JP2008202585A - Rotary device - Google Patents

Rotary device Download PDF

Info

Publication number
JP2008202585A
JP2008202585A JP2007042825A JP2007042825A JP2008202585A JP 2008202585 A JP2008202585 A JP 2008202585A JP 2007042825 A JP2007042825 A JP 2007042825A JP 2007042825 A JP2007042825 A JP 2007042825A JP 2008202585 A JP2008202585 A JP 2008202585A
Authority
JP
Japan
Prior art keywords
hole
bearing chamber
gas
spiral groove
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007042825A
Other languages
Japanese (ja)
Other versions
JP4835861B2 (en
Inventor
Koji Horikawa
浩司 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2007042825A priority Critical patent/JP4835861B2/en
Publication of JP2008202585A publication Critical patent/JP2008202585A/en
Application granted granted Critical
Publication of JP4835861B2 publication Critical patent/JP4835861B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/06Lubrication
    • F04D29/063Lubrication specially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/10Shaft sealings
    • F04D29/102Shaft sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • F05D2240/61Hollow

Abstract

<P>PROBLEM TO BE SOLVED: To provide a turbo-rotary device in which a rotating shaft properly seals a seal part in a through hole extending through a partition wall to prevent an oil mist from flowing into a compression chamber. <P>SOLUTION: A spiral groove 4MD on the lower side at the seal part S biases the gas at the seal part S to a bearing chamber M side. The rise of the oil mist from the bearing chamber M is suppressed, therefore, since a pressure difference in the seal part S is secured while the evacuation amount of the bearing chamber M is reduced. The stagnation of the oil by the surface tension is also obstructed. Since a communication passage 8P communicating with the bearing chamber M side is formed on the fixed side, the communication passage 8P functions as a bypass passage, and a gas flow equal to a difference between the recirculation amount from the communication passage 8P and the biased amount by the spiral groove 4MD is produced and the flow of the gas toward the bearing chamber M is fixed in quantity. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、たとえば気体レーザ発振器装置におけるガス循環用の電動コンプレッサとしてのブロワあるいは遠心分離機等に適用できるターボ型の回転機器に関する。   The present invention relates to a turbo rotating device that can be applied to, for example, a blower or a centrifugal separator as an electric compressor for gas circulation in a gas laser oscillator device.

たとえばフロー型二酸化炭素ガスレーザ発振器装置の場合、炭酸ガスと他のガスの混合ガスを流しながら圧縮し、レーザ発振器に供給して共振させるようになっており、装置内にガス循環回路が構成されている。その循環回路の構成における一要素のブロワとしてターボ翼を高速で回転させてガスを圧縮し、レーザ発振器に供給するターボ型の回転機器が使用されている。以下背景技術をこのターボ型の回転機器を例として説明する。   For example, in the case of a flow type carbon dioxide gas laser oscillator device, it is compressed while flowing a mixed gas of carbon dioxide gas and other gas and supplied to the laser oscillator to resonate, and a gas circulation circuit is configured in the device. Yes. As a blower as one element in the configuration of the circulation circuit, a turbo-type rotating device that rotates a turbo blade at high speed to compress gas and supplies the gas to a laser oscillator is used. The background art will be described below by taking this turbo rotating device as an example.

この種ターボ型の回転機器は、ハウジング内の上方にターボ翼が回転可能に配設され、ガスを圧縮して排出する機構を設けるとともに、下方にはこのターボ翼(回転子)を高速回転駆動させる回転駆動源(たとえば電動機、以下モータと略称する)が配設されている。そして、このモータの回転子とターボ翼ならびに回転軸等からなる回転体は、機械的な軸受で軸支され、オイルによる潤滑手段が併設されている。(特許文献1参照)。   In this type of turbo rotating device, a turbo blade is rotatably disposed in the upper part of the housing, and a mechanism for compressing and discharging the gas is provided, and the turbo blade (rotor) is rotated at a high speed below. A rotational drive source (for example, an electric motor, hereinafter abbreviated as a motor) is provided. The rotating body including the rotor of the motor, the turbo blade, the rotating shaft, and the like is pivotally supported by a mechanical bearing and is provided with lubricating means using oil. (See Patent Document 1).

このターボ型の回転機器の構成は図5に示すとおりである。図5は概略的に示す縦断面図で、ハウジング1の内方でその上方にターボ翼7が回転可能に配設されるとともに下方にはこのターボ翼7を高速回転駆動させる回転駆動源モータ2が配設され、両者が回転軸4にて連結されている。このモータ2はハウジング1の側に固設された電極コイル2Kと、この電極コイル2Kに対応して回転軸4に固設された回転子2Mで構成され、電極コイル2Kにインバータ3から電気エネルギーが供給される。   The configuration of this turbo rotating device is as shown in FIG. FIG. 5 is a longitudinal sectional view schematically showing a rotational drive source motor 2 in which a turbo blade 7 is rotatably arranged inside the housing 1 and is rotated at a high speed below the turbo blade 7. Are arranged, and both are connected by a rotating shaft 4. The motor 2 is composed of an electrode coil 2K fixed on the housing 1 side and a rotor 2M fixed to the rotary shaft 4 corresponding to the electrode coil 2K. Electric energy is supplied to the electrode coil 2K from the inverter 3. Is supplied.

回転軸4は上部軸受5と下部軸受6を介してハウジング1に対し、回転可能に保持されているが、この回転軸4の上方に形成された取付軸4Sにターボ翼7が固設されている。このモータ2と回転子2Mおよび回転軸4からなる回転体が、軸受機構を構成する上部軸受5と下部軸受6に保持されている。なお、この上部軸受5と下部軸受6は軸受室M内に配設されている
ターボ翼7がモータ2によって高速回転駆動されると、ガスは吸気口1Kから吸入され、圧縮されて排気口1Hより排出される。この吸気口1Kから排気口1Hまでがガス圧縮を行う圧縮室Cを形成する。この排気口1Hからのガスは上記したようにガス循環回路(図示せず)を経てレーザ発振器(図示せず)に供給される。
The rotating shaft 4 is rotatably held with respect to the housing 1 via an upper bearing 5 and a lower bearing 6. A turbo blade 7 is fixed to an attachment shaft 4 </ b> S formed above the rotating shaft 4. Yes. A rotating body including the motor 2, the rotor 2M, and the rotating shaft 4 is held by an upper bearing 5 and a lower bearing 6 that constitute a bearing mechanism. The upper bearing 5 and the lower bearing 6 are disposed in the bearing chamber M. When the turbo blade 7 is driven to rotate at high speed by the motor 2, the gas is sucked from the inlet 1K, compressed, and exhausted 1H. More discharged. The intake port 1K to the exhaust port 1H form a compression chamber C that performs gas compression. The gas from the exhaust port 1H is supplied to a laser oscillator (not shown) through a gas circulation circuit (not shown) as described above.

ところで、回転軸4には図5に示すとおり、軸心上に中空孔4Hが形成されているが、この中空孔4Hの下方部は内孔が上方拡がりのテーパ状をなし、この下方部位が潤滑用のオイルL内に浸漬されている。したがって、中空孔4Hの下方域に侵入している潤滑用のオイルLは、回転軸4の回転による遠心力の作用を受けて中空孔4Hの内方を上方に移動し、この作用で中空孔4Hはポンプ機能を生起する。こうして潤滑用のオイルLは順次上方へ送り出され、射出孔4Tより外方に放出されてモータ2の冷却や上部軸受5と下部軸受6の潤滑を行う。潤滑や冷却を終えた潤滑用のオイルLは再び下方のオイル槽1Yに溜められ、再び吸い上げられて循環することになる。   As shown in FIG. 5, the rotary shaft 4 has a hollow hole 4H formed on the shaft center. The lower part of the hollow hole 4H has a tapered shape with the inner hole expanding upward, and the lower part is It is immersed in the oil L for lubrication. Accordingly, the lubricating oil L entering the lower region of the hollow hole 4H moves upward in the hollow hole 4H under the action of the centrifugal force caused by the rotation of the rotary shaft 4, and this action causes the hollow hole 4H to move upward. 4H causes the pump function. Thus, the lubricating oil L is sequentially sent upward and discharged outward from the injection hole 4T to cool the motor 2 and lubricate the upper bearing 5 and the lower bearing 6. The lubricating oil L that has been lubricated and cooled is again stored in the lower oil tank 1Y, sucked up again, and circulated.

このように潤滑用のオイルLは、循環して上部軸受5や下部軸受6の潤滑を行うが、この潤滑によって特に軸受室M内には噴霧状のオイルL(オイルミスト)が存在し浮遊することになる。軸受室Mにおける噴霧状のオイルLの存在は、上部軸受5と下部軸受6等における潤滑を良好にするが、このオイルミストが圧縮室Cに流入するとレーザ発振器などに流入し、レーザの発振機能を低下させる。   In this way, the lubricating oil L circulates to lubricate the upper bearing 5 and the lower bearing 6. By this lubrication, particularly in the bearing chamber M, the sprayed oil L (oil mist) exists and floats. It will be. The presence of the spray-like oil L in the bearing chamber M improves the lubrication in the upper bearing 5 and the lower bearing 6. However, when this oil mist flows into the compression chamber C, it flows into the laser oscillator and the like, and the laser oscillation function. Reduce.

このことから圧縮室Cと軸受室Mとは、ハウジング1ないしハウジング1と一体の部材からなる隔壁8にて遮断されるようになっている。すなわち、ハウジング1には上部軸受5の上方位置において回転軸4が非接触で貫通できる貫通孔8Aが穿設され、回転軸4と協働してシール部Sが形成されている。このシール部Sはたとえば図示していないがラビリンスシール等が適用される。このシール部Sは、回転軸4と貫通部との間隙は通常数10ミクロンに設定されている。ラビリンスシール以外にも、数10ミクロンの微小な平行隙間に設定されたガスシールも採用されている。なお、9は軸受保持部材であり、9Hは貫通孔である。   For this reason, the compression chamber C and the bearing chamber M are blocked by the partition wall 8 made of a member integral with the housing 1 or the housing 1. That is, the housing 1 is provided with a through hole 8A through which the rotary shaft 4 can pass without contact at a position above the upper bearing 5, and a seal portion S is formed in cooperation with the rotary shaft 4. For example, a labyrinth seal or the like is applied to the seal portion S although not shown. In the seal portion S, the gap between the rotating shaft 4 and the penetrating portion is usually set to several tens of microns. In addition to the labyrinth seal, a gas seal set to a small parallel gap of several tens of microns is also employed. In addition, 9 is a bearing holding member and 9H is a through-hole.

このように、特にレーザ発振器に利用されるターボ型の回転機器においてはオイルLのミスト(ガス)の存在と対策が重要であるが、ミストの発生源であるオイルLの存在も無視できない。特に回転軸4の射出孔4Tから放出されるオイルLが上方のシール部Sに至るのをなるべくさける必要がある。そのために後述するように上記シール部Sにガスの流れを付勢する手段を設ける工夫が提案されている。この工夫は図4に示されている。   As described above, in the turbo type rotating device used for the laser oscillator, the existence and countermeasure of the mist (gas) of the oil L are important, but the existence of the oil L that is the generation source of the mist cannot be ignored. In particular, it is necessary to prevent the oil L discharged from the injection hole 4T of the rotating shaft 4 from reaching the upper seal portion S as much as possible. For this purpose, as will be described later, a device has been proposed in which means for energizing the gas flow is provided in the seal portion S. This device is shown in FIG.

すなわち図4は、図5におけるターボ型の回転機器において、回転軸4が貫通孔を貫通する部位に螺旋溝4Mを設けたものである。この螺旋溝の詳細は図3に示されている。螺旋溝4Mは圧縮室Cから軸受室Mへの流体の流れを付勢するための流体付勢領域AEを形成するものである。具体的には回転軸4が矢印方向に回転駆動されるとき、螺旋溝4Mの溝間隔の流体は下方へと移動する。すなわち螺旋溝4Mはガスを含む流体を軸受室M側へ付勢する螺旋溝である。   That is, FIG. 4 is a turbo type rotating device in FIG. 5 in which a spiral groove 4M is provided at a portion where the rotating shaft 4 penetrates the through hole. Details of this spiral groove are shown in FIG. The spiral groove 4M forms a fluid energizing region AE for energizing the flow of fluid from the compression chamber C to the bearing chamber M. Specifically, when the rotary shaft 4 is rotationally driven in the direction of the arrow, the fluid at the groove interval of the spiral groove 4M moves downward. That is, the spiral groove 4M is a spiral groove that urges a fluid containing gas toward the bearing chamber M side.

このようにしてオイルミストを含むガスが圧縮室C側に流入することは阻止される。なお、図3、図4において図5と同一の符号で示される部品については図5の部品と同一で同様の機能を有するものであり、これら各部品の作動の詳細な説明は省略する。
なお、シール部Sと軸受保持部材9は図5に示すボルト11を介してハウジング1に固定されている。
特開2000−209815号公報(第1−3頁、第1図−第8図)
In this way, the gas containing oil mist is prevented from flowing into the compression chamber C side. 3 and 4, the components denoted by the same reference numerals as those in FIG. 5 are the same as those in FIG. 5 and have the same functions, and detailed description of the operation of these components is omitted.
The seal portion S and the bearing holding member 9 are fixed to the housing 1 via bolts 11 shown in FIG.
Japanese Unexamined Patent Publication No. 2000-209815 (page 1-3, FIGS. 1-8)

圧縮室Cと軸受室Mとを区画する隔壁8のシール機構については、つぎのような問題を有している。まずラビリンスシール方式では、運転中の回転体の振れにより隔壁8における貫通孔8A側と回転軸4との接触を防止するため、貫通孔8Aの回転軸4側に対する同心性は強く求められており厳しいが、そのためにターボ型の回転機器の組立時の同心確認、調整は容易ではない。また、部品間のはめあい精度により決める場合には、関わる複数の部品の同心および加工精度の要求値が厳しくなるとともに、一方で、隙間の低減に対しても限界が設定されている。   The sealing mechanism of the partition wall 8 that partitions the compression chamber C and the bearing chamber M has the following problems. First, in the labyrinth seal method, concentricity of the through hole 8A with respect to the rotating shaft 4 side is strongly demanded in order to prevent contact between the through hole 8A side of the partition wall 8 and the rotating shaft 4 due to vibration of the rotating body during operation. Although it is severe, it is not easy to confirm and adjust the concentricity when assembling turbo rotating equipment. In addition, when determining by fitting accuracy between parts, the required values of concentricity and machining accuracy of a plurality of parts concerned become severe, and on the other hand, a limit is set for reducing the gap.

したがって、隙間が広がると運用中のシール部Sの真空引き量が増加し、レーザ発振器のブロアとして使用する場合、消費レーザガス量の増加、ランニングコストアップとなる。また、このシール機構をラビリンスシールで構成する場合、加工が複雑であり、回転軸4の一部に加工を施すことは、コスト面運用面でも問題であり、別部品とせざるを得ないのが実情である。他方、螺旋溝方式の場合は螺旋溝の能力が優れることでガスの消費量が増加(ランニングコストが増加)するという問題がある。   Therefore, when the gap is widened, the amount of vacuuming of the seal portion S in operation increases, and when used as a blower of a laser oscillator, the amount of laser gas consumed increases and the running cost increases. Further, when this seal mechanism is constituted by a labyrinth seal, the machining is complicated, and machining a part of the rotating shaft 4 is a problem in terms of cost and operation, and must be a separate part. It is a fact. On the other hand, the spiral groove method has a problem that gas consumption increases (running cost increases) due to the excellent ability of the spiral groove.

本発明が提供するターボ型の回転機器は、上記課題を解決するために圧縮室と軸受室の隔壁を貫通する部位であって貫通孔の中間部位より下方位における回転軸の外周面と貫通孔内周面との間に螺旋溝を形成するとともに貫通孔内周面と軸受室側とを連通する連通路を隔壁に設けたものである。   In order to solve the above problems, a turbo-type rotating device provided by the present invention is a part that penetrates the partition walls of the compression chamber and the bearing chamber, and the outer peripheral surface of the rotating shaft and the through hole at a position below the intermediate part of the through hole. A spiral groove is formed between the inner peripheral surface and a communication passage that connects the inner peripheral surface of the through hole and the bearing chamber side is provided in the partition wall.

そして本発明が第2に提供するターボ型の回転機器は、螺旋溝の方向がガス付勢を貫通孔下方に付勢するよう形成されている。したがって差圧変動を小さくすることができる。   The turbo type rotating device provided secondly by the present invention is formed such that the direction of the spiral groove urges the gas urging downward through the through hole. Therefore, the differential pressure fluctuation can be reduced.

さらに本発明が第3に提供するターボ型の回転機器は、螺旋溝が貫通孔の内周面に形成されたものであり、構成が簡略化される。さらに本発明が第4に提供するターボ型の回転機器は、連通路の軸受室側に潤滑用流体をトラップするフィルタを設けたものであり、流体付勢領域オイルミストの流入は阻止できかつガスは連通路を流れるのでガスの付勢機能は保障される。   Furthermore, the turbo rotating device provided by the present invention thirdly has a spiral groove formed on the inner peripheral surface of the through hole, and the configuration is simplified. Furthermore, the fourth aspect of the present invention provides a turbo type rotating device in which a filter for trapping a lubricating fluid is provided on the bearing chamber side of the communication path, and the flow of the fluid energized region oil mist can be prevented and gas can be prevented. Since the gas flows through the communication path, the gas energizing function is guaranteed.

シール内でのオイルの滞留さらにはシール内に侵入したオイルがシールを埋めることを防止することができる。またオイルは下方に付勢されるのでオイルが圧縮室Cの方向に逆流することはない。すなわち真空排気量を低減することができる。   It is possible to prevent oil from staying in the seal and further preventing oil that has entered the seal from filling the seal. Further, since the oil is urged downward, the oil does not flow backward in the direction of the compression chamber C. That is, the amount of vacuum exhaust can be reduced.

本発明の第1の特徴は、回転軸が隔壁を貫通する貫通孔の部位における貫通孔と回転軸の外周との間であって貫通孔の中間部位より下方位にのみ螺旋溝を形成する構成とした点である。しかもこの螺旋溝は回転軸の回転によって流体を下方に付勢する。さらに本発明の第2の特徴は前記螺旋溝形成によるシール部位と軸受室を連通させる連通路を合わせ設けた点であり、しかもこの連通路の軸受室側開口部にフィルタが付設されている点を第3の特徴としている。
したがって本発明としてはこれらの特徴をともに備えたターボ型の回転機器が最良の形態である。
A first feature of the present invention is a configuration in which a spiral groove is formed only between a through hole in a portion of a through hole through which the rotating shaft passes through the partition wall and an outer periphery of the rotating shaft and below the intermediate portion of the through hole. This is the point. Moreover, the spiral groove urges the fluid downward by the rotation of the rotating shaft. Furthermore, the second feature of the present invention is that a communication passage for communicating the seal portion formed by the spiral groove and the bearing chamber is provided together, and a filter is attached to the bearing chamber side opening of the communication passage. Is the third feature.
Therefore, the best mode of the present invention is a turbo-type rotating device having both of these characteristics.

本実施例は図1に示される。図1は回転軸4が隔壁8を貫通する部位を拡大して示す断面図で、図1において図3と同一の符号で示される部品は図3における符号の部品と同一の機能を有するものであり、これらの符号の部品についての詳細な説明は省略する。
図1において8Pが隔壁8に穿設された連通路で、軸受室Mへの開口部にはフィルタFが設置されている。他方の開口は螺旋溝4MDの上端部位に対応している。
This embodiment is shown in FIG. FIG. 1 is an enlarged cross-sectional view showing a portion where the rotary shaft 4 penetrates the partition wall 8. In FIG. 1, parts denoted by the same reference numerals as those in FIG. 3 have the same functions as the reference numerals in FIG. Detailed description of these reference numerals will be omitted.
In FIG. 1, reference numeral 8 </ b> P is a communication passage formed in the partition wall 8, and a filter F is installed at the opening to the bearing chamber M. The other opening corresponds to the upper end portion of the spiral groove 4MD.

螺旋溝4MDの部位では、螺旋によりシール機構が有効に働くとともに、貫通孔8A部位における回転軸4のみで螺旋溝が形成されていないシール部Sとの協働による圧縮室Cからのガス流入量は、軸受室Mからの真空排気量と連通路8Pから還流されるガス流量との差に相当する。これは軸受室M側から連通する連通路8Pを静止側に備えることでバイパス流路となり、螺旋溝効果により下方へのガス流れが過剰になった場合においても、連通路8Pからガスのバイパス流で、圧縮室Cから下方へのガス流量の定量化が図られ、シール部Sの上面へのオイルの逆流を防ぐことができる。   At the site of the spiral groove 4MD, the sealing mechanism works effectively by the spiral, and the amount of gas flowing from the compression chamber C by cooperation with the seal portion S in which the spiral groove is not formed only by the rotating shaft 4 at the site of the through hole 8A. Corresponds to the difference between the vacuum exhaust amount from the bearing chamber M and the gas flow rate recirculated from the communication passage 8P. This is a bypass flow path by providing the communication path 8P communicating from the bearing chamber M side on the stationary side, and even when the downward gas flow becomes excessive due to the spiral groove effect, the gas bypass flow from the communication path 8P Thus, the gas flow rate downward from the compression chamber C is quantified, and the backflow of oil to the upper surface of the seal portion S can be prevented.

上記の機能によって、ターボ型の回転機器がガス圧縮機として作動するとき、シール部Sにおける螺旋溝4MDの回転によって流体付勢領域AEでは下方へのガスの流れが付勢される。この場合、螺旋溝4MDが形成されていない貫通孔部位の上位における回転軸周面部4Fは、後述するとおり流体の下方への流れを案内すべく機能する。その結果圧縮室内へのオイルミストの流入が防止される。なお、ターボ型の回転機器の起動前において侵入したオイルは、軸受室Mにて掻き出される。そして螺旋溝4MDにより積極的に下方にガスが生じることで螺旋溝内を通過し軸受の部屋すなわち軸受室M側から連通路8Pを介して連通する連通路8Pを介して静止側に備えることで、連通路8P内を軸受室Mから螺旋溝4MDが存在するシール部S内に侵入したオイルが螺旋溝4MDの存在によって積極的にその下方に流動させられる。この機能によって、連通路8Pを経てシール部Sに流入したオイルが、圧縮室Cに流入するのを防ぎ、連通路8Pからのガスの供給により、全体のガス消費量を抑制することができる。   With the above function, when the turbo rotating device operates as a gas compressor, the downward gas flow is urged in the fluid energizing region AE by the rotation of the spiral groove 4MD in the seal portion S. In this case, the rotating shaft peripheral surface portion 4F above the through hole portion where the spiral groove 4MD is not formed functions to guide the downward flow of the fluid as described later. As a result, the oil mist is prevented from flowing into the compression chamber. The oil that has entered before the turbo type rotating device is started is scraped out in the bearing chamber M. Then, gas is actively generated downward by the spiral groove 4MD, so that it is provided on the stationary side via the communication passage 8P that passes through the spiral groove and communicates from the bearing chamber, that is, the bearing chamber M side via the communication passage 8P. The oil that has entered the communication path 8P from the bearing chamber M into the seal portion S where the spiral groove 4MD is present is actively caused to flow downward by the presence of the spiral groove 4MD. With this function, the oil that has flowed into the seal portion S through the communication path 8P can be prevented from flowing into the compression chamber C, and the overall gas consumption can be suppressed by supplying gas from the communication path 8P.

このことから、図4、図5に示すように軸受室Mの下方部に排気パイプRが備えられた場合、運転中のガス真空排気流量を制御できる。このことはランニングコストの低減につながる。シール部Sの隙間においては、ガスのみを通過させ、オイルミストをトラップすることは極めて困難であるが、軸受室Mから連通する静止側内の連通路あるいは下部にオイルトラップを備えることで容易にガスのみを通過させ、オイルトラップすることができる。   From this, when the exhaust pipe R is provided in the lower part of the bearing chamber M as shown in FIGS. 4 and 5, the gas vacuum exhaust flow rate during operation can be controlled. This leads to a reduction in running cost. In the gap of the seal portion S, it is extremely difficult to allow only gas to pass and trap oil mist, but it is easy to provide an oil trap in the communication path in the stationary side that communicates from the bearing chamber M or in the lower part. Only gas can be passed and oil trapped.

したがって連通路8Pを介してオイルがシール部S内に侵入することを防止できる。螺旋溝4MDにおいては、その回転によってオイルは螺旋溝4MDにおけるオイルが順次周方向で移動するためオイルによる表面張力による滞留が防げる。図2は貫通孔8Aの内周面側で中間より下方域に螺旋溝8MDを設けた例で機能は図1と同じである。   Therefore, oil can be prevented from entering the seal portion S through the communication path 8P. In the spiral groove 4MD, the rotation of the oil causes the oil in the spiral groove 4MD to sequentially move in the circumferential direction, thereby preventing the oil from staying due to the surface tension. FIG. 2 shows an example in which a spiral groove 8MD is provided in the region below the middle on the inner peripheral surface side of the through hole 8A, and the function is the same as FIG.

本発明が提供するターボ型の回転機器の特徴は以上詳述したとおりであるが、上記ならびに図示例に限定されるものではない。特に連通路8Pの形状については図示例のようにL字形に必ずしなければならないということではなく、たとえば図示例の両開口を直線で結ぶこともできる。さらにこの両方側にそれぞれ1個のL字形連通路8Pを設けることもできる。本発明はこれら変形例をすべて包含するものである。   The features of the turbo rotating device provided by the present invention are as described in detail above, but are not limited to the above and illustrated examples. In particular, the shape of the communication path 8P does not necessarily have to be L-shaped as in the illustrated example. For example, both openings in the illustrated example can be connected by a straight line. Furthermore, one L-shaped communication path 8P can be provided on each of both sides. The present invention includes all of these modifications.

本発明が提供するターボ型の回転機器の要部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the principal part of the turbo type rotating apparatus which this invention provides. 本発明が提供するターボ型の回転機器の要部の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the principal part of the turbo type rotating apparatus which this invention provides. 本発明が提供するターボ型の回転機器の要部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the principal part of the turbo type rotating apparatus which this invention provides. 従来におけるターボ型の回転機器のターボ翼の取付部である回転軸に改良を加えた構成を示す図である。It is a figure which shows the structure which added the improvement to the rotating shaft which is the attachment part of the turbo blade of the conventional turbo type rotary apparatus. 従来におけるターボ型の回転機器の構成を概略的に示す図である。It is a figure which shows schematically the structure of the conventional turbo type | mold rotary apparatus.

符号の説明Explanation of symbols

1 ハウジング
1K 吸気口
1H 排気口
1Y オイル槽
2 モータ
2K 電極コイル
2M 回転子
3 インバータ
4 回転軸
4F 回転軸周面部
4H 中空孔
4M 螺旋溝
4MD 螺旋溝
4S 取付軸
4T 射出孔
5 上部軸受
6 下部軸受
7 ターボ翼
8 隔壁
8A 貫通孔
8MD 螺旋溝
8P 連通路
9 軸受保持部材
9H 貫通孔
11 ボルト
AE 流体付勢領域
C 圧縮室
F フィルタ
L オイル
M 軸受室
S シール部
R 排気パイプ
DESCRIPTION OF SYMBOLS 1 Housing 1K Inlet 1H Exhaust 1Y Oil tank 2 Motor 2K Electrode coil 2M Rotor 3 Inverter 4 Rotating shaft 4F Rotating shaft peripheral surface 4H Hollow hole 4M Spiral groove 4MD Spiral groove 4S Mounting shaft 4T Injection hole 5 Upper bearing 6 Lower bearing 7 Turbo blade 8 Bulkhead 8A Through hole 8MD Spiral groove 8P Communication passage 9 Bearing holding member 9H Through hole 11 Bolt AE Fluid energizing region C Compression chamber F Filter L Oil M Bearing chamber S Seal portion R Exhaust pipe

Claims (3)

回転により室内にガス圧縮を行う回転体を内設した圧縮室と、前記回転体を回転駆動する回転駆動源および回転体と回転駆動源を連結する回転軸と軸受等の駆動系を内設した軸受室を備え、この圧縮室と軸受室を隔壁にて区画するとともに、前記隔壁に回転軸を貫挿する貫通孔を穿設したハウジングを備え、回転駆動源を回転駆動させて回転体を回転させ圧縮機能を行わせる回転機器において、貫通孔の中間部位より下方部位における回転軸の外周面と貫通孔内周面との間に、貫通孔内の流体を貫通孔の下方に向けて付勢する螺旋溝を設けるとともに貫通孔内周面と軸受室側とを連通する連通路を隔壁に設けたことを特徴とする回転機器。   A compression chamber in which a rotating body for compressing gas by rotation is installed, a rotary drive source for rotating the rotary body, a rotary shaft for connecting the rotary body and the rotary drive source, and a drive system such as a bearing are installed. A bearing chamber is provided, the compression chamber and the bearing chamber are partitioned by a partition, and a housing having a through-hole through which the rotation shaft is inserted is provided in the partition, and the rotating body is rotated to rotate the rotating body. In the rotating device that performs the compression function, the fluid in the through hole is urged toward the lower side of the through hole between the outer peripheral surface of the rotation shaft and the inner peripheral surface of the through hole in the lower part of the intermediate part of the through hole. A rotating device characterized in that a spiral groove is provided, and a communication path that connects the inner peripheral surface of the through hole and the bearing chamber side is provided in the partition wall. 螺旋溝が隔壁に穿設された貫通孔の内周面に形成されていることを特徴とする請求項1記載の回転機器。   The rotating device according to claim 1, wherein the spiral groove is formed on an inner peripheral surface of a through hole formed in the partition wall. 連通路の軸受室側開口部に潤滑用流体をトラップするフィルタを設けたことを特徴とする請求項1または請求項2記載の回転機器。
The rotating device according to claim 1 or 2, wherein a filter for trapping the lubricating fluid is provided in the bearing chamber side opening of the communication path.
JP2007042825A 2007-02-22 2007-02-22 Rotating equipment Expired - Fee Related JP4835861B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042825A JP4835861B2 (en) 2007-02-22 2007-02-22 Rotating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042825A JP4835861B2 (en) 2007-02-22 2007-02-22 Rotating equipment

Publications (2)

Publication Number Publication Date
JP2008202585A true JP2008202585A (en) 2008-09-04
JP4835861B2 JP4835861B2 (en) 2011-12-14

Family

ID=39780330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042825A Expired - Fee Related JP4835861B2 (en) 2007-02-22 2007-02-22 Rotating equipment

Country Status (1)

Country Link
JP (1) JP4835861B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790072B2 (en) 2011-08-16 2014-07-29 Weir Floway, Inc. Bearing assembly for a vertical turbine pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323699A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Mounting method for electronic component
JPH1113687A (en) * 1997-06-20 1999-01-19 Daikin Ind Ltd Turbo machinery
JP2006125315A (en) * 2004-10-29 2006-05-18 Shimadzu Corp Turbo type high-speed rotary apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323699A (en) * 1989-06-21 1991-01-31 Matsushita Electric Ind Co Ltd Mounting method for electronic component
JPH1113687A (en) * 1997-06-20 1999-01-19 Daikin Ind Ltd Turbo machinery
JP2006125315A (en) * 2004-10-29 2006-05-18 Shimadzu Corp Turbo type high-speed rotary apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8790072B2 (en) 2011-08-16 2014-07-29 Weir Floway, Inc. Bearing assembly for a vertical turbine pump

Also Published As

Publication number Publication date
JP4835861B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4888155B2 (en) Rotating equipment
JP5798331B2 (en) Water jet screw compressor
JP2020513722A (en) Electric machine with enclosed cooling assembly combined with open cooling assembly
KR102067054B1 (en) Screw compressor
JP6385669B2 (en) Rotating electric machine and electric vehicle equipped with the same
US20150184659A1 (en) Drive unit for a submersible oil pump, a pump
KR101893847B1 (en) Waterpump
JP4835861B2 (en) Rotating equipment
JP5482520B2 (en) Turbo machine
JP2008169740A (en) Compressor
JP2005054716A (en) Electric compressor
JP2010203347A (en) Lubricating device of supercharger
JP4742886B2 (en) Rotating equipment
JP4639666B2 (en) Turbo type high speed rotating equipment
JPH11324971A (en) Canned motor pump
JP2004183620A (en) High-speed rotating apparatus
JP3163284U (en) Rotating equipment
JP2007321588A (en) Electric compressor
JP4613582B2 (en) Turbo type high speed rotating equipment
JP2005069062A (en) Oil injection type screw compressor
JP2005171959A (en) Shaft seal mechanism for motor integrated fuel gas compressor
JP2006177280A (en) High speed rotation equipment
WO2024042684A1 (en) Blower device, and gas laser oscillator in which same is applied
JP4983026B2 (en) Rotating equipment
JP2017147838A (en) Rotary machine and gas-liquid separation device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110913

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees