JP2008202563A - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP2008202563A
JP2008202563A JP2007042145A JP2007042145A JP2008202563A JP 2008202563 A JP2008202563 A JP 2008202563A JP 2007042145 A JP2007042145 A JP 2007042145A JP 2007042145 A JP2007042145 A JP 2007042145A JP 2008202563 A JP2008202563 A JP 2008202563A
Authority
JP
Japan
Prior art keywords
sub
air
control
fuel ratio
feedback
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007042145A
Other languages
English (en)
Inventor
Koji Ide
宏二 井手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007042145A priority Critical patent/JP2008202563A/ja
Publication of JP2008202563A publication Critical patent/JP2008202563A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

【課題】この発明は、内燃機関の空燃比制御装置に関し、燃料カット後に実施されるリッチ制御の影響によるエミッションの悪化を抑制することを目的とする。
【解決手段】内燃機関の排気通路に配置された触媒の上流に配置されたメイン排気ガスセンサの出力に基づいて空燃比をメインフィードバック制御し、同触媒の下流に配置されたサブ排気ガスセンサの出力に基づいて空燃比をサブフィードバック制御する。内燃機関の燃料カットが実施された後には、触媒に流入する排気ガスの空燃比を理論空燃比よりリッチな空燃比に一時的に維持するリッチ制御を行う。リッチ制御の終了後、サブフィードバック制御の作用を通常時に比して弱くするサブフィードバック抑制制御を行う。
【選択図】図2

Description

本発明は、内燃機関の空燃比制御装置に関する。
従来、例えば特開2005−61356号公報に開示されているように、内燃機関の排気浄化用の触媒の上流側と下流側とにそれぞれメイン排気ガスセンサとサブ排気ガスセンサとを備えた内燃機関の空燃比制御装置が知られている。この装置では、触媒上流側のメイン排気ガスセンサの出力に基づいて空燃比のメインフィードバック制御が行われるととともに、触媒下流側のサブ排気ガスセンサの出力に基づいて、メインフィードバック制御を補完するためのサブフィードバック制御が行われる。
内燃機関の減速時には、通常、燃料カットが実行される。燃料カットの実行中は、内燃機関に対して燃料が噴射されないため、触媒内には、燃料を含まない空気が流通する。このため、燃料カットが実行されると、触媒が酸素を一杯に吸蔵して、触媒全体が酸化雰囲気になる。
触媒が最も優れた浄化能力を発揮するのは、触媒内の吸蔵酸素量が最大吸蔵量のほぼ半分の状態のときである。そこで、上記従来の装置では、内燃機関が燃料カットから復帰した後に、触媒内の吸蔵酸素量を減少させるべく、内燃機関の目標空燃比をリッチ空燃比とする制御(以下、「リッチ制御」と称す)を実行することとしている。
特開2005−61356号公報 特開平6−229291号公報
上記従来の装置において、リッチ制御が実行されると、触媒内は、還元雰囲気になる。このため、リッチ制御の終了後、サブ排気ガスセンサは、リッチ出力を発する。サブ排気ガスセンサがリッチ出力を発すると、サブフィードバック制御の作用により、内燃機関の空燃比がリーン側に補正される。その結果、酸素を含むリーンな排気ガスが触媒に流入し、触媒内が酸化されていく。このとき、触媒内は、先端側から酸化されていくので、触媒の後端付近はしばらくの間は還元雰囲気に維持される。サブ排気ガスセンサの出力は触媒後端の状態を示すので、触媒にリーンな排気ガスが流入し始めた後も、サブ排気ガスセンサの出力は依然としてリッチ出力に維持される。このため、内燃機関の空燃比はリーンに維持され続ける。その結果、再び触媒のほぼ全体が酸化雰囲気の状態となる。このタイミングで車両が再発進し、内燃機関が加速して排気ガスが急増すると、排気ガス中のNOxを触媒で十分に還元浄化することができず、NOxが触媒をすり抜けてしまうという問題がある。
この発明は、上述のような課題を解決するためになされたもので、燃料カット後に実施されるリッチ制御の影響によるエミッションの悪化を抑制することのできる内燃機関の空燃比制御装置を提供することを目的とする。
第1の発明は、上記の目的を達成するため、内燃機関の空燃比制御装置であって、
内燃機関の排気通路に配置された触媒と、
前記触媒の上流に配置されたメイン排気ガスセンサと、
前記触媒の下流に配置されたサブ排気ガスセンサと、
前記メイン排気ガスセンサの出力に基づいて、空燃比のメインフィードバック制御を行うメインフィードバック手段と、
前記サブ排気ガスセンサの出力に基づいて、前記メインフィードバック制御を補完するサブフィードバック制御を行うサブフィードバック手段と、
前記内燃機関の燃料カットが実施された後に、前記触媒に流入する排気ガスの空燃比を理論空燃比よりリッチな空燃比に一時的に維持するリッチ制御を行うリッチ制御手段と、
前記リッチ制御の終了後に、前記サブフィードバック制御の作用を通常時に比して弱くするサブフィードバック抑制制御を行うサブフィードバック抑制手段と、
を備えることを特徴とする。
また、第2の発明は、第1の発明において、
前記サブフィードバック抑制手段は、
前記サブフィードバック制御の制御ゲインを通常時に比して小さくするゲイン変更手段と、
前記サブフィードバック制御に課せられる制御ガードを縮小するガード縮小手段と、
前記サブフィードバック制御を停止するサブフィードバック停止手段と、
の少なくとも一つを含むことを特徴とする。
また、第3の発明は、第1または第2の発明において、
前記内燃機関の吸入空気量を検出する吸入空気量検出手段を更に備え、
前記サブフィードバック抑制手段は、前記リッチ制御の終了後における前記吸入空気量の積算値が所定の判定値に達したことを条件に前記サブフィードバック抑制制御を終了することを特徴とする。
また、第4の発明は、第1乃至第3の発明の何れかにおいて、
前記サブフィードバック抑制制御の実行中、前記メインフィードバック制御手段は、前記触媒に流入する排気ガスの空燃比が理論空燃比の近傍で変動するように制御することを特徴とする。
第1の発明によれば、内燃機関の燃料カット後に実施されたリッチ制御の終了後に、空燃比サブフィードバック制御の作用を通常時に比して弱くすることができる。燃料カット後のリッチ制御が実施されると、触媒のほぼ全体が還元雰囲気になる。よって、しばらくの間は、サブ排気ガスセンサの出力がリッチ出力に維持される。このため、仮にサブフィードバック制御が通常通りに実施されたとすると、内燃機関の空燃比がリーン側に補正されるため、触媒にリーンな排気ガスが流入し続ける。その結果、触媒のほぼ全体が酸化雰囲気になる。このタイミングで、車両が発進加速するなどして排気ガス量が増えたとすると、触媒がNOxを十分に還元浄化できず、NOxが触媒をすり抜けてしまう。これに対し、第1の発明では、リッチ制御後にサブフィードバック制御の作用を弱くするので、リッチ制御後に内燃機関の空燃比がリーン側に過補正されることを防止することができる。このため、触媒全体が酸化雰囲気になることを防止することができ、触媒内部に還元雰囲気領域と酸化雰囲気領域とがバランス良く混在した状態にすることができる。このため、車両が発進加速するなどして排気ガス量が増えた場合であっても、触媒内の還元雰囲気領域においてNOxを十分に還元浄化することができ、NOxの排出を確実に防止ことができる。
第2の発明によれば、リッチ制御後のサブフィードバック抑制制御として、サブフィードバック制御の制御ゲインを通常時に比して小さくする制御と、サブフィードバック制御に課せられる制御ガードを縮小する制御と、サブフィードバック制御を停止する制御との少なくとも一つを実施することができる。これにより、リッチ制御後にサブフィードバック制御の作用を確実に弱めることができるので、リッチ制御後のサブフィードバック制御の作用によって触媒全体が酸化雰囲気になってしまうことを確実に回避することができる。
第3の発明によれば、リッチ制御終了後の積算空気量が所定の判定値に達した時点でサブフィードバック抑制制御を終了することができる。サブフィードバック抑制制御を終了すべき最適なタイミングは、触媒内部に還元雰囲気領域と酸化雰囲気領域とがバランス良く混在した状態になったタイミングである。このタイミングは、リッチ制御後に触媒に流入した排気ガス量によって精度良く判定することができるので、リッチ制御後の積算空気量によっても精度良く判定することができる。第3の発明によれば、リッチ制御後の積算空気量に基づいてサブフィードバック抑制制御を終了することにより、排気ガス流量の大小にかかわらず、最適なタイミングでサブフィードバック抑制制御を終了することができる。
第4の発明によれば、サブフィードバック抑制制御の実行中、メインフィードバック制御により、触媒に流入する排気ガスの空燃比が理論空燃比の近傍で変動するように制御することができる。これにより、リッチ制御の実行後、理論空燃比より僅かにリッチな空燃比の排気ガスと僅かにリーンな空燃比の排気ガスとを交互に触媒に流入させることができる。このため、リッチ制御の実行後、触媒の内部に、還元雰囲気領域と酸化雰囲気領域とが極めて良いバランスで混在した状態を迅速に実現することができる。
実施の形態1.
[システム構成の説明]
図1は、本発明の実施の形態1のシステム構成を説明するための図である。図1に示すように、本実施形態のシステムは、車両に動力源として搭載される内燃機関10を備えている。内燃機関10の気筒数および気筒配置は、特に限定されない。
内燃機関10の各気筒には、吸気通路12および排気通路14が連通している。吸気通路12には、吸入空気量GAを検出するエアフローメータ16が配置されている。エアフローメータ16の下流には、スロットル弁18が配置されている。スロットル弁18は、アクセル開度等に基づいてスロットルモータ20により駆動される電子制御式のバルブである。スロットル弁18の近傍には、スロットル開度を検出するためのスロットルポジションセンサ22が配置されている。アクセル開度は、アクセルペダルの近傍に設けられたアクセルポジションセンサ24によって検出される。
内燃機関10の各気筒には、吸気ポートの内に燃料を噴射するための燃料インジェクタ26が配置されている。なお、内燃機関10は、図示のようなポート噴射式のものに限らず、燃料を筒内に直接噴射する方式のものでもよい。
内燃機関10の各気筒には、更に、吸気弁28、点火プラグ30、および排気弁32が設けられている。
内燃機関10のクランク軸36の近傍には、クランク軸36の回転角を検出するためのクランク角センサ38が取り付けられている。クランク角センサ38の出力によれば、クランク軸36の回転位置や機関回転数NEなどを検知することができる。
内燃機関10の排気通路14には、排気ガスを浄化するための触媒40が配置されている。触媒40は、CO、HCおよびNOxを同時に浄化することのできる三元触媒としての機能を有している。
触媒40の上流側には、その位置で排気空燃比を検出するためのメイン空燃比センサ(メイン排気ガスセンサ)44が配置されている。メイン空燃比センサ44としては、例えば、触媒40に流入する排気ガスの空燃比に対してほぼリニアな出力を発する広域空燃比センサを好ましく用いることができる。
触媒40の下流側には、サブ酸素センサ(サブ排気ガスセンサ)46が配置されている。本実施形態においては、サブ酸素センサ46としては、例えば、触媒40から流出してくる排気ガスが理論空燃比に対してリッチであるか、或いはリーンであるかに応じて急変する出力を発する酸素センサを好ましく用いることができる。
なお、本実施形態のシステムにおいて、触媒40の下流側には、別の排気浄化触媒が更に設置されていてもよい。
本実施形態のシステムは、ECU(Electronic Control Unit)50を更に備えている。ECU50には、上述した各種のセンサおよびアクチュエータが電気的に接続されている。ECU50は、それらのセンサ出力に基づいて、内燃機関10の運転状態を制御することができる。
[実施の形態1における空燃比制御]
本実施形態の装置は、メイン空燃比センサ44の出力を基礎とするメインフィードバック制御と、サブ酸素センサ46の出力を基礎とするサブフィードバック制御とを組み合わせた空燃比フィードバック制御を実行する。より具体的には、本実施形態において、ECU50は、メイン空燃比センサ44の出力evafbseやサブ酸素センサ46の出力に基づいて、次式で表される補正後A/F出力evabyfを算出し、その補正後A/F出力evabyfが目標空燃比に対応する値となるように燃料噴射量を制御する処理を実行する。
evabyf=evafbse+evafsfb ・・・(1)
上記(1)式中、右辺第1項の「evafbse」は、メイン空燃比センサ44の出力電圧である。また、右辺第2項の「evafsfb」は、サブ酸素センサ46の出力に基づいて算出されるサブフィードバック補正値である。
本実施形態では、上記(1)式に従って補正後A/F出力evabyfが算出され、更に、その補正後A/F出力evabyfを、目標空燃比相当の値に近づけるためのメインフィードバック制御が実行される。このメインフィードバック制御では、具体的には、補正後A/F出力evabyfを空燃比に換算する処理、その結果得られた空燃比と目標空燃比との偏差ΔA/Fを算出する処理、および、その偏差ΔA/Fを所定のゲインで燃料噴射量の補正に反映させる処理が実行される。
メイン空燃比センサ44が理想的な特性を示す場合は、その出力evafbseと、触媒40の上流における排気ガスの空燃比(以下「触媒前空燃比」と称す)とが一義的な関係を示す。そして、この場合には、メイン空燃比センサ44の出力evafbseが理論空燃比相当の値となるようにメインフィードバックを実行すれば、触媒40に流れ込む排気ガスは、理論空燃比近傍の空燃比を有するものとなり、触媒40の下流には、浄化された排気ガスだけが流出することとなる。
しかしながら、現実には、メイン空燃比センサ44および信号伝送系の個体差や経年変化、或いは内燃機関10の運転状態の変化等が原因となって、メイン空燃比センサ44は必ずしも常に理想的な出力特性を発揮するものではない。
一方、サブ酸素センサ46は、理論空燃比をより高い精度で検出することが可能である。このため、サブ酸素センサ46によれば、触媒40の下流の排気ガスの空燃比が理論空燃比よりリッチであるかリーンであるかを正確に検出することが可能である。
触媒40の下流の空燃比がリッチであることがサブ酸素センサ46により検出された場合は、触媒前空燃比が全体としてリッチ側にシフトしていると判断できる。そして、この場合は、燃料噴射量が現状よりも少なく算出されるようにメイン空燃比センサ44の出力evafbseを補正すれば、メインフィードバックの結果として得られる触媒前空燃比を理論空燃比に近づけることが可能である。
一方、触媒40の下流の空燃比がリーンであることがサブ酸素センサ46により検出された場合は、触媒前空燃比が全体としてリーン側にシフトしていると判断できる。そして、この場合は、燃料噴射量が現状よりも多く算出されるようにメイン空燃比センサ44の出力evafbseを補正すれば、メインフィードバックの結果として得られる触媒前空燃比を理論空燃比に近づけることが可能である。上記(1)式に含まれるサブフィードバック補正値evafsfbは、上述したような機能を実現するための補正値である。上述したようにして、サブフィードバック制御は、メインフィードバック制御を補完する機能を果たす。
ECU50は、具体的には、サブ酸素センサ46の出力と、基準出力(理論空燃比相当の出力)との偏差に、所定の演算を施すことにより、サブフィードバック補正値evafsfbを算出する。例えばPID制御によりサブフィードバック補正値evafsfbを算出する場合には、サブ酸素センサ46の出力とその目標値との偏差に基づく比例項、積分項、および微分項の和としてサブフィードバック補正値evafsfbを算出することができる。
図2は、本実施形態の空燃比制御の特徴を説明するためのタイミングチャートである。以下、同図を参照して、本実施形態の空燃比制御の特徴について説明する。
図2中の時刻t1以前において、内燃機関10は、通常運転状態にある。このときには、上述したメインフィードバック制御およびサブフィードバック制御の作用により、内燃機関10の空燃比は、理論空燃比となるように制御される。その結果、図2(a)に示すように、触媒前空燃比は、理論空燃比の近傍で変動する。
図2(e)に示すように、時刻t1は、車両が減速を開始した時点、つまりアクセルがオフされた時点を示している。アクセルがオフされると、ECU50は、燃料インジェクタ26からの燃料噴射を停止する燃料カットを実行する。燃料カットの実行中は、排気通路14に空気が流通する。このため、図2(a)に示すように、時刻t1において、触媒前空燃比はリーン側に大きく変化する。
機関回転数NEが所定の復帰回転数まで低下すると、燃料カットは終了され(時刻t2)、内燃機関10はアイドル運転状態となる。図2(b)は、触媒40内部の状態を示す図である。図2(b)中の長方形は、触媒40を示しており、左側が前端(入口)で右側が後端(出口)である。燃料カットの実行中は、触媒40に多量の酸素が流入する。このため、図2(b)に示すように、燃料カットが終了した時刻t2において、触媒40の内部は、その全体が酸化雰囲気になっている。
一般に、触媒が最良の浄化性能を発揮するのは、触媒の吸蔵酸素量が最大吸蔵量の半分程度である状態、すなわち触媒内部に酸化雰囲気の領域と還元雰囲気の領域とがバランス良く混在している状態のときである。このことに鑑みると、燃料カットの終了後は、酸化雰囲気に偏った触媒40の内部状態を、適切な状態に速やかに戻すことが好ましい。
そこで、燃料カットの終了後、ECU50は、内燃機関10の目標空燃比を理論空燃比よりもリッチとするリッチ制御を実行する。なお、リッチ制御の実行中は、サブフィードバック制御を停止あるいは抑制することが好ましい。
リッチ制御が実行されると、図2(a)に示すように、触媒前空燃比はリッチに変化する。つまり、触媒40には、未燃燃料を含んだ排気ガスが流入する。そうすると、触媒40の内部は、次第に還元雰囲気に変化していく。このとき、触媒40の内部状態は、前端側から変化していく。このため、触媒40の後端付近は、しばらくの間は酸化雰囲気のままに維持される。
サブ酸素センサ46の出力は、触媒40の後端付近の状態によって決定される。このため、図2(c)に示すように、時刻t2からリッチ制御が開始した後も、しばらく間は、サブ酸素センサ46の出力はリーン出力に維持される。
本実施形態では、このようにしてリッチ制御が継続されていくと、触媒40の内部の全体が還元雰囲気となる。触媒40の内部の全体が還元雰囲気になると、サブ酸素センサ46の出力がリーン出力からリッチ出力に反転する(時刻t3)。図2に示す例では、サブ酸素センサ46の出力がリーン出力からリッチ出力に反転した時点において、リッチ制御が終了される。すなわち、本実施形態では、図2(b)に示すように、リッチ制御が終了した時刻t3において、触媒40の内部は、全体が還元雰囲気となっている。
(比較例の空燃比制御)
以下、図2の時刻t3以降の状況について説明するが、本実施形態の空燃比制御の作用効果を分かり易くするため、まず、比較例の空燃比制御の場合について説明する。図2の(a)、(c)、(d)において、点線のグラフは、比較例を示すグラフである。
比較例の空燃比制御においては、リッチ制御が終了した時刻t3以降、サブフィードバック制御を通常通りに行うものとする。図2(c)に示すように、リッチ制御の終了後、サブ酸素センサ46は、リッチ出力を発している。サブフィードバック制御において、サブ酸素センサ46がリッチ出力を発していることは、内燃機関10の空燃比がリッチ側に偏っているものと判断される。このため、リッチ制御終了後、サブフィードバック制御は、内燃機関10の空燃比をリーン側に補正するように作用する。その結果、図2(a)に示すように、時刻t3以降、触媒前空燃比はリーン側に変化していき、理論空燃比よりもリーンになる。
触媒前空燃比が理論空燃比よりもリーンになった後は、酸素を含む排気ガスが触媒40に流入する。よって、触媒40の内部状態は、徐々に酸化雰囲気に変化していく。このときも、触媒40の内部状態は、前端側から変化していく。このため、触媒前空燃比がリーンになった後も、触媒40の後端付近は、しばらくの間は還元雰囲気のままに維持される。これにより、サブ酸素センサ46の出力はリッチ出力に維持されるので、サブフィードバック制御の作用によるリーン側への空燃比補正が継続される。
その結果、図2(c)に示すように、時刻t4の直前において、触媒40の内部は、後端付近を残してほぼ全部が酸化雰囲気となる。そして、リーンな排気ガスが触媒40に更に流入すると、触媒40の内部が全体が酸化雰囲気となり、これを受けて、サブ酸素センサ46の出力は、リッチ出力からリーン出力へと反転する(時刻t4)。サブ酸素センサ46の出力がリーン出力へ反転すると、サブフィードバック制御の作用により、内燃機関10の空燃比がリッチ側に補正される。
図4(d)は、触媒40から出る排気ガス中のNOx濃度を示している。比較例の空燃比制御においては、上述したようにして、時刻t4の付近で、触媒40のほぼ全体が酸化雰囲気となる。このような状態では、触媒40は、NOxを十分に還元浄化することができない。このため、時刻t4の付近で、車両を発進させるために運転者がアクセルペダルを踏み込み、内燃機関10からの排気ガス量が急増したとすると、図4(d)に示すように、NOxが触媒40をすり抜けて排出されてしまうという問題がある。
(本実施形態の空燃比制御)
上記のような比較例の場合の問題を解決するため、本実施形態では、リッチ制御の終了後、しばらくの間は、サブフィードバック制御のフィードバックゲイン(以下「サブフィードバックゲイン」という)を通常時の値よりも小さくするサブフィードバック抑制制御を実施することとした。これにより、リッチ制御が終了した時刻t3以降、サブフィードバック制御が内燃機関10の空燃比をリーン側に補正する作用が比較例の場合よりも弱くなるので、内燃機関10の空燃比はメインフィードバック制御の作用によってほぼ決定される。その結果、図2(a)に示すように、時刻t3以降、触媒前空燃比は、リーン側に偏ることなく、理論空燃比の近傍で変動する。
触媒前空燃比が理論空燃比の近傍で変動すると、理論空燃比より僅かにリッチな排気ガスと僅かにリーンな排気ガスとが交互に触媒40に流入する。すると、図2(c)に示すように、触媒40の内部は、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態へと、前端側から順次変化していく。そして、時刻t4付近においては、触媒40の内部は、そのほぼ全体が、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態となる。
このようにして、本実施形態の空燃比制御によれば、リッチ制御の終了後、触媒40の内部に、酸化雰囲気の領域と還元雰囲気の領域とを混在させることができる。このため、例えば時刻t4の付近で、車両を再発進させるために運転者がアクセルペダルを踏み込み、内燃機関10からの排気ガス量が急増した場合であっても、触媒40内の還元雰囲気の領域において、NOxを十分に還元浄化することができる。よって、図4(d)に示すように、NOxが触媒40をすり抜けて排出されてしまうことを確実に防止することができる。
本実施形態では、上述したように、リッチ制御の後、サブフィードバックゲインを通常時より小さくするサブフィードバック抑制制御を実行する。サブフィードバック抑制制御は、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態が触媒40の内部全体に広がった時点で終了することが最も好ましい。触媒40内部の雰囲気が変化するスピードは、触媒40に流入する排気ガスの流量によって決まる。このため、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態が触媒40の内部全体に広がったかどうかは、リッチ制御終了後に触媒40に流入した排気ガス量によって判断することができる。そして、排気ガス量は、エアフローメータ16で検出される吸入空気量を積算した積算空気量と相関している。そこで、本実施形態では、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態が触媒40の内部全体に広がったと判定できるような、リッチ制御後の積算空気量の判定値を予め調べておき、リッチ制御後に計測される積算空気量がその判定値に達した時点で、サブフィードバックゲインを通常時の値に戻すこととした。
[実施の形態1における具体的処理]
図3は、上記の機能を実現するために本実施形態においてECU50が実行するルーチンのフローチャートである。なお、本ルーチンは、所定時間毎に繰り返し実行されるものとする。本実施形態において、ECU50は、リッチ制御の終了後、エアフローメータ16で検出される吸入空気量を積算した積算空気量を算出する。そして、図3に示すルーチンによれば、まず、そのリッチ制御後の積算空気量と、前述したような所定の判定値とが比較される(ステップ100)。
上記ステップ100において、リッチ制御後の積算空気量が上記判定値未満であった場合には、リッチ制御後用のサブフィードバックゲインが選択され(ステップ102)、その選択されたゲインを用いてサブフィードバック制御が実行される。このリッチ制御後用のサブフィードバックゲインは、通常時のサブフィードバックゲインよりも小さくされている。リッチ制御後、このようにしてサブフィードバックゲインが通常時より小さくされると、前述したように、触媒前空燃比は、リーン側に偏ることなく、理論空燃比の近傍で変動する。その結果、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態が触媒40内部に広がっていく。
図3に示すルーチンによれば、リッチ制御後の積算空気量が上記判定値に達するまでの間は、上記ステップ102の処理(サブフィードバック抑制制御)が継続される。
一方、上記ステップ100において、リッチ制御後の積算空気量が上記判定値に達したと判別された場合には、酸化雰囲気の領域と還元雰囲気の領域とが混在した状態が触媒40内部全体に広がったと判断することができる。つまり、触媒40の内部状態が最適な状態に戻ったと判断することができる。この場合には、通常時のサブフィードバックゲインが選択され(ステップ104)、通常時のサブフィードバック制御に戻される。
以上説明したように、本実施形態の空燃比制御によれば、内燃機関10の減速時の燃料カット後にリッチ制御が行われた後、触媒40の内部を、酸化雰囲気と還元雰囲気とが混在した最適な状態に速やかに戻すことができる。このため、車両が再発進するなどして内燃機関10が加速したときにも、NOxを触媒40で十分に浄化することができ、NOxの排出を確実に防止することができる。
なお、本実施形態では、リッチ制御後、サブフィードバックゲインを通常時より小さくする手法を採用しているが、本発明では、リッチ制御後に空燃比サブフィードバック制御の作用を通常時より一時的に弱くする手法であれば、ゲインを小さくする以外の手法を採用してもよい。すなわち、サブフィードバックゲインを小さくすることに代えて、例えば、サブフィードバック補正値evafsfbの上下限ガード値を通常時より小さくするなどして制御ガードを縮小したり、あるいは、サブフィードバック制御そのものを停止したりしてもよい。
また、本実施形態では、サブフィードバック抑制制御の最適な終了時を、リッチ制御後の積算空気量で判定するようにしているが、終了判定の手法はこれに限定されるものではない。例えば、リッチ制御後の経過時間が所定時間に達したことを条件に、サブフィードバック抑制制御を終了して通常のサブフィードバック制御に戻すようにしてもよい。
また、本実施形態では、リッチ制御の終了を、サブ酸素センサ46の出力がリーン出力からリッチ出力に反転した時点(図2中の時刻t3)としているが、リッチ制御の終了時はこれに限定されるものではない。例えば、リッチ制御開始後の積算空気量が、触媒40のほぼ半分が還元雰囲気になったと判断できる値に達した時点で、リッチ制御を終了するようにしてもよい。この場合であっても、比較例の空燃比制御の場合には、以下に説明するように、結局、触媒40の全体が還元雰囲気になってしまう。
すなわち、触媒40のほぼ半分が還元雰囲気になった時点でリッチ制御を終了することとした場合には、リッチ制御終了時、触媒40の後ろ半分は酸化雰囲気になっている。このため、リッチ制御終了後、しばらくの間、サブ酸素センサ46はリーン出力に維持される。よって、リッチ制御後にサブフィードバック制御が通常通り実行されるとすると、内燃機関10の空燃比がリッチ側に補正され、リッチ空燃比の排気ガスが触媒40に流入する。その結果、触媒40の残り半分も還元雰囲気に変化し、結局、触媒40の全体が還元雰囲気となる。
このように、触媒40のほぼ半分が還元雰囲気になった時点でリッチ制御を終了するようにした場合であっても、図2の場合と同様の状況が生ずる。よって、この場合であっても、本発明は有用である。
また、上述した実施の形態1においては、ECU50が、補正後A/F出力evabyfを目標空燃比相当の値に近づける制御を実行することにより前記第1の発明における「メインフィードバック手段」が、サブフィードバック補正値evafsfbを算出することにより前記第1の発明における「サブフィードバック手段」が、燃料カット後に目標空燃比をリッチ空燃比とすることにより前記第1の発明における「リッチ制御手段」が、上記ステップ102の処理を実行することにより前記第1の発明における「サブフィードバック抑制手段」が、上記ステップ102の処理を実行することにより前記第2の発明における「ゲイン変更手段」が、リッチ制御後にサブフィードバック補正値evafsfbの上下限ガード値を通常時より小さくすることにより前記第2の発明における「ガード縮小手段」が、リッチ制御後にサブフィードバック制御を停止することにより前記第2の発明における「サブフィードバック停止手段」が、それぞれ実現されている。また、エアフローメータ16が前記第3の発明における「吸入空気量検出手段」に相当している。
本発明の実施の形態1のシステム構成を説明するための図である。 本発明の実施の形態1の空燃比制御を説明するためのタイミングチャートである。 本発明の実施の形態1において実行されるルーチンのフローチャートである。
符号の説明
10 内燃機関
12 吸気通路
14 排気通路
16 エアフローメータ
18 スロットル弁
26 燃料インジェクタ
30 点火プラグ
40 触媒
44 メイン空燃比センサ
46 サブ酸素センサ
50 ECU

Claims (4)

  1. 内燃機関の排気通路に配置された触媒と、
    前記触媒の上流に配置されたメイン排気ガスセンサと、
    前記触媒の下流に配置されたサブ排気ガスセンサと、
    前記メイン排気ガスセンサの出力に基づいて、空燃比のメインフィードバック制御を行うメインフィードバック手段と、
    前記サブ排気ガスセンサの出力に基づいて、前記メインフィードバック制御を補完するサブフィードバック制御を行うサブフィードバック手段と、
    前記内燃機関の燃料カットが実施された後に、前記触媒に流入する排気ガスの空燃比を理論空燃比よりリッチな空燃比に一時的に維持するリッチ制御を行うリッチ制御手段と、
    前記リッチ制御の終了後に、前記サブフィードバック制御の作用を通常時に比して弱くするサブフィードバック抑制制御を行うサブフィードバック抑制手段と、
    を備えることを特徴とする内燃機関の空燃比制御装置。
  2. 前記サブフィードバック抑制手段は、
    前記サブフィードバック制御の制御ゲインを通常時に比して小さくするゲイン変更手段と、
    前記サブフィードバック制御に課せられる制御ガードを縮小するガード縮小手段と、
    前記サブフィードバック制御を停止するサブフィードバック停止手段と、
    の少なくとも一つを含むことを特徴とする請求項1記載の内燃機関の空燃比制御装置。
  3. 前記内燃機関の吸入空気量を検出する吸入空気量検出手段を更に備え、
    前記サブフィードバック抑制手段は、前記リッチ制御の終了後における前記吸入空気量の積算値が所定の判定値に達したことを条件に前記サブフィードバック抑制制御を終了することを特徴とする請求項1または2記載の内燃機関の空燃比制御装置。
  4. 前記サブフィードバック抑制制御の実行中、前記メインフィードバック制御手段は、前記触媒に流入する排気ガスの空燃比が理論空燃比の近傍で変動するように制御することを特徴とする請求項1乃至3の何れか1項記載の内燃機関の空燃比制御装置。
JP2007042145A 2007-02-22 2007-02-22 内燃機関の空燃比制御装置 Pending JP2008202563A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007042145A JP2008202563A (ja) 2007-02-22 2007-02-22 内燃機関の空燃比制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007042145A JP2008202563A (ja) 2007-02-22 2007-02-22 内燃機関の空燃比制御装置

Publications (1)

Publication Number Publication Date
JP2008202563A true JP2008202563A (ja) 2008-09-04

Family

ID=39780311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007042145A Pending JP2008202563A (ja) 2007-02-22 2007-02-22 内燃機関の空燃比制御装置

Country Status (1)

Country Link
JP (1) JP2008202563A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167646A (ja) * 2011-02-16 2012-09-06 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
JP2015010474A (ja) * 2013-06-26 2015-01-19 ダイハツ工業株式会社 内燃機関の制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436942A (en) * 1987-07-31 1989-02-07 Toyota Motor Corp Control device for air-fuel ratio of internal combustion engine
JP2004100465A (ja) * 2002-09-04 2004-04-02 Honda Motor Co Ltd 触媒の還元処理において目標空燃比のリミット値を変更する空燃比制御装置
JP2005061356A (ja) * 2003-08-18 2005-03-10 Toyota Motor Corp 内燃機関の制御装置
JP2006233943A (ja) * 2005-02-28 2006-09-07 Toyota Motor Corp 内燃機関の空燃比制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6436942A (en) * 1987-07-31 1989-02-07 Toyota Motor Corp Control device for air-fuel ratio of internal combustion engine
JP2004100465A (ja) * 2002-09-04 2004-04-02 Honda Motor Co Ltd 触媒の還元処理において目標空燃比のリミット値を変更する空燃比制御装置
JP2005061356A (ja) * 2003-08-18 2005-03-10 Toyota Motor Corp 内燃機関の制御装置
JP2006233943A (ja) * 2005-02-28 2006-09-07 Toyota Motor Corp 内燃機関の空燃比制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012167646A (ja) * 2011-02-16 2012-09-06 Toyota Motor Corp 気筒間空燃比ばらつき異常検出装置
US8695568B2 (en) 2011-02-16 2014-04-15 Toyota Jidosha Kabushiki Kaisha Inter-cylinder air-fuel ratio imbalance abnormality determination device
JP2015010474A (ja) * 2013-06-26 2015-01-19 ダイハツ工業株式会社 内燃機関の制御装置

Similar Documents

Publication Publication Date Title
US6644017B2 (en) Device for and method of controlling air-fuel ratio of internal combustion engine
JP5001183B2 (ja) 内燃機関の空燃比制御装置
JP2005048711A (ja) 内燃機関の空燃比制御装置
JP5278454B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
WO2011108075A1 (ja) 内燃機関の制御装置
US8463532B2 (en) Control device for engine
JP2009002170A (ja) 内燃機関の空燃比制御装置
JP5116868B2 (ja) 内燃機関の空燃比制御装置
JP2008202563A (ja) 内燃機関の空燃比制御装置
JP2007077913A (ja) 内燃機関の燃料噴射制御装置
JP5074717B2 (ja) 内燃機関の燃料噴射制御装置
JPH09112308A (ja) 内燃機関の空燃比制御装置
JP2000130221A (ja) 内燃機関の燃料噴射制御装置
JP5077047B2 (ja) 内燃機関の制御装置
JP5331931B2 (ja) 内燃機関の空燃比制御装置
JP2019074028A (ja) 空燃比制御装置
JP2009024496A (ja) 内燃機関の空燃比制御装置
JP2012036849A (ja) 内燃機関の空燃比制御方法
JP5093390B2 (ja) 内燃機関の空燃比制御装置
JP2009281176A (ja) 内燃機関の排気浄化装置
JP2023054689A (ja) 触媒劣化診断装置
JP2007162625A (ja) 内燃機関の制御装置
JP2010203389A (ja) 触媒の劣化判定装置
JP5152134B2 (ja) エンジンの自動停止制御装置
JP4345462B2 (ja) 内燃機関の空燃比制御装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308