JP2008192701A - GaN-BASED SEMICONDUCTOR ELEMENT - Google Patents

GaN-BASED SEMICONDUCTOR ELEMENT Download PDF

Info

Publication number
JP2008192701A
JP2008192701A JP2007023403A JP2007023403A JP2008192701A JP 2008192701 A JP2008192701 A JP 2008192701A JP 2007023403 A JP2007023403 A JP 2007023403A JP 2007023403 A JP2007023403 A JP 2007023403A JP 2008192701 A JP2008192701 A JP 2008192701A
Authority
JP
Japan
Prior art keywords
gan
based semiconductor
type
layer
semiconductor layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007023403A
Other languages
Japanese (ja)
Other versions
JP5189771B2 (en
Inventor
Hiroaki Ota
裕朗 太田
Shin Egami
慎 江上
Hirotaka Otake
浩隆 大嶽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2007023403A priority Critical patent/JP5189771B2/en
Priority to PCT/JP2008/051626 priority patent/WO2008093824A1/en
Publication of JP2008192701A publication Critical patent/JP2008192701A/en
Application granted granted Critical
Publication of JP5189771B2 publication Critical patent/JP5189771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET
    • H01L29/7783Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET using III-V semiconductor material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8252Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using III-V technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0605Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits made of compound material, e.g. AIIIBV
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/452Ohmic electrodes on AIII-BV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/495Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a simple metal, e.g. W, Mo

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a GaN-based semiconductor element having a GaN-based semiconductor laminated structure having high breakdown voltage and low leakage. <P>SOLUTION: The semiconductor element is represented by a structure in which a third n-type GaN-type semiconductor layer 3, a first n-type GaN-based semiconductor layer 4, an i-type GaN-based semiconductor layer 5, a p-type GaN-based semiconductor layer 6, and a second n-type GaN-based semiconductor layer 7 are laminated on a substrate 1. The p-type GaN-based semiconductor layer 6 has an impurity concentration of ≤1×10<SP>20</SP>cm<SP>-3</SP>, and the first n-type GaN-based semiconductor layer 4 has an impurity concentration of ≤1×10<SP>18</SP>cm<SP>-3</SP>. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明はIII−V族窒化物半導体を用いたGaN系半導体素子に関する。   The present invention relates to a GaN-based semiconductor device using a group III-V nitride semiconductor.

例えばGaN系薄膜を用いた高輝度青色系発光素子やAlN/GaN薄膜を用いたMISFETやAlGaN/GaN薄膜を用いたHEMTなど、窒化物薄膜を用いた素子は数多く提案され実現されている。   For example, many devices using a nitride thin film have been proposed and realized, such as a high-intensity blue light-emitting device using a GaN-based thin film, a MISFET using an AlN / GaN thin film, and a HEMT using an AlGaN / GaN thin film.

従来から、パワーアンプ回路、電源回路、モータ駆動回路等には、シリコン半導体を用いたパワーデバイスが用いられている。しかし、シリコン半導体の理論限界から、シリコンデバイスの高耐圧化、低抵抗化および高速化は限界に達しつつあり、市場の要求に応えることが困難になりつつある。そこで、高耐圧、高温動作、大電流密度、高速スイッチングおよび小オン抵抗といった特徴を有するGaN系電子デバイスの開発が提案されている(下記非特許文献1参照)。   Conventionally, power devices using silicon semiconductors are used for power amplifier circuits, power supply circuits, motor drive circuits, and the like. However, due to the theoretical limits of silicon semiconductors, the increase in breakdown voltage, reduction in resistance, and increase in speed of silicon devices are reaching their limits, and it is becoming difficult to meet market demands. Therefore, development of a GaN-based electronic device having characteristics such as high breakdown voltage, high temperature operation, large current density, high-speed switching, and small on-resistance has been proposed (see Non-Patent Document 1 below).

パワーデバイス用のGaN系電子デバイスに対して、特に重要な特性は、耐電圧(耐圧)とオン抵抗であると言われている。オン抵抗については、チャネル領域のチャネル長が短くしてオン抵抗を小さくする等の方法があり、例えば、斜めゲート電極を有する構造等が考えられている。他方、耐圧については、ソース電極とドレイン電極を水平方向に配置する横型構造のGaN系電子デバイスでは、高耐圧を確保することが困難であるので、非特許文献1に示されるように、ソース電極とドレイン電極を垂直方向に配置する縦型のGaN系電子デバイスが提案されている。
特開2004−260140号公報 大久保聡著、「もう光るだけじゃない、機器の進化の裏にGaN」2006年6月5日、日経エレクトロニクス、p.51−60
It is said that particularly important characteristics for a GaN-based electronic device for power devices are withstand voltage (withstand voltage) and on-resistance. As for the on-resistance, there is a method of reducing the on-resistance by shortening the channel length of the channel region. For example, a structure having an oblique gate electrode is considered. On the other hand, regarding the breakdown voltage, it is difficult to secure a high breakdown voltage in the lateral structure GaN-based electronic device in which the source electrode and the drain electrode are arranged in the horizontal direction. And a vertical GaN-based electronic device in which drain electrodes are arranged in a vertical direction have been proposed.
JP 2004-260140 A Okubo Satoshi, “GaN is behind the evolution of equipment, not just shining” June 5, 2006, Nikkei Electronics, p. 51-60

横型構造のGaN系電子デバイスでは、ソース電極とドレイン電極との間の距離を大きくとることができるので、耐圧は向上するものの、集積化することが困難であったり、オン抵抗が大きくなる等の問題がある。   In a lateral structure GaN-based electronic device, the distance between the source electrode and the drain electrode can be increased, so that the breakdown voltage is improved, but it is difficult to integrate, the on-resistance is increased, etc. There's a problem.

本発明は、上述した課題を解決するために創案されたものであり、縦型構造によって高耐圧、低オン抵抗のGaN系半導体素子を提供することを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to provide a GaN-based semiconductor device having a high breakdown voltage and a low on-resistance by a vertical structure.

上記の目的を達成するために、請求項1記載の発明は、基板上に少なくとも第1のn型又はi型のGaN系半導体層、p型不純物を含むGaN系半導体層、第2のn型又はi型のGaN系半導体層を順に備えたGaN系半導体素子であって、前記p型不純物を含むGaN系半導体層の不純物濃度は1×1020cm−3以下であり、前記第1のn型又はi型のGaN系半導体層の不純物濃度は1×1018cm−3以下であることを特徴とするGaN系半導体素子である。 In order to achieve the above object, the invention described in claim 1 is characterized in that at least a first n-type or i-type GaN-based semiconductor layer, a GaN-based semiconductor layer containing a p-type impurity, and a second n-type on a substrate. Alternatively, a GaN-based semiconductor element including an i-type GaN-based semiconductor layer in order, wherein the impurity concentration of the GaN-based semiconductor layer containing the p-type impurity is 1 × 10 20 cm −3 or less, and the first n The impurity concentration of the i-type or i-type GaN-based semiconductor layer is 1 × 10 18 cm −3 or less.

また、請求項2記載の発明は、前記第1のn型又はi型のGaN系半導体層とp型不純物を含むGaN系半導体層との間には、不純物Mg濃度が1×1018cm−3以下のi型GaN系半導体層が形成されていることを特徴とする請求項1記載のGaN系半導体素子である。 According to a second aspect of the present invention, an impurity Mg concentration is 1 × 10 18 cm between the first n-type or i-type GaN-based semiconductor layer and a GaN-based semiconductor layer containing a p-type impurity. 2. The GaN-based semiconductor element according to claim 1, wherein three or less i-type GaN-based semiconductor layers are formed.

また、請求項3記載の発明は、前記基板と第1のn型又はi型のGaN系半導体層との間に第1のn型又はi型のGaN系半導体層よりも不純物濃度が高い第3のn型GaN系半導体層が形成されていることを特徴とする請求項1又は請求項2のいずれか1項に記載のGaN系半導体素子である。   According to a third aspect of the present invention, the impurity concentration between the substrate and the first n-type or i-type GaN-based semiconductor layer is higher than that of the first n-type or i-type GaN-based semiconductor layer. 3. The GaN-based semiconductor device according to claim 1, wherein three n-type GaN-based semiconductor layers are formed.

また、請求項4記載の発明は、前記p型不純物を含むGaN系半導体層の厚みは2μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載のGaN系半導体素子である。   According to a fourth aspect of the present invention, in the GaN-based semiconductor according to any one of the first to third aspects, the thickness of the GaN-based semiconductor layer containing the p-type impurity is 2 μm or less. It is an element.

また、請求項5記載の発明は、 前記p型不純物を含むGaN系半導体層の不純物はMgであることを特徴とする請求項1〜請求項4のいずれか1項に記載のGaN系半導体素子である。 The invention according to claim 5 5. The GaN-based semiconductor element according to claim 1, wherein an impurity of the GaN-based semiconductor layer containing the p-type impurity is Mg.

また、請求項6記載の発明は、前記第1のn型又はi型のGaN系半導体層の不純物はSi又はOであることを特徴とする請求項1〜請求項5のいずれか1項に記載のGaN系半導体素子である。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the impurity of the first n-type or i-type GaN-based semiconductor layer is Si or O. The GaN-based semiconductor device described.

また、請求項7記載の発明は、前記第1のn型又はi型のGaN系半導体層の不純物濃度は、前記第2のn型又はi型のGaN系半導体層より小さいことを特徴とする請求項1〜請求項6のいずれか1項に記載のGaN系半導体素子である。   The invention according to claim 7 is characterized in that an impurity concentration of the first n-type or i-type GaN-based semiconductor layer is smaller than that of the second n-type or i-type GaN-based semiconductor layer. A GaN-based semiconductor device according to any one of claims 1 to 6.

また、請求項8記載の発明は、前記第2のn型又はi型のGaN系半導体層の厚みは1μm以下であることを特徴とする請求項1〜請求項7のいずれか1項に記載のGaN系半導体素子である。   The invention according to claim 8 is characterized in that the thickness of the second n-type or i-type GaN-based semiconductor layer is 1 μm or less. This is a GaN-based semiconductor element.

また、請求項9記載の発明は、前記第3のn型GaN系半導体層の不純物濃度は、1×1018cm−3以上であることを特徴とする請求項3〜請求項8のいずれか1項に記載のGaN系半導体素子である。 The invention described in claim 9 is characterized in that the impurity concentration of the third n-type GaN-based semiconductor layer is 1 × 10 18 cm −3 or more. 2. A GaN-based semiconductor device according to item 1.

また、請求項10記載の発明は、前記p型不純物を含むGaN系半導体層の加工により露出した壁面に接してゲート絶縁膜を形成することを特徴とする請求項1〜請求項9のいずれか1項に記載のGaN系半導体素子である。   The invention according to claim 10 is characterized in that a gate insulating film is formed in contact with a wall surface exposed by processing of the GaN-based semiconductor layer containing the p-type impurity. 2. A GaN-based semiconductor device according to item 1.

また、請求項11記載の発明は、前記壁面付近の領域は、前記p型不純物を含むGaN系半導体層とは伝導特性の異なる半導体により構成されていることを特徴とする請求項10記載のGaN系半導体素子である。   The invention according to claim 11 is characterized in that the region in the vicinity of the wall surface is made of a semiconductor having a different conduction characteristic from the GaN-based semiconductor layer containing the p-type impurity. A semiconductor-based semiconductor device.

以下、図面を参照して本発明の一実施形態を説明する。図1は本発明のGaN系半導体素子の断面構造を示す。本発明のGaN系半導体素子は、3つのn型GaN系半導体層と1つのi型GaN系半導体層、1つのp型GaN系半導体層を備えており、基板1の上に第3n型GaN系半導体層3(第3のn型GaN系半導体層に相当)、第1n型GaN系半導体層4(第1のn型又はi型のGaN系半導体層に相当)、i型GaN系半導体層5、p型GaN系半導体層6(p型不純物を含むGaN系半導体層に相当)、第2n型GaN系半導体層7(第2のn型又はi型のGaN系半導体層に相当)が積層された積層構造で表される。i型GaN系半導体層5は、後述するように、空乏層化する領域を拡げて耐圧を向上させるものであるが、このi型GaN系半導体層5を除いた構造としても良い。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a cross-sectional structure of a GaN-based semiconductor device of the present invention. The GaN-based semiconductor device of the present invention includes three n-type GaN-based semiconductor layers, one i-type GaN-based semiconductor layer, and one p-type GaN-based semiconductor layer. Semiconductor layer 3 (corresponding to a third n-type GaN-based semiconductor layer), first n-type GaN-based semiconductor layer 4 (corresponding to a first n-type or i-type GaN-based semiconductor layer), i-type GaN-based semiconductor layer 5 , A p-type GaN-based semiconductor layer 6 (corresponding to a GaN-based semiconductor layer containing p-type impurities) and a second n-type GaN-based semiconductor layer 7 (corresponding to a second n-type or i-type GaN-based semiconductor layer) are stacked. It is expressed by a laminated structure. As will be described later, the i-type GaN-based semiconductor layer 5 expands a region to be a depletion layer and improves the breakdown voltage. However, the i-type GaN-based semiconductor layer 5 may have a structure excluding the i-type GaN-based semiconductor layer 5.

ここで、GaN系半導体とは、六方晶化合物半導体であるIII−V族GaN系半導体が用いられており、上記III−V族GaN系半導体は、4元混晶系のAlGaInN(x+y+z=1、0≦x≦1、0≦y≦1、0≦z≦1)で表され、GaN又はGaN化合物を含むものである。また、i型の半導体とは、意図的な不純物を含まない半導体、すなわち低濃度のn型半導体をも含むことを意味するもので、真性半導体(intrinsic semiconductor)に近い半導体のことを言う。 Here, a III-V group GaN-based semiconductor which is a hexagonal compound semiconductor is used as the GaN-based semiconductor, and the III-V group GaN-based semiconductor is a quaternary mixed crystal Al x Ga y In z. N (x + y + z = 1, 0 ≦ x ≦ 1, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1), and includes GaN or a GaN compound. An i-type semiconductor means a semiconductor that does not contain intentional impurities, that is, includes a low-concentration n-type semiconductor, and is a semiconductor close to an intrinsic semiconductor.

図1のようなn−p−n型の層構造を有するGaN系半導体素子をFET(電界効果トランジスタ)のような電子デバイスに用いる場合には、p型GaN系半導体層6をチャネル層に、第2n型GaN系半導体層7をソース層に、第3n型GaN系半導体層3をドレイン層に用いて電子デバイスとして動作させる。したがって、図1のGaN系半導体素子は、いわゆる縦型構造と呼ばれる電子デバイスに適用される。   When a GaN-based semiconductor element having an npn type layer structure as shown in FIG. 1 is used for an electronic device such as an FET (field effect transistor), the p-type GaN-based semiconductor layer 6 is used as a channel layer. The second n-type GaN-based semiconductor layer 7 is used as a source layer and the third n-type GaN-based semiconductor layer 3 is used as a drain layer to operate as an electronic device. Therefore, the GaN-based semiconductor element of FIG. 1 is applied to an electronic device called a so-called vertical structure.

n−p−n型の層構造としているのは、p−n−p型では、キャリア移動度が低く、キャリア濃度も低い素子しか実現できない。また、p−n−p型では、最上層のp型層へ例えばイオンを注入してp+型層としたい場合でも、一般にGaN系のp型層では困難であり、最上層がn型層の方が、比較的容易に行える。そこで、n−p−n型構造を用いることにした。   In the pnp type, the npn type layer structure can realize only an element with low carrier mobility and low carrier concentration. In the pnp type, even when ions are implanted into the uppermost p-type layer to form a p + type layer, it is generally difficult to use a GaN-based p-type layer, and the uppermost layer is an n-type layer. This is relatively easy. Therefore, it was decided to use an npn type structure.

次に、図1の層構造を示すGaN系半導体素子をパワーデバイスに用いるためには、耐圧の向上が不可欠である。まず、素子の耐圧を向上させるためには、トランジスタ動作時に空乏層が拡がるn型層の不純物濃度や厚み等が重要になってくる。すなわち、第1n型GaN系半導体層4が上記n型層に該当するが、この第1n型GaN系半導体層4の不純物濃度について注目する。なお、n型層のドーパントにはSi(シリコン)又はO(酸素)等が用いられる。   Next, in order to use the GaN-based semiconductor element having the layer structure of FIG. 1 for a power device, it is essential to improve the breakdown voltage. First, in order to improve the breakdown voltage of the element, the impurity concentration and thickness of the n-type layer where the depletion layer expands during transistor operation becomes important. That is, although the first n-type GaN-based semiconductor layer 4 corresponds to the n-type layer, attention is focused on the impurity concentration of the first n-type GaN-based semiconductor layer 4. Note that Si (silicon), O (oxygen), or the like is used as the dopant of the n-type layer.

ここで、素子の耐圧Vmaxは第1n型GaN系半導体層4の不純物濃度N1に反比例することが知られており、不純物濃度N1を小さくする程、素子の耐圧は大きくなる。p型GaN系半導体層6の不純物濃度が第1n型GaN系半導体層4よりも大きい場合は、一般に、耐圧Vmaxと不純物濃度N1とは以下の関係にある。
max=ε1×(Emax/(2×q×N1)
ここで、Emaxは素子の絶縁破壊電界を、ε1は第1n型GaN系半導体層4の誘電率を、qは電気素量を表す。例えば、第1n型GaN系半導体層4の不純物濃度N1を1×1018cm−3、絶縁破壊電界Emaxを3.5M(V/cm)とすると、耐圧は321Vとなる。この程度の耐圧を維持するためには、第1n型GaN系半導体層4の不純物濃度は1×1018cm−3以下としなければならない。ここで、Mはmegaを表す。以上のように、第1n型GaN系半導体層4は、不純物濃度を低くしたn型GaN系半導体層で構成される。
Here, the breakdown voltage V max of the element is known to be inversely proportional to the impurity concentration N1 of the 1n-type GaN-based semiconductor layer 4, the smaller the impurity concentration N1, breakdown voltage of the device increases. The impurity concentration of the p-type GaN-based semiconductor layer 6 is greater than the 1n-type GaN-based semiconductor layer 4 is generally the breakdown voltage V max and the impurity concentration N1 in the following relationship.
V max = ε1 × (E max ) 2 / (2 × q × N1)
Here, E max represents the breakdown electric field of the element, ε 1 represents the dielectric constant of the first n-type GaN-based semiconductor layer 4, and q represents the elementary electric quantity. For example, when the impurity concentration N1 of the first n-type GaN-based semiconductor layer 4 is 1 × 10 18 cm −3 and the dielectric breakdown electric field E max is 3.5 M (V / cm), the breakdown voltage is 321 V. In order to maintain such a breakdown voltage, the impurity concentration of the first n-type GaN-based semiconductor layer 4 must be 1 × 10 18 cm −3 or less. Here, M represents mega. As described above, the first n-type GaN-based semiconductor layer 4 is composed of an n -type GaN-based semiconductor layer with a low impurity concentration.

次に、耐圧に関係する要素が空乏領域の厚み(幅)である。空乏領域の厚みが増すと耐圧も向上する。一般にPN接合の場合には、PN接合界面が空乏層化するが、この程度の空乏領域の拡がりでは不十分である。したがって、i型GaN系半導体層5をp型GaN系半導体層6と第1n型GaN系半導体層4とで挟んだPIN構造とすることにより、i型GaN系半導体層5を空乏層化させ、空乏領域を拡大させて耐圧を向上させようとするものである。   Next, the factor related to the breakdown voltage is the thickness (width) of the depletion region. As the thickness of the depletion region increases, the breakdown voltage also improves. In general, in the case of a PN junction, the PN junction interface forms a depletion layer, but this extent of depletion region expansion is insufficient. Therefore, by adopting a PIN structure in which the i-type GaN-based semiconductor layer 5 is sandwiched between the p-type GaN-based semiconductor layer 6 and the first n-type GaN-based semiconductor layer 4, the i-type GaN-based semiconductor layer 5 is depleted, The depletion region is expanded to improve the breakdown voltage.

i型GaN系半導体層5の膜厚をt1とし、絶縁破壊電界Emaxとすると、i型GaN系半導体層5自身の耐圧ViはVi=t1×Emaxとなり、耐圧Viは膜厚t1に比例する。例えば、膜厚t1を0.2μm、Emax=3.5M(V/cm)とすると、Vi=0.2×3.5=70(V) となって、素子全体としては70ボルト、耐圧が増加する。また、i型GaN系半導体層5は、前述したように真性半導体に近い半導体を意味するが、意図的にp型不純物のMgをドーピングしても良い。これは、i型GaN系半導体層5をそのまま結晶成長させると、若干n型になるので、これを補正するためである。その場合にはMgドーピング濃度が1×1017cm−3以下となるようにすることが望ましい。不純物濃度が高くなると空乏領域が拡がらないためである。 Assuming that the film thickness of the i-type GaN-based semiconductor layer 5 is t1 and the dielectric breakdown electric field Emax , the breakdown voltage Vi of the i-type GaN-based semiconductor layer 5 is Vi = t1 × Emax , and the breakdown voltage Vi is proportional to the film thickness t1. To do. For example, when the film thickness t1 is 0.2 μm and E max = 3.5 M (V / cm), Vi = 0.2 × 3.5 = 70 (V), and the entire element is 70 volts, withstand voltage Will increase. The i-type GaN-based semiconductor layer 5 means a semiconductor close to an intrinsic semiconductor as described above, but may be doped with p-type impurity Mg intentionally. This is because the i-type GaN-based semiconductor layer 5 becomes slightly n-type when grown as it is, so that this can be corrected. In that case, it is desirable that the Mg doping concentration be 1 × 10 17 cm −3 or less. This is because the depletion region does not expand when the impurity concentration increases.

次に、p型GaN系半導体層6の不純物濃度について考えると以下のようになる。まず、不純物濃度N2の下限を考えると、以下のようになる。不純物濃度に反比例して、絶縁破壊電界時の空乏領域幅(積層方向の幅)Wが決定される。空乏領域が上下に広がりすぎると、第2n型GaN系半導体層7から電子が流れ込むというリーチスルーが発生するので、これを回避するために、p型GaN系半導体層6の厚さWpは絶縁破壊電界時の空乏領域幅W以上でなくてはならない(Wp≧W)。Wは、素子の絶縁破壊電界Emax、電気素量をq、p型GaN系半導体層6の誘電率をεp、p型GaN系半導体層6の不純物濃度をN2とすると、W=εp×Emax/(q×N2)で表され、不純物濃度に反比例する。例えば、不純物濃度N2が1×1017cm−3であれば、p型GaN系半導体層6の厚さWpは1.8μm以上必要になる。また、不純物濃度N2が1×1018cm−3であれば、p型GaN系半導体層6の厚さWpは0.18μm以上、不純物濃度N2が1×1019cm−3であれば、厚さWpは0.018μm以上必要となる。 Next, the impurity concentration of the p-type GaN-based semiconductor layer 6 is considered as follows. First, the lower limit of the impurity concentration N2 is considered as follows. The depletion region width (width in the stacking direction) W at the time of the dielectric breakdown electric field is determined in inverse proportion to the impurity concentration. If the depletion region extends too much vertically, reach-through occurs in which electrons flow from the second n-type GaN-based semiconductor layer 7. To avoid this, the thickness Wp of the p-type GaN-based semiconductor layer 6 is dielectric breakdown. It must be greater than or equal to the depletion region width W in the electric field (Wp ≧ W). W is W = εp × E where the dielectric breakdown electric field E max of the element, q is the elementary charge, εp is the dielectric constant of the p-type GaN-based semiconductor layer 6, and N2 is the impurity concentration of the p-type GaN-based semiconductor layer 6. It is expressed by max / (q × N2) and is inversely proportional to the impurity concentration. For example, if the impurity concentration N2 is 1 × 10 17 cm −3 , the thickness Wp of the p-type GaN-based semiconductor layer 6 needs to be 1.8 μm or more. When the impurity concentration N2 is 1 × 10 18 cm −3 , the thickness Wp of the p-type GaN-based semiconductor layer 6 is 0.18 μm or more, and when the impurity concentration N2 is 1 × 10 19 cm −3 , the thickness is increased. The thickness Wp is required to be 0.018 μm or more.

ところで、素子駆動時のチャネル抵抗(オン抵抗)を下げるためには、p型GaN系半導体層6に発生する反転分布領域の積層方向の長さ(チャネル長)を短くしなければならないが、そのためにはp型GaN系半導体層6自身の厚さWpを薄くする必要がある。チャネル抵抗を下げるという観点から、例えば、p型GaN系半導体層6の厚さWpを0.5μm以下にすることにすると、上記空乏領域幅Wの計算式から、不純物濃度N2は3×1017cm−3以上とすることが望ましい。また、p型GaN系半導体層6の不純物濃度を1×1017cm−3程度のものを使用するのであれば、上述したように、p型GaN系半導体層6の膜厚Wpは2μm程度必要となる。 By the way, in order to reduce the channel resistance (ON resistance) at the time of driving the element, it is necessary to shorten the length (channel length) in the stacking direction of the inversion distribution region generated in the p-type GaN-based semiconductor layer 6. For this, it is necessary to reduce the thickness Wp of the p-type GaN-based semiconductor layer 6 itself. From the viewpoint of reducing the channel resistance, for example, if the thickness Wp of the p-type GaN-based semiconductor layer 6 is 0.5 μm or less, the impurity concentration N2 is 3 × 10 17 from the calculation formula of the depletion region width W. It is desirable to be cm −3 or more. If the impurity concentration of the p-type GaN-based semiconductor layer 6 is about 1 × 10 17 cm −3 , as described above, the film thickness Wp of the p-type GaN-based semiconductor layer 6 needs to be about 2 μm. It becomes.

次に、p型GaN系半導体層6の不純物濃度N2の上限を考えると、以下のようになる。素子駆動時には、p型GaN系半導体層6の積層方向に沿って反転分布領域を発生させなければならないが、下記の式に示されるように高い不純物濃度では反転しにくくなる。ここで、反転分布時の界面ポテンシャルをφ(inv)、ボルツマン定数をk、半導体の絶対温度をT、半導体の真性キャリア密度をn、電気素量をqとすると、
φ(inv)≒2k×T×ln(N2/n)/q で表される。
界面準位のない理想的な状態で反転分布を発生させる電圧の閾値Vthは、以下のように表される。MIS構造の絶縁膜の静電容量をC1、誘電率をε1、p型GaN系半導体層6の静電容量をC2、誘電率をε2とすると、
th=q×φ(inv)×(C1+C2)/C1
=(1+(ε2×Wp)/(ε1×Wmax)×q×φs(inv)
ここで、Wmaxは反転時の最大空乏層幅であり、
max={(2εp×φs(inv))/(q×N2)}1/2で表される。
MIS構造の絶縁膜に、厚さ0.1μmのSiOを用い、上述したようにp型GaN系半導体層6の厚さWpを0.5μmとした場合、界面準位のない理想的な状態で反転分布を発生させる電圧の閾値Vthを100ボルト以下に抑えたい場合には、上記計算式より、p型GaN系半導体層6の不純物濃度N2を5×1019cm−3以下にすることが望ましい。
Next, the upper limit of the impurity concentration N2 of the p-type GaN-based semiconductor layer 6 is considered as follows. When the element is driven, an inversion distribution region must be generated along the stacking direction of the p-type GaN-based semiconductor layer 6, but it is difficult to invert at a high impurity concentration as shown in the following equation. Here, when the interface potential in the inversion distribution is φ S (inv), the Boltzmann constant is k, the absolute temperature of the semiconductor is T, the intrinsic carrier density of the semiconductor is n i , and the elementary charge is q,
φ S (inv) ≈2k × T × ln (N2 / n i ) / q
The threshold voltage Vth for generating an inversion distribution in an ideal state without an interface state is expressed as follows. When the capacitance of the insulating film having the MIS structure is C1, the dielectric constant is ε1, the capacitance of the p-type GaN-based semiconductor layer 6 is C2, and the dielectric constant is ε2,
V th = q × φ S (inv) × (C1 + C2) / C1
= (1+ (ε2 × Wp) / (ε1 × W max ) × q × φs (inv)
Here, W max is the maximum depletion layer width during inversion,
W max = {(2εp × φs (inv)) / (q × N2)} 1/2 .
When SiO 2 having a thickness of 0.1 μm is used for the insulating film having the MIS structure and the thickness Wp of the p-type GaN-based semiconductor layer 6 is 0.5 μm as described above, an ideal state having no interface state. In order to suppress the threshold voltage Vth for generating the inversion distribution to 100 volts or less, the impurity concentration N2 of the p-type GaN-based semiconductor layer 6 is set to 5 × 10 19 cm −3 or less from the above formula. Is desirable.

一方、不純物をMgとしてドーピングを行うと、1×1020cm−3以上では析出が生じるので好ましくない。以上の内容を総合するとp型GaN系半導体層6の不純物濃度N2の上限は1×1020cm−3以下とすることが望ましい。 On the other hand, doping with Mg as an impurity is not preferable because precipitation occurs at 1 × 10 20 cm −3 or more. In summary, the upper limit of the impurity concentration N2 of the p-type GaN-based semiconductor layer 6 is desirably 1 × 10 20 cm −3 or less.

最後に、第2n型GaN系半導体層7及び第3n型GaN系半導体層3について考えると、ソース電極又はドレイン電極などの電極とのオーミックコンタクトの点と、大電流を注入するという点からは、電極と接触する半導体層の抵抗は低い方が望ましい。ここで、第2n型GaN系半導体層7の抵抗Rは、第2n型GaN系半導体層7の膜厚をt2、断面積をS、不純物濃度をN3、移動度をμとすると、
R=t2/(q×N3×μ×S)で表される。抵抗を低くするためには、不純物濃度N3を1×1018cm−3とし、膜厚t2は0.5μmとした。これによって、抵抗(率)は、2.2×10−6(Ω・cm)程度になる。したがって、第2n型GaN系半導体層7の不純物濃度は、1×1018cm−3以上とすることが望ましい。さらに、抵抗Rの式より、膜厚t2が薄い方が抵抗は小さくなるので、膜厚t2は1μm以下程度とすることが望ましい。
Finally, considering the second n-type GaN-based semiconductor layer 7 and the third n-type GaN-based semiconductor layer 3, from the point of ohmic contact with an electrode such as a source electrode or a drain electrode, and from the point of injecting a large current, It is desirable that the resistance of the semiconductor layer in contact with the electrode is low. Here, the resistance R of the second n-type GaN-based semiconductor layer 7 is as follows. The film thickness of the second n-type GaN-based semiconductor layer 7 is t2, the cross-sectional area is S, the impurity concentration is N3, and the mobility is μ.
R = t2 / (q × N3 × μ × S). In order to reduce the resistance, the impurity concentration N3 was 1 × 10 18 cm −3 and the film thickness t2 was 0.5 μm. As a result, the resistance (rate) becomes about 2.2 × 10 −6 (Ω · cm 2 ). Therefore, it is desirable that the impurity concentration of the second n-type GaN-based semiconductor layer 7 is 1 × 10 18 cm −3 or more. Furthermore, from the equation of resistance R, the smaller the film thickness t2, the smaller the resistance. Therefore, the film thickness t2 is preferably about 1 μm or less.

また、第3n型GaN系半導体層3についても、第2n型GaN系半導体層7と同様に考えられるので、膜厚は1μm以下、不純物濃度は1×1018cm−3以上とすることが望ましい。以上のように、第2n型GaN系半導体層7及び第3n型GaN系半導体層3は、不純物濃度を高くしたn型GaN系半導体層で構成される。 Further, since the third n-type GaN-based semiconductor layer 3 is also considered to be the same as the second n-type GaN-based semiconductor layer 7, it is desirable that the film thickness is 1 μm or less and the impurity concentration is 1 × 10 18 cm −3 or more. . As described above, the second n-type GaN-based semiconductor layer 7 and the third n-type GaN-based semiconductor layer 3 are composed of n + -type GaN-based semiconductor layers having a high impurity concentration.

以上説明した事項から、図1のGaN系半導体素子構成の一例を示しておくと、基板1は、サファイア基板、ZnO基板、Si基板、GaAs基板、GaN基板、SiC基板等のいずれかを用い、第3n型GaN系半導体層3の膜厚が1μmで不純物Siのドーピング濃度を3×1018cm−3、第1n型GaN系半導体層4の膜厚が5μmで不純物Siのドーピング濃度を1×1017cm−3、i型GaN系半導体層5の膜厚が0.2μm、p型GaN系半導体層6の膜厚が0.5μmで不純物Mgのドーピング濃度を3×1019cm−3、第2n型GaN系半導体層7の膜厚が0.5μmで不純物Siのドーピング濃度を3×1018cm−3とした。ここで示したのは、GaNの場合であるが、例えば、AlGaNの場合でも同様の議論を行うことができる。その場合、絶縁破壊電界Emaxをその物性値に置き換えれば良い。本発明には、そのような設計も含まれる。 From the matters described above, when an example of the GaN-based semiconductor device configuration of FIG. 1 is shown, the substrate 1 uses any one of a sapphire substrate, a ZnO substrate, a Si substrate, a GaAs substrate, a GaN substrate, a SiC substrate, and the like. The thickness of the third n-type GaN-based semiconductor layer 3 is 1 μm and the doping concentration of impurity Si is 3 × 10 18 cm −3 . The thickness of the first n-type GaN-based semiconductor layer 4 is 5 μm and the doping concentration of impurity Si is 1 ×. 10 17 cm −3 , the thickness of the i-type GaN-based semiconductor layer 5 is 0.2 μm, the thickness of the p-type GaN-based semiconductor layer 6 is 0.5 μm, and the doping concentration of impurity Mg is 3 × 10 19 cm −3 . The film thickness of the second n-type GaN-based semiconductor layer 7 was 0.5 μm, and the doping concentration of impurity Si was 3 × 10 18 cm −3 . The case shown here is for GaN, but the same discussion can be made for AlGaN, for example. In that case, it is replaced by dielectric breakdown field E max in its physical properties. The present invention includes such a design.

図2は、図1のGaN系半導体素子構造を用いた第1のMIS型電界効果トランジスタの構造を示す図解的な断面図である。したがって、上述した図1のGaN系半導体素子の説明における不純物濃度や膜厚等の条件が適用されるものであり、後述する第2のMIS型電界効果トランジスタについても同様である。第1のMIS型電界効果トランジスタは、絶縁性基板であるサファイア基板11と、サファイア基板11上に成長させられたアンドープGaN12上にPIN構造のGaN系半導体積層部を備えている。図1のGaN系半導体素子構造と対比すると、基板1の部分がサファイア基板11及びアンドープGaN12に相当する。このように、本実施例では、GaN系半導体層と同種の基板であるアンドープGaN12上にGaN系半導体積層部が形成されている。   FIG. 2 is a schematic cross-sectional view showing the structure of a first MIS type field effect transistor using the GaN-based semiconductor element structure of FIG. Therefore, the conditions such as the impurity concentration and the film thickness in the description of the GaN-based semiconductor element of FIG. 1 described above are applied, and the same applies to the second MIS type field effect transistor described later. The first MIS type field effect transistor includes a sapphire substrate 11 which is an insulating substrate, and a GaN-based semiconductor stacked portion having a PIN structure on an undoped GaN 12 grown on the sapphire substrate 11. Compared with the GaN-based semiconductor device structure in FIG. 1, the portion of the substrate 1 corresponds to the sapphire substrate 11 and the undoped GaN 12. As described above, in this embodiment, the GaN-based semiconductor stacked portion is formed on the undoped GaN 12 which is the same kind of substrate as the GaN-based semiconductor layer.

GaN系半導体積層部は、アンドープGaN12側から、n型AlGaN層13(ドレイン層)、n型GaN層14、アンドープGaN層15、p型GaN層16(チャネル層)、n型GaN層17(ソース層)で構成されている。このGaN系半導体積層部を、図1のGaN系半導体構造と対比すると、第3n型GaN系半導体層がn型AlGaN層13に、第1n型GaN系半導体層がn型GaN層14に、i型GaN系半導体層5がアンドープGaN層15に、p型GaN系半導体層6がp型GaN層16に、第2n型GaN系半導体層がn型GaN層17に対応している。 From the undoped GaN 12 side, the GaN-based semiconductor stacked portion includes an n + -type AlGaN layer 13 (drain layer), an n -type GaN layer 14, an undoped GaN layer 15, a p-type GaN layer 16 (channel layer), and an n + -type GaN layer. 17 (source layer). When this GaN-based semiconductor laminate is compared with the GaN-based semiconductor structure of FIG. 1, the third n-type GaN-based semiconductor layer is the n + -type AlGaN layer 13 and the first n-type GaN-based semiconductor layer is the n -type GaN layer 14. The i-type GaN-based semiconductor layer 5 corresponds to the undoped GaN layer 15, the p-type GaN-based semiconductor layer 6 corresponds to the p-type GaN layer 16, and the second n-type GaN-based semiconductor layer corresponds to the n + -type GaN layer 17.

GaN系半導体積層部は、断面がほぼ矩形となるようにn型GaN層17からn型AlGaN層13が露出する深さまでエッチングされている。そして、n型AlGaN層13は、GaN系半導体積層部の両側から、サファイア基板11の表面に沿う横方向に引き出された引き出し部13aを有している。引き出し部13aは、n型AlGaN層13の延長部で構成されており、この引き出し部13aの表面にドレイン電極19が接触して形成されている。 GaN-based semiconductor lamination portion is etched from the n + -type GaN layer 17 so that the cross section is substantially rectangular to a depth n + -type AlGaN layer 13 is exposed. The n + -type AlGaN layer 13 has lead portions 13a that are drawn in the lateral direction along the surface of the sapphire substrate 11 from both sides of the GaN-based semiconductor stacked portion. The lead portion 13a is composed of an extension of the n + -type AlGaN layer 13, and the drain electrode 19 is formed in contact with the surface of the lead portion 13a.

一方、GaN系半導体積層部の幅方向中間付近には、n型GaN層17からp型GaN層16、アンドープGaN層15を貫通してn型GaN層14の途中に至るまでの深さのV字形溝Aが形成されている。V字形溝Aにおける傾斜した側面は、n型GaN層14、アンドープGaN層15、p型GaN層16およびn型GaN層17に跨る壁面を形成している。この壁面の全域を覆い、さらに、n型GaN層17の上面においてV字形溝Aの縁部に至る領域に、ゲート絶縁膜20がV字形状に形成されている。さらに、このゲート絶縁膜20上には、ゲート電極21がV字形状に形成されている。ゲート電極20は、ゲート絶縁膜19を介して設けられており、ゲート電極20とGaN系半導体層とは直接接触しないように構成されている。このような構成が縦型のMIS(Metal Insulator Semiconductor)構造と呼ばれるものである。 On the other hand, the depth from the n + -type GaN layer 17 through the p-type GaN layer 16 and the undoped GaN layer 15 to the middle of the n -type GaN layer 14 is near the middle in the width direction of the GaN-based semiconductor stack. V-shaped groove A is formed. The inclined side surface in the V-shaped groove A forms a wall surface extending over the n -type GaN layer 14, the undoped GaN layer 15, the p-type GaN layer 16 and the n + -type GaN layer 17. A gate insulating film 20 is formed in a V shape in a region that covers the entire wall surface and further reaches the edge of the V-shaped groove A on the upper surface of the n + -type GaN layer 17. Further, a gate electrode 21 is formed in a V shape on the gate insulating film 20. The gate electrode 20 is provided via the gate insulating film 19, and is configured so that the gate electrode 20 and the GaN-based semiconductor layer are not in direct contact. Such a configuration is called a vertical MIS (Metal Insulator Semiconductor) structure.

p型GaN層16においてV字形溝Aの壁面付近の領域は、ゲート電極21に対向したチャネル領域(反転分布領域)16aである。このチャネル領域16aには、ゲート電極21に適切なバイアス電圧が与えられることにより、アンドープGaN層15とn型GaN層17間を電気的に導通させる反転分布が形成される。 A region near the wall surface of the V-shaped groove A in the p-type GaN layer 16 is a channel region (inversion distribution region) 16 a facing the gate electrode 21. In the channel region 16a, when an appropriate bias voltage is applied to the gate electrode 21, an inversion distribution that electrically connects the undoped GaN layer 15 and the n + -type GaN layer 17 is formed.

アンドープGaN層12とn型AlGaN層13との界面付近においてアンドープGaN層12内には、ピエゾ効果によって、二次元電子ガス23が生じている。アンドープGaN層12は、サファイア基板11上に、いわゆる選択横方向エピタキシャル成長(ELO)によって形成されており、基板表面に沿う水平方向に転位密度の高い領域と転位密度の少ない領域(無転位領域)とを有している。そして、図2の引き出し部13a以外の部分は、転位密度の少ない領域が直下に位置するように、その形成位置が選択されている。アンドープGaN層12は、その主面(サファイア基板11に平行な表面)が、たとえばC面(0001)となるようにサファイア基板11上に成長させられる。 Near the interface between the undoped GaN layer 12 and the n + -type AlGaN layer 13, a two-dimensional electron gas 23 is generated in the undoped GaN layer 12 due to the piezoelectric effect. The undoped GaN layer 12 is formed on the sapphire substrate 11 by so-called selective lateral epitaxial growth (ELO), and includes a region having a high dislocation density and a region having a low dislocation density (non-dislocation region) in the horizontal direction along the substrate surface. have. The formation positions of the portions other than the lead portion 13a in FIG. 2 are selected so that a region with a low dislocation density is located immediately below. The undoped GaN layer 12 is grown on the sapphire substrate 11 so that its main surface (surface parallel to the sapphire substrate 11) is, for example, a C plane (0001).

この場合、アンドープGaN層12上にエピタキシャル成長によって積層されるn型AlGaN層13、n型GaN層14、アンドープGaN層15、p型GaN層16およびn型GaN層17は、やはりC面(0001)を主面として積層されることになる。また、V字形溝Aの壁面は、例えば、無極性面(m面(10−10)もしくはa面(11−20))、またはセミポーラ面((10−1−1)、(10−1−3)、(11−22)等)といった極性が最大であるC面以外の面となる。 In this case, the n + -type AlGaN layer 13, the n -type GaN layer 14, the undoped GaN layer 15, the p-type GaN layer 16, and the n + -type GaN layer 17 stacked on the undoped GaN layer 12 by epitaxial growth are also C-planes. (0001) is laminated as the main surface. The wall surface of the V-shaped groove A is, for example, a nonpolar surface (m-plane (10-10) or a-plane (11-20)), or semipolar surface ((10-1-1), (10-1-). 3), (11-22), etc.) other than the C-plane having the maximum polarity.

アンドープGaN層12は、その主面が無極性面(m面(10−10)もしくはa面(11−20))、またはセミポーラ面((10−1−1)、(10−1−3)、(11−22)など)となるようにサファイア基板11上に成長させられてもよい。この場合には、それに応じて、n型AlGaN層13〜n型GaN層17までの各半導体層は、対応する結晶面を主面として積層されることになる。 The main surface of the undoped GaN layer 12 is a nonpolar surface (m-plane (10-10) or a-plane (11-20)), or semipolar surface ((10-1-1), (10-1-3)). , (11-22), etc.) may be grown on the sapphire substrate 11. In this case, accordingly, the semiconductor layer to the n + -type AlGaN layer 13~N + -type GaN layer 17 will be laminated corresponding crystal plane as the main surface.

ゲート絶縁膜20は、例えば窒化物または酸化物で構成することができる。より具体的には、ゲート絶縁膜20を窒化シリコン(Si)または酸化シリコンで構成すれば、p型GaN層16との界面の電荷を低減することができ、チャネル領域16aにおけるキャリア移動度を向上することができる。すなわち、チャネル抵抗を低減することができる。ゲート電極21は、Ni−Au合金、Ni−Ti−Au合金、Pd−Au合金、Pd−Ti−Au合金、Pd−Pt−Au合金、Pt、Al、ポリシリコンなどの導電性材料で構成される。 The gate insulating film 20 can be made of, for example, nitride or oxide. More specifically, if the gate insulating film 20 is made of silicon nitride (Si x N y ) or silicon oxide, the charge at the interface with the p-type GaN layer 16 can be reduced, and the carrier movement in the channel region 16a. The degree can be improved. That is, channel resistance can be reduced. The gate electrode 21 is made of a conductive material such as a Ni—Au alloy, a Ni—Ti—Au alloy, a Pd—Au alloy, a Pd—Ti—Au alloy, a Pd—Pt—Au alloy, Pt, Al, or polysilicon. The

ドレイン電極19は、少なくともAlを含む金属で構成することが好ましく、たとえばTi−Al合金で構成することができる。ソース電極18も同様に、Alを含む金属で構成することが好ましく、たとえばTi−Al合金で構成することができる。Alを含む金属でドレイン電極19およびソース電極18を構成しておくことにより、配線層(図示せず)との良好なコンタクトをとることができる。その他、ドレイン電極19およびソース電極18は、MoもしくはMo化合物(たとえば、モリブデンシリサイド)、TiもしくはTi化合物(たとえば、チタンシリサイド)、またはWもしくはW化合物(たとえば、タングステンシリサイド)で構成してもよい。   The drain electrode 19 is preferably made of a metal containing at least Al. For example, the drain electrode 19 can be made of a Ti—Al alloy. Similarly, the source electrode 18 is preferably made of a metal containing Al, for example, a Ti—Al alloy. By configuring the drain electrode 19 and the source electrode 18 with a metal containing Al, good contact with a wiring layer (not shown) can be obtained. In addition, the drain electrode 19 and the source electrode 18 may be made of Mo or Mo compound (for example, molybdenum silicide), Ti or Ti compound (for example, titanium silicide), or W or W compound (for example, tungsten silicide). .

次に、上記のMIS型電界効果トランジスタの動作について簡単に説明する。ソース電極18とドレイン電極19との間には、ドレイン電極19側が正となる逆バイアス電圧が与えられる。これにより、n型GaN層14、アンドープGaN層15、p型GaN層16で構成されるPIN接合には逆方向電圧が加えられる。i型半導体であるアンドープGaN層15内の空乏領域が拡大する。その結果、ソース−ドレイン間は遮断状態となるが、この状態で、ソース電極18とゲート電極21との間に、ゲート電極21側が正となる所定の電圧を加えると、p型GaN層16に対するバイアスがゲート電極21に与えられる。 Next, the operation of the MIS field effect transistor will be briefly described. A reverse bias voltage is applied between the source electrode 18 and the drain electrode 19 so that the drain electrode 19 side becomes positive. As a result, a reverse voltage is applied to the PIN junction composed of the n -type GaN layer 14, the undoped GaN layer 15, and the p-type GaN layer 16. The depletion region in the undoped GaN layer 15 that is an i-type semiconductor is expanded. As a result, the source and drain are cut off, but in this state, if a predetermined voltage is applied between the source electrode 18 and the gate electrode 21 so that the gate electrode 21 side becomes positive, the p-type GaN layer 16 is not affected. A bias is applied to the gate electrode 21.

これにより、p型GaN層16のチャネル領域16aには、電子が誘起されて、反転チャネルが形成される。この反転チャネルを介して、アンドープGaN層15とn型GaN層17間が導通し、ソース−ドレイン間が導通する。すなわち、ゲート電極21に所定のバイアスを加えたときにソース−ドレイン間が導通し、ゲート電極21にバイアスを与えないときにはソース−ドレイン間が遮断状態となる。このようにして、ノーマリオフ動作が可能となる。 Thereby, electrons are induced in the channel region 16a of the p-type GaN layer 16 to form an inversion channel. Via this inversion channel, the undoped GaN layer 15 and the n + -type GaN layer 17 are electrically connected, and the source and drain are electrically connected. That is, when a predetermined bias is applied to the gate electrode 21, the source and the drain are conducted, and when no bias is applied to the gate electrode 21, the source and the drain are cut off. In this way, a normally-off operation is possible.

チャネル領域16aに反転チャネルが形成されているとき、ソース電極18から供給される電子は、n型GaN層17から、チャネル領域16aを通って、アンドープGaN層15、n型GaN層14、n型AlGaN層13と流れ込み、二次元電子ガス23を経由して、ドレイン電極19へと向かう。この二次元電子ガス23を用いることで、横方向への電子の移動による抵抗を小さくすることができる。 When an inversion channel is formed in the channel region 16a, electrons supplied from the source electrode 18 pass from the n + -type GaN layer 17 through the channel region 16a, the undoped GaN layer 15, the n -type GaN layer 14, It flows into the n + -type AlGaN layer 13 and travels to the drain electrode 19 via the two-dimensional electron gas 23. By using the two-dimensional electron gas 23, the resistance due to the movement of electrons in the lateral direction can be reduced.

図4(a)〜(e)は、図2のMIS型電界効果トランジスタの製造方法を工程順に示す図解的な断面図である。まず、サファイア基板11の上に、横方向選択エピタキシャル成長法(特許文献2参照)により、アンドープGaN層12が形成される。そして、このアンドープGaN層12の上に、エピタキシャル成長によって、順に、n型AlGaN層13、n型GaN層14、アンドープGaN層15、p型GaN層16、n型GaN層17が積層される。こうして、図4(a)のようにGaN系半導体素子構造が形成される。 4A to 4E are schematic cross-sectional views showing a method of manufacturing the MIS field effect transistor of FIG. 2 in the order of steps. First, an undoped GaN layer 12 is formed on a sapphire substrate 11 by a lateral selective epitaxial growth method (see Patent Document 2). On the undoped GaN layer 12, an n + -type AlGaN layer 13, an n -type GaN layer 14, an undoped GaN layer 15, a p-type GaN layer 16, and an n + -type GaN layer 17 are sequentially stacked by epitaxial growth. The Thus, a GaN-based semiconductor element structure is formed as shown in FIG.

また、サファイア基板(ベア基板)上に予め横方向選択エピタキシャル成長法によってGaN層を形成したものをサファイア基板11として用い、このようなサファイア基板11上に通常のエピタキシャル成長によってアンドープGaN層12を形成するようにしてもよい。この場合でも、アンドープGaN層12は、その下地層からの転位を受け継ぐので、転位密度の高い領域と転位密度の低い領域(無転位領域)とを有することになる。   Further, a sapphire substrate 11 in which a GaN layer is previously formed by a lateral selective epitaxial growth method is used as the sapphire substrate 11, and the undoped GaN layer 12 is formed on the sapphire substrate 11 by normal epitaxial growth. It may be. Even in this case, since the undoped GaN layer 12 inherits dislocations from the underlying layer, it has a region having a high dislocation density and a region having a low dislocation density (non-dislocation region).

アンドープGaN層12を形成するときには、意図的に不純物をドーピングしなくてもよいし、p型ドーパントとしてのMg、CまたはFeをドーピングしながら、エピタキシャル成長を行ってもよい。これは、p型ドーパントを添加することなくGaN層をエピタキシャル成長させると、若干n型となるので、これを補正するためである。p型GaN層16をエピタキシャル成長させるときに添加するp型のドーパントとしてもMg、CまたはFeを用いればよい。   When the undoped GaN layer 12 is formed, the impurity may not be intentionally doped, or epitaxial growth may be performed while doping Mg, C or Fe as a p-type dopant. This is for correcting this because when the GaN layer is epitaxially grown without adding a p-type dopant, it becomes slightly n-type. Mg, C, or Fe may be used as a p-type dopant added when epitaxially growing the p-type GaN layer 16.

型AlGaN層13、n型GaN層14、n型GaN層17をエピタキシャル成長させるときのn型ドーパントとしては、たとえばSiを用いる。次に図4(b)に示すように、n型GaN層17からn型AlGaN層13の途中までメサエッチングを行い、残りのGaN系半導体積層部をストライプ状に形成する。これにより、サファイア基板11上に、複数本のGaN系半導体積層部がストライプ状に形成されるとともに、n型AlGaN層13の延長部からなる引き出し部13aが同時に形成される。 For example, Si is used as an n-type dopant when epitaxially growing the n + -type AlGaN layer 13, the n -type GaN layer 14, and the n + -type GaN layer 17. Next, as shown in FIG. 4B, mesa etching is performed from the n + -type GaN layer 17 to the middle of the n + -type AlGaN layer 13 to form the remaining GaN-based semiconductor stacked portion in a stripe shape. Thereby, on the sapphire substrate 11, a plurality of GaN-based semiconductor stacked portions are formed in a stripe shape, and a lead portion 13 a that is an extension of the n + -type AlGaN layer 13 is simultaneously formed.

その後、ドレイン電極19およびソース電極18がそれぞれ形成されることにより、図4(b)の状態となる。ドレイン電極19は、図に示すように、引き出し部13aの表面に接触するように形成される。   Thereafter, the drain electrode 19 and the source electrode 18 are formed, and the state shown in FIG. As shown in the figure, the drain electrode 19 is formed so as to be in contact with the surface of the lead portion 13a.

次に、図4(c)に示すように、ストライプ状に形成された各GaN系半導体積層部の幅方向中間部付近に、V字形溝Aが形成される。V字形溝Aの形成位置は、その側壁からp型GaN層16の無転位領域が露出して壁面を形成するように定められる。このV字形溝Aの形成は、プラズマを用いたドライエッチング(異方性エッチング)によって、n型GaN層17からn型GaN層14に至るV字形溝Aを形成する。ここで、ドライエッチングによってダメージを受けたV字形溝Aの壁面にエッチング処理を施して、ダメージを受けた表層を除去しても良い。 Next, as shown in FIG. 4C, a V-shaped groove A is formed in the vicinity of the intermediate portion in the width direction of each GaN-based semiconductor stacked portion formed in a stripe shape. The formation position of the V-shaped groove A is determined so that the non-dislocation region of the p-type GaN layer 16 is exposed from the side wall to form a wall surface. The V-shaped groove A is formed by dry etching (anisotropic etching) using plasma to form the V-shaped groove A from the n + -type GaN layer 17 to the n -type GaN layer 14. Here, the damaged surface layer may be removed by performing an etching process on the wall surface of the V-shaped groove A damaged by dry etching.

上記エッチング処理には、例えば、SiClやBCl等の低速エッチングガスによる低ダメージのドライエッチング処理を用いることができる。また、ウェットエッチング処理の場合には、KOH(水酸化カリウム)やNHOH(アンモニア水)などの塩基性溶液を用いることが好ましい。V字形溝Aの壁面のダメージを低減しておくことにより、チャネル領域16aの結晶状態を良好に保つことができ、また、ゲート絶縁膜20との界面を良好な界面とすることができるので、界面準位を低減することができる。これにより、チャネル抵抗を低減することができるとともに、リーク電流を抑制することができる。 For the etching process, for example, a low-damage dry etching process using a low-speed etching gas such as SiCl 4 or B 2 Cl 3 can be used. In the case of wet etching treatment, it is preferable to use a basic solution such as KOH (potassium hydroxide) or NH 4 OH (ammonia water). By reducing the damage to the wall surface of the V-shaped groove A, the crystal state of the channel region 16a can be kept good, and the interface with the gate insulating film 20 can be made a good interface. The interface state can be reduced. Thereby, the channel resistance can be reduced and the leakage current can be suppressed.

次に、図4(d)に示すように、V字形溝Aの壁面を覆うとともに、n型GaN層17の上面の一部が覆われるようにゲート絶縁膜20が形成される。ゲート絶縁膜20の形成には、PECVD(プラズマエンハンスド化学的気相堆積)法等を用いる。その後、図4(e)に示すように、ゲート電極21を形成し、絶縁膜22をソース電極18とゲート電極21との間を埋めるように、また、ソース電極18とドレイン電極19との間を埋めるようにGaN系半導体積層部の側面や表面に形成すると、図2に示す構造のMIS型電界効果トランジスタを得ることができる。なお、絶縁膜22は、ゲート絶縁膜20と同じ種類の絶縁膜にしても良いし、別の種類の絶縁膜にしても良い。また、ゲート絶縁膜20をソース電極18とドレイン電極19以外のすべての表面に形成することによって絶縁膜22の代用としても良い。 Next, as shown in FIG. 4D, the gate insulating film 20 is formed so as to cover the wall surface of the V-shaped groove A and to cover a part of the upper surface of the n + -type GaN layer 17. For the formation of the gate insulating film 20, a PECVD (plasma enhanced chemical vapor deposition) method or the like is used. Thereafter, as shown in FIG. 4E, the gate electrode 21 is formed, and the insulating film 22 is filled between the source electrode 18 and the gate electrode 21 and between the source electrode 18 and the drain electrode 19. 2 is formed on the side surface or the surface of the GaN-based semiconductor multilayer portion so as to fill the MIS type field effect transistor. The insulating film 22 may be the same type of insulating film as the gate insulating film 20 or may be another type of insulating film. Further, the insulating film 22 may be substituted by forming the gate insulating film 20 on all surfaces other than the source electrode 18 and the drain electrode 19.

サファイア基板11上にストライプ状に形成された複数のGaN系半導体積層部は、それぞれ単位セルを形成している。各GaN系半導体積層部のドレイン電極19、ゲート電極21およびソース電極18は、それぞれ、図示しない位置で共通接続されている。ドレイン電極19は、隣接する各GaN系半導体積層部で共有することができる。   Each of the plurality of GaN-based semiconductor stacked portions formed in a stripe shape on the sapphire substrate 11 forms a unit cell. The drain electrode 19, the gate electrode 21, and the source electrode 18 of each GaN-based semiconductor stacked portion are commonly connected at positions not shown. The drain electrode 19 can be shared by adjacent GaN-based semiconductor stacked portions.

ところで、図3は、図2の第1のMIS型電界効果トランジスタと構造は同じであるが、チャネル層となるp型GaN層16の構成が異なるMIS型電界効果トランジスタを示す。図2と同じ符号は、同じ構成を示している。図3では、図2と異なりp型GaN層16のV字溝A側の壁面下の領域が変質層161を構成している。この変質層161は、p型GaN層16とは伝導特性の異なる半導体層であり、p型、i型、n型のいずれかで構成される。また、変質層161は、p型GaN層16の反転分布を発生させるチャネル領域にも相当する。 FIG. 3 shows an MIS field effect transistor having the same structure as the first MIS field effect transistor of FIG. 2, but having a different configuration of the p-type GaN layer 16 serving as a channel layer. The same reference numerals as those in FIG. 2 indicate the same configurations. In FIG. 3, unlike FIG. 2, the region under the wall surface on the V-shaped groove A side of the p-type GaN layer 16 constitutes the altered layer 161. The altered layer 161 is a semiconductor layer having a different conduction characteristic from the p-type GaN layer 16 and is composed of any one of p - type, i-type, and n-type. The altered layer 161 also corresponds to a channel region that generates an inversion distribution of the p-type GaN layer 16.

上記のように、p型GaN層16が変質層161を有し、この変質層161をチャネル領域の一部とすることで、チャネル領域の反転分布が発生しやすくなり、トランジスタのオン電圧を低くすることができる。   As described above, the p-type GaN layer 16 has the altered layer 161. By making the altered layer 161 a part of the channel region, inversion distribution of the channel region is likely to occur, and the on-voltage of the transistor is reduced. can do.

変質層161の形成方法は、図4(d)の製造工程で、絶縁膜20を形成するときに、PECVD法を用いずに、ECR(Electron Cyclotron Resonance:電子サイクロトロン共鳴)スパッタ法を用いれば良い。ECRスパッタ法におけるArプラズマ照射等により、変質層161が形成される。以上のように、変質層をp型GaNチャネル層に形成する手法は、後述する第2のMIS型電界効果トランジスタにも適用できるものである。   As a method for forming the altered layer 161, an ECR (Electron Cyclotron Resonance) sputtering method may be used instead of the PECVD method when forming the insulating film 20 in the manufacturing process of FIG. . The altered layer 161 is formed by Ar plasma irradiation or the like in the ECR sputtering method. As described above, the method of forming the altered layer in the p-type GaN channel layer can also be applied to the second MIS field effect transistor described later.

図5は、本発明のGaN系半導体素子構造を用いた第2のMIS型電界効果トランジスタの構成を説明するための図解的な断面図である。この実施例では、導電性基板31が用いられている。そして、この導電性基板31の一方表面にGaN系半導体積層部が形成されている。GaN系半導体積層部は、n型GaN層34、アンドープGaN層35、p型GaN層36、n型GaN層37を備えている。 FIG. 5 is a schematic cross-sectional view for explaining the configuration of a second MIS type field effect transistor using the GaN-based semiconductor element structure of the present invention. In this embodiment, a conductive substrate 31 is used. A GaN-based semiconductor laminate is formed on one surface of the conductive substrate 31. The GaN-based semiconductor stack includes an n -type GaN layer 34, an undoped GaN layer 35, a p-type GaN layer 36, and an n + -type GaN layer 37.

導電性基板31の他方表面にドレイン電極41が接触形成されている。したがって、ドレイン電極41は、導電性基板31を介してn型GaN層34に電気的に接続されることになる。その他の構成は、前述の第1のMIS型電界効果トランジスタの場合と同様であり、動作もまた、同様である。 A drain electrode 41 is formed in contact with the other surface of the conductive substrate 31. Therefore, the drain electrode 41 is electrically connected to the n -type GaN layer 34 via the conductive substrate 31. Other configurations are the same as those of the first MIS field effect transistor described above, and the operation is also the same.

型GaN層34には、その表面全域に渡って導電性基板31が接触しているから、チャネル領域36aを通ってアンドープGaN層35からn型GaN層34に供給された電子は、このn型GaN層34の広い範囲を通って導電性基板31へと向かい、この導電性基板31を介してドレイン電極41に流れ込む。こうして、電流の集中を抑制することができる。 the n - -type GaN layer 34, since the conductive substrate 31 over its entire surface is in contact, through the channel region 36a of an undoped GaN layer 35 n - electrons supplied to the -type GaN layer 34, The n -type GaN layer 34 passes through a wide area toward the conductive substrate 31 and flows into the drain electrode 41 through the conductive substrate 31. Thus, current concentration can be suppressed.

導電性基板31としては、ZnO基板、Si基板、GaAs基板、GaN基板またはSiC基板を適用することができる。図1のGaN系半導体素子構造と対比すると、導電性基板31として、ZnO基板、Si基板、GaAs基板、SiC基板等を用いた場合は、異種の基板となり、GaN基板を用いた場合は、同種の基板となる。この中で、GaN基板を用いることが最も好ましい。GaN基板を導電性基板31として用いると、その表面に形成されるn型GaN層34との格子定数を整合させることができる。 As the conductive substrate 31, a ZnO substrate, Si substrate, GaAs substrate, GaN substrate, or SiC substrate can be applied. In contrast to the GaN-based semiconductor device structure of FIG. 1, when a ZnO substrate, Si substrate, GaAs substrate, SiC substrate, or the like is used as the conductive substrate 31, it becomes a different type of substrate, and when a GaN substrate is used, the same kind is used. It becomes a substrate. Of these, it is most preferable to use a GaN substrate. When a GaN substrate is used as the conductive substrate 31, the lattice constant with the n -type GaN layer 34 formed on the surface thereof can be matched.

また、GaN系半導体積層部については、第1n型GaN系半導体層4がn型GaN層34に、i型GaN系半導体層5がアンドープGaN層35に、p型GaN系半導体層6がp型GaN層36に、第2n型GaN系半導体層7がn型GaN層37に相当する。ここでは、導電性基板が使用されているために、ドレイン電極とオーミック接触をとるための第3n型GaN系半導体層3は用いられない。 In addition, for the GaN-based semiconductor stacked portion, the first n-type GaN-based semiconductor layer 4 is the n -type GaN layer 34, the i-type GaN-based semiconductor layer 5 is the undoped GaN layer 35, and the p-type GaN-based semiconductor layer 6 is p The second n-type GaN-based semiconductor layer 7 corresponds to the n + -type GaN layer 37 in the type GaN layer 36. Here, since the conductive substrate is used, the third n-type GaN-based semiconductor layer 3 for making ohmic contact with the drain electrode is not used.

主面がC面(0001)の導電性基板31を用いると、この導電性基板31上にエピタキシャル成長によって積層されるn型GaN層34、アンドープGaN層35、p型GaN層36およびn型GaN層37は、やはりC面(0001)を主面として積層されることになる。また、断面V字形溝Bの壁面は、例えば、無極性面(m面(10−10)もしくはa面(11−20))、またはセミポーラ面((10−1−1)、(10−1−3)、(11−22)など)となる。 When a conductive substrate 31 having a C-plane (0001) as the main surface is used, an n -type GaN layer 34, an undoped GaN layer 35, a p-type GaN layer 36 and an n + -type layered on the conductive substrate 31 by epitaxial growth. The GaN layer 37 is also laminated with the C surface (0001) as the main surface. The wall surface of the V-shaped groove B is, for example, a nonpolar surface (m-plane (10-10) or a-plane (11-20)) or semipolar surface ((10-1-1), (10-1). -3) and (11-22).

導電性基板31として、その主面が無極性面(m面(10−10)もしくはa面(11−20))、またはセミポーラ面((10−1−1)、(10−1−3)、(11−22)など)のものを用いてもよい。この場合には、それに応じて、n型GaN層34〜p型GaN層36までは、対応する結晶面を主面として積層されることになる。 The main surface of the conductive substrate 31 is a nonpolar surface (m-plane (10-10) or a-plane (11-20)), or semipolar surface ((10-1-1), (10-1-3)). , (11-22), etc.) may be used. In this case, accordingly, the n -type GaN layer 34 to the p-type GaN layer 36 are stacked with the corresponding crystal plane as the main surface.

図6(a)〜(e)は、図5の第2の電界効果トランジスタの製造方法を工程順に示す図解的な断面図である。導電性基板31上に、n型GaN層34、アンドープGaN層35、p型GaN層36、n型GaN層37が順にエピタキシャル成長させられることによって、図6(a)のようにGaN系半導体積層部が形成される。 6A to 6E are schematic cross-sectional views showing a method of manufacturing the second field effect transistor of FIG. 5 in the order of steps. An n -type GaN layer 34, an undoped GaN layer 35, a p-type GaN layer 36, and an n + -type GaN layer 37 are epitaxially grown in this order on the conductive substrate 31, thereby producing a GaN-based semiconductor as shown in FIG. A stacked portion is formed.

次に、図6(b)のように、ソース電極34が所定位置に複数個形成された後、隣接するソース電極34の中間部付近に第1の電界効果トランジスタと同様、図6(c)に示すように、ドライエッチングによって、断面V字形溝Bが形成される。なお、第1の電界効果トランジスタの製造方法における図6(c)でも説明したように、V字形溝Bの壁面のダメージ層を除去するためのエッチング処理を行っても良く、このエッチング処理にはウェットエッチング又は低ダメージのドライエッチングが用いられる。そして、図6(d)に示すように、V字形溝Bの壁面を覆うゲート絶縁膜39が形成された後、図6(e)に示すように、ゲート電極40及びドレイン電極41が形成される。ドレイン電極41は、導電性基板31の下面に接触するように形成される。   Next, as shown in FIG. 6B, after a plurality of source electrodes 34 are formed at predetermined positions, in the same way as the first field effect transistor, the source electrode 34 is formed near the middle portion of the adjacent source electrodes 34. As shown in FIG. 4, a V-shaped groove B is formed by dry etching. Note that, as described in FIG. 6C in the first method of manufacturing a field effect transistor, an etching process for removing a damaged layer on the wall surface of the V-shaped groove B may be performed. Wet etching or low damage dry etching is used. Then, as shown in FIG. 6D, after the gate insulating film 39 covering the wall surface of the V-shaped groove B is formed, the gate electrode 40 and the drain electrode 41 are formed as shown in FIG. The The drain electrode 41 is formed in contact with the lower surface of the conductive substrate 31.

こうして、個々のV字形溝Bの部分を単位セルとして、複数のセルを有する電界効果トランジスタを作製することができる。隣接するセルは、その間に配置されるソース電極40を共有している。そして、前述の第1の電界効果トランジスタの場合と同様に、複数のセルのゲート電極40およびソース電極38は、それぞれ、図示しない位置で共通接続されている。ドレイン電極41は導電性基板31に接触して形成されており、すべてのセルに対して共通の電極となっている。   In this way, a field effect transistor having a plurality of cells can be manufactured using each V-shaped groove B as a unit cell. Adjacent cells share a source electrode 40 disposed therebetween. As in the case of the first field effect transistor described above, the gate electrode 40 and the source electrode 38 of the plurality of cells are commonly connected at positions not shown. The drain electrode 41 is formed in contact with the conductive substrate 31 and is a common electrode for all cells.

次に、図7は、図5と層構造等は、全く同じであるが、ゲート絶縁膜やゲート電極を設けるために作製される溝の形状が異なる電界効果トランジスタの例を示す。図5と同じ符号を付しているのは、同じ構成を表す。図5では、溝Bの形状はV字形であったが、図7では溝Cの形状をU字形としている。これは、図5のV字形の溝では、V字の底部は鋭く尖った形状となるので、電界が集中しやすく絶縁破壊が起きやすくなるため、図7のようにU字形として丸みを持たせて、電界集中を防ぐようにしたものである。なお、U字形状の他の形状としても良いが、丸みを持たせた形状とするのが望ましい。また、このU字溝は、図2、3の第1の電界効果トランジスタにも適用できるものである。   Next, FIG. 7 shows an example of a field effect transistor having the same layer structure and the like as FIG. 5, but having a different groove shape for providing a gate insulating film and a gate electrode. The same reference numerals as those in FIG. 5 denote the same configurations. In FIG. 5, the shape of the groove B is V-shaped, but in FIG. 7, the shape of the groove C is U-shaped. In the V-shaped groove of FIG. 5, the bottom of the V-shape is sharp and sharp, and the electric field tends to concentrate and dielectric breakdown tends to occur. Therefore, the U-shape is rounded as shown in FIG. Thus, electric field concentration is prevented. In addition, although it is good also as another shape of U shape, it is desirable to set it as the shape which gave roundness. The U-shaped groove can also be applied to the first field effect transistor shown in FIGS.

本発明のGaN系半導体素子の断面構造の一例を示す図である。It is a figure which shows an example of the cross-sectional structure of the GaN-type semiconductor element of this invention. 本発明のGaN系半導体素子を第1のMIS型FETに適用した断面構造を示す図である。It is a figure which shows the cross-sectional structure which applied the GaN-type semiconductor element of this invention to 1st MIS type FET. 第1のMIS型FETのp型GaN層の一部に伝導特性の異なる領域が形成されていることを示す図である。It is a figure which shows that the area | region where a conduction characteristic differs is formed in a part of p-type GaN layer of 1st MIS type FET. 第1のMIS型FETの製造方法を示す図である。It is a figure which shows the manufacturing method of 1st MIS type FET. 本発明のGaN系半導体素子を第2のMIS型FETに適用した断面構造を示す図である。It is a figure which shows the cross-sectional structure which applied the GaN-type semiconductor element of this invention to 2nd MIS type FET. 第2のMIS型FETの製造方法を示す図である。It is a figure which shows the manufacturing method of 2nd MIS type FET. ゲート電極を形成するための溝形状がU字形をしたMIS型FETの断面構造の一例を示す図である。It is a figure which shows an example of the cross-section of MIS type | mold FET by which the groove | channel shape for forming a gate electrode was U shape.

符号の説明Explanation of symbols

1 基板
3 第3n型GaN系半導体層
4 第1n型GaN系半導体層
5 i型GaN系半導体層
6 p型GaN系半導体層
7 第2n型GaN系半導体層7
DESCRIPTION OF SYMBOLS 1 Substrate 3 Third n-type GaN-based semiconductor layer 4 First n-type GaN-based semiconductor layer 5 i-type GaN-based semiconductor layer 6 p-type GaN-based semiconductor layer 7 Second n-type GaN-based semiconductor layer 7

Claims (11)

基板上に少なくとも第1のn型又はi型のGaN系半導体層、p型不純物を含むGaN系半導体層、第2のn型又はi型のGaN系半導体層を順に備えたGaN系半導体素子であって、
前記p型不純物を含むp型GaN系半導体層の不純物濃度は1×1020cm−3以下であり、前記第1のn型又はi型のGaN系半導体層の不純物濃度は1×1018cm−3以下であることを特徴とするGaN系半導体素子。
A GaN-based semiconductor device comprising, on a substrate, at least a first n-type or i-type GaN-based semiconductor layer, a GaN-based semiconductor layer containing p-type impurities, and a second n-type or i-type GaN-based semiconductor layer in that order. There,
The impurity concentration of the p-type GaN-based semiconductor layer containing the p-type impurity is 1 × 10 20 cm −3 or less, and the impurity concentration of the first n-type or i-type GaN-based semiconductor layer is 1 × 10 18 cm. A GaN-based semiconductor element characterized by being -3 or less.
前記第1のn型又はi型のGaN系半導体層とp型不純物を含むGaN系半導体層との間には、不純物Mg濃度が1×1018cm−3以下のi型GaN系半導体層が形成されていることを特徴とする請求項1記載のGaN系半導体素子。 Between the first n-type or i-type GaN-based semiconductor layer and the GaN-based semiconductor layer containing a p-type impurity, an i-type GaN-based semiconductor layer having an impurity Mg concentration of 1 × 10 18 cm −3 or less is provided. The GaN-based semiconductor device according to claim 1, wherein the GaN-based semiconductor device is formed. 前記基板と第1のn型又はi型のGaN系半導体層との間に第1のn型又はi型のGaN系半導体層よりも不純物濃度が高い第3のn型GaN系半導体層が形成されていることを特徴とする請求項1又は請求項2のいずれか1項に記載のGaN系半導体素子。   A third n-type GaN-based semiconductor layer having an impurity concentration higher than that of the first n-type or i-type GaN-based semiconductor layer is formed between the substrate and the first n-type or i-type GaN-based semiconductor layer. The GaN-based semiconductor element according to claim 1, wherein the GaN-based semiconductor element is formed. 前記p型不純物を含むGaN系半導体層の厚みは2μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載のGaN系半導体素子。   4. The GaN-based semiconductor device according to claim 1, wherein a thickness of the GaN-based semiconductor layer containing the p-type impurity is 2 μm or less. 5. 前記p型不純物を含むGaN系半導体層の不純物はMgであることを特徴とする請求項1〜請求項4のいずれか1項に記載のGaN系半導体素子。  5. The GaN-based semiconductor element according to claim 1, wherein the impurity of the GaN-based semiconductor layer containing the p-type impurity is Mg. 前記第1のn型又はi型のGaN系半導体層の不純物はSi又はOであることを特徴とする請求項1〜請求項5のいずれか1項に記載のGaN系半導体素子。   6. The GaN-based semiconductor device according to claim 1, wherein the impurity of the first n-type or i-type GaN-based semiconductor layer is Si or O. 6. 前記第1のn型又はi型のGaN系半導体層の不純物濃度は、前記第2のn型又はi型のGaN系半導体層より小さいことを特徴とする請求項1〜請求項6のいずれか1項に記載のGaN系半導体素子。   7. The impurity concentration of the first n-type or i-type GaN-based semiconductor layer is lower than the second n-type or i-type GaN-based semiconductor layer. 2. A GaN-based semiconductor device according to item 1. 前記第2のn型又はi型のGaN系半導体層の厚みは1μm以下であることを特徴とする請求項1〜請求項7のいずれか1項に記載のGaN系半導体素子。   8. The GaN-based semiconductor element according to claim 1, wherein a thickness of the second n-type or i-type GaN-based semiconductor layer is 1 μm or less. 前記第3のn型GaN系半導体層の不純物濃度は、1×1018cm−3以上であることを特徴とする請求項3〜請求項8のいずれか1項に記載のGaN系半導体素子。 9. The GaN-based semiconductor device according to claim 3, wherein an impurity concentration of the third n-type GaN-based semiconductor layer is 1 × 10 18 cm −3 or more. 前記p型不純物を含むGaN系半導体層の加工により露出した壁面に接してゲート絶縁膜を形成することを特徴とする請求項1〜請求項9のいずれか1項に記載のGaN系半導体素子。   10. The GaN-based semiconductor element according to claim 1, wherein a gate insulating film is formed in contact with a wall surface exposed by processing of the GaN-based semiconductor layer containing the p-type impurity. 前記壁面付近の領域は、前記p型不純物を含むGaN系半導体層とは伝導特性の異なる半導体により構成されていることを特徴とする請求項10記載のGaN系半導体素子。   11. The GaN-based semiconductor device according to claim 10, wherein the region in the vicinity of the wall surface is made of a semiconductor having a different conduction characteristic from the GaN-based semiconductor layer containing the p-type impurity.
JP2007023403A 2007-02-01 2007-02-01 GaN-based semiconductor devices Active JP5189771B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007023403A JP5189771B2 (en) 2007-02-01 2007-02-01 GaN-based semiconductor devices
PCT/JP2008/051626 WO2008093824A1 (en) 2007-02-01 2008-02-01 Gan semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007023403A JP5189771B2 (en) 2007-02-01 2007-02-01 GaN-based semiconductor devices

Publications (2)

Publication Number Publication Date
JP2008192701A true JP2008192701A (en) 2008-08-21
JP5189771B2 JP5189771B2 (en) 2013-04-24

Family

ID=39674127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007023403A Active JP5189771B2 (en) 2007-02-01 2007-02-01 GaN-based semiconductor devices

Country Status (2)

Country Link
JP (1) JP5189771B2 (en)
WO (1) WO2008093824A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227356A (en) * 2007-03-15 2008-09-25 Toyota Central R&D Labs Inc Semiconductor device and method for manufacturing the same
JP2008311489A (en) * 2007-06-15 2008-12-25 Rohm Co Ltd Nitride semiconductor element and method of manufacturing nitride semiconductor element
WO2011114535A1 (en) 2010-03-19 2011-09-22 富士通株式会社 Compound semiconductor device and manufacturing method for same
CN102969354A (en) * 2011-09-01 2013-03-13 富士通株式会社 Semiconductor device
DE112011103470T5 (en) 2010-10-13 2013-08-01 Sumitomo Electric Industries, Ltd. Semiconductor device and method of making the same
DE112011103385T5 (en) 2010-10-06 2013-08-14 Sumitomo Electric Industries, Ltd. Semiconductor device and method of making the same
JP2015032835A (en) * 2013-08-05 2015-02-16 ソウル セミコンダクター カンパニー リミテッド Nitride-based field effect transistor and manufacturing method of the same
US9312373B2 (en) 2010-07-14 2016-04-12 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
JP2018129558A (en) * 2018-05-24 2018-08-16 ローム株式会社 Semiconductor device
EP3591709A1 (en) * 2018-07-03 2020-01-08 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Heterojunction transistor of the normally-off type with reduced transition resistance
JP2021009886A (en) * 2019-06-28 2021-01-28 株式会社東芝 Semiconductor device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6136571B2 (en) * 2013-05-24 2017-05-31 富士通株式会社 Semiconductor device and manufacturing method of semiconductor device
JP6241100B2 (en) * 2013-07-17 2017-12-06 豊田合成株式会社 MOSFET
EP3686924A1 (en) * 2019-01-24 2020-07-29 IMEC vzw Group iii-nitride based vertical power device and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552272A (en) * 1978-10-13 1980-04-16 Seiko Epson Corp High withstanding voltage dsa mos transistor
JP2001230410A (en) * 2000-02-18 2001-08-24 Furukawa Electric Co Ltd:The GaN-BASED FIELD EFFECT TRANSISTOR AND ITS MANUFACTURING METHOD
JP2001342100A (en) * 2000-03-29 2001-12-11 Toshiba Corp Manufacturing method of substrate for epitaxial growth and manufacturing method of semiconductor device using substrate for this epitaxial growth
JP2002016262A (en) * 2000-04-25 2002-01-18 Furukawa Electric Co Ltd:The Vertical field-effect transistor
JP2002151735A (en) * 2000-11-06 2002-05-24 Lumileds Lighting Us Llc Light emitting semiconductor device including wafer bonding hetero-structure
JP2006286954A (en) * 2005-03-31 2006-10-19 Eudyna Devices Inc Semiconductor device and its manufacturing method
JP2006313859A (en) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd Vertical transistor
WO2006134810A1 (en) * 2005-06-14 2006-12-21 Rohm Co., Ltd. Semiconductor device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52115663A (en) * 1976-03-25 1977-09-28 Toshiba Corp Semiconductor device
JPS61104671A (en) * 1984-10-29 1986-05-22 Sharp Corp Field effect transistor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5552272A (en) * 1978-10-13 1980-04-16 Seiko Epson Corp High withstanding voltage dsa mos transistor
JP2001230410A (en) * 2000-02-18 2001-08-24 Furukawa Electric Co Ltd:The GaN-BASED FIELD EFFECT TRANSISTOR AND ITS MANUFACTURING METHOD
JP2001342100A (en) * 2000-03-29 2001-12-11 Toshiba Corp Manufacturing method of substrate for epitaxial growth and manufacturing method of semiconductor device using substrate for this epitaxial growth
JP2002016262A (en) * 2000-04-25 2002-01-18 Furukawa Electric Co Ltd:The Vertical field-effect transistor
JP2002151735A (en) * 2000-11-06 2002-05-24 Lumileds Lighting Us Llc Light emitting semiconductor device including wafer bonding hetero-structure
JP2006286954A (en) * 2005-03-31 2006-10-19 Eudyna Devices Inc Semiconductor device and its manufacturing method
JP2006313859A (en) * 2005-05-09 2006-11-16 Sumitomo Electric Ind Ltd Vertical transistor
WO2006134810A1 (en) * 2005-06-14 2006-12-21 Rohm Co., Ltd. Semiconductor device

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008227356A (en) * 2007-03-15 2008-09-25 Toyota Central R&D Labs Inc Semiconductor device and method for manufacturing the same
JP2008311489A (en) * 2007-06-15 2008-12-25 Rohm Co Ltd Nitride semiconductor element and method of manufacturing nitride semiconductor element
US9166030B2 (en) 2010-03-19 2015-10-20 Fujitsu Limited Compound semiconductor device and method for fabricating
WO2011114535A1 (en) 2010-03-19 2011-09-22 富士通株式会社 Compound semiconductor device and manufacturing method for same
US9337326B2 (en) 2010-03-19 2016-05-10 Fujitsu Limited Compound semiconductor device and method for fabricating the same
US9515063B2 (en) 2010-07-14 2016-12-06 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
US9312373B2 (en) 2010-07-14 2016-04-12 Fujitsu Limited Compound semiconductor device and manufacturing method of the same
DE112011103385T5 (en) 2010-10-06 2013-08-14 Sumitomo Electric Industries, Ltd. Semiconductor device and method of making the same
US8816398B2 (en) 2010-10-06 2014-08-26 Sumitomo Electric Industries, Ltd. Semiconductor device and method for producing the same
DE112011103470T5 (en) 2010-10-13 2013-08-01 Sumitomo Electric Industries, Ltd. Semiconductor device and method of making the same
US8969920B2 (en) 2010-10-13 2015-03-03 Sumitomo Electric Industries, Ltd. Vertical GaN-based semiconductor device
US8586994B2 (en) 2011-09-01 2013-11-19 Fujitsu Limited Semiconductor device
CN102969354A (en) * 2011-09-01 2013-03-13 富士通株式会社 Semiconductor device
JP2015032835A (en) * 2013-08-05 2015-02-16 ソウル セミコンダクター カンパニー リミテッド Nitride-based field effect transistor and manufacturing method of the same
JP2018129558A (en) * 2018-05-24 2018-08-16 ローム株式会社 Semiconductor device
EP3591709A1 (en) * 2018-07-03 2020-01-08 Commissariat à l'Énergie Atomique et aux Énergies Alternatives Heterojunction transistor of the normally-off type with reduced transition resistance
FR3083647A1 (en) * 2018-07-03 2020-01-10 Commissariat A L'energie Atomique Et Aux Energies Alternatives NORMALLY OPEN TYPE HETEROJUNCTION TRANSISTOR WITH REDUCED PASS RESISTANCE
US11189716B2 (en) 2018-07-03 2021-11-30 Commissariat A L'energie Atomique Et Aux Energies Alternatives Open type heterojunction transistor having a reduced transition resistance
JP2021009886A (en) * 2019-06-28 2021-01-28 株式会社東芝 Semiconductor device

Also Published As

Publication number Publication date
JP5189771B2 (en) 2013-04-24
WO2008093824A1 (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5189771B2 (en) GaN-based semiconductor devices
US10529841B2 (en) Field effect transistor
JP6251071B2 (en) Semiconductor device
US7999286B2 (en) MIS field effect transistor and method for manufacturing the same
US8039872B2 (en) Nitride semiconductor device including a group III nitride semiconductor structure
US8519439B2 (en) Nitride semiconductor element with N-face semiconductor crystal layer
US20130240951A1 (en) Gallium nitride superjunction devices
JP4993673B2 (en) MIS field effect transistor and manufacturing method thereof
US20090321854A1 (en) Mis field effect transistor and method for manufacturing the same
WO2011043110A1 (en) Semiconductor device and method for manufacturing same
JP2008053449A (en) Semiconductor device and manufacturing method thereof
JP5534661B2 (en) Semiconductor device
JP5494474B2 (en) Semiconductor device and manufacturing method thereof
US20150021552A1 (en) Iii-nitride transistor including a p-type depleting layer
JP2009200096A (en) Nitride semiconductor device and power conversion apparatus including the same
JP2005244072A (en) Semiconductor device
JP5003813B2 (en) Semiconductor device and manufacturing method thereof
JP2008205414A (en) Nitride semiconductor element and manufacturing method thereof, and nitride semiconductor package
JP2010103425A (en) Nitride semiconductor device
JP2008210936A (en) Nitride semiconductor element and manufacturing method of nitride semiconductor element
JP2011165777A (en) Gallium nitride semiconductor device, and method of manufacturing the same
JP2013115362A (en) Nitride semiconductor diode
JP2008016588A (en) GaN-BASED SEMICONDUCTOR ELEMENT
JP2011009493A (en) Semiconductor device, and method of manufacturing the same
US8659055B2 (en) Semiconductor device, field-effect transistor, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120813

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5189771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250