JP2004293637A - Shaft coupling - Google Patents

Shaft coupling Download PDF

Info

Publication number
JP2004293637A
JP2004293637A JP2003085424A JP2003085424A JP2004293637A JP 2004293637 A JP2004293637 A JP 2004293637A JP 2003085424 A JP2003085424 A JP 2003085424A JP 2003085424 A JP2003085424 A JP 2003085424A JP 2004293637 A JP2004293637 A JP 2004293637A
Authority
JP
Japan
Prior art keywords
driven
slide
driving
rotating member
force transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003085424A
Other languages
Japanese (ja)
Inventor
Sadatomo Kuribayashi
定友 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
K Seven Co Ltd
Original Assignee
K Seven Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K Seven Co Ltd filed Critical K Seven Co Ltd
Priority to JP2003085424A priority Critical patent/JP2004293637A/en
Publication of JP2004293637A publication Critical patent/JP2004293637A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shaft coupling, of simplified structure, that can be easily manufactured, and that is capable of realizing large tolerance both for eccentricity and an angular bias. <P>SOLUTION: Slide grooves 22 and 42 in rotary members 2 and 4 on the drive side and the driven side are respectively provided with a pair of mutually facing slide inner surfaces 22a and 42a. A torque transmission member 6 has slide parts 62 and 64 to be respectively matched to the slide grooves 22 and 42 on the drive side and the driven side. They are respectively provided with a pair of slide outer surfaces 62a and 64a that are parallel to each other to be slidably applied to the slide inner surfaces 22a and 42a. They are perpendicular to each other. In the rotary members 2 and 4 on the drive side and the driven side, receiving grooves 24 and 44 are formed to respectively receive the slide parts 64 and 62 with clearance. The slide grooves 22 and 42 have same groove width, and the receiving grooves 24 and 44 have same groove width. The torque transmission member are formed spherical in both end surfaces 66 and 68. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、回転力伝達の技術分野に属するものであり、特にオルダム軸継手に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
回転力伝達系において、原動側回転軸と従動側回転軸との結合のために軸継手が利用されており、特に、原動側と従動側とで回転中心の不一致が生じても回転力を円滑に伝達させるようにするために、比較的機構が簡単なオルダム軸継手が利用されている。
【0003】
しかるに、従来のオルダム継手は、原動側回転中心と従動側回転中心とが互いに平行を維持しつつ回転中心間の距離がずれる偏心に関してはかなりの許容度があるが、原動側回転中心と従動側回転中心とが角度をなす偏角に関してはそれほどの許容度を考慮していないものが多かった。また、このような軸継手を廉価に大量生産することが要望されている。
【0004】
そこで、本発明は、構造が簡素化され製作が容易で、偏心及び偏角の双方につき大きな許容度を実現することが可能な軸継手を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明によれば、以上の如き目的を達成するものとして、
原動側回転中心の周りで回転する原動側回転部材と従動側回転中心の周りで回転する従動側回転部材とが対向するように配置されており、前記原動側回転部材から前記従動側回転部材へと回転力を伝達するようにこれらの間に回転力伝達部材が配置されている軸継手であって、
前記原動側回転部材には前記回転力伝達部材に面して原動側スライド溝が形成されており、該原動側スライド溝は前記原動側回転中心を含む面と平行な一対の対向する原動側スライド内面を備えており、
前記従動側回転部材には前記回転力伝達部材に面して従動側スライド溝が形成されており、該従動側スライド溝は前記従動側回転中心を含む面と平行な一対の対向する従動側スライド内面を備えており、
前記回転力伝達部材は前記原動側スライド溝に適合される第1スライド部と前記従動側スライド溝に適合される第2スライド部とを有しており、前記第1スライド部は前記原動側スライド内面に摺動可能に当接する互いに平行な一対の第1スライド外面を備えており、前記第2スライド部は前記従動側スライド内面に摺動可能に当接する互いに平行な一対の第2スライド外面を備えており、該第2スライド外面は前記第1スライド外面と直交しており、前記回転力伝達部材はその前記第1スライド外面及び第2スライド外面の双方と直交する断面において前記第1スライド部と前記第2スライド部とが断面十文字形状の互いに直交する部分をなすような形状とされており、
前記原動側回転部材には前記回転力伝達部材の前記第2スライド部を余裕をもって受け容れる原動側受容溝が形成されており、前記従動側回転部材には前記回転力伝達部材の前記第1スライド部を余裕をもって受け容れる従動側受容溝が形成されており、
前記原動側スライド溝と前記従動側スライド溝とは溝幅が実質上同一であることを特徴とする軸継手、
が提供される。
【0006】
本発明の一態様においては、前記原動側受容溝と前記従動側受容溝とは溝幅が実質上同一である。本発明の一態様においては、前記回転力伝達部材は前記原動側回転部材に対向する端面及び前記従動側回転部材に対向する端面の形状が実質上同等な凸曲面状に形成されている。本発明の一態様においては、前記原動側回転部材及び前記従動側回転部材はいずれも金属からなり、前記回転力伝達部材は合成樹脂からなる。
【0007】
【発明の実施の形態】
以下、本発明の実施の形態を、図面を参照しながら説明する。
【0008】
図1は本発明による軸継手の一実施形態を示す分解斜視図であり、図2はその組立状態を示す斜視図である。また、図3は本実施形態の分解平面図と原動側回転部材、従動側回転部材及び回転力伝達部材の軸方向から見た図とを示すものである。図4は本実施形態の組立状態を示す平面図である。
【0009】
これらの図において、大略円筒形状の原動側回転部材2は原動側回転中心2’の周りで回転することができ、大略円筒形状の従動側回転部材4は従動側回転中心4’の周りで回転することができ、これら原動側回転部材2と従動側回転部材4とが原動側回転中心2’と従動側回転中心4’とをZ方向に同軸にして対向配置されている。原動側回転部材2と従動側回転部材4との間には、原動側回転部材2から従動側回転部材4へと回転力を伝達する回転力伝達部材6が配置されている。該回転力伝達部材6は、その中心軸6’が原動側回転中心2’及び従動側回転中心4’と同軸にZ方向となるようにして、配置されている。
【0010】
原動側回転部材2には、回転力伝達部材6に面して、Y方向に延びた原動側スライド溝22とX方向に延びた原動側受容溝24とが形成されている。これらの溝はいずれも原動側回転中心2’を通って延びている。原動側スライド溝22は原動側回転中心2’を含む面(YZ面と平行な面)と平行な一対の互いに対向する原動側スライド内面22aを備えている。これら一対の原動側スライド内面のちょうど中間を原動側回転中心2’が通っている。原動側受容溝24は原動側回転中心2’を含む面(XZ面と平行な面)と平行な一対の互いに対向する原動側受容溝内面24aを備えている。これら一対の原動側受容溝内面24aのちょうど中間を原動側回転中心2’が通っている。原動側回転部材2の中央には原動側回転中心2’の方向に延びた貫通孔26が形成されており、該貫通孔には不図示の原動側回転軸が挿通される。また、原動側回転部材2は外周面から貫通孔26へと連なるネジ孔28が形成されており、該ネジ孔には不図示のネジが適合され、これにより原動側回転軸を固定して原動側回転軸に対する原動側回転部材2の取付がなされる。
【0011】
同様に、従動側回転部材4には、回転力伝達部材6に面して、X方向に延びた従動側スライド溝42とY方向に延びた従動側受容溝44とが形成されている。これらの溝はいずれも従動側回転中心4’を通って延びている。従動側スライド溝42は従動側回転中心4’を含む面(XZ面と平行な面)と平行な一対の互いに対向する従動側スライド内面42aを備えている。これら一対の従動側スライド内面のちょうど中間を従動側回転中心4’が通っている。従動側受容溝44は従動側回転中心4’を含む面(YZ面と平行な面)と平行な一対の互いに対向する従動側受容溝内面44aを備えている。これら一対の従動側受容溝内面44aのちょうど中間を従動側回転中心4’が通っている。従動側回転部材4の中央には従動側回転中心4’の方向に延びた貫通孔46が形成されており、該貫通孔には不図示の従動側回転軸が挿通される。また、従動側回転部材4は外周面から貫通孔46へと連なるネジ孔48が形成されており、該ネジ孔には不図示のネジが適合され、これにより従動側回転軸を固定して従動側回転軸に対する従動側回転部材4の取付がなされる。
【0012】
回転力伝達部材6は原動側スライド溝22に適合される第1スライド部62と従動側スライド溝42に適合される第2スライド部64とを有している。第1スライド部62は原動側回転部材2の原動側スライド内面22aに摺動可能に当接する互いに平行で反対向きの一対の第1スライド外面62aを備えている。また、第2スライド部64は従動側回転部材4の従動側スライド内面42aに摺動可能に当接する互いに平行で反対向きの一対の第2スライド外面64aを備えている。XZ面と平行な第2スライド外面64aはYZ面と平行な第1スライド外面62aと直交している。回転力伝達部材6は、その第1スライド外面62a及び第2スライド外面64aの双方と直交する断面(XY断面)において第1スライド部62と第2スライド部64とが断面十文字形状の互いに直交する部分をなし、即ち第1スライド部62と第2スライド部64とが中心軸6’上にて交叉して一体化されたような形状とされている。
【0013】
原動側回転部材2の原動側受容溝24は回転力伝達部材6の第2スライド部64を余裕をもって受け容れている。即ち、原動側受容溝24の溝幅は第2スライド部64の厚さより大きい。従って、回転力伝達部材6は、第1スライド外面62aが原動側スライド内面22aに対してYZ面内の方向に摺動することで、原動側回転部材2に対し所要のストロークでのY方向の往復移動、X方向と平行な回動中心の周りでの所要の角度ストロークでの回動、及び原動側回転中心2’と平行な方向の適宜のストロークでの往復移動が可能である。
【0014】
同様に、従動側回転部材4の従動側受容溝44は回転力伝達部材6の第1スライド部62を余裕をもって受け容れている。即ち、従動側受容溝44の溝幅は第1スライド部62の厚さより大きい。従って、回転力伝達部材6は、第2スライド外面64aが従動側スライド内面42aに対してXZ面内の方向に摺動することで、従動側回転部材4に対し所要のストロークでのX方向の往復移動、Y方向と平行な回動中心の周りでの所要の角度ストロークでの回動、及び従動側回転中心4’と平行な方向の適宜のストロークでの往復移動が可能である。
【0015】
原動側スライド溝22と従動側スライド溝42とは溝幅その他の寸法が実質上同一であり、原動側受容溝24と従動側受容溝44とは溝幅その他の寸法が実質上同一である。即ち、原動側回転部材2と従動側回転部材4とは同等の形状及び寸法をもつものである。
【0016】
回転力伝達部材6は、原動側回転部材2に対向する端面66及び従動側回転部材4に対向する端面68の形状が実質上同等な凸曲面状たとえば中心軸6’上にそれぞれ中心をもつ凸球面状に形成されている。かくして、回転力伝達部材6は、XY面と平行な面に関して面対称で、XZ面と平行な面に関して面対称で且つYZ面と平行な面に関して面対称な形状を有する。
【0017】
原動側回転部材2及び従動側回転部材4はいずれも鉄や真鍮等の金属からなり、回転力伝達部材6はポリアセタール樹脂等の合成樹脂からなる。
【0018】
本実施形態の軸継手において、原動側回転部材2が原動側回転中心2’の周りで回転すると、その回転力は第1スライド部62から回転力伝達部材6へと伝達され、該回転力伝達部材6の回転力は第2スライド部64から従動側回転部材4へと伝達される。その際に、原動側回転部材2と従動側回転部材4との間に発生する偏心は、上記のように回転力伝達部材6が原動側回転部材2に対し原動側スライド溝22の方向に移動し且つ従動側回転部材4に対し従動側スライド溝42の方向に移動することで吸収される。また、原動側回転部材2と従動側回転部材4との間に発生する偏角は、上記のように回転力伝達部材6が原動側回転部材2に対し原動側受容溝24の方向と平行な回動中心の周りで回動し且つ従動側回転部材4に対し従動側受容溝44の方向と平行な回動中心の周りで回動することで吸収される。図5に偏角θの発生した状態が示されている。本実施形態では、回転力伝達部材6の両端面が凸曲面形状とされているので、偏角θを大きくすることが可能である。また、原動側回転部材2と従動側回転部材4との間に発生する軸方向移動(エンドプレイ)は、上記のように回転力伝達部材6が原動側回転部材2に対し原動側回転中心2’の方向に移動し且つ従動側回転部材4に対し従動側回転中心4’の方向に移動することで吸収される。
【0019】
本実施形態では、原動側回転部材2と従動側回転部材4とで、同一の形状及び寸法のものを使用している。すなわち、同等の形状及び寸法の物を複数作製しておき、そのうちの1つを原動側回転部材2として使用し、他の1つを従動側回転部材4として使用することができる。その場合、原動側スライド溝22と従動側スライド溝42とが対応し、原動側受容溝24と従動側受容溝44とが対応する。一方、回転力伝達部材6としては、それと同一の断面十文字形状を有し且つ中心軸6’の方向に長く延びた長尺物を作製しておき、随時、中心軸6’方向の寸法が所望値となるようにして切り出したものを使用することができる。その際、両端面を所要凸曲面形状に加工すればよい。このように、本実施形態の軸継手は、容易に大量生産することができる。
【0020】
【発明の効果】
以上説明したように、本発明によれば、構造が簡素化され製作が容易で、偏心及び偏角の双方につき大きな許容度を実現することが可能な軸継手が提供される。
【図面の簡単な説明】
【図1】本発明による軸継手の一実施形態を示す分解斜視図である。
【図2】本発明による軸継手の一実施形態の組立状態を示す斜視図である。
【図3】本発明による軸継手の一実施形態の分解平面図と原動側回転部材、従動側回転部材及び回転力伝達部材の軸方向から見た図である。
【図4】本発明による軸継手の一実施形態の組立状態を示す平面図である。
【図5】本発明による軸継手の一実施形態における偏角発生状態を示す平面図である。
【符号の説明】
2 原動側回転部材
2’ 原動側回転中心
4 従動側回転部材
4’ 従動側回転中心
6 回転力伝達部材
6’ 中心軸
22 原動側スライド溝
22a 原動側スライド内面
24 原動側受容溝
24a 原動側受容溝内面
26 貫通孔
28 ネジ孔
42 従動側スライド溝
42a 従動側スライド内面
44 従動側受容溝
44a 従動側受容溝内面
46 貫通孔
48 ネジ孔
62 第1スライド部
62a 第1スライド外面
64 第2スライド部
64a 第2スライド外面
66,68 端面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention belongs to the technical field of rotational force transmission, and particularly to an Oldham shaft coupling.
[0002]
Problems to be solved by the prior art and the invention
In the torque transmission system, a shaft coupling is used to connect the driving-side rotating shaft and the driven-side rotating shaft.Especially, even if the rotation centers of the driving-side and the driven-side do not coincide with each other, the rotating force is smoothly reduced. In order to transmit the force to the shaft, an Oldham shaft coupling having a relatively simple mechanism is used.
[0003]
However, the conventional Oldham coupling has considerable tolerance for the eccentricity in which the distance between the rotation centers is shifted while the driving-side rotation center and the driven-side rotation center are kept parallel to each other, but the driving-side rotation center and the driven-side rotation center Regarding the declination that forms an angle with the center of rotation, many of them did not take into account much tolerance. In addition, there is a demand for mass production of such a shaft coupling at low cost.
[0004]
Accordingly, an object of the present invention is to provide a shaft coupling that has a simplified structure, is easy to manufacture, and can realize a large tolerance in both eccentricity and eccentricity.
[0005]
[Means for Solving the Problems]
According to the present invention, as achieving the above objects,
A driving-side rotating member rotating around a driving-side rotation center and a driven-side rotating member rotating around a driven-side rotation center are arranged so as to face each other, and from the driving-side rotating member to the driven-side rotating member. And a shaft coupling in which a rotational force transmitting member is arranged between these so as to transmit the rotational force.
A driving side slide groove is formed in the driving side rotating member so as to face the rotational force transmitting member, and the driving side slide groove is a pair of opposing driving side slides parallel to a plane including the driving side rotation center. With an inner surface,
The driven-side rotating member has a driven-side slide groove facing the rotational force transmitting member, and the driven-side slide groove is a pair of opposed driven-side slides parallel to a plane including the driven-side rotation center. With an inner surface,
The rotational force transmitting member has a first slide portion adapted to the driving side slide groove and a second slide portion adapted to the driven side slide groove, wherein the first slide portion is the driving side slide groove. A pair of parallel first slide outer surfaces slidably in contact with the inner surface, and the second slide portion includes a pair of parallel second slide outer surfaces slidably in contact with the driven slide inner surface. The second slide outer surface is orthogonal to the first slide outer surface, and the rotational force transmitting member has a first slide portion in a cross section orthogonal to both the first slide outer surface and the second slide outer surface. And the second slide portion are shaped so as to form portions that are orthogonal to each other in a cross-shaped cross section,
The driving-side rotating member has a driving-side receiving groove for receiving the second slide portion of the rotational-force transmitting member with a margin, and the driven-side rotating member has the first slide of the rotational-force transmitting member. The driven side receiving groove is formed so that the part can be received with margin.
A shaft coupling, wherein the driving side slide groove and the driven side slide groove have substantially the same groove width,
Is provided.
[0006]
In one aspect of the present invention, the driving-side receiving groove and the driven-side receiving groove have substantially the same groove width. In one aspect of the present invention, the rotational force transmitting member is formed in a convex curved shape in which an end face facing the driving side rotating member and an end face facing the driven side rotating member have substantially the same shape. In one aspect of the present invention, both the driving side rotating member and the driven side rotating member are made of metal, and the rotating force transmitting member is made of synthetic resin.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0008]
FIG. 1 is an exploded perspective view showing an embodiment of a shaft coupling according to the present invention, and FIG. 2 is a perspective view showing an assembled state thereof. FIG. 3 shows an exploded plan view of the present embodiment and a view of the driving-side rotating member, the driven-side rotating member, and the rotational force transmitting member viewed from the axial direction. FIG. 4 is a plan view showing an assembled state of the present embodiment.
[0009]
In these figures, the substantially cylindrical driving-side rotating member 2 can rotate around the driving-side rotation center 2 ′, and the substantially cylindrical driven-side rotating member 4 rotates around the driven-side rotation center 4 ′. The driving-side rotating member 2 and the driven-side rotating member 4 are arranged to face each other with the driving-side rotation center 2 ′ and the driven-side rotation center 4 ′ being coaxial in the Z direction. Between the driving side rotating member 2 and the driven side rotating member 4, a rotational force transmitting member 6 for transmitting a rotating force from the driving side rotating member 2 to the driven side rotating member 4 is arranged. The rotational force transmitting member 6 is arranged so that its center axis 6 'is coaxial with the driving side rotation center 2' and the driven side rotation center 4 'in the Z direction.
[0010]
The driving side rotating member 2 is formed with a driving side slide groove 22 extending in the Y direction and a driving side receiving groove 24 extending in the X direction, facing the rotational force transmitting member 6. All of these grooves extend through the driving side rotation center 2 '. The driving-side slide groove 22 includes a pair of opposing driving-side slide inner surfaces 22a that are parallel to a plane including the driving-side rotation center 2 ′ (a plane parallel to the YZ plane). The driving-side rotation center 2 ′ passes exactly between the inner surfaces of the pair of driving-side slides. The driving-side receiving groove 24 includes a pair of opposing driving-side receiving groove inner surfaces 24a that are parallel to a plane including the driving-side rotation center 2 ′ (a plane parallel to the XZ plane). The driving-side rotation center 2 ′ passes exactly between the pair of driving-side receiving groove inner surfaces 24 a. A through-hole 26 extending in the direction of the driving-side rotation center 2 ′ is formed in the center of the driving-side rotating member 2, and a driving-side rotation shaft (not shown) is inserted through the through-hole 26. The driving-side rotating member 2 is formed with a screw hole 28 extending from the outer peripheral surface to the through hole 26, and a screw (not shown) is fitted in the screw hole, thereby fixing the driving-side rotating shaft and driving the driving side. The driving side rotating member 2 is attached to the side rotating shaft.
[0011]
Similarly, the driven-side rotating member 4 is formed with a driven-side slide groove 42 extending in the X direction and a driven-side receiving groove 44 extending in the Y direction, facing the rotational force transmitting member 6. Each of these grooves extends through the driven-side rotation center 4 '. The driven-side slide groove 42 includes a pair of opposed driven-side slide inner surfaces 42a that are parallel to a plane including the driven-side rotation center 4 ′ (a plane parallel to the XZ plane). The driven-side rotation center 4 ′ passes through exactly the middle between the pair of driven-side slide inner surfaces. The driven-side receiving groove 44 includes a pair of opposing driven-side receiving groove inner surfaces 44a that are parallel to a plane including the driven-side rotation center 4 ′ (a plane parallel to the YZ plane). The driven-side rotation center 4 ′ passes exactly between the pair of driven-side receiving groove inner surfaces 44 a. A through-hole 46 extending in the direction of the driven-side rotation center 4 ′ is formed at the center of the driven-side rotating member 4, and a driven-side rotating shaft (not shown) is inserted into the through-hole. The driven side rotating member 4 is formed with a screw hole 48 which extends from the outer peripheral surface to the through hole 46, and a screw (not shown) is fitted in the screw hole, thereby fixing the driven side rotating shaft to the driven side. The driven side rotation member 4 is attached to the side rotation shaft.
[0012]
The rotational force transmitting member 6 has a first slide portion 62 adapted to the driving side slide groove 22 and a second slide portion 64 adapted to the driven side slide groove 42. The first slide portion 62 includes a pair of first slide outer surfaces 62a parallel and opposite to each other and slidably abutting on the drive side slide inner surface 22a of the drive side rotating member 2. The second slide portion 64 includes a pair of second slide outer surfaces 64a that are parallel and opposite to each other and slidably contact the driven-side slide inner surface 42a of the driven-side rotating member 4. The second slide outer surface 64a parallel to the XZ plane is orthogonal to the first slide outer surface 62a parallel to the YZ plane. In the rotational force transmitting member 6, the first slide portion 62 and the second slide portion 64 are orthogonal to each other in a cross-sectional shape in a cross section (XY cross section) orthogonal to both the first slide outer surface 62a and the second slide outer surface 64a. The first slide portion 62 and the second slide portion 64 are formed so as to intersect and be integrated on the central axis 6 '.
[0013]
The driving-side receiving groove 24 of the driving-side rotating member 2 receives the second slide portion 64 of the torque transmitting member 6 with a margin. That is, the groove width of the driving-side receiving groove 24 is larger than the thickness of the second slide portion 64. Accordingly, the rotational force transmitting member 6 is configured such that the first slide outer surface 62a slides in the YZ plane direction with respect to the driving-side slide inner surface 22a, thereby causing the driving-side rotating member 2 to move in the Y direction at a required stroke. Reciprocation, rotation at a required angular stroke around a rotation center parallel to the X direction, and reciprocation at an appropriate stroke in a direction parallel to the driving side rotation center 2 'are possible.
[0014]
Similarly, the driven-side receiving groove 44 of the driven-side rotating member 4 receives the first slide portion 62 of the rotational force transmitting member 6 with a margin. That is, the groove width of the driven receiving groove 44 is larger than the thickness of the first slide portion 62. Therefore, the rotational force transmitting member 6 is configured such that the second slide outer surface 64a slides in the XZ plane direction with respect to the driven-side slide inner surface 42a, thereby causing the driven-side rotary member 4 to move in the X direction at a required stroke. Reciprocal movement, rotation at a required angular stroke around a rotation center parallel to the Y direction, and reciprocation at an appropriate stroke in a direction parallel to the driven-side rotation center 4 'are possible.
[0015]
The driving-side slide groove 22 and the driven-side slide groove 42 have substantially the same groove width and other dimensions, and the driving-side receiving groove 24 and the driven-side receiving groove 44 have substantially the same groove width and other dimensions. That is, the driving side rotating member 2 and the driven side rotating member 4 have the same shape and dimensions.
[0016]
The rotational force transmitting member 6 has a convex curved surface having substantially the same shape as an end surface 66 facing the driving side rotating member 2 and an end surface 68 facing the driven side rotating member 4, for example, a convex centered on the center axis 6 '. It is formed in a spherical shape. Thus, the rotational force transmitting member 6 has a shape that is plane-symmetric with respect to a plane parallel to the XY plane, plane-symmetric with respect to a plane parallel with the XZ plane, and plane-symmetric with respect to a plane parallel with the YZ plane.
[0017]
The driving side rotating member 2 and the driven side rotating member 4 are both made of metal such as iron or brass, and the rotating force transmitting member 6 is made of synthetic resin such as polyacetal resin.
[0018]
In the shaft coupling of the present embodiment, when the driving-side rotating member 2 rotates around the driving-side rotation center 2 ′, the rotational force is transmitted from the first slide portion 62 to the rotational force transmitting member 6, and the rotational force is transmitted. The rotational force of the member 6 is transmitted from the second slide portion 64 to the driven-side rotating member 4. At that time, the eccentricity generated between the driving side rotating member 2 and the driven side rotating member 4 is caused by the rotation force transmitting member 6 moving in the direction of the driving side slide groove 22 with respect to the driving side rotating member 2 as described above. Then, it is absorbed by moving in the direction of the driven side slide groove 42 with respect to the driven side rotating member 4. Further, the declination generated between the driving side rotating member 2 and the driven side rotating member 4 is such that the rotational force transmitting member 6 is parallel to the driving side receiving member 24 with respect to the driving side rotating member 2 as described above. By being rotated around the rotation center and being rotated about the rotation center parallel to the driven-side receiving groove 44 with respect to the driven-side rotation member 4, the rotation is absorbed. FIG. 5 shows a state in which the declination θ has occurred. In the present embodiment, since both end surfaces of the rotational force transmitting member 6 have a convex curved surface shape, it is possible to increase the deflection angle θ. The axial movement (end play) generated between the driving side rotating member 2 and the driven side rotating member 4 is caused by the rotation force transmitting member 6 being moved relative to the driving side rotating member 2 by the driving side rotation center 2 as described above. ′, And is absorbed by moving in the direction of the driven-side rotation center 4 ′ with respect to the driven-side rotating member 4.
[0019]
In the present embodiment, the driving side rotating member 2 and the driven side rotating member 4 have the same shape and dimensions. That is, a plurality of objects having the same shape and dimensions are prepared, and one of them can be used as the driving side rotating member 2, and the other can be used as the driven side rotating member 4. In that case, the driving side slide groove 22 and the driven side slide groove 42 correspond, and the driving side receiving groove 24 and the driven side receiving groove 44 correspond. On the other hand, as the rotational force transmitting member 6, a long object having the same cross-sectional shape as that of the rotational force transmitting member 6 and extending long in the direction of the central axis 6 'is prepared. Those cut out so as to have a value can be used. At this time, both end faces may be processed into a required convex curved surface shape. Thus, the shaft coupling of the present embodiment can be easily mass-produced.
[0020]
【The invention's effect】
As described above, according to the present invention, there is provided a shaft coupling that has a simplified structure, is easy to manufacture, and can realize a large tolerance for both eccentricity and declination.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view showing one embodiment of a shaft coupling according to the present invention.
FIG. 2 is a perspective view showing an assembled state of one embodiment of the shaft coupling according to the present invention.
FIG. 3 is an exploded plan view of an embodiment of a shaft coupling according to the present invention, and a view seen from an axial direction of a driving side rotating member, a driven side rotating member, and a rotating force transmitting member.
FIG. 4 is a plan view showing an assembled state of one embodiment of the shaft coupling according to the present invention.
FIG. 5 is a plan view showing a state in which a deflection angle occurs in one embodiment of the shaft coupling according to the present invention.
[Explanation of symbols]
2 Driving-side rotating member 2 'Driving-side rotating center 4 Driving-side rotating member 4' Driving-side rotating center 6 Rotating-force transmitting member 6 'Center shaft 22 Driving-side slide groove 22a Driving-side slide inner surface 24 Driving-side receiving groove 24a Driving-side receiving Groove inner surface 26 Through hole 28 Screw hole 42 Drive side slide groove 42a Drive side slide inner surface 44 Drive side receiving groove 44a Drive side receiving groove inner surface 46 Through hole 48 Screw hole 62 First slide portion 62a First slide outer surface 64 Second slide portion 64a Second slide outer surfaces 66, 68 End surfaces

Claims (4)

原動側回転中心の周りで回転する原動側回転部材と従動側回転中心の周りで回転する従動側回転部材とが対向するように配置されており、前記原動側回転部材から前記従動側回転部材へと回転力を伝達するようにこれらの間に回転力伝達部材が配置されている軸継手であって、
前記原動側回転部材には前記回転力伝達部材に面して原動側スライド溝が形成されており、該原動側スライド溝は前記原動側回転中心を含む面と平行な一対の対向する原動側スライド内面を備えており、
前記従動側回転部材には前記回転力伝達部材に面して従動側スライド溝が形成されており、該従動側スライド溝は前記従動側回転中心を含む面と平行な一対の対向する従動側スライド内面を備えており、
前記回転力伝達部材は前記原動側スライド溝に適合される第1スライド部と前記従動側スライド溝に適合される第2スライド部とを有しており、前記第1スライド部は前記原動側スライド内面に摺動可能に当接する互いに平行な一対の第1スライド外面を備えており、前記第2スライド部は前記従動側スライド内面に摺動可能に当接する互いに平行な一対の第2スライド外面を備えており、該第2スライド外面は前記第1スライド外面と直交しており、前記回転力伝達部材はその前記第1スライド外面及び第2スライド外面の双方と直交する断面において前記第1スライド部と前記第2スライド部とが断面十文字形状の互いに直交する部分をなすような形状とされており、
前記原動側回転部材には前記回転力伝達部材の前記第2スライド部を余裕をもって受け容れる原動側受容溝が形成されており、前記従動側回転部材には前記回転力伝達部材の前記第1スライド部を余裕をもって受け容れる従動側受容溝が形成されており、
前記原動側スライド溝と前記従動側スライド溝とは溝幅が実質上同一であることを特徴とする軸継手。
A driving-side rotating member rotating around a driving-side rotation center and a driven-side rotating member rotating around a driven-side rotation center are arranged so as to face each other, and from the driving-side rotating member to the driven-side rotating member. And a shaft coupling in which a rotational force transmitting member is arranged between these so as to transmit the rotational force.
A driving side slide groove is formed in the driving side rotating member so as to face the rotational force transmitting member, and the driving side slide groove is a pair of opposing driving side slides parallel to a plane including the driving side rotation center. With an inner surface,
The driven-side rotating member has a driven-side slide groove facing the rotational force transmitting member, and the driven-side slide groove is a pair of opposed driven-side slides parallel to a plane including the driven-side rotation center. With an inner surface,
The rotational force transmitting member has a first slide portion adapted to the driving side slide groove and a second slide portion adapted to the driven side slide groove, wherein the first slide portion is the driving side slide groove. A pair of parallel first slide outer surfaces slidably in contact with the inner surface, and the second slide portion includes a pair of parallel second slide outer surfaces slidably in contact with the driven slide inner surface. The second slide outer surface is orthogonal to the first slide outer surface, and the rotational force transmitting member has a first slide portion in a cross section orthogonal to both the first slide outer surface and the second slide outer surface. And the second slide portion are shaped so as to form portions that are orthogonal to each other in a cross-shaped cross section,
The driving-side rotating member has a driving-side receiving groove for receiving the second slide portion of the rotational-force transmitting member with a margin, and the driven-side rotating member has the first slide of the rotational-force transmitting member. The driven side receiving groove is formed so that the part can be received with margin.
A shaft coupling, wherein the driving side slide groove and the driven side slide groove have substantially the same groove width.
前記原動側受容溝と前記従動側受容溝とは溝幅が実質上同一であることを特徴とする、請求項1に記載の軸継手。The shaft coupling according to claim 1, wherein the driving-side receiving groove and the driven-side receiving groove have substantially the same groove width. 前記回転力伝達部材は前記原動側回転部材に対向する端面及び前記従動側回転部材に対向する端面の形状が実質上同等な凸曲面状に形成されていることを特徴とする、請求項1〜2のいずれかに記載の軸継手。The shape of the end surface facing the driving side rotating member and the end surface facing the driven side rotating member of the rotating force transmitting member are formed in substantially the same convex curved shape. 3. The shaft coupling according to any one of 2. 前記原動側回転部材及び前記従動側回転部材はいずれも金属からなり、前記回転力伝達部材は合成樹脂からなることを特徴とする、請求項1〜3のいずれかに記載の軸継手。The shaft coupling according to any one of claims 1 to 3, wherein both the driving side rotating member and the driven side rotating member are made of metal, and the rotating force transmitting member is made of synthetic resin.
JP2003085424A 2003-03-26 2003-03-26 Shaft coupling Pending JP2004293637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003085424A JP2004293637A (en) 2003-03-26 2003-03-26 Shaft coupling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003085424A JP2004293637A (en) 2003-03-26 2003-03-26 Shaft coupling

Publications (1)

Publication Number Publication Date
JP2004293637A true JP2004293637A (en) 2004-10-21

Family

ID=33400351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003085424A Pending JP2004293637A (en) 2003-03-26 2003-03-26 Shaft coupling

Country Status (1)

Country Link
JP (1) JP2004293637A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207329A (en) * 2007-02-23 2008-09-11 Esa Eppinger Gmbh Connecting device between drive shaft and spindle in holding device or fastening device
CN102198661A (en) * 2010-03-24 2011-09-28 鸿富锦精密工业(深圳)有限公司 Joint
WO2016088672A1 (en) * 2014-12-05 2016-06-09 ミネベア株式会社 Coolant injection device
DE102015012265A1 (en) * 2015-09-19 2017-03-23 J.G. WEISSER SöHNE GMBH & CO. KG Spindle head and machine tool
WO2024135012A1 (en) * 2022-12-23 2024-06-27 中村留精密工業株式会社 Drive connecting shaft structure for rotating tool

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008207329A (en) * 2007-02-23 2008-09-11 Esa Eppinger Gmbh Connecting device between drive shaft and spindle in holding device or fastening device
CN102198661A (en) * 2010-03-24 2011-09-28 鸿富锦精密工业(深圳)有限公司 Joint
WO2016088672A1 (en) * 2014-12-05 2016-06-09 ミネベア株式会社 Coolant injection device
JP5986345B1 (en) * 2014-12-05 2016-09-06 ミネベア株式会社 Coolant injection device
TWI581865B (en) * 2014-12-05 2017-05-11 美倍亞三美股份有限公司 Coolant injection device
CN107000150A (en) * 2014-12-05 2017-08-01 美蓓亚三美株式会社 Cooling liquid spray device
US10384321B2 (en) 2014-12-05 2019-08-20 Minebea Mitsumi Inc. Coolant application device
CN107000150B (en) * 2014-12-05 2019-09-10 美蓓亚三美株式会社 Cooling liquid spray device
DE102015012265A1 (en) * 2015-09-19 2017-03-23 J.G. WEISSER SöHNE GMBH & CO. KG Spindle head and machine tool
WO2024135012A1 (en) * 2022-12-23 2024-06-27 中村留精密工業株式会社 Drive connecting shaft structure for rotating tool

Similar Documents

Publication Publication Date Title
US10514080B2 (en) Torsional vibration reducing device
JP2007016987A (en) Anti-reverse input clutch
JP3038585B2 (en) Cardan type universal shaft coupling
US9964153B2 (en) Support device for bearing
JP2004293637A (en) Shaft coupling
GB2161581A (en) Drive assembly coupling
US9784327B2 (en) Centering mechanism for double cardan joints
JP2002098162A (en) Oldham coupling
US4909775A (en) Device for transferring rotary motion between two shafts
JP2010019363A (en) Oldham coupling
JP2005163804A (en) Rotating coupling
JPH06337021A (en) Flexible shaft coupling
WO2018052109A1 (en) One-way power transmission mechanism
WO2016190206A1 (en) Reverse input blocking clutch
JP2000027878A (en) Shaft coupling
JP2001028864A (en) Motor
JPH05180236A (en) Shaft coupling
JP2543971Y2 (en) Universal coupling
JPH02113124A (en) Torque transmission device
JPH05187452A (en) Shaft coupling
JP2596689B2 (en) Shaft coupling
US9644687B2 (en) Centering mechanism arrangement for double cardan joints
US9670965B2 (en) Centering mechanism arrangement for double cardan joints
JP2007247707A (en) Shaft coupling
JP2011064238A (en) Connecting structure of rotary shafts