誘電体がセンサ本体1の検出面に対してさらに移動し、検出面に接触してシールド電極Sとグランド電極Gを導通させると、センサ出力TP7は瞬時に減少して略ゼロVになり、タッチ検知しきい値電圧以下となるのでタッチ検知状態となる。このように本センサによれば、物体(誘電体)の接近と接触をリアルタイムかつ連続的に検出できる。
また、図10(b)は、非誘電体がセンサ本体1に接近してきた場合の、センサ出力TP7の変化を示すデータ例である。非誘電体がセンサ本体1に接近する場合、静電容量の変化が無いため、センサ出力TP7は基準電圧に対応した値V0のままに維持され、近接検知状態とはならない。しかし、誘電体がセンサ本体1の検出面に対してさらに移動し、検出面に接触してシールド電極Sとグランド電極Gを導通させると、センサ出力TP7は瞬時に減少して略ゼロVになり、タッチ検知しきい値電圧以下となるのでタッチ検知状態となる。このように本センサによれば、物体(非誘電体)の接触をリアルタイムで検出できる。
また、本例の静電容量センサは、静電容量センサ(近接センサ)としての基本原理が、特願2002−373729号で提案されたものと全く同様であるため、同出願明細書に記載されているように、空間的に開放された領域を検出範囲とし、周囲物体の影響を回避して誤動作の少ない近接検出が可能である(即ち、近接センサとしての本来の機能も高度に発揮できる)。
また、本例の静電容量センサは、平滑回路25の出力から電圧Vrに相当する値を減算し、この減算結果を増幅する増幅回路28を設け、この増幅回路28の出力をセンサ出力としている。このため、物体の接近又は接触による変化分だけが増幅前に取り出されて、出力信号の変化幅が必要最小限に抑えられるため、センサ出力の取り扱い(平滑回路後流での既述した信号増幅やオフセット処理、或いは後述する判定処理)が容易になる。
次に判定回路29について説明する。
判定回路29は、センサ出力TP7が非検出状態での初期値V0(例えば1V)よりも増加方向に変化することに基づいて検出面に物体(誘電体)が接近したと判定し、センサ出力TP7が初期値V0よりも減少方向に変化することに基づいて検出面に物体(誘電体及び非誘電体)が接触したと判定する回路であり、この場合はコンパレータ42,43よりなる。コンパレータ42は、センサ出力TP7と近接検知しきい値電圧(例えば1.2V以上)を比較し、センサ出力TP7が増加して近接検知しきい値電圧を上回ると出力(近接検知出力)をオンする回路である。一方、コンパレータ43は、センサ出力TP7とタッチ検知しきい値電圧(例えば0.5V)を比較し、センサ出力TP7が減少してタッチ検知しきい値電圧を下回ると出力(タッチ検知出力)をオンする回路である。なお、タッチ検知しきい値電圧は、ゼロV〜初期値V0未満の範囲における任意の値を設定してよい。但し、近接検知しきい値電圧は、全閉位置付近での周辺部材の影響を考慮して、例えば既述した特許文献3のように、学習データに基づきドア位置に対して変化させてもよい。この場合図8に示すように、ドアが全閉位置に近づいた場合には、Bピラーなどの車体によって生じるセンサ出力の変化が大きいために、指などが近づいたことによって生じるセンサ出力の小さい変化と区別が難しい。そのために、ドアが全閉位置に近づいた場合には近接検知を実行しないようにしている。
そして、上述した判定回路29の判定結果(近接検知出力とタッチ検知出力)は、電動スライドドアの制御回路50において、例えば次のように利用される。即ち、静電容量型近接センサとしての、近接検知が問題なく可能な近接検知領域(例えば、図8に示すようにセンサ出力の飽和が起きない範囲、或いは、既述した機構的ガタなどによる誤検知発生が生じない、より限定された範囲)においては、前記近接検知出力がオンになると挟み込みが発生した(或いは挟み込みの恐れがある)として挟み込み防止動作を実行する。また、図8に示すように、上記近接検知領域を含む全範囲において、前記タッチ検知出力がオンになると挟み込みが発生した(或いは挟み込みの恐れがある)として挟み込み防止動作を実行する。
なお、制御回路50のCPUを含むマイクロコンピュータに、センサ出力TP7の信号(図示省略したD/Aコンバータでデジタル化したもの)を入力し、制御回路50の制御処理に利用するようにしてもよい。
以上説明した静電容量センサよりなる挟み込み検知装置であると、次のような効果が得られる。
(1)車両ドアの湾曲した開閉端部に沿うように検出エリアを配置することができる(即ち、不感帯をなくすことができる)とともに、シールド電極Sによって指向性を開閉端部に接近する方向だけに制限することが可能で、誤動作の可能性が低い。
(2)また本センサは、検出電極やシールド電極やグランド電極を含めて本体全体が可撓体で構成されているため、本体が全体的に可撓性を有している。このため、取り付け箇所(ドア端)の形状に合わせて湾曲させた形状に予め成形しておく必要は、必ずしも無く、また各種形状の取り付け箇所に組立現場で柔軟に適合させて取り付けること(現場合わせ)が可能であり、部品の共用化や、このセンサを取り付ける製品(この場合、車両)の生産性向上が図れる。
(3)近接検知領域においては、対象物である人体等の誘電体を非接触で検知できるので、挟み込み又は挟み込み発生の恐れを早期に判断し、挟み込み荷重をほとんど生じることなく、挟み込み防止動作(開閉体の閉動作の停止、或いはさらに所定量の開動作)を実行可能である。
(4)差分電荷転送型の静電容量センサを使用しているので、ノイズに強く高感度な検知が可能である。
(5)静電容量型近接センサとして良好に検出可能な状態(上述した近接検知領域にスライドドアが位置する状態)では、例えば物体が接近したと判定回路29で判定したとき(近接検知出力がオンとなったとき)に、制御回路50で挟み込みが生じたと判定して挟み込み防止動作を実行するようにすれば、挟み込み防止動作が感圧スイッチを使用した従来よりも低い荷重で早く実行できる。また、例えば全範囲において、物体が接触したと判定回路29で判定したとき(タッチ検知出力がオンとなったとき)に、制御回路50で必ず挟み込みが生じたと判定して挟み込み防止動作を実行するようにすれば、静電容量型近接センサとして良好に検出困難な状態(上述した近接検知領域以外にスライドドアが位置する状態)であっても、上記タッチ検知によって誤動作なく的確に挟み込み防止動作が実現できる。また、上記タッチ検知によって、物体がプラスチックなどの低誘電体であっても検知して挟み込み防止動作を確実に実行できるようになる。つまり、本例のセンサを使用した開閉体挟み込み検知装置によれば、タッチセンサ方式の利点と静電容量型近接センサ方式の利点を併せ持つ挟み込み検知装置であって、しかも装置構成は、静電容量型近接センサ方式と同程度の簡素な構成の装置が実現できる。
(6)また本センサは、物体の接触によって検出方向から押されて変形することにより、グランド電極Gとシールド電極Sが相互に接触して物体の接触が検出可能となる構成である。これにより、物体の接触が検出可能となるため、断線に対して、検出の信頼性が向上する。例えば、検出電極Aや検出電極Bが断線しても、グランド電極Gとシールド電極Sの接触によって、物体の接触を検出可能だからである。
(7)また本例では、各検出電極A,Bやグランド電極G及びシールド電極Sの内部に、各電極を構成する可撓体よりも電気抵抗の小さい材料よりなる導線4〜7を、当該センサの長手方向に沿って配設し、これら導線の設置位置を、検出方向と直交する平面での曲げに対する当該センサの中立面付近に設定した。このため、まず第1に、各電極の抵抗分布を低減することができる。一般的に導電性ゴムなど導電性材料は金属導線などに比べて抵抗値が高いため、変調電気駆動した場合その抵抗値の影響で波形がなまってしまい、給電点の近くと遠くでは検知性能に差が出来てしまう。特に長尺になった場合はこの悪影響が大きい。しかし、上述したように導線を設ければ、全体的に抵抗値を下げて、このような弊害を解消できる利点がある。次いで第2に、給電又は信号取り出しのためのケーブルとの接続(検出回路側との接続)が、上記導線を介して容易に可能となる利点がある。
また、上記導線が中立面付近に設置されていることによって、次の効果が得られる。即ち、上記導線が十分な伸縮性を有さない材料よりなる場合であっても、上記曲げによって上記導線に加わる応力はゼロ又は僅かであるため、上記曲げがストレスなく行い易いという本センサの特性を維持することができ、ドア端などの形状に合わせて湾曲させて本センサを取り付けることの容易性を高く維持できる。
(8)また本例のセンサは、表面に撥水加工又は/及び撥油加工が施されている。このため、水分又は油分による誤作動の発生可能性を低減できる効果がある。発明者らの研究によれば、例えば、静電容量センサ(検出回路を除くセンサ本体部分)の検出面を横断するように水滴等が連続して付着すると、物体(誘電体)が接近していないにもかかわらず、センサ出力が変化して、物体が接近していると誤判定してしまうという現象がある。本態様によれば、水滴等の連続する付着が阻止されるので、このような誤作動が起き難くなる。
(9)また本例のセンサは、各検出電極A,B間や各検出電極A,Bとシールド電極間に低誘電率絶縁材2が介在している(各検出電極A,B間や各検出電極A,Bとシールド電極間に空間が無い構成となっている)。このため、各検出電極A,B相互や、各検出電極A,Bとシールド電極を接触させて、物体の接触を検出するために、それらの間に空間が設けられている構成に比較して、次のような利点がある。
即ち、前述したような電極間の空間があると、各電極の長期的なヘタリ(永久変形)等によって各検出電極A,B相互の間隔や、各検出電極A,Bとシールド電極の間隔が、経時的に変化して、性能(静電容量センサとしての検出能力)が変化する恐れがある。また、各検出電極A,B相互間や、各検出電極A,Bとシールド電極の間に、異物や湿気(水)が侵入して、やはり静電容量センサとしての検出能力が変化する恐れがあるという問題がある。
しかし本例のセンサであると、上述した空間が無いので、上述したヘタリ等や異物等の侵入が起こらず、上記問題が確実に防止できるという利点がある。
(a)は静電容量センサのセンサ本体の内部構成を示す図であり、(b)はセンサ本体の作動状態を示す図である。 (a)はセンサ本体の全体を示す斜視図であり、(b)はセンサ本体やその周辺構成を示す図である。 センサ本体の内部構成と取付構造を示す図である。 センサ本体を取り付けた車両を示す斜視図である。 本例の静電容量センサを含む挟み込み検知装置(検出回路等含む)の概略を示すブロック図である。 検出回路(平滑回路まで)の具体例を示す回路図である。 検出回路(平滑回路以降)と判定回路の具体例を示す回路図である。 近接検知領域とタッチ検知領域を説明する図である。 検出回路の動作を説明するタイミングチャートである。 検出回路の動作を説明するデータ例を示す図である。
符号の説明
1 センサ本体
2 低誘電率絶縁材(非導電性部材)
10 スライドドア(開閉体)
S シールド電極
G グランド電極(接触検知用電極)
A 検出電極
B 検出電極

Claims (4)

  1. 静電容量の変化を検出するコード型のセンサであって、
    静電容量の変化を検出するための複数の検出電極と、静電容量の検出範囲を制限するために、前記複数の検出電極を取り囲み、検出方向に開口部を設けたシールド電極と、接触検知のための接触検知用電極とを、当該センサの長手方向に沿って配設し、
    前記検出電極を、前記シールド電極内の開口部に近い位置と、前記シールド電極内の開口部から遠い位置とに配設し、
    前記接触検知用電極を、前記シールド電極の検出方向に対する裏側に配設し、
    前記検出電極相互、及び前記検出電極と前記シールド電極が、間隔をおいて離れた状態に維持されるように一体に連結されるとともに、前記シールド電極と前記接触検知用電極が、自然状態においては間隔をおいて離れた状態に維持され、当該センサが物体の接触によって検出方向から押されると、前記シールド電極と前記接触検知用電極が、相互に接触することを特徴とする静電容量センサ。
  2. 前記接触検知用電極が、グランド電極として機能することを特徴とする請求項1記載の静電容量センサ。
  3. 前記検出電極とシールド電極が非導電性部材で保持されて一体に構成されていることを特徴とする請求項1又は2に記載の静電容量センサ。
  4. 前記検出電極、シールド電極、及び接触検知用電極が非導電性部材で保持されて一体に構成され、変形できるよう構成されていることを特徴とする請求項1又は2に記載の静電容量センサ。
JP2007038739A 2007-02-20 2007-02-20 静電容量センサ Pending JP2008203055A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007038739A JP2008203055A (ja) 2007-02-20 2007-02-20 静電容量センサ
US12/034,522 US20080211519A1 (en) 2007-02-20 2008-02-20 Capacitance sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038739A JP2008203055A (ja) 2007-02-20 2007-02-20 静電容量センサ

Publications (1)

Publication Number Publication Date
JP2008203055A true JP2008203055A (ja) 2008-09-04

Family

ID=39732656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038739A Pending JP2008203055A (ja) 2007-02-20 2007-02-20 静電容量センサ

Country Status (2)

Country Link
US (1) US20080211519A1 (ja)
JP (1) JP2008203055A (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117174A (ja) * 2008-11-11 2010-05-27 Fujikura Ltd 位置検出装置
JP2010185806A (ja) * 2009-02-13 2010-08-26 Toyoda Gosei Co Ltd 長尺センサ
JP2011054289A (ja) * 2009-08-31 2011-03-17 Toyoda Gosei Co Ltd 長尺センサ
JP2011059822A (ja) * 2009-09-07 2011-03-24 Sony Corp センサ装置及び情報処理装置
JP2012227906A (ja) * 2011-04-21 2012-11-15 Silicon Works Co Ltd タッチ感知回路
US20140277825A1 (en) * 2013-03-12 2014-09-18 Audi Ag Vehicle signal lever proximity sensing for lane change intention detection with following recommendation to driver
CN104990650A (zh) * 2015-08-03 2015-10-21 吉林师范大学 一种多方向性电容式滑觉传感器
WO2020080127A1 (ja) * 2018-10-19 2020-04-23 ソニー株式会社 センサ、積層型センサよび電子機器
JP2020522708A (ja) * 2017-06-06 2020-07-30 インターリンク エレクトロニクス,インコーポレイテッド マルチモーダルセンシングトランスデューサ
CN114450560A (zh) * 2019-10-03 2022-05-06 本田技研工业株式会社 静电电容型检知传感器、静电电容型检知传感器模块以及使用静电电容型检知传感器的状态判定方法

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008063366B4 (de) * 2008-12-30 2022-04-28 Huf Hülsbeck & Fürst Gmbh & Co. Kg Einrichtung zum berührungslosen Betätigen einer Heckklappe eines Kraftfahrzeugs sowie Verfahren zum Betätigen einer Heckklappe eines Kraftfahrzeuges und Kraftfahrzeug
US8552746B2 (en) 2010-12-22 2013-10-08 Visteon Global Technologies, Inc. Proximity sensor including a multilayer elastomer assembly
DE102011018364A1 (de) * 2011-04-01 2012-10-04 Oerlikon Trading Ag, Trübbach Näherungssensor
US10112556B2 (en) 2011-11-03 2018-10-30 Ford Global Technologies, Llc Proximity switch having wrong touch adaptive learning and method
DE102011121775B3 (de) 2011-12-21 2013-01-31 Brose Fahrzeugteile Gmbh & Co. Kg, Hallstadt Steuersystem
DE112013001251T5 (de) * 2012-03-02 2014-11-27 Tokai Rubber Industries, Ltd. Hybridsensor
US9831870B2 (en) 2012-04-11 2017-11-28 Ford Global Technologies, Llc Proximity switch assembly and method of tuning same
US9568527B2 (en) 2012-04-11 2017-02-14 Ford Global Technologies, Llc Proximity switch assembly and activation method having virtual button mode
US9944237B2 (en) 2012-04-11 2018-04-17 Ford Global Technologies, Llc Proximity switch assembly with signal drift rejection and method
US9559688B2 (en) 2012-04-11 2017-01-31 Ford Global Technologies, Llc Proximity switch assembly having pliable surface and depression
US9531379B2 (en) 2012-04-11 2016-12-27 Ford Global Technologies, Llc Proximity switch assembly having groove between adjacent proximity sensors
US9520875B2 (en) * 2012-04-11 2016-12-13 Ford Global Technologies, Llc Pliable proximity switch assembly and activation method
US9660644B2 (en) 2012-04-11 2017-05-23 Ford Global Technologies, Llc Proximity switch assembly and activation method
US8922340B2 (en) 2012-09-11 2014-12-30 Ford Global Technologies, Llc Proximity switch based door latch release
DE102014218535A1 (de) * 2014-09-16 2016-03-17 Robert Bosch Gmbh Kapazitiver Sensor
US10038443B2 (en) 2014-10-20 2018-07-31 Ford Global Technologies, Llc Directional proximity switch assembly
US9654103B2 (en) 2015-03-18 2017-05-16 Ford Global Technologies, Llc Proximity switch assembly having haptic feedback and method
US9548733B2 (en) 2015-05-20 2017-01-17 Ford Global Technologies, Llc Proximity sensor assembly having interleaved electrode configuration
US10145165B2 (en) 2015-07-29 2018-12-04 Ford Global Technologies, Llc Programmable door power assist
US9879465B2 (en) 2015-07-29 2018-01-30 Ford Global Technologies, Llc Programmable door power assist
US9777528B2 (en) 2015-07-29 2017-10-03 Ford Global Technologies, Inc. Object detection and method for vehicle door assist system
US9818246B2 (en) 2015-07-29 2017-11-14 Ford Global Technologies, Llc System and method for gesture-based control of a vehicle door
US10443287B2 (en) 2015-07-29 2019-10-15 Ford Global Technologies, Llc Door position sensor and system for a vehicle
US10570656B2 (en) 2015-07-29 2020-02-25 Ford Global Technologies, Llc Magnetic object detection for vehicle door assist system
US9676256B2 (en) 2015-07-29 2017-06-13 Ford Global Technologies, Llc Power assist device for a vehicle door
US9834974B2 (en) 2015-07-29 2017-12-05 Ford Global Technologies, Llc Automotive door power assist
US9797178B2 (en) 2015-07-29 2017-10-24 Ford Global Technologies, Llc Seal based object detection for vehicle door assist system
US9890576B2 (en) 2015-07-29 2018-02-13 Ford Global Technologies, Llc Active door operation based on voice commands
US10030431B2 (en) 2015-07-29 2018-07-24 Ford Global Technologies, Llc Automotive door power assist
US10301863B2 (en) 2015-09-14 2019-05-28 Ford Global Technologies, Llc Mounting and aligning a vehicle side door motor within the current bill of process
DE102015119701A1 (de) * 2015-11-15 2017-05-18 Brose Fahrzeugteile Gmbh & Co. Kommanditgesellschaft, Bamberg Verfahren für den Betrieb einer kapazitiven Sensoranordnung eines Kraftfahrzeugs
US9813541B2 (en) 2016-02-29 2017-11-07 Ford Global Technologies, Llc Mobile device control for powered door
US10161175B2 (en) 2016-02-29 2018-12-25 Ford Global Technologies, Llc Moving object detection for power door system
US10151132B2 (en) 2016-02-29 2018-12-11 Ford Global Technologies, Llc Power Management for vehicle door system
US10000961B2 (en) 2016-02-29 2018-06-19 Ford Global Technologies, Llc Temperature control for powered vehicle doors
JP6644985B2 (ja) * 2016-07-14 2020-02-12 三井金属アクト株式会社 開閉システム
EP3287585A1 (en) * 2016-08-22 2018-02-28 Captron Electronic GmbH Capacitive jam protection
US10392849B2 (en) 2017-01-18 2019-08-27 Ford Global Technologies, Llc Assembly and method to slow down and gently close door
DE102018131856A1 (de) * 2018-12-12 2020-06-18 Huf Hülsbeck & Fürst Gmbh & Co. Kg Anordnung für ein Fahrzeug
US11365578B2 (en) 2019-08-29 2022-06-21 Ford Global Technologies, Llc Powered hinge assembly for vehicle doors

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6700393B2 (en) * 2001-10-17 2004-03-02 Delphi Technologies, Inc. Capacitive sensor assembly for use in a non-contact obstacle detection system
US7215529B2 (en) * 2003-08-19 2007-05-08 Schlegel Corporation Capacitive sensor having flexible polymeric conductors
US7116117B2 (en) * 2004-02-16 2006-10-03 Honda Motor Co., Ltd. Capacitive sensor
JP3956369B2 (ja) * 2004-02-16 2007-08-08 本田技研工業株式会社 静電容量型センサ

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010117174A (ja) * 2008-11-11 2010-05-27 Fujikura Ltd 位置検出装置
US8547116B2 (en) 2008-11-11 2013-10-01 Fujikura Ltd. Position detector
JP2010185806A (ja) * 2009-02-13 2010-08-26 Toyoda Gosei Co Ltd 長尺センサ
JP2011054289A (ja) * 2009-08-31 2011-03-17 Toyoda Gosei Co Ltd 長尺センサ
JP2011059822A (ja) * 2009-09-07 2011-03-24 Sony Corp センサ装置及び情報処理装置
JP2012227906A (ja) * 2011-04-21 2012-11-15 Silicon Works Co Ltd タッチ感知回路
US20140277825A1 (en) * 2013-03-12 2014-09-18 Audi Ag Vehicle signal lever proximity sensing for lane change intention detection with following recommendation to driver
US8989916B2 (en) * 2013-03-12 2015-03-24 Volkswagen Ag Vehicle signal lever proximity sensing for lane change intention detection with following recommendation to driver
CN104990650A (zh) * 2015-08-03 2015-10-21 吉林师范大学 一种多方向性电容式滑觉传感器
JP2020522708A (ja) * 2017-06-06 2020-07-30 インターリンク エレクトロニクス,インコーポレイテッド マルチモーダルセンシングトランスデューサ
WO2020080127A1 (ja) * 2018-10-19 2020-04-23 ソニー株式会社 センサ、積層型センサよび電子機器
JPWO2020080127A1 (ja) * 2018-10-19 2021-09-09 ソニーグループ株式会社 センサ、積層型センサよび電子機器
JP7355029B2 (ja) 2018-10-19 2023-10-03 ソニーグループ株式会社 センサ、積層型センサよび電子機器
US11885695B2 (en) 2018-10-19 2024-01-30 Sony Corporation Sensor, stack-type sensor, and electronic device
CN114450560A (zh) * 2019-10-03 2022-05-06 本田技研工业株式会社 静电电容型检知传感器、静电电容型检知传感器模块以及使用静电电容型检知传感器的状态判定方法
CN114450560B (zh) * 2019-10-03 2024-04-30 本田技研工业株式会社 静电电容型检知传感器、静电电容型检知传感器模块以及使用静电电容型检知传感器的状态判定方法

Also Published As

Publication number Publication date
US20080211519A1 (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP2008203055A (ja) 静電容量センサ
US7046129B2 (en) Device for detecting an obstacle in the opening range of a movable closure element
US7400153B2 (en) Detector with capacitance sensor for detecting object being caught by door
US6936986B2 (en) Device for sensing an obstacle in the opening range of a powered closure element for a motor vehicle
CN101142369B (zh) 开闭装置
US8334623B2 (en) Capacitive moisture independent crush protection
CN105051571A (zh) 组合电容和电感式障碍传感器
JP5431915B2 (ja) ドアの位置センサ
US20140116869A1 (en) Proximity switch assembly having ground layer
CN215449618U (zh) 车身零件和机动车辆
JP2004257788A (ja) 物体検知センサ及び開閉体挟み込み検知装置
JP2009244008A (ja) センサヘッド
JP2009250857A (ja) 静電容量センサ
CN107107870B (zh) 用于非碰触式地操作能调节的车辆部件的装置和车辆
WO2017038523A1 (ja) 静電検出装置
JP2009085961A (ja) 物体検知センサ及び開閉体挟み込み検知装置
JP5138484B2 (ja) 挟み込み検出装置
KR20230026136A (ko) 커패시턴스 변화를 이용한 끼임 방지 장치
US10461746B2 (en) Proximity switch assembly and method therefor
KR20170050420A (ko) 테일 게이트 스위치 및 그 구동 방법
CN110036174B (zh) 用于机动车辆打开件的传感器类型的防夹设备
JP2008275643A (ja) 開閉体挟み込み検知装置
JP2023551100A (ja) 非接触式挟み込み防止装置
US11693142B2 (en) Water intrusion detector for a touch sensor device
KR102622875B1 (ko) 비접촉식 인체감지 센서를 이용한 안티핀치 시스템