JP2008190883A - Measuring device - Google Patents

Measuring device Download PDF

Info

Publication number
JP2008190883A
JP2008190883A JP2007022623A JP2007022623A JP2008190883A JP 2008190883 A JP2008190883 A JP 2008190883A JP 2007022623 A JP2007022623 A JP 2007022623A JP 2007022623 A JP2007022623 A JP 2007022623A JP 2008190883 A JP2008190883 A JP 2008190883A
Authority
JP
Japan
Prior art keywords
light
measuring device
test object
reflection
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007022623A
Other languages
Japanese (ja)
Inventor
Kazuaki Aoto
和明 青砥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007022623A priority Critical patent/JP2008190883A/en
Publication of JP2008190883A publication Critical patent/JP2008190883A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring device capable of utilizing a merit generated thereby even when using femtosecond laser light, preventing the constitution of an optical system from becoming complicated, and measuring highly accurately even fine irregularities on the surface of a specimen. <P>SOLUTION: This device is equipped with a reflection member (deflection element 21) having a reflection surface part (fine mirror 212) for reflecting measuring light from a light source (laser light source 11) to the specimen; a support mechanism 24 having a support part (pivot 243) for supporting the reflection member from the back side facing to the reflection surface part, and a rotation part for supporting rotatably the reflection member around a rotating shaft (a main scanning rotating shaft 40, a sub-scanning rotating shaft 50); a driving part (driving circuit 26) for driving rotatively the reflection surface part around the rotating shaft; and a light receiving part (photodetector 14) for receiving return light formed from reflection of the measuring light by the specimen. In the device, the reflection surface part near the rotating shaft is irradiated with the measuring light, and the shape of the specimen is measured based on information from the light receiving part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、例えばフェムト秒レーザー光などを使用して被検物の3次元形状を非接触で計測する計測装置に関する。   The present invention relates to a measuring apparatus that measures the three-dimensional shape of a test object in a non-contact manner using, for example, femtosecond laser light.

フェムト秒レーザー光を使用した計測装置として、例えば、フェムト秒レーザー光を二つに分け、一方のレーザー光を参照光とし、他方のレーザー光を拡大光学系によってビーム径を拡大した後、照射光として被検物に照射し、この被検物から反射してくる反射光(戻り光)の位相と参照光の位相とを比較し、両者の位相の位相差を求めて、被検物までの距離を計測する計測装置が提案されている(非特許文献1)。   As a measuring device using femtosecond laser light, for example, the femtosecond laser light is divided into two parts, one laser light is used as a reference light, and the other laser light is enlarged by a magnifying optical system, and then irradiated with light. The phase of the reflected light (returned light) reflected from the test object is compared with the phase of the reference light, and the phase difference between the two is obtained. A measuring device for measuring a distance has been proposed (Non-Patent Document 1).

上記計測装置は、波長安定性が非常に優れていて、高精度の計測が可能となる、フェムト秒レーザー光の特性を生かしたもので、被検物に照射されるレーザー光(照射光)としてはビーム径を拡大したビームを使用している。   The above measuring device uses the characteristics of femtosecond laser light, which is very excellent in wavelength stability and enables high-precision measurement. As laser light (irradiation light) irradiated to the test object Uses a beam with an enlarged beam diameter.

OPTRONICS(2005)No.8P.103〜108OPTRONICS (2005) No. 8P. 103-108

上記計測装置を使用して被検物の3次元形状を計測する場合、ビーム径を拡大していることから被検物表面の微細な凹凸を含めて精度良く計測することは非常に困難である。被検物表面の微細な凹凸まで高精度で計測するには、例えばビーム径を縮小したビーム(照射光)を使用することが考えられるが、このとき問題となるのが、照射光を被検物表面に走査させ、該被検物表面から反射してくる反射光(戻り光)を照射光の光路上を通って位相計などを装備した測定部に導く光学系の部分である。この光学系の部分でも、特に、照射光を振って被検物表面に走査させる一方、被検物表面から戻ってくる戻り光を反射させて照射光の光路上に導く反射面部の部分である。   When measuring the three-dimensional shape of the test object using the above measuring device, it is very difficult to accurately measure the fine unevenness of the test object surface because the beam diameter is enlarged. . In order to measure fine irregularities on the surface of the test object with high accuracy, it is conceivable to use, for example, a beam (irradiation light) with a reduced beam diameter. It is a part of an optical system that scans the surface of an object and guides reflected light (returned light) reflected from the surface of the test object to a measurement unit equipped with a phase meter and the like through the optical path of irradiation light. This optical system part is also a part of the reflection surface part that, in particular, scans the surface of the test object by shaking the irradiation light, while reflecting the return light returning from the surface of the test object and guiding it to the optical path of the irradiation light. .

反射面部は被検物に行く照射光や被検物から戻ってきた戻り光が入射・反射を繰り返す箇所であり、反射面部の回転によりこれら参照光の入射箇所と戻り光の反射箇所が異なる(ずれると)と高精度の計測が困難となるおそれがある。   The reflection surface part is a part where the irradiation light going to the test object and the return light returning from the test object are repeatedly incident and reflected, and the reference light incident part and the return light reflection part are different due to the rotation of the reflection surface part ( If it is shifted, it may be difficult to measure with high accuracy.

また、照射光を被検物の表面上の上下・左右方向に走査させるには少なくとも2枚の反射面部を必要とし、各反射面部を回転させる必要があり、このため光学系の構成が複雑化し、反射を繰り返す毎に生じる照射光の光路誤差が累積し、高精度の計測が困難になるおそれがある。   In addition, in order to scan the irradiation light in the vertical and horizontal directions on the surface of the test object, it is necessary to have at least two reflecting surface portions, and it is necessary to rotate each reflecting surface portion, which complicates the configuration of the optical system. The optical path error of the irradiation light that occurs each time reflection is repeated accumulates, and it may be difficult to measure with high accuracy.

このように上記計測装置を被検物の形状測定に転用しようとしても、光学系の構成が原因となって、フェムト秒レーザー光を使用してもそのメリットである高精度の計測が困難となるおそれがある。   In this way, even if the measurement device is to be used for measuring the shape of the test object, due to the configuration of the optical system, even if femtosecond laser light is used, high-precision measurement that is a merit thereof is difficult. There is a fear.

本発明は、フェムト秒レーザー光を使用してもそのメリットを生かすことが出来て、光学系の構成が複雑化せず、被検物の表面の微細な凹凸でも高精度の計測が可能な、計測装置を提供することを目的とする。   The present invention can take advantage of the femtosecond laser light even without using a complicated configuration of the optical system, can be measured with high precision even with fine irregularities on the surface of the test object, It aims at providing a measuring device.

上記目的を達成する本発明の請求項1に記載の計測装置は、光源からの測定光を被検物へ反射する反射面部を有する反射部材と、前記反射部材を前記反射面部と対向する裏面側から支持する支持部と、前記反射部材を回転軸を中心に回転可能に支持する回転部とを有する支持機構と、前記反射面部を、前記回転軸を中心に回転駆動する駆動部と、前記測定光が前記被検物で反射した戻り光を受光する受光部と、を備え、前記回転軸の近傍の前記反射面部に前記測定光を照射し、前記受光部からの情報に基づいて前記被検物の形状を測定することを特徴とする。   The measuring apparatus according to claim 1 of the present invention that achieves the above object includes a reflective member having a reflective surface portion that reflects measurement light from a light source to a test object, and a back surface side that faces the reflective surface portion of the reflective member. A support unit having a support unit that supports the reflection member so as to be rotatable about a rotation axis, a drive unit that rotationally drives the reflection surface unit about the rotation axis, and the measurement A light receiving unit that receives return light reflected by the test object, and irradiates the measurement light to the reflecting surface unit in the vicinity of the rotation axis, and based on information from the light receiving unit, It is characterized by measuring the shape of an object.

本発明の請求項2に記載の計測装置は、前記反射部材と前記被検物との間に配置され、前記反射部材からの前記測定光を前記被検物へ反射させる放物面を有し、該放物面の焦点が、前記測定光を反射する前記反射面部の箇所に位置する、放物面ミラーを備えたことを特徴とする。   The measuring device according to claim 2 of the present invention has a parabolic surface that is disposed between the reflecting member and the test object and reflects the measurement light from the reflecting member to the test object. The parabolic surface has a parabolic mirror located at a position of the reflective surface portion that reflects the measurement light.

本発明の請求項3に記載の計測装置は、前記支持機構が2つの回転軸を有し、該2つの回転軸は互いに直交し、前記支持部が前記直交する前記2つの回転軸の交点箇所を支持することを特徴とする。   In the measuring device according to claim 3 of the present invention, the support mechanism has two rotating shafts, the two rotating shafts are orthogonal to each other, and the intersection of the two rotating shafts is orthogonal to the support portion. It is characterized by supporting.

本発明の請求項4に記載の計測装置は、前記支持部が円錐形状のピボットで、該ピボットの頂点で前記反射面部の裏面側を回転可能に支持することを特徴とする。   The measuring apparatus according to claim 4 of the present invention is characterized in that the support portion is a conical pivot, and the back surface side of the reflecting surface portion is rotatably supported by the apex of the pivot.

本発明の請求項5に記載の計測装置は、前記支持機構が、前記支持部と、前記反射面部と隙間をあけて配置された第1保持部と、前記第1保持部と間隔をあけて配置された第2保持部と、前記2つの回転軸のうち、何れか一方の回転軸を中心に回転するように、前記反射面部を前記第1保持部に連結する第1連結部と、前記2つの回転軸のうち、他方の回転軸を中心に回転するように、前記第1保持部を前記第2保持部に連結する第2連結部とを備えてなることを特徴とする。   In the measuring device according to claim 5 of the present invention, the support mechanism includes the support part, a first holding part arranged with a gap from the reflective surface part, and the first holding part. A second connecting portion disposed; a first connecting portion for connecting the reflective surface portion to the first holding portion so as to rotate about one of the two rotating shafts; Of the two rotating shafts, a second connecting portion that connects the first holding portion to the second holding portion so as to rotate around the other rotating shaft is provided.

本発明の請求項6に記載の計測装置は、前記駆動部が、前記反射部材を回転させる、互いに影響力を及ばさない2つの駆動部材を備えたことを特徴とする。   The measuring apparatus according to claim 6 of the present invention is characterized in that the driving unit includes two driving members that rotate the reflecting member and do not exert influence on each other.

本発明の請求項7に記載の計測装置は、前記2つの駆動部材のうち、何れか一方の駆動部材がクーロン力を利用し、他方の駆動部材がローレンツ力を利用して前記反射部材を回転することを特徴とする。   In the measurement device according to claim 7 of the present invention, one of the two drive members uses the Coulomb force, and the other drive member uses the Lorentz force to rotate the reflection member. It is characterized by doing.

本発明の請求項8に記載の計測装置は、前記測定光がフェムト秒レーザー光であることを特徴とする。   The measuring apparatus according to claim 8 of the present invention is characterized in that the measurement light is femtosecond laser light.

本発明によれば、フェムト秒レーザー光を使用してもそのメリットを生かすことが出来て、光学系の構成が複雑化せず、被検物の表面の微細な凹凸でも高精度の計測が可能である。   According to the present invention, even if femtosecond laser light is used, its merit can be utilized, the configuration of the optical system is not complicated, and high-precision measurement is possible even with minute irregularities on the surface of the test object. It is.

以下、本発明の計測装置の一実施形態について図1乃至図6を参照して説明する。   Hereinafter, an embodiment of a measuring apparatus of the present invention will be described with reference to FIGS.

図1は本発明の計測装置の一実施形態を示す機能ブロック図、図2は図1に示す反射部材とその支持機構の、プローブ光が入射する方向からみた上面図、図3は図2の3−3線に沿う断面図、図4は図2の4−4線に沿う断面図、図5はプローブ光が被検物上を走査する状態を説明する説明図、図6は図1に示す反射部材を駆動する駆動回路のブロック図である。   FIG. 1 is a functional block diagram showing an embodiment of the measuring apparatus of the present invention, FIG. 2 is a top view of the reflecting member and its supporting mechanism shown in FIG. 1 as seen from the direction in which probe light is incident, and FIG. FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. 2, FIG. 5 is an explanatory view for explaining a state in which the probe light scans on the test object, and FIG. It is a block diagram of the drive circuit which drives the reflecting member shown.

本実施形態の計測装置には、図1に示すように、測定部10と走査部20と演算部30とが装備される。   As shown in FIG. 1, the measurement apparatus of the present embodiment is equipped with a measurement unit 10, a scanning unit 20, and a calculation unit 30.

測定部10は、フェムト秒レーザー光を発し、このレーザー光の位相と被検物Tから反射光(戻り光)の位相を比較して、その位相差を演算部30に出力する装置である。   The measuring unit 10 is a device that emits femtosecond laser light, compares the phase of the laser light with the phase of reflected light (returned light) from the test object T, and outputs the phase difference to the arithmetic unit 30.

具体的には、測定部10は、フェムト秒レーザー光を発射するレーザー光源11と、このレーザー光を基準光(参照光)と測定光(プローブ光)とに分割するビームスプリッタ12と、フォトディテクタ13と、フォトディテクタ14と、位相計15とを備える。   Specifically, the measurement unit 10 includes a laser light source 11 that emits femtosecond laser light, a beam splitter 12 that divides the laser light into reference light (reference light) and measurement light (probe light), and a photodetector 13. A photodetector 14 and a phase meter 15.

ビームスプリッタ12は、レーザー光の一部を反射させる一方、残部を透過させることにより、レーザー光を基準光とプローブ光とに分割する。   The beam splitter 12 divides the laser light into reference light and probe light by reflecting a part of the laser light and transmitting the remaining part.

フォトディテクタ13は、ビームスプリッタ12によって反射された基準光を受光し電気信号に変換する。ビームスプリッタ12を透過したプローブ光は走査部20を介して被検物Tに照射される。被検物Tを反射した戻り光はプローブ光の光路上を逆行して走査部20を介して測定部10に入射し、ビームスプリッタ12によりフォトディテクタ14側に反射される。フォトディテクタ14は、この戻り光を受光して電気信号に変換する。   The photodetector 13 receives the reference light reflected by the beam splitter 12 and converts it into an electrical signal. The probe light that has passed through the beam splitter 12 is irradiated onto the test object T via the scanning unit 20. The return light reflected from the test object T travels backward on the optical path of the probe light, enters the measurement unit 10 via the scanning unit 20, and is reflected by the beam splitter 12 toward the photodetector 14. The photodetector 14 receives this return light and converts it into an electrical signal.

位相計15は、これらフォトディテクタ13とフォトディテクタ14から電気信号(出力)を入力して両者(基準光と戻り光)の位相差(位相データ)を求め、この位相データを演算部30に出力する。   The phase meter 15 receives an electric signal (output) from the photo detector 13 and the photo detector 14 to obtain a phase difference (phase data) between the two (reference light and return light), and outputs the phase data to the arithmetic unit 30.

走査部20は、プローブ光をプローブ光の進行方向に対して垂直な方向(XY方向 図5参照)に走査する光学装置である。   The scanning unit 20 is an optical device that scans the probe light in a direction perpendicular to the traveling direction of the probe light (XY direction see FIG. 5).

具体的には、走査部20は、プローブ光を被検物Tの表面に走査するための反射部材としての偏向素子21と、この偏向素子21を回転可能に支持する支持機構24と、この支持機構24に回転可能に支持された偏向素子21を駆動する駆動回路26と、放物面ミラー28を備える。   Specifically, the scanning unit 20 includes a deflecting element 21 as a reflecting member for scanning the surface of the test object T with the probe light, a support mechanism 24 that rotatably supports the deflecting element 21, and the support. A drive circuit 26 that drives the deflection element 21 rotatably supported by the mechanism 24 and a parabolic mirror 28 are provided.

偏向素子21は、図2ないし図4に示すように、反射面部を有する微小ミラー212を備える。微小ミラー212(反射面部)は、レーザー光源11からのプローブ光を反射し、放物面ミラー28を介して被検物Tに照射するミラーである。   As shown in FIGS. 2 to 4, the deflection element 21 includes a micro mirror 212 having a reflective surface portion. The micro mirror 212 (reflecting surface portion) is a mirror that reflects the probe light from the laser light source 11 and irradiates the test object T via the parabolic mirror 28.

支持機構24は、図2に示す互いに直交する主走査回転軸40と副走査回転軸50の2つの回転軸の各回転軸40,50を中心に微小ミラー212(反射面部)を回転可能に支持するもので、図3及び図4に示すように、中央部分に凹部241を有する基部242と、凹部241の底面に設けられた支持部としての円錐状のピボット243と、凹部241を閉じるように基部242上に配置された基本フレーム244とを備える。   The support mechanism 24 rotatably supports the micro mirror 212 (reflection surface portion) around the rotation shafts 40 and 50 of the two rotation shafts of the main scanning rotation shaft 40 and the sub-scanning rotation shaft 50 orthogonal to each other shown in FIG. As shown in FIGS. 3 and 4, a base 242 having a recess 241 at the center, a conical pivot 243 as a support provided on the bottom surface of the recess 241, and a recess 241 are closed. And a basic frame 244 disposed on the base 242.

基部242は、例えばシリコンを主成分とする半導体材料を使用し、フォトリソグラフィなどの加工方法によって図2ないし図4に示すように加工され且つ駆動回路26の構成部品である集積回路などが形成される。この基部242には、その垂直な方向から不図示の永久磁石による外部磁界(図4参照)が印加される。   The base portion 242 uses, for example, a semiconductor material mainly composed of silicon, and is processed as shown in FIGS. 2 to 4 by a processing method such as photolithography, and an integrated circuit that is a component of the drive circuit 26 is formed. The An external magnetic field (see FIG. 4) by a permanent magnet (not shown) is applied to the base 242 from the perpendicular direction.

ピボット243は、主走査回転軸40と副走査回転軸50との交点位置の真下である凹部241の底面の箇所に設けられた、頂点Pが若干丸みを帯びた円錐形状の部材である。このピボット243の頂点Pは、微小ミラー212の裏面に当接しており、微小ミラー212は、ピボット243の頂点Pに支えられた状態で回転振動(揺動)する。   The pivot 243 is a conical member that is provided at a position on the bottom surface of the recess 241 that is directly below the position of the intersection of the main scanning rotation shaft 40 and the sub-scanning rotation shaft 50 with the vertex P slightly rounded. The vertex P of the pivot 243 is in contact with the back surface of the micro mirror 212, and the micro mirror 212 is rotationally oscillated (oscillated) while being supported by the vertex P of the pivot 243.

基本フレーム244は、微小ミラー212を囲むように隙間をあけて配置した第1保持部材としての副走査フレーム245と、この副走査フレーム245を囲むように隙間をあけて配置した第2保持部材としての主走査フレーム246と、第1連結部としての一対の主走査ヒンジ247と、第2連結部としての一対の副走査ヒンジ248とを備え、これら副走査フレーム245と、主走査フレーム246と、主走査ヒンジ247と、副走査ヒンジ248が一体に形成される。   The basic frame 244 is a sub-scanning frame 245 as a first holding member arranged with a gap so as to surround the micromirror 212, and a second holding member arranged with a gap so as to surround the sub-scanning frame 245. Main scanning frame 246, a pair of main scanning hinges 247 as a first connecting portion, and a pair of sub scanning hinges 248 as a second connecting portion. These sub scanning frame 245, main scanning frame 246, The main scanning hinge 247 and the sub scanning hinge 248 are integrally formed.

また、基本フレーム244は、一対の主走査ヒンジ246を介して微小ミラー212と一体に形成される。この微小ミラー212と一体の基本フレーム244は、例えば、光の反射率の高いアルミニウムを主成分とする金属(アルミニウム合金)によって形成され、導電性を有する。基本フレーム244は、例えばアルミニウム合金からなる金属泊をプレスにより打ち抜き加工するか、あるいはフォトリソグラフィなどの加工方法によって形成される。   The basic frame 244 is formed integrally with the micromirror 212 via a pair of main scanning hinges 246. The basic frame 244 integrated with the micromirror 212 is formed of, for example, a metal (aluminum alloy) whose main component is aluminum having high light reflectivity, and has conductivity. The basic frame 244 is formed by punching a metal stay made of, for example, an aluminum alloy with a press, or by a processing method such as photolithography.

微小ミラー212は、一対の主走査ヒンジ247間を結ぶ直線である主走査回転軸40を中心として回転振動(揺動)する。   The micro mirror 212 oscillates (oscillates) about the main scanning rotation shaft 40 that is a straight line connecting the pair of main scanning hinges 247.

主走査回転軸40は、ピボット243の頂点Pを通る。ピボット243の頂点Pを中心に微小ミラー212が回転振動するので、微小ミラー212の回転中心は、微小ミラー212の回転角度によらず、一点に留まっている。従って、プローブ光が、回転振動している微小ミラー212の回転中心(ピボットの頂点Pの真上)に当ると、その反射光は微小ミラー212の回転中心を頂点とする安定した円錐の範囲に反射されることになる。   The main scanning rotation axis 40 passes through the vertex P of the pivot 243. Since the minute mirror 212 rotates and oscillates around the vertex P of the pivot 243, the rotation center of the minute mirror 212 remains at one point regardless of the rotation angle of the minute mirror 212. Therefore, when the probe light hits the rotation center of the micromirror 212 that is rotating and oscillating (directly above the apex P of the pivot), the reflected light falls within a stable cone range having the rotation center of the micromirror 212 as the apex. Will be reflected.

微小ミラー212は、厚さが約100μm、プローブ光を反射する反射面部211の1辺が、レーザー光のビーム径の約2倍の約2mm四方の大きさで、上述したように光の反射率の高いアルミニウムを主成分とする金属(アルミニウム合金)製である。   The micromirror 212 has a thickness of about 100 μm, and one side of the reflection surface portion 211 that reflects the probe light has a size of about 2 mm square, which is about twice the beam diameter of the laser light, and has a light reflectance as described above. It is made of a metal (aluminum alloy) mainly composed of high aluminum.

微小ミラー212は、その質量が非常に小さいので、回転振動(揺動)による振動は殆ど発生せず、振動が放物面ミラー28や測定部10には殆ど伝わらない。従って、プローブ光の被検物Tを走査する位置(測定点S1,S2,S3・・・ 図5参照)が、主走査方向及び副走査方向に外れることがない。   Since the mass of the micromirror 212 is very small, vibration due to rotational vibration (oscillation) hardly occurs, and vibration is hardly transmitted to the parabolic mirror 28 and the measurement unit 10. Therefore, the position (measurement points S1, S2, S3... See FIG. 5) where the probe light scans the object T does not deviate in the main scanning direction and the sub-scanning direction.

主走査ヒンジ247は、微小ミラー212と副走査フレーム245とを回転可能に連結する捩り可能なヒンジである。   The main scanning hinge 247 is a twistable hinge that rotatably connects the micro mirror 212 and the sub scanning frame 245.

微小ミラー212と対向する基部242の凹部241の底面には、一対の駆動電極261が設けられている。この駆動電極261は、交番電圧が印加される電極である。駆動電極261に交番電圧が印加されると、駆動電極261と微小ミラー212との間に働くクーロン力により、主走査ヒンジ247が捩られ、微小ミラー212は、ピボット211に支持された状態で主走査回転軸40を中心として矢印A1(図3参照)の方向に回転振動(揺動)する。   A pair of drive electrodes 261 is provided on the bottom surface of the recess 241 of the base 242 facing the micromirror 212. The drive electrode 261 is an electrode to which an alternating voltage is applied. When an alternating voltage is applied to the drive electrode 261, the main scanning hinge 247 is twisted by the Coulomb force acting between the drive electrode 261 and the micromirror 212, and the micromirror 212 is supported by the pivot 211 in the main state. Rotating and oscillating (swinging) about the scanning rotation axis 40 in the direction of arrow A1 (see FIG. 3).

図3は微小ミラー212が回転振動(揺動)している様子を表している。図中、破線が最も大きく振れている微小ミラー212の位置を表している。プローブ光が微小ミラー212に入射しているときに微小ミラー212が矢印A1の方向に回転振動すると、プローブ光は微小ミラー212の反射面部211で反射して、矢印A2の方向に振動しながら放物面ミラー28に向かう。微小ミラー212が矢印A1の方向に回転振動すると、被検物Tに当たった(照射された)プローブ光は、図5に示すように、被検物T上を主走査方向に移動する。   FIG. 3 shows a state in which the micromirror 212 is oscillating (oscillating). In the drawing, the broken line represents the position of the minute mirror 212 that is most greatly swung. If the micro mirror 212 rotates and vibrates in the direction of the arrow A1 while the probe light is incident on the micro mirror 212, the probe light is reflected by the reflecting surface portion 211 of the micro mirror 212 and is emitted while vibrating in the direction of the arrow A2. Head to the object mirror 28. When the micromirror 212 rotates and vibrates in the direction of the arrow A1, the probe light hitting (irradiating) the test object T moves on the test object T in the main scanning direction as shown in FIG.

副走査フレーム245は、一対の副走査ヒンジ248間を結ぶ直線である副走査回転軸50を中心として微小ミラー212を回転振動(揺動)させる部材である。副走査回転軸50は、主走査回転軸40と直交し、主走査回転軸40と同様にピボット243の頂点Pを通る。   The sub-scanning frame 245 is a member that rotationally vibrates (swings) the micro mirror 212 around the sub-scanning rotation shaft 50 that is a straight line connecting the pair of sub-scanning hinges 248. The sub-scanning rotation axis 50 is orthogonal to the main-scanning rotation axis 40 and passes through the vertex P of the pivot 243 similarly to the main-scanning rotation axis 40.

副走査ヒンジ248は、副走査フレーム245と主走査フレーム246とを回転可能に連結する捩り可能なヒンジである。   The sub-scanning hinge 248 is a twistable hinge that rotatably connects the sub-scanning frame 245 and the main scanning frame 246.

副走査フレーム245の主走査回転軸40方向の両端に一対の駆動コイル262が設けられている。駆動コイル262は交番電流が印加されるコイルである。図2では、駆動コイルと262と駆動回路26(図1参照)とを結ぶ配線は、省略している。駆動コイル262に交番電流が印加されると、駆動コイル262が発生する駆動磁界と図4に示す外部磁界との間に働くローレンツ力により、副走査ヒンジ248が捩られ、副走査フレーム245は、副走査回転軸50を中心として矢印A3の方向に回転振動(揺動)する。   A pair of drive coils 262 are provided at both ends of the sub-scanning frame 245 in the main scanning rotation axis 40 direction. The drive coil 262 is a coil to which an alternating current is applied. In FIG. 2, the wiring connecting the drive coil 262 and the drive circuit 26 (see FIG. 1) is omitted. When an alternating current is applied to the drive coil 262, the sub-scanning hinge 248 is twisted by the Lorentz force acting between the driving magnetic field generated by the driving coil 262 and the external magnetic field shown in FIG. Rotate and vibrate (swing) in the direction of arrow A3 about the sub-scanning rotation axis 50.

副走査フレーム245が矢印A3の方向に回転振動すると、微小ミラー212も同様に矢印A3の方向に回転振動する。矢印A1の方向と矢印A3の方向は、互いに直交する方向である。図4は、副走査フレーム245によって微小ミラー212が回転振動している様子を表している。図中、破線が最も大きく振れている微小ミラー212の位置を表している。   When the sub-scanning frame 245 rotates and vibrates in the direction of the arrow A3, the micromirror 212 also vibrates and vibrates in the direction of the arrow A3. The direction of arrow A1 and the direction of arrow A3 are directions orthogonal to each other. FIG. 4 shows a state in which the minute mirror 212 is oscillating and rotated by the sub-scanning frame 245. In the drawing, the broken line represents the position of the minute mirror 212 that is most greatly swung.

このように、互いに相互作用を及ぼさない(相互に影響を与えない)クーロン力とローレンツ力とを主走査方向の駆動力と副走査方向の駆動力とに用いているので、主走査方向の微小ミラー212の回転角度と副走査方向の微小ミラー212の回転角度とが互いに独立に制御できる。従って、主走査方向と副走査方向の微小ミラー212の回転角度が安定する。   As described above, the Coulomb force and the Lorentz force that do not interact with each other (that do not affect each other) are used as the driving force in the main scanning direction and the driving force in the sub-scanning direction. The rotation angle of the mirror 212 and the rotation angle of the micro mirror 212 in the sub-scanning direction can be controlled independently of each other. Therefore, the rotation angle of the micro mirror 212 in the main scanning direction and the sub scanning direction is stabilized.

プローブ光が微小ミラー212に入射しているときに副走査フレーム245が矢印A3の方向に回転振動すると、プローブ光は微小ミラー212の反射面部211で反射して、矢印A4の方向に振動しながら、放物面ミラー28に向かう。微小ミラー212が矢印A3の方向に回転振動すると、被検物Tに当たったプローブ光は、図5に示すように、被検物T上を副走査方向に移動する。   When the sub-scanning frame 245 rotates and vibrates in the direction of arrow A3 while the probe light is incident on the micromirror 212, the probe light is reflected by the reflecting surface portion 211 of the micromirror 212 and vibrates in the direction of arrow A4. To the parabolic mirror 28. When the micromirror 212 rotates and vibrates in the direction of the arrow A3, the probe light hitting the test object T moves on the test object T in the sub-scanning direction as shown in FIG.

放物面ミラー28は、図1に示すように、反射部材21と被検物Tとの間の光路上に配置され、微小ミラー212からのプローブ光を被検物Tへ反射させるもので、その放物反射面の焦点が、プローブ光が照射・反射する反射面部211の箇所に位置している。したがって、プローブ光が放物面ミラー28を介して被検物Tに照射され、被検物Tで反射した戻り光は、プローブ光の光路を逆行し、放物面ミラー28によりその焦点である反射面部211の入射・反射箇所に入射し、反射されて測定部10に向かうことになる。すなわち、戻り光はプローブ光の光路上から外れることなく該光路を逆行して測定部10に入射し、ビームスプリッタ12を介してフォトディテクタ14により受光されることになる。   As shown in FIG. 1, the parabolic mirror 28 is disposed on the optical path between the reflecting member 21 and the test object T, and reflects the probe light from the micromirror 212 to the test object T. The focal point of the parabolic reflecting surface is located at the reflecting surface portion 211 where the probe light is irradiated and reflected. Accordingly, the probe light is irradiated onto the test object T via the paraboloidal mirror 28, and the return light reflected by the test object T travels backward along the optical path of the probe light and is focused by the paraboloidal mirror 28. The light enters the incident / reflected portion of the reflecting surface portion 211, is reflected, and travels toward the measuring unit 10. That is, the return light does not deviate from the optical path of the probe light, travels backward along the optical path, enters the measurement unit 10, and is received by the photodetector 14 via the beam splitter 12.

上述した一対の駆動電極261と一対の駆動コイル262は、駆動回路26(図1、図6参照)によって駆動される。駆動回路26は、被検物T上のプローブ光が主走査と副走査とを行うように、偏向素子21を回転駆動する一対の駆動電極261と一対の駆動コイル262とを駆動する回路である。   The pair of drive electrodes 261 and the pair of drive coils 262 described above are driven by a drive circuit 26 (see FIGS. 1 and 6). The drive circuit 26 is a circuit that drives a pair of drive electrodes 261 and a pair of drive coils 262 that rotationally drive the deflection element 21 so that the probe light on the object T performs main scanning and sub-scanning. .

図6は駆動回路26の回路ブロック図である。発振回路263は、一定周期の信号を主走査回路256に出力する回路で、主走査回路264は、発振回路263の出力信号の1周期を経過するごとに、プローブ光が被検物Tの測定点S1,S2,S3,S4・・・を通り過ぎるような掃引信号(以下、この信号を主走査信号と称す)を、一対の電圧源266に出力する回路である。この一対の電圧源266は、微小ミラー212と一対の駆動電極261との間に、主走査信号を増幅した交番電圧を出力する。微小ミラー212は、この交番電圧が印加されると、プローブ光が被検物T上を主走査する角度(図3の矢印A1の方向)に、回転振動する。   FIG. 6 is a circuit block diagram of the drive circuit 26. The oscillation circuit 263 is a circuit that outputs a signal with a fixed period to the main scanning circuit 256. The main scanning circuit 264 measures the test object T every time one period of the output signal of the oscillation circuit 263 passes. In this circuit, a sweep signal passing through points S1, S2, S3, S4... (Hereinafter, this signal is referred to as a main scanning signal) is output to a pair of voltage sources 266. The pair of voltage sources 266 outputs an alternating voltage obtained by amplifying the main scanning signal between the micromirror 212 and the pair of drive electrodes 261. When this alternating voltage is applied, the micromirror 212 oscillates at an angle (in the direction of arrow A1 in FIG. 3) at which the probe light scans the object T.

また、主走査回路256は、1回の主走査の周期に対応する水平同期信号を、副走査回路265に出力する。副走査回路265は、主走査回路264の出力信号が1回の主走査を経過するごとにプローブ光が図5に示す被検物の測定点S1,S11.S21・・・を通り過ぎるような掃引信号(以降、この信号を副走査信号と称す)を、一対の電流源267に出力する回路である。一対の電流源267は、一対の駆動コイル262に、副走査信号を増幅した交番電流を出力する。一対の駆動コイル262は、この交番電流が印加されると、プローブ光が被検物T上を副走査する角度(図4の矢印A3の方向)に、回転振動する。   Further, the main scanning circuit 256 outputs a horizontal synchronization signal corresponding to one main scanning cycle to the sub-scanning circuit 265. Each time the output signal of the main scanning circuit 264 passes one main scan, the sub-scanning circuit 265 detects the probe measurement points S1, S11. In this circuit, a sweep signal passing through S21... (Hereinafter, this signal is referred to as a sub-scan signal) is output to a pair of current sources 267. The pair of current sources 267 outputs an alternating current obtained by amplifying the sub scanning signal to the pair of drive coils 262. When this alternating current is applied, the pair of drive coils 262 oscillates at an angle (in the direction of arrow A3 in FIG. 4) at which the probe light is sub-scanned on the object T.

演算部30は、測定部10からの位相データと走査部20からの同期パルスとを入力して、測定点毎に走査部20から測定点までの距離を演算する回路で、求めた距離データは外部のCAD/CAM装置などに出力する。演算部30には演算回路31が設けられている。演算回路31は、同期パルスから各測定点S1,S2,S3・・・の主走査方向の位置座標(X座標)と副走査方向の位置座標(Y座標)とを求め、各測定点のX座標とY座標に位相データがあらわす各測定点の距離データをZ座標として対応させる。これにより被検物Tの形状を非接触で計測することが出来る。   The calculation unit 30 is a circuit that inputs the phase data from the measurement unit 10 and the synchronization pulse from the scanning unit 20 and calculates the distance from the scanning unit 20 to the measurement point for each measurement point. Output to an external CAD / CAM device. The arithmetic unit 30 is provided with an arithmetic circuit 31. The arithmetic circuit 31 obtains the position coordinate (X coordinate) in the main scanning direction and the position coordinate (Y coordinate) in the sub-scanning direction of each measurement point S1, S2, S3. The distance data of each measurement point represented by the phase data in the coordinate and the Y coordinate is made to correspond as the Z coordinate. Thereby, the shape of the test object T can be measured in a non-contact manner.

以上のように構成された本実施形態の計測装置によれば、偏向素子21によりプローブ光を被検物T上の主走査方向と副走査方向に走査させることができ、複数の偏向素子を装備しなくても済み、光学系の構成を簡素化することが出来、光学系の複雑化により光路誤差の累積がなく、高精度の計測が可能となる。   According to the measuring apparatus of the present embodiment configured as described above, the deflecting element 21 can scan the probe light in the main scanning direction and the sub-scanning direction on the object T, and is equipped with a plurality of deflecting elements. The configuration of the optical system can be simplified, and the optical system is complicated, so that no optical path error is accumulated and high-precision measurement is possible.

また、微小ミラー212は、その裏面側の主走査回転軸40と副走査回転軸50の交点でピボット243の頂点Pが当接し、該ピボット243よって回転可能に支持されていることから、主走査回転軸40、副走査回転軸50を中心とした回転運動の際、その回転角度によらずに、その回転中心がずれることなく常に一点に留まっている。したがって、プローブ光が、回転振動している微小ミラー212の回転中心(ピボット243の頂点Pの真上)に当ると、その反射光は微小ミラー212の回転中心を頂点とする安定した円錐の範囲に反射されることになり、高精度の計測が可能となる。   Further, the minute mirror 212 is supported by the pivot 243 so that the apex P of the pivot 243 abuts at the intersection of the main scanning rotation shaft 40 and the sub-scanning rotation shaft 50 on the back surface side. During the rotational movement around the rotary shaft 40 and the sub-scanning rotary shaft 50, the center of rotation always stays at one point regardless of the rotation angle. Therefore, when the probe light hits the rotation center of the micromirror 212 that is rotating and oscillating (directly above the apex P of the pivot 243), the reflected light has a stable cone range with the rotation center of the micromirror 212 as the apex. Therefore, highly accurate measurement is possible.

また、放物面ミラー28は、その放物反射面の焦点を微小ミラー212の反射面部211上の箇所に設定してあることから、被検物Tからの戻り光は常に微小ミラー212の反射面部211上の決まった箇所に入射して反射されることになり、プローブ光の光路から外れることなく逆行して測定部10に入射し、フォトディテクタ14により確実に受光される。そして、このフォトディテクタ14で電気信号に変換された情報に基づいて被検物Tの形状測定を行うので、高精度の計測が可能となる。   In addition, since the paraboloidal mirror 28 has the focal point of the parabolic reflection surface set at a location on the reflection surface portion 211 of the micromirror 212, the return light from the test object T is always reflected by the micromirror 212. The light is incident on a predetermined location on the surface portion 211 and is reflected, and enters the measuring portion 10 without going off the optical path of the probe light, and is reliably received by the photodetector 14. And since the shape measurement of the to-be-tested object T is performed based on the information converted into the electrical signal by this photodetector 14, highly accurate measurement is attained.

また、微小ミラー212を回転駆動するのに互いに相互作用を及ぼさないクーロン力とローレンツ力を利用していることから、主走査方向と副走査方向の各方向での微小ミラー212の回転角度を独立に制御でき、微小ミラー212の回転角度が安定し、高精度の計測が可能となる。   In addition, since the Coulomb force and the Lorentz force that do not interact with each other are used to rotationally drive the micromirror 212, the rotation angle of the micromirror 212 in each of the main scanning direction and the sub-scanning direction is independent. Therefore, the rotation angle of the micro mirror 212 is stabilized, and highly accurate measurement is possible.

本発明の計測装置は上記実施形態に示すものに限定されるものではない。   The measuring device of the present invention is not limited to the one shown in the above embodiment.

例えば、支持機構24を構成する基本フレーム244に微小ミラー212を一体に形成した場合を示したが、別個に形成してから互いに連結するようにしてもよい。   For example, although the case where the micro mirror 212 is integrally formed on the basic frame 244 constituting the support mechanism 24 is shown, it may be formed separately and then connected to each other.

また、微小ミラー212を光の反射率の高いアルミニウムを主成分とする金属(アルミニウム合金)で形成する代わりに別の金属で形成し、微小ミラー212の反射面部となる箇所にアルミニウム合金を蒸着させてもよい。   Further, instead of forming the micro mirror 212 with a metal (aluminum alloy) whose main component is aluminum with high light reflectivity, the micro mirror 212 is formed with another metal, and an aluminum alloy is deposited on a portion to be a reflective surface portion of the micro mirror 212. May be.

また、プローブ光としてフェムト秒レーザー光を使用した場合を示したが、他のレーザー光を使用してもよい。   Moreover, although the case where femtosecond laser light was used as probe light was shown, you may use another laser light.

本発明の計測装置の一実施形態を示す機能ブロック図である。It is a functional block diagram which shows one Embodiment of the measuring device of this invention. 図1に示す反射部材とその支持機構の、プローブ光が入射する方向からみた上面図である。FIG. 2 is a top view of the reflecting member and its support mechanism shown in FIG. 1 as seen from the direction in which probe light is incident. 図2の3−3線に沿う断面図である。It is sectional drawing which follows the 3-3 line of FIG. 図2の4−4線に沿う断面図である。FIG. 4 is a cross-sectional view taken along line 4-4 of FIG. プローブ光が被検物上を走査する状態を説明する説明図である。It is explanatory drawing explaining the state which probe light scans on a test object. 図1に示す反射部材を駆動する駆動回路のブロック図である。It is a block diagram of the drive circuit which drives the reflective member shown in FIG.

符号の説明Explanation of symbols

10 測定部
11 レーザー光源
12 ビームスプリッタ
13,14 フォトディテクタ
15 位相計
20 走査部
21 偏向素子
24 支持機構
26 駆動回路
30 演算部
31 演算回路
40 主走査回転軸
50 副走査回転軸
212 微小ミラー(反射面部)
245 副走査フレーム(第1保持部)
246 主走査フレーム(第2保持部)
247 主走査ヒンジ(第1連結部)
248 副走査ヒンジ(第2連結部)
DESCRIPTION OF SYMBOLS 10 Measurement part 11 Laser light source 12 Beam splitters 13 and 14 Photo detector 15 Phase meter 20 Scanning part 21 Deflection element 24 Support mechanism 26 Drive circuit 30 Calculation part 31 Calculation circuit 40 Main scanning rotation axis 50 Sub-scanning rotation axis 212 Minute mirror (reflection surface part) )
245 Sub-scanning frame (first holding unit)
246 Main scanning frame (second holding unit)
247 Main scanning hinge (first connecting part)
248 Sub-scanning hinge (second connecting part)

Claims (8)

光源からの測定光を被検物へ反射する反射面部を有する反射部材と、
前記反射部材を前記反射面部と対向する裏面側から支持する支持部と、前記反射部材を回転軸を中心に回転可能に支持する回転部とを有する支持機構と、
前記反射面部を、前記回転軸を中心に回転駆動する駆動部と、
前記測定光が前記被検物で反射した戻り光を受光する受光部と、を備え、
前記回転軸の近傍の前記反射面部に前記測定光を照射し、前記受光部からの情報に基づいて前記被検物の形状を測定することを特徴とする計測装置。
A reflective member having a reflective surface portion for reflecting measurement light from the light source to the test object;
A support mechanism having a support portion that supports the reflection member from the back surface side facing the reflection surface portion, and a rotation portion that rotatably supports the reflection member around a rotation axis;
A drive unit that rotationally drives the reflection surface unit around the rotation axis;
A light receiving portion for receiving the return light reflected by the test object by the measurement light,
A measuring apparatus that irradiates the measuring surface with the measurement light near the rotation axis and measures the shape of the test object based on information from the light receiving unit.
請求項1に記載の計測装置において、
前記反射部材と前記被検物との間に配置され、前記反射部材からの前記測定光を前記被検物へ反射させる放物面を有し、該放物面の焦点が、前記測定光を反射する前記反射面部の箇所に位置する、放物面ミラーを備えたことを特徴とする計測装置。
The measuring device according to claim 1,
A parabolic surface is disposed between the reflecting member and the test object, and reflects the measurement light from the reflecting member to the test object, and a focal point of the parabolic surface reflects the measurement light. A measuring apparatus comprising a parabolic mirror located at a location of the reflecting surface portion that reflects.
請求項1又は2に記載の計測装置において、
前記支持機構は2つの回転軸を有し、該2つの回転軸は互いに直交し、
前記支持部は前記直交する前記2つの回転軸の交点箇所を支持することを特徴とする計測装置。
In the measuring device according to claim 1 or 2,
The support mechanism has two rotation axes, and the two rotation axes are orthogonal to each other;
The measuring device according to claim 1, wherein the support portion supports an intersection of the two rotation axes that are orthogonal to each other.
請求項3に記載の計測装置において、
前記支持部は円錐形状のピボットで、該ピボットの頂点で前記反射面部の裏面側を回転可能に支持することを特徴とする計測装置。
In the measuring device according to claim 3,
The measuring device according to claim 1, wherein the support portion is a conical pivot, and the back surface side of the reflection surface portion is rotatably supported at the apex of the pivot.
請求項3または4に記載の計測装置において、
前記支持機構は、
前記支持部と、
前記反射面部と隙間をあけて配置された第1保持部と、
前記第1保持部と間隔をあけて配置された第2保持部と、
前記2つの回転軸のうち、何れか一方の回転軸を中心に回転するように、前記反射面部を前記第1保持部に連結する第1連結部と、
前記2つの回転軸のうち、他方の回転軸を中心に回転するように、前記第1保持部を前記第2保持部に連結する第2連結部と、
を備えてなることを特徴とする計測装置。
In the measuring device according to claim 3 or 4,
The support mechanism is
The support part;
A first holding part disposed with a gap from the reflective surface part;
A second holding portion disposed at a distance from the first holding portion;
A first connecting part for connecting the reflecting surface part to the first holding part so as to rotate around one of the two rotating axes;
A second connecting portion for connecting the first holding portion to the second holding portion so as to rotate around the other rotating shaft of the two rotating shafts;
A measuring device comprising:
請求項1ないし5の何れか一項に記載の計測装置において、
前記駆動部は、前記反射面部を回転させる、互いに影響力を及ばさない2つの駆動部材を備えたことを特徴とする計測装置。
In the measuring device according to any one of claims 1 to 5,
The measurement device according to claim 1, wherein the drive unit includes two drive members that rotate the reflection surface unit and do not exert influence on each other.
請求項6に記載の計測装置において、
前記2つの駆動部材のうち、何れか一方の駆動部材はクーロン力を利用し、他方の駆動部材はローレンツ力を利用して前記反射面部を回転することを特徴とする計測装置。
In the measuring device according to claim 6,
One of the two drive members, one drive member uses the Coulomb force, and the other drive member uses the Lorentz force to rotate the reflection surface portion.
請求項1ないし7の何れか一項に記載の計測装置において、
前記計測光はフェムト秒レーザー光であることを特徴とする計測装置。
In the measuring device according to any one of claims 1 to 7,
The measuring device is a femtosecond laser beam.
JP2007022623A 2007-02-01 2007-02-01 Measuring device Pending JP2008190883A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022623A JP2008190883A (en) 2007-02-01 2007-02-01 Measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022623A JP2008190883A (en) 2007-02-01 2007-02-01 Measuring device

Publications (1)

Publication Number Publication Date
JP2008190883A true JP2008190883A (en) 2008-08-21

Family

ID=39751136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022623A Pending JP2008190883A (en) 2007-02-01 2007-02-01 Measuring device

Country Status (1)

Country Link
JP (1) JP2008190883A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085643A (en) * 2018-11-26 2020-06-04 日立オートモティブシステムズ株式会社 Surface measurement device, surface measurement method, and surface measurement method of object including circular measurement surface

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108208A (en) * 1986-10-24 1988-05-13 Nippon Air Brake Co Ltd Measuring method for shape of body of the like
JPH04211217A (en) * 1990-02-19 1992-08-03 Fuji Electric Co Ltd Optical deflector
JPH05119280A (en) * 1991-10-24 1993-05-18 Ricoh Co Ltd Galvano mirror
JPH06300542A (en) * 1993-04-16 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> Shape feature extraction device with two-dimensional laser pattern and two-dimensional laser pattern
JPH07141457A (en) * 1993-11-17 1995-06-02 Olympus Optical Co Ltd Optical scanner
JP2005510697A (en) * 2001-11-27 2005-04-21 カリダス プレシジョン システムズ ゲーエムベーハー Solid object shape detection method and apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63108208A (en) * 1986-10-24 1988-05-13 Nippon Air Brake Co Ltd Measuring method for shape of body of the like
JPH04211217A (en) * 1990-02-19 1992-08-03 Fuji Electric Co Ltd Optical deflector
JPH05119280A (en) * 1991-10-24 1993-05-18 Ricoh Co Ltd Galvano mirror
JPH06300542A (en) * 1993-04-16 1994-10-28 Nippon Telegr & Teleph Corp <Ntt> Shape feature extraction device with two-dimensional laser pattern and two-dimensional laser pattern
JPH07141457A (en) * 1993-11-17 1995-06-02 Olympus Optical Co Ltd Optical scanner
JP2005510697A (en) * 2001-11-27 2005-04-21 カリダス プレシジョン システムズ ゲーエムベーハー Solid object shape detection method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020085643A (en) * 2018-11-26 2020-06-04 日立オートモティブシステムズ株式会社 Surface measurement device, surface measurement method, and surface measurement method of object including circular measurement surface
JP7245033B2 (en) 2018-11-26 2023-03-23 日立Astemo株式会社 Surface measuring device, surface measuring method, and surface measuring method for object having circular surface to be measured

Similar Documents

Publication Publication Date Title
JP5740321B2 (en) Distance measuring device, distance measuring method and control program
JP5913726B2 (en) Gimbal scanning mirror array
JP5267722B2 (en) Laser radar equipment
JP4209709B2 (en) Displacement meter
JP4970211B2 (en) 3D shape measuring instrument
JP2005539260A (en) Apparatus for changing the path length of a radiation beam
JP2022159464A (en) Ranging device
JP6372819B2 (en) Optical distance measuring device
EP3112895B1 (en) Optical probe and measuring apparatus
JP5027617B2 (en) Measuring method of resonance frequency and maximum optical swing angle
JP2008190883A (en) Measuring device
JP2004020956A (en) Beam scanner
JP2011179969A (en) Light scanning device and laser radar device
JP2008151640A (en) Measurement device
WO2017130944A1 (en) Optical scanner
JP2019086403A (en) Distance measuring device and scanner manufacturing method
JP2000035375A (en) Optical scanner tester
JP2013179305A (en) Exposure device and exposure method
Tortschanoff et al. Optical position encoding and phase control of an electrostatically driven two-dimensional MOEMS scanner at two resonant modes
JP2019086662A (en) Optical scanner and distance measuring device
JP2008196970A (en) Shape measurement method and instrument
JP2004004276A (en) Two-dimensional optical scanner
JP4745796B2 (en) Eccentricity measuring apparatus and decentration adjusting apparatus for optical deflection apparatus, and scanning optical apparatus and image forming apparatus using them
JP2690120B2 (en) Optical scanning device
JPH09119820A (en) Measuring method for wobble of optical scanner, and optical scanner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111101

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120306