JP2008202611A - Groove-fitting constant velocity joint - Google Patents

Groove-fitting constant velocity joint Download PDF

Info

Publication number
JP2008202611A
JP2008202611A JP2007035849A JP2007035849A JP2008202611A JP 2008202611 A JP2008202611 A JP 2008202611A JP 2007035849 A JP2007035849 A JP 2007035849A JP 2007035849 A JP2007035849 A JP 2007035849A JP 2008202611 A JP2008202611 A JP 2008202611A
Authority
JP
Japan
Prior art keywords
shaft
driven
center
groove
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007035849A
Other languages
Japanese (ja)
Inventor
Ryojiro Abe
亮次郎 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASTACK KK
Original Assignee
ASTACK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASTACK KK filed Critical ASTACK KK
Priority to JP2007035849A priority Critical patent/JP2008202611A/en
Publication of JP2008202611A publication Critical patent/JP2008202611A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost groove-fitting constant velocity joint of simple structure capable of reducing the location interval between devices in comparison with a propeller shaft mechanism using a pair of universal joints and a spline yoke or a constant velocity drive shaft mechanism conventionally used to transmit constant velocity rolling force between devices, of which shaft center position is irregularly changed in a direction at a right angle against the shaft, in the case of transmitting constant velocity rolling force between devices wherein the shaft centers of a driving shaft and a driven shaft are offset in a direction at a right angle against the shaft. <P>SOLUTION: Bar-like projections 4 and 8 are provided in one end of each of shafts 2 and 10 on a drive side and a driven side for transmitting rotating power between a driving and a driven devices, and recessed grooves 5 wherein the projections 4 and 8 of the driving and driven shafts 2 and 10 are fitted to be slid, crossing at a right angle against each other at the center of one plate 16 in the surface and the back surface thereof. Each of the recessed parts 5 of the surface and the back surface of the plate are fitted in the projections 4 and 8 of the shaft of the driving and driven devices facing each other so as to form joint structure for transmitting constant velocity rolling force between the devices. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、駆動及び被駆動装置間で回転動力を伝達するとき、各装置の駆動と被駆動の軸芯位置が異なる場合、又は各装置間の軸芯位置に変化が生じる場合や変化させることを必要とする場合に、各装置間に等速の回転動力伝達する機構に関するものである。 In the present invention, when rotational power is transmitted between a drive and a driven device, the drive and driven shaft positions of each device are different, or the shaft position between the devices changes or changes. The present invention relates to a mechanism for transmitting rotational power at a constant speed between the devices.

代表的な装置で、自動車の回転動力伝達機構の等速ドライブシャフトやプロペラシャフトのように、駆動及び被駆動装置の軸芯位置が同一位置でない、又は回転動力伝達中に互いの軸芯位置が軸延直方向の直角方向に不定的に変化する等の各装置間に等速回転動力を伝達するため、一対の自在続手を装着したプロペラシャフト等や等速ドライブシャフトで回転動力を伝達している。 This is a typical device, such as the constant-speed drive shaft and propeller shaft of a rotational power transmission mechanism of an automobile. In order to transmit constant-speed rotational power between devices such as indefinite changes in the direction perpendicular to the axis extension direction, the rotational power is transmitted by a propeller shaft equipped with a pair of universal joints or a constant-speed drive shaft. ing.

(ア)等速ドライブシャフトやプロペラシャフトを構成するために高精度な部品を多数組み 合わせた一対の自在続手を必要とする。
(イ)等速ドライブシャフトやプロペラシャフトで回転動力伝達するとき、駆動及び被駆動 の各装置間の軸芯位置に変化が生じる場合各々装置の設置間距離に伸縮が伴うため、 その伸縮を吸収するスプラインヨーク等が必要となり、等速ドライブシャフトやプロ ペラシャフト機構の長さは、一対の自在続手の大きさ分とスプラインヨーク長さ分を 必要とする。
(ウ)本発明は、上記(ア)の一対の自在続手の省略、及び、上記(イ)のスプラインヨークの 省略、並びに、駆動及び被駆動装置の最小設置間隔の縮小等の問題点を解決するため なされたものである。
(A) In order to construct a constant-speed drive shaft or propeller shaft, a pair of universal joints that combine many high-precision parts is required.
(B) When rotational power is transmitted using a constant-speed drive shaft or propeller shaft, if there is a change in the axial center position between the driven and driven devices, the distance between the devices will be expanded and contracted. A spline yoke is required, and the length of the constant-speed drive shaft and propeller shaft mechanism requires the size of a pair of universal joints and the length of the spline yoke.
(C) The present invention has problems such as omission of the pair of universal joints of (A), omission of the spline yoke of (A), and reduction of the minimum installation interval of the driving and driven devices. It was made to solve.

(ア)図1に示すように、円形の板3に角棒状の突起4を設けて駆動軸2の被駆動側先端に 結合する。
(イ)上記(ア)同様、円形の板9に角棒状の突起8を設けて被駆動軸10の駆動側先端に結合 する。
(ウ)円形の板スライドプレート6の片面に、溝5を駆動軸2の突起4とスライド嵌合する ように設ける。
(エ)円形の板スライドプレート6の上記(ウ)反面には溝7を被駆動軸10の突起8とスライ ド嵌合するように、かつ、上記(ウ)の溝5と互いが中央で直角に交差するように設け る。
(オ)駆動軸2の突起4に、スライドプレート6の溝5を嵌合させ、スライドプレート6の 溝7に被駆動軸10の突起8を嵌合させて溝嵌合等速ジョイントを構成する。
(カ)上記(オ)の構成で、駆動軸2を回転すると、回転はスライドプレート6を介して被駆 動軸10を回転する。
(キ)溝嵌合等速ジョイントが駆動装置1から被駆動装置11に回転動力伝達中、駆動軸2と 被駆動軸10の互いの軸芯距離を軸延直方向の角方向に移動するとき、スライドプレー ト6の溝5とスライドプレート6の溝7が各々直角に交差するように設けてあるため 、入力軸2の突起4とスライドプレート6の溝5及び被駆動軸10の突起8とスライド プレート6の溝7とがスライドし、スライドプレート6が回転移動しながら等速の回 転動力が伝達される。
(ク)駆動軸2の突起4と被駆動軸10の突起8又はスライドプレート6の溝5と溝7の長さ を大きく作製することで、駆動軸2と被駆動軸10の互いの軸芯間の移動可能距離を大 きく設定することができる。
(A) As shown in FIG. 1, a square plate-like protrusion 4 is provided on a circular plate 3 and coupled to the driven-side tip of the drive shaft 2.
(A) As in (A) above, a square bar-like protrusion 8 is provided on the circular plate 9 and coupled to the driving-side tip of the driven shaft 10.
(C) A groove 5 is provided on one surface of the circular plate slide plate 6 so as to be slidably fitted with the protrusion 4 of the drive shaft 2.
(D) The groove 7 is slide-fitted with the projection 8 of the driven shaft 10 on the other side of the circular plate slide plate 6 and the groove 5 of the above (c) is at the center. Provide to intersect at right angles.
(E) The groove 5 of the slide plate 6 is fitted to the protrusion 4 of the drive shaft 2, and the protrusion 8 of the driven shaft 10 is fitted to the groove 7 of the slide plate 6 to constitute a groove fitting constant velocity joint. .
(F) With the configuration of (v) above, when the drive shaft 2 is rotated, the rotation rotates the driven shaft 10 via the slide plate 6.
(G) When the groove-fitting constant velocity joint moves rotational power from the driving device 1 to the driven device 11 and moves the axial distance between the driving shaft 2 and the driven shaft 10 in the angular direction of the axial extension direction. Since the groove 5 of the slide plate 6 and the groove 7 of the slide plate 6 intersect each other at right angles, the protrusion 4 of the input shaft 2, the groove 5 of the slide plate 6 and the protrusion 8 of the driven shaft 10 are provided. The groove 7 of the slide plate 6 slides, and constant speed rotational power is transmitted while the slide plate 6 rotates and moves.
(H) By making the protrusions 4 of the drive shaft 2 and the protrusions 8 of the driven shaft 10 or the grooves 5 and 7 of the slide plate 6 large, the axial centers of the drive shaft 2 and the driven shaft 10 are mutually increased. The distance that can be moved between can be set large.

(ア)当発明の溝嵌合等速ジョイントは極めて簡易な構造で駆動軸2と被駆動軸10の軸芯位 置が異なる装置間を等速の回転動力伝達ができるため、同じ用途に用いられるプロペ ラシャフト機構や等速ドライブシャフト機構と比較すると、高精度な部品を多数組み 合わせた一対の自在続手機構とスプラインヨーク等が不要になる。
(イ)溝嵌合等速ジョイントは、従来のプロペラシャフト機構や等速ドライブシャフトと比 較して構造が簡易であり制作費が廉価である。
(ウ)駆動及び被駆動装置間の設置間隔を小さくできるため機械全体の構成が小型化できる 。
(エ)溝嵌合等速ジョイントは、制作費の廉価性を活かして、回転・回動・遥動等の機能を 伴う玩具等に採用することも有効である。
(オ)溝嵌合等速ジョイントは、前記(ウ)の通り駆動及び被駆動装置との間隔が小さい特質 、及び、各軸芯間距離を随意にコントロールできる特性を活かして、人型ロボットの 肩間接や首関節等の様な動作に採用することも有効である。
(カ)図(6)と(0010)に記載した、回転ホイール偏芯回転機構は、溝嵌合等速ジョイン トを活用することによって、従来のプロペラシャフト機構や等速ドライブシャフトで は不可能なことを実現するものであり、回転軸に設けた回転軸と一体で回転する他の 回転体の回転中心位置を随意にコントロールできるため、この特性を活かして多様な 用途に応用できる。
(キ)上記(カ)の回転ホイール偏芯回転機構は、一回転軸に回転ホイールを数個連設可能で あり、キャタピラーやコンベアーベルト等を高精度・高効率に駆動する等の用途に有 効である。
(A) The groove-fitting constant velocity joint of the present invention has an extremely simple structure and can transmit rotational power at a constant speed between devices with different shaft center positions of the drive shaft 2 and the driven shaft 10, so that it can be used for the same application. Compared to the propeller shaft mechanism and constant-speed drive shaft mechanism, a pair of universal joint mechanisms and spline yokes that combine many high-precision parts become unnecessary.
(B) The groove-fitting constant velocity joint has a simpler structure and lower production costs compared to the conventional propeller shaft mechanism and constant velocity drive shaft.
(C) Since the installation interval between the drive and the driven device can be reduced, the configuration of the entire machine can be reduced in size.
(D) Groove-fitting constant velocity joints are also effective for use in toys that have functions such as rotation, rotation, and swing, taking advantage of the low cost of production.
(E) As shown in (c), the groove-fitting constant velocity joint is characterized by the small distance between the driven and driven devices, and the ability to arbitrarily control the distance between the shafts. It is also effective to adopt it for operations such as shoulder indirect and neck joints.
(F) The rotating wheel eccentric rotation mechanism described in FIGS. 6 and 0010 is impossible with the conventional propeller shaft mechanism and constant speed drive shaft by utilizing the groove fitting constant speed joint. This makes it possible to arbitrarily control the position of the center of rotation of another rotating body that rotates together with the rotating shaft provided on the rotating shaft, making it possible to apply this characteristic to a variety of applications.
(G) The rotating wheel eccentric rotation mechanism of (F) above can be connected to several rotating wheels on a single rotating shaft, and is useful for driving caterpillars, conveyor belts, etc. with high accuracy and high efficiency. It is effective.

(ア)以下、本発明の実施の形態を説明する、図1は溝嵌合等速ジョイントを分解した各部 品構成図である。
(イ)図1の駆動軸2は被駆動軸端に突起4を有する円板3を直結してあり、被駆動軸10の 駆動軸側端にも突起8を有する円板9を直結してある。
(ウ)スライドプレート6の駆動側面には、駆動軸2の突起4にスライド嵌合する5溝と、 反対の被駆動側面には被駆動軸10の突起8にスライド嵌合する溝7が、スライドプレ ート6の中心において互いに直角に交差するように設けてある。
(エ)駆動軸の突起4とスライドプレート6の溝5、及び、被駆動軸の突起8とスライドプ レート6の溝7の材質や構造は、互いの摩擦係数が小さい材質及び構造にし、潤滑と 防塵に配慮すること。
(オ)駆動軸の突起4と被駆動軸10の突起8の高さと幅、それらに勘合するスライドプレー ト6の溝5と同じく溝7の深さと幅は伝達トルクを考慮した大きさに設定すること。
(カ)図2の図(A)は組み付け状態の上斜視図であり、図(B)は下斜視図であり、図(C)は 図(C)の斜視図の状態から駆動同軸2と被駆動軸10の軸芯間を距離N水平移動した図 である、尚、各図の駆動側の板3と被駆動側の板9の大きさの違いは、図示表現し易 すくするためであり実用上の大きさは同じでよい。
(A) Hereinafter, embodiments of the present invention will be described. FIG. 1 is an exploded view of each part of a groove fitting constant velocity joint.
(A) The drive shaft 2 in FIG. 1 has a disk 3 having a protrusion 4 directly connected to the driven shaft end, and a disk 9 having a protrusion 8 directly connected to the drive shaft side end of the driven shaft 10. is there.
(C) On the driving side surface of the slide plate 6, there are five grooves that are slidably fitted on the protrusions 4 of the driving shaft 2, and on the opposite driven side surface, there are grooves 7 that are slidably fitted on the protrusions 8 of the driven shaft 10. In the center of the slide plate 6, they are provided so as to cross each other at right angles.
(D) The material and structure of the drive shaft projection 4 and the groove 5 of the slide plate 6, and the driven shaft projection 8 and the groove 7 of the slide plate 6 are made of materials and structures having a small friction coefficient, and are lubricated. Consider dust prevention.
(E) The height and width of the projection 4 of the drive shaft and the projection 8 of the driven shaft 10 and the depth and width of the groove 7 are set to a size that takes into account the transmission torque, as well as the groove 5 of the slide plate 6 fitted to them. To do.
2A is a top perspective view of the assembled state, FIG. 2B is a bottom perspective view, and FIG. 2C is a perspective view of the drive coaxial 2 from the perspective view of FIG. It is a diagram in which the distance between the shaft centers of the driven shafts 10 is moved horizontally by a distance N. Note that the difference in size between the driving side plate 3 and the driven side plate 9 in each drawing is for ease of illustration and representation. Yes, the practical size can be the same.

(ア)図3の図(G)は被駆動軸10の移動方向を示す図であり、図3の図(A)は、溝嵌合等速ジ ョイントを駆動軸2及び被駆動軸10を同芯上に組み付けた状態から被駆動軸10を図( G)に示すX方向にN移動した時の下斜視図であり、図(A1)は図(A)を上から見た 場合の平面仮想図である。
(イ)図3の図(A1)の仮想図のICは駆動軸芯であり、UCは被駆動軸芯であり、SPC はスライドプレート6の中心であって、Rは駆動軸2の回転が被駆動軸10に伝達され るときスライドプレート6の中心SPCが描く仮想円である。
(ウ)図3の図(B)・図(C)・図(D)・図(E)は、図(A)を基として駆動軸2が45°回転 する毎に駆動軸2がスライドプレート6を介し被駆動軸10に回転を伝達する様子を示 した下斜視図である。
(エ)図3の図(B1)は図(B)に、図(C1)は図(C)に、図(D1)は図(D)に、図(E1)は図( E)に各々対応する上から見た平面仮想図である。
(オ)以降(カ)から(ス)まで、駆動軸2の回転が軸芯位置の異なる被駆動軸10に180°回転 伝達する過程について説明する。
(カ)スライドプレート6の表裏の溝5と溝7は互いが中心で直角になるように設けてある 。
(キ)図3の図(A)は、駆動軸芯ICから被駆動軸芯UCを図(G)に示すX方向にN移動さ せた図であり、駆動軸2の突起4は図(G)に示すY〜−Y方向であり、従って勘合す るスライドプレート6の溝5も図(G)に示すY〜−Y方向である。
(ク)図3の図(A)のスライドプレート6の被駆動側の溝7は駆動側の溝5に対して直角に 設けてあるため、被駆動軸10の突起8は溝7と同じく図(G)に示すX〜−X方向であ る。(図3)の図(A)がこの時点の下斜視図であり図(A1)がその平面仮想図である。
(ケ)図3の図(B)の45Rは、前記(キ)(ク)の状態から駆動軸2が角45°回転した図で あり、駆動軸2の突起4とスライドプレート6の溝5も角45°回転し、伴ってスラ イドプレート6の溝7と被駆動軸10の突起8も角45°回転するが、この時点でスラ イドプレート6の中心SPCは、咬み合う各凹凸間でスライドと回転をしながら駆動 軸2の突起4と被駆動軸10の突起8の交差する中心位置に重なる。(図3の図(B)がこ の時点の下斜視図であり図(B1)がその平面仮想図である。)
(コ)図3の図(C)の90Rは、前記(ケ)の状態から駆動軸2が更に角45°回転した図で あり、駆動軸2の突起4とスライドプレート6の溝5も更に角45°回転し、伴って スライドプレート6の溝7と被駆動軸10の突起8も更に角45°回転するが、この時 点でスライドプレート6の中心SPCは、咬み合う各凹凸間でスライドと回転をしな がら駆動軸2の突起4と被駆動軸10の突起8が交差する中心位置に重なる。
(この時点で、スライドプレート6はICとUCの中間を中心として180°公転し ている。図3の図(C)がこの時点の下斜視図であり図(C1)がその平面仮想図である。 )
(サ)図3の図(D)の135Rは、前記(コ)の状態から駆動軸2が更に角45°回転した図 であり、駆動軸2の突起4とスライドプレート6の溝5も更に角45°回転し、伴っ てスライドプレート6の溝7と被駆動軸10の突起8も更に角45°回転するが、この 時点でスライドプレート6の中心SPCは、咬み合う各凹凸間でスライドと回転をし ながら駆動軸2の突起4と被駆動軸10の突起8の交差する中心位置に重なる。(図3の 図(D)がこの時点の下斜視図であり図(D1)がその平面仮想図である。)
(シ)図3の図(E)の180Rは、前記(サ)の状態から駆動軸2が更に角45°回転した図であ り、駆動軸2の突起4とスライドプレート6の溝5も更に角45°回転し、伴ってス ライドプレート6の溝7と被駆動軸10の突起8も更に角45°回転するが、この時点 でスライドプレート6の中心SPCは、咬み合う各凹凸間でスライドと回転をしなが ら駆動軸2の突起4と被駆動軸10の突起8の交差する中心位置に重なる。
この時点で、スライドプレート6は駆動軸2の中心ICと被駆動軸10の中心UCの中 間を中心として1公転している。(図3の図(E)がこの時点の下斜視図であり、図(E1 )がその平面仮想図である。)
(ス)前記(カ)から(シ)のように、スライドプレート6の中心SPCは、常に駆動軸2の突 起4と被駆動軸10の突起8の交点を求めつつ、咬合する凹凸間をスライドしながら、 回転と公転をしつつ駆動軸2の回転を被駆動軸10に対して等角度(等速)で回転を伝達 する。
以上が0°から180°回転伝達するまでの説明になるが、180°から360°回転伝達ま では同様なので割愛する。
(A) FIG. 3G shows the direction of movement of the driven shaft 10, and FIG. 3A shows the groove-fitting constant velocity joint with the drive shaft 2 and the driven shaft 10. It is a bottom perspective view when the driven shaft 10 is moved N in the X direction shown in FIG. (G) from the state where it is assembled on the same core, and FIG. (A1) is a plan view when FIG. (A) is viewed from above. FIG.
(B) The virtual diagram IC in FIG. 3A1 is the drive shaft core, UC is the driven shaft core, SPC is the center of the slide plate 6, and R is the rotation of the drive shaft 2. This is a virtual circle drawn by the center SPC of the slide plate 6 when transmitted to the driven shaft 10.
(C) Figures (B), (C), (D), and (E) of FIG. 3 are based on FIG. (A), and the drive shaft 2 is moved to the slide plate every 45 degrees. 6 is a lower perspective view showing a state in which rotation is transmitted to the driven shaft 10 through 6. FIG.
(D) Figure (B1) in Figure 3 is shown in Figure (B), Figure (C1) is shown in Figure (C), Figure (D1) is shown in Figure (D), and Figure (E1) is shown in Figure (E). It is a corresponding plane virtual view seen from the top.
(E) From (f) to (c), the process of transmitting the rotation of the drive shaft 2 by 180 ° to the driven shaft 10 having a different axis position will be described.
(F) The grooves 5 and 7 on the front and back of the slide plate 6 are provided so as to be perpendicular to each other at the center.
(G) FIG. 3A is a diagram in which the driven shaft UC is moved N from the drive shaft IC in the X direction shown in FIG. The groove 5 of the slide plate 6 to be fitted is also in the Y to -Y direction shown in FIG.
(H) Since the driven-side groove 7 of the slide plate 6 in FIG. 3A is provided at right angles to the driving-side groove 5, the projection 8 of the driven shaft 10 is the same as the groove 7. It is the X to -X direction shown in (G). FIG. 3A is a lower perspective view at this time, and FIG.
(R) 45R in FIG. 3B is a view in which the drive shaft 2 is rotated by 45 ° from the state of (G) and (K), and the projection 4 of the drive shaft 2 and the groove 5 of the slide plate 6 are shown. Also, the groove 7 of the slide plate 6 and the protrusion 8 of the driven shaft 10 are also rotated by 45 °. At this point, the center SPC of the slide plate 6 is between the concaves and convexes engaged with each other. It overlaps with the center position where the projection 4 of the drive shaft 2 and the projection 8 of the driven shaft 10 intersect while rotating with the slide. (FIG. 3B is a lower perspective view at this point, and FIG. B1 is a virtual plan view thereof.)
(G) 90R in FIG. 3C is a view in which the drive shaft 2 is further rotated by 45 ° from the state of (1) above, and the protrusion 4 of the drive shaft 2 and the groove 5 of the slide plate 6 are further provided. At the same time, the groove 7 of the slide plate 6 and the protrusion 8 of the driven shaft 10 are further rotated by 45 °. At this time, the center SPC of the slide plate 6 slides between the concaves and convexes that are engaged. While rotating, the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 overlap each other at the center position.
(At this point, the slide plate 6 has revolved 180 ° centering on the middle of the IC and UC. FIG. 3C is a lower perspective view at this point, and FIG. is there. )
(S) 135R in FIG. 3D is a view in which the drive shaft 2 is further rotated by 45 ° from the state of (C), and the protrusion 4 of the drive shaft 2 and the groove 5 of the slide plate 6 are further provided. At the same time, the groove 7 of the slide plate 6 and the protrusion 8 of the driven shaft 10 are further rotated by 45 °. At this point, the center SPC of the slide plate 6 is slid between the concavo-convexities that are engaged. While rotating, it overlaps the center position where the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 intersect. (Drawing (D) in FIG. 3 is a lower perspective view at this point, and FIG. (D1) is a virtual plan view thereof.)
(G) 180R in FIG. 3E is a view in which the drive shaft 2 is further rotated by 45 ° from the state (S). The protrusion 4 of the drive shaft 2 and the groove 5 of the slide plate 6 are also shown. Further, the groove 7 of the slide plate 6 and the protrusion 8 of the driven shaft 10 are further rotated by 45 °, and at this time, the center SPC of the slide plate 6 is between the engaging irregularities. While sliding and rotating, it overlaps the center position where the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 intersect.
At this point, the slide plate 6 has made one revolution about the center between the center IC of the drive shaft 2 and the center UC of the driven shaft 10. (FIG. 3E is a lower perspective view at this time, and FIG. E1 is a virtual plan view thereof.)
(S) As described in (F) to (H) above, the center SPC of the slide plate 6 is located between the irregularities to be occluded while always obtaining the intersection of the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10. While rotating, revolving and revolving, the rotation of the drive shaft 2 is transmitted to the driven shaft 10 at an equal angle (constant speed).
The above is the explanation from 0 ° to 180 ° rotation transmission, but it is omitted from 180 ° to 360 ° rotation transmission, so it is omitted.

(ア)図4の図(G)は、図(A)の駆動軸2の中心UCを移動させる方向を示す図であり、図 4の図(A)は溝嵌合等速ジョイントを図2に示すような駆動軸2及び被駆動軸10を同 芯上に組み付けた状態から、被駆動軸10を図(G)に示すX方向にN移動した時の平面 仮想図である。
(イ)図4の図(B)は、前記(ア)の図(A)の状態から駆動軸2を回転しない状態で被駆動軸1 0を図(G)に示すY方向に距離Aスライド移動した図であり、スライドプレート6の 中心SPCが駆動軸2の突起4と被駆動軸10の突起8の交差する中心点を求めながら 回転せずにスライド移動する、この時被駆動軸10は回転しない。
(ウ)図4の図(C)は、前記(ア)の図(A)の状態から駆動軸2を回転しない状態で被駆動軸1 0を図(G)に示すX方向に更に距離Bスライド移動した図であり、スライドプレート 6の中心SPCが駆動軸2の突起4と被駆動軸10の突起8の交差する中心点を求めな がら回転せずにスライド移動する、この時被駆動軸10は回転しない。
(エ)図4の図(D)は、前記(ア)の図(A)の状態から駆動軸2を回転しない状態で被駆動軸1 0を図(G)に示す−Y方向に距離Cスライド移動した図であり、スライドプレート6 の中心SPCが駆動軸2の突起4と被駆動軸10の突起8の交差する中心点を求めなが ら回転せずにスライド移動する、この時被駆動軸10は回転しない。
(オ)図4の図(E)は、前記(ア)の図(A)の状態から駆動軸2を回転しない状態で被駆動軸1 0を図(G)に示す−X方向に距離N+Dスライド移動した図であり、スライドプレート6 の中心SPCが駆動軸2の突起4と被駆動軸10の突起8の交差する中心点を求めなが ら回転せずにスライド移動する、この時被駆動軸10は回転しない。
(カ)上記(ア)から(オ)に見るように、駆動軸2を回転しないで被駆動軸10の軸位置をスラ イド移動すると、駆動軸2と被駆動軸10には回転は生じず、スライドプレート6が駆 動軸2の突起4と被駆動軸10の突起8の交差する中心点に沿って回転はしないでスラ イド移動する。
(キ)したがって、駆動軸4から被駆動軸10に回転動力伝達中双方の軸芯間隔に変化が生じ ても上記(カ)の通りスライドプレート6のスライド移動により駆動軸2の回転は被駆 動軸10に等速で回転が伝達される。
(ク)但し、駆動軸2と被駆動軸10の間隔を大にしすぎたとき、駆動軸2の突起4とスライ ドプレート6の溝5及び被駆動軸10の突起8とスライドプレー6の溝7の嵌合長が小 さくなり嵌合部分に回転ねじれ力が集中しスライドの障害となるため、各突起と溝の 長さは駆動軸2及び被駆動軸10の芯間が最大となる距離を考慮したうえ適切に設定に する必要がある。
(A) FIG. 4G is a diagram showing the direction in which the center UC of the drive shaft 2 in FIG. A is moved, and FIG. 4A shows the groove-fitting constant velocity joint in FIG. FIG. 6 is a virtual plan view when the driven shaft 10 is moved N in the X direction shown in FIG. (G) from the state where the drive shaft 2 and the driven shaft 10 are assembled on the same core as shown in FIG.
(B) FIG. 4B shows a state in which the driven shaft 10 slides a distance A in the Y direction shown in FIG. 4G without rotating the driving shaft 2 from the state shown in FIG. In this figure, the center SPC of the slide plate 6 slides without rotating while finding the center point where the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 intersect. At this time, the driven shaft 10 Does not rotate.
(C) FIG. 4C shows a state in which the driven shaft 10 is further moved by a distance B in the X direction shown in FIG. 4G without rotating the drive shaft 2 from the state of FIG. It is a diagram of sliding movement, and the center SPC of the slide plate 6 slides without rotating while finding the center point where the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 intersect. 10 does not rotate.
(D) FIG. 4D shows the distance C in the −Y direction shown in FIG. 4G when the driven shaft 10 is not rotated from the state shown in FIG. It is a slide view, and the center SPC of the slide plate 6 slides without rotating while obtaining the center point where the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 intersect. The shaft 10 does not rotate.
(E) FIG. 4E shows the distance N in the −X direction shown in FIG. 4G when the driven shaft 10 is not rotated from the state shown in FIG. It is a + D slide movement, and the center SPC of the slide plate 6 slides without rotating while finding the center point where the protrusion 4 of the drive shaft 2 and the protrusion 8 of the driven shaft 10 intersect. The driven shaft 10 does not rotate.
(F) As seen from (a) to (e) above, if the shaft position of the driven shaft 10 is slid without rotating the drive shaft 2, the drive shaft 2 and the driven shaft 10 will not rotate. The slide plate 6 slides without rotating along the center point where the projection 4 of the drive shaft 2 and the projection 8 of the driven shaft 10 intersect.
(G) Therefore, even if the distance between the shaft centers changes during transmission of rotational power from the drive shaft 4 to the driven shaft 10, the rotation of the drive shaft 2 is driven by the sliding movement of the slide plate 6 as described above. The rotation is transmitted to the moving shaft 10 at a constant speed.
However, when the distance between the drive shaft 2 and the driven shaft 10 is too large, the protrusion 4 of the drive shaft 2 and the groove 5 of the slide plate 6 and the protrusion 8 of the driven shaft 10 and the groove of the slide play 6 are provided. 7 is shortened and the rotational torsional force is concentrated on the mating part, resulting in an obstacle to sliding. Therefore, the length of each protrusion and groove is the distance between the center of the drive shaft 2 and the driven shaft 10 is the maximum. It is necessary to set it appropriately considering the above.

(ア)図5の図(A)は当発明の溝嵌合等速ジョイント機構であり、図(aa)は当該機構で駆動 装置1と被駆動装置11間の設置オフセット間隔をNとして接続したイメージ図である 。
(イ)図5の図(B)は従来のプロペラシャフト機構Pを用いた図であり、図(bb)は当該機構 で駆動装置1と被駆動装置11間の設置オフセット間隔をNとし、プロペラシャフト機 構Pの位相角度Xを30°に接続した図である。
(ウ)図5の図(A)・図(aa)と図(B)・図(bb)を比較して、図(A)及び図(aa)の溝嵌合等速 ジョイント機構の方の構造が簡易であり、駆動装置1と被駆動装置11の各装置の設置 可能間隔がAとBの差であるC分を小さくできることが確認できる。
(A) FIG. 5A is a groove fitting constant velocity joint mechanism according to the present invention, and FIG. 5A is a diagram in which the installation offset interval between the driving device 1 and the driven device 11 is connected by N. It is an image diagram.
(A) FIG. 5B is a diagram using a conventional propeller shaft mechanism P, and FIG. 5B is a diagram in which the installation offset interval between the driving device 1 and the driven device 11 is N, and the propeller It is the figure which connected the phase angle X of the shaft mechanism P to 30 degrees.
(C) Comparing Figures (A) and (aa) in Figure 5 with Figures (B) and (bb), the groove fitting constant velocity joint mechanism in Figures (A) and (aa) It can be confirmed that the structure is simple, and the installable distance between each device of the driving device 1 and the driven device 11 can be reduced by C, which is the difference between A and B.

(ア)図(6)は溝勘合等速ジョイントを活用した、回転ホイール偏芯回転機構で、(前記(0 009)までの機構である、駆動及び被駆動軸芯が各軸の延直方向と直角方向に位置 が異なるように配置された各装置間を等速の回転動力伝達する機構とは別に)回転軸2 1に設けた回転ホイール24の回転軸芯dを回転軸21の軸芯aから随意に偏芯させた位 置で回転させる機構であり、以降これについて説明する。
(イ)図6の図(A)は、回転ホイール偏芯回転機構の構成図であり、回転軸21は入力回転軸 でありその中心をaとし、回転軸プレート22は図1を例にすれば棒状の突起を有する 板3に相当する、スライドリング23は図1を例にすればスライドプレート6に相当す る、回転ホイール24は図1を例にすれば駆動軸側の突起を有する板3に相当するもの でその中心をdとし、その回転ホイール24が回転するとき回転軸21の中心aとの偏芯 距離を調整保持するために位置調整カラーA26と位置調整カラーB25が設けてある。
(ウ)図6の各図(A)・(B)・(C)・(D)に示す位置調整カラーA26は、外径が位置調整カラ ー25の穴に回転するように組み込む大きさで中心をbとし、内径は回転軸21に回転す るように組み込む大きさで中心は各図で示すように中心位置から距離nオフセットし てあり、回動させる調整レバーA27を取付けている。
(エ)図6の各図(A)・(B)・(C)・(D)に示す位置調整カラーB25は、外径が回転ホイール 24の穴に回転するように組み込む大きさで中心をcとし、内径は位置調整カラーA26 を回転するように組み込む大きさで中心は各図で示すように中心位置cから距離nオ フセットしてあり、回動させる調整レバーB28を取付けている。
(オ)図6の図(G)は回転軸21の周囲を回転ホイール24の中心dが移動する方向を示すもの である。
(カ)図6の図(H)は、回転軸21の中心aを基準にし、回転ホイール24の回転中心dの位置 を随意に変更するために位置調整カラーA26と位置調整カラーB25を回動させる方向 を示すもので、右回転を右、左回転を左と示すものである。
(キ)図6の回転軸21と一体に回転ホイール24が偏芯位置で回転する様子の説明は前記(0 007)の説明内容と同様なので割愛する。
(ク)図6の図(B)は、回転ホイール24の中心dが回転軸21の軸芯aと同一(偏芯距離ゼロ) の位置で回転する時である、この時に位置調整カラーA26の中心bは、回転軸21の軸 芯aから図(G)に示すX方向に距離nに位置しており、位置調整カラーB25の中心c は回転軸21の軸芯aと同一位置になっている。
(ケ)図6の図(C)は、回転ホイール24の中心dが回転軸21の軸芯aから図(G)に示す−X 方向に距離n+nに位置して回転する時である、この時に位置調整カラーA26の中心 bは回転軸21の軸芯aから図(G)に示す−X方向に距離nに位置しており、位置調整 カラーB25の中心cは回転軸21の軸芯aから図(G)に示す−X方向に距離n+nに位 置している。
この時は、図(B)に示す回転軸21の軸芯aと回転ホイール24の中心dの位置が同一で ある時点から、位置調整カラーB26を図(H)に示す右又は左に180°回動した位置の 図である。
(コ)図6の図(D)は、回転ホイール24の中心dが回転軸21の軸芯aから図(G)に示すX方 向に距離n+nに位置して回転する時である、この時に位置調整カラーA26の中心b は回転軸21の軸芯aから図(G)に示すX方向に距離n移動しており、位置調整カラー A25の中心cは回転軸21の軸芯aから図(G)に示すX方向に距離n+nに位置してい る。
この時は、図(B)に示す回転軸21の軸芯aと回転ホイール24の中心dの位置が同一で ある時点から、位置調整カラーB25を図(H)に示す右又は左に180°回動した位置の 図である。
(サ)溝嵌合等速ジョイントを利用するホイール偏芯機構は、前記(ク)・(ケ)・(コ)のよう に、位置調整カラーB25と位置調整カラーA26を位置調整レバーB及び位置調整レバ ーAによって回動調整することにより回転ホイール24の回転中心位置をX・−X・Y ・−Yの各混在方向に距離はゼロからn+nの範囲で、回転軸21の軸芯aと回転ホイ ール24の中心dの偏芯位置を随意に変更可能な機構である。
(A) Figure (6) shows a rotating wheel eccentric rotation mechanism utilizing a groove-fitting constant velocity joint. (The mechanism up to (0 009), where the driving and driven shaft cores are in the straight direction of each axis. The rotating shaft 21 of the rotating wheel 24 provided on the rotating shaft 21 is separated from the shaft core of the rotating shaft 21 (in addition to the mechanism for transmitting the rotational power at a constant speed between the devices arranged at different positions in the direction perpendicular to the rotating shaft 21). The mechanism is rotated at a position arbitrarily decentered from a, and this will be described below.
(A) FIG. 6A is a configuration diagram of the rotating wheel eccentric rotation mechanism, where the rotating shaft 21 is an input rotating shaft, the center of which is a, and the rotating shaft plate 22 is illustrated in FIG. 1 corresponds to the plate 3 having rod-shaped protrusions, the slide ring 23 corresponds to the slide plate 6 in FIG. 1 as an example, and the rotary wheel 24 has a protrusion on the drive shaft side in FIG. 1 as an example. The position adjusting collar A26 and the position adjusting collar B25 are provided to adjust and maintain the eccentric distance from the center a of the rotating shaft 21 when the rotating wheel 24 rotates. .
(C) The position adjustment collar A26 shown in FIGS. 6 (A), (B), (C), and (D) is a size that is incorporated so that the outer diameter rotates in the hole of the position adjustment collar 25. The center is b, the inner diameter is a size to be assembled to rotate on the rotary shaft 21, the center is offset from the center position by a distance n as shown in each figure, and an adjustment lever A27 to be rotated is attached.
(D) The position adjustment collar B25 shown in FIGS. 6A, 6B, 6C, and 6D of FIG. 6 is a size that is incorporated so that the outer diameter rotates in the hole of the rotating wheel 24, and is centered. c, the inner diameter is a size to be incorporated so that the position adjusting collar A26 is rotated, and the center is offset n distance from the center position c as shown in each figure, and an adjusting lever B28 to be rotated is attached.
(E) FIG. 6G shows the direction in which the center d of the rotating wheel 24 moves around the rotating shaft 21.
(F) In FIG. 6H, the position adjustment collar A26 and the position adjustment collar B25 are rotated in order to arbitrarily change the position of the rotation center d of the rotation wheel 24 with the center a of the rotation shaft 21 as a reference. The direction of rotation is indicated by right rotation as right and left rotation as left.
(G) The description of how the rotating wheel 24 rotates integrally with the rotating shaft 21 in FIG. 6 is the same as that described in the above (0 007), and is therefore omitted.
(H) FIG. 6B shows the case where the center d of the rotating wheel 24 rotates at the same position as the axis a of the rotating shaft 21 (the eccentric distance is zero). The center b is located at a distance n from the axis a of the rotating shaft 21 in the X direction shown in FIG. (G), and the center c of the position adjusting collar B25 is at the same position as the axis a of the rotating shaft 21. Yes.
(C) FIG. 6C shows the time when the center d of the rotating wheel 24 rotates from the axis a of the rotating shaft 21 at a distance n + n in the −X direction shown in FIG. At this time, the center b of the position adjusting collar A26 is located at a distance n from the axis a of the rotating shaft 21 in the -X direction shown in FIG. 5G, and the center c of the position adjusting collar B25 is the axis of the rotating shaft 21. It is located at a distance n + n from the lead a in the −X direction shown in FIG.
At this time, the position adjustment collar B26 is moved 180 ° to the right or left shown in FIG. (H) from the time when the axis a of the rotating shaft 21 and the center d of the rotating wheel 24 shown in FIG. It is a figure of the rotated position.
(D) FIG. 6D is a time when the center d of the rotating wheel 24 rotates from the axis a of the rotating shaft 21 at a distance n + n in the X direction shown in FIG. At this time, the center b of the position adjusting collar A26 has moved a distance n from the axis a of the rotating shaft 21 in the X direction shown in FIG. 5G, and the center c of the position adjusting collar A25 is the axis a of the rotating shaft 21. To a distance n + n in the X direction shown in FIG.
At this time, the position adjustment collar B25 is turned 180 ° to the right or left shown in FIG. (H) from the time when the axis a of the rotary shaft 21 and the center d of the rotary wheel 24 shown in FIG. It is a figure of the rotated position.
(C) The wheel eccentricity mechanism that uses a groove-fitting constant velocity joint, the position adjustment collar B25 and the position adjustment collar A26 as described above By adjusting the rotation with the adjusting lever A, the rotation center position of the rotary wheel 24 is adjusted in the range of X, -X, Y, -Y in the range of the distance from zero to n + n. This is a mechanism that can arbitrarily change the eccentric position of the center d of the rotary wheel 24.

当発明の溝嵌合等速ジョイントの分解状態の斜視図The perspective view of the disassembled state of the groove fitting constant velocity joint of the present invention 当発明の溝嵌合等速ジョイントの組立状態の斜視図The perspective view of the assembly state of the groove fitting constant velocity joint of this invention 溝嵌合等速ジョイントの回転伝達状況説明図Explanation of rotation transmission status of grooved constant velocity joint 駆動及び被駆動軸芯間隔に変化が生じた時の説明用仮想図Virtual diagram for explanation when the drive and driven axis spacing changes 当発明の溝嵌合等速ジョイント機構と従来のプロペラシャフト機構との比較図Comparison diagram of groove fitting constant velocity joint mechanism of the present invention and conventional propeller shaft mechanism 溝嵌合等速ジョイントを活用した回転ホイール偏芯機構Rotating wheel eccentric mechanism using groove fitting constant velocity joint

符号の説明Explanation of symbols

1 駆動側装置
2 駆動軸
3 駆動軸2の先端に直結した棒状の突起を有する板
4 駆動軸先端の棒状の突起
5 駆動軸先端の突起4が嵌合しスライドするスライドプレートの溝
6 スライドプレート
7 被駆動軸先端の突起8が嵌合しスライドするスライドプレートの溝
8 被駆動軸先端の棒状の突起
9 被駆動軸10の先端に直結した棒状の突起を有する板
10 被駆動軸
11 被駆動側装置
21 回転軸
22 回転軸プレート
23 スライドリング
24 回転ホイール
25 位置調整カラーB
26 位置調整カラーA
27 調整レバーA
28 調整レバーB
IC 駆動軸の軸芯
UC 被駆動軸の軸芯
SPC スライドプレート6の中心点
R スライドプレート6が公転する時の中心点SPCが描く軌跡の仮想円
P プロペラシャフト機構図
a 回転軸21の軸芯
b 位置調整カラー26の中心
c 位置調整カラー25の中心
d 回転ホイール24の中心
n 位置調整カラー26及び位置調整カラー25の中心位置を基準にする穴の中心の偏芯 距離
DESCRIPTION OF SYMBOLS 1 Drive side apparatus 2 Drive shaft 3 The board | plate which has the rod-shaped protrusion directly connected to the front-end | tip of the drive shaft 2 The rod-shaped protrusion 5 of the front-end | tip of a drive shaft The groove | channel 6 of the slide plate which the protrusion 4 of a front-end of a drive shaft fits and slides 7 Slide plate groove 8 on which driven shaft tip projection 8 is fitted and slid 8 Rod-like projection 9 on driven shaft tip Plate having rod-like projection directly connected to the tip of driven shaft 10
10 Driven shaft
11 Driven device
21 Rotation axis
22 Rotating shaft plate
23 Slide ring
24 rotating wheel
25 Position adjustment color B
26 Position adjustment color A
27 Adjustment lever A
28 Adjustment lever B
IC Axis of driving shaft UC Axis of driven shaft SPC Center point R of slide plate 6 Virtual circle P of locus drawn by center point SPC when slide plate 6 revolves Propeller shaft mechanism diagram a Axis of rotating shaft 21 b Center of position adjusting collar 26 c Center of position adjusting collar 25 d Center of rotating wheel 24
n Eccentric distance of the center of the hole relative to the center position of the position adjustment collar 26 and position adjustment collar 25

Claims (1)

駆動側と被駆動側の各回転軸の合わせ方向端に角棒状の凸を設け、一枚の中板の表裏各面に一ずつ凹状の溝を互いが直角となるように設け、駆動及び被駆動各軸の凸が中板の各凹にスライド嵌合するようにして中板を挟み合わせて回転を伝達することにより、回転中に駆動及び被駆動軸芯間距離が軸と直角方向に不定的な変化が発生しても等速の回転動力伝達することを特徴とする、溝嵌合接続の等速ジョイント。 Square rod-shaped projections are provided at the ends of the rotating shafts on the driving side and driven side in the alignment direction, and concave grooves are provided on each of the front and back surfaces of one middle plate so that they are perpendicular to each other. The distance between the drive and driven shaft centers is indeterminate in the direction perpendicular to the shaft during rotation by sandwiching the middle plate and transmitting the rotation so that the projection of each drive shaft slides into each recess of the middle plate. Constant-velocity joint with groove-fitting connection, which transmits constant rotational power even if a change occurs.
JP2007035849A 2007-02-16 2007-02-16 Groove-fitting constant velocity joint Pending JP2008202611A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007035849A JP2008202611A (en) 2007-02-16 2007-02-16 Groove-fitting constant velocity joint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007035849A JP2008202611A (en) 2007-02-16 2007-02-16 Groove-fitting constant velocity joint

Publications (1)

Publication Number Publication Date
JP2008202611A true JP2008202611A (en) 2008-09-04

Family

ID=39780349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007035849A Pending JP2008202611A (en) 2007-02-16 2007-02-16 Groove-fitting constant velocity joint

Country Status (1)

Country Link
JP (1) JP2008202611A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790871A (en) * 2016-07-25 2019-05-21 法雷奥西门子新能源汽车(德国)有限公司 Transmit the shaft connector and manufacturing process of torque

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790871A (en) * 2016-07-25 2019-05-21 法雷奥西门子新能源汽车(德国)有限公司 Transmit the shaft connector and manufacturing process of torque

Similar Documents

Publication Publication Date Title
JP6297622B2 (en) Link actuator
US4332148A (en) Cyclic phase-change coupling
JP2008202611A (en) Groove-fitting constant velocity joint
JP2008051226A (en) Universal joint
GB637718A (en) Improvements in and relating to torque transmitting universal joints
JP2020148341A (en) Schmidt coupling
US2864246A (en) Universal joints
JPH0232491B2 (en)
JPS6331006B2 (en)
KR101648668B1 (en) Constant velocity joint apparatus
CN210100029U (en) Robot head rotating mechanism
JP2004293637A (en) Shaft coupling
JPH0481652B2 (en)
KR101289285B1 (en) Constant velocity joint and constant velocity driving shaft using thereof
CN108884916B (en) Rotation transmission device
JPS60260720A (en) Joint
JPH01261520A (en) Constant speed universal coupling
JP2004183878A (en) Rotation transmission device
JPS631057Y2 (en)
KR101927619B1 (en) Constant velocity joint
JP6335567B2 (en) Tripod type constant velocity joint
JPH02113124A (en) Torque transmission device
JP2017015195A (en) Inclined circular track type rotation amount transmission joint
GB2052681A (en) Double Universal Joint With Centering Means
KR20000065859A (en) Wide angle and constant velocity joint