WO2017130944A1 - Optical scanner - Google Patents

Optical scanner Download PDF

Info

Publication number
WO2017130944A1
WO2017130944A1 PCT/JP2017/002294 JP2017002294W WO2017130944A1 WO 2017130944 A1 WO2017130944 A1 WO 2017130944A1 JP 2017002294 W JP2017002294 W JP 2017002294W WO 2017130944 A1 WO2017130944 A1 WO 2017130944A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
reflecting mirror
rotation axis
angle
axis
Prior art date
Application number
PCT/JP2017/002294
Other languages
French (fr)
Japanese (ja)
Inventor
幸男 篠塚
正晴 田島
Original Assignee
シナノケンシ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シナノケンシ株式会社 filed Critical シナノケンシ株式会社
Publication of WO2017130944A1 publication Critical patent/WO2017130944A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the present invention relates to an optical scanning device.
  • the optical scanning device disclosed in Patent Document 1 includes a flat plate reflecting mirror that rotates around both a horizontal rotation axis and a vertical rotation axis.
  • This flat reflector reflects the light emitted from the light emitting element into the measurement space and then reflects the reflected light reflected by the object in the measurement space again to send it to the light receiving element.
  • the flat reflector is supported by a mirror mount so as to rotate about a horizontal rotation axis.
  • the mirror mount is provided with a rotating guide shaft that is inserted into a guide rail formed on the inner wall surface of the vertical moving body.
  • the flat reflector is provided so as to rotate about the vertical rotation axis by a rotating member to which a rotational force of a motor (electric motor) is applied. For this reason, the flat mirror is rotated about the horizontal rotation axis and simultaneously rotated about the vertical rotation axis by the rotational drive of a single motor.
  • the optical scanning device disclosed in Patent Document 2 includes a mechanism that rotates a flat reflector around a vertical rotation axis and a horizontal rotation axis with a single motor.
  • the rotational driving force of this motor is transmitted to a spur gear that rotates the gear box, and the gear box rotates about the vertical rotation axis.
  • a hollow worm gear that does not rotate is arranged at the center of the vertical rotation shaft.
  • the worm wheel that is screwed into the hollow worm gear is provided in the gear box, and is rotated by screwing with the worm gear as the gear box rotates.
  • a spur gear connected to the horizontal rotating shaft of the flat reflector is attached to the rotating shaft of the worm wheel.
  • the flat plate mirror rotates about a horizontal rotation axis that rotates vertically integrally with the gear box. That is, the flat mirror is rotated about the horizontal rotation axis and the vertical rotation axis by the rotational drive of a single motor.
  • Patent Document 3 the vertical rotation speed and horizontal rotation in a mechanism for rotating a flat reflector by distributing the driving force of a single motor so that two rotation shafts, a vertical rotation shaft and a horizontal rotation shaft, are driven by a gear. It describes the setting of the rotation speed ratio. By setting this ratio to an appropriate ratio, it is possible to make the spatial density of optical scanning fine.
  • JP 2010-527024 A Japanese Patent No. 5620603 Japanese Patent Application No. 2015-008133
  • the flat mirror is rotated or oscillated around the rotation axes of the horizontal rotation axis and the vertical rotation axis by one electric motor to irradiate the target light with the scanning light. is doing.
  • the scanning lines by the optical scanning apparatus are formed obliquely with respect to the target space because they are scanned vertically and horizontally, and the oblique scanning lines are formed in all directions around the flat plate reflector. Is done. In this way, since the scanning lines are formed obliquely, there are more straight lines extending in the vertical direction and the horizontal direction, particularly when the measurement object is an artificial object. Accuracy is improved.
  • the ratio of the rotation speeds of the vertical rotation axis and the horizontal rotation axis is set to an appropriate balance, the interval between the scanning lines cannot be reduced, and a small shape cannot be detected.
  • the scanning line becomes nearly vertical, It becomes difficult to detect the extending structure.
  • the necessary structure such as a transmission for adjusting the balance with the rotation speed around the horizontal rotation axis is also large. It will be necessary to make it more complicated.
  • the present invention is made to solve the above-described problems, and an object of the present invention is to provide an optical scanning device that can set the angle and interval of scanning lines freely and easily without increasing the size of the electric motor. There is.
  • the first electric motor, the rotating part that can be rotated about the vertical direction by the rotational driving force of the first electric motor, and the rotating part are attached to the rotating part and together with the rotating part
  • a second electric motor that rotates the main reflecting mirror as an axis.
  • the rotation of the main reflecting mirror does not use the horizontal direction as an axis, but uses a direction having a predetermined angle with respect to a horizontal plane as an axis. Therefore, even if the revolution speed (rotational speed in the vertical direction) is set lower than the rotation speed of the main reflecting mirror, the angle of the scanning line can be set appropriately by changing this angle. is there.
  • the reflecting surface of the main reflecting mirror has a predetermined angle other than an angle perpendicular to or parallel to the rotation axis of the second electric motor, and the reflecting surface of the main reflecting mirror includes the second electric motor.
  • the scanning light may be incident in parallel to the rotation axis. According to this configuration, the range in which the reflected light of the reflecting surface of the main reflecting mirror rotating around the rotation axis by the second electric motor can be received is the same area regardless of the rotation position of the main reflecting mirror. The amount of received light can be made constant regardless of the rotation angle.
  • the main reflecting mirror is formed such that a tip of a cylindrical rod extending along a rotation axis by the second electric motor is formed at a predetermined angle other than an angle perpendicular to or parallel to the rotation axis by the second electric motor. It may be a rod mirror having a reflecting surface. According to this configuration, since the reflecting surface and the rotation shaft are configured by a single rod, the air resistance can be reduced and the wind noise can be reduced when the second motor is rotated around the rotation shaft. Can be reduced.
  • the rotation axis by the second electric motor may pass through the center of the reflecting surface of the main reflecting mirror, and the scanning light may enter the center of the reflecting surface of the reflecting mirror.
  • a predetermined angle with respect to a horizontal plane of the main reflecting mirror may be adjustable. According to this configuration, the predetermined angle with respect to the horizontal plane of the main reflecting mirror is adjusted so that the scanning lines are concentrated particularly on the area to be scanned, and the interval between the scanning lines in the area to be scanned is particularly reduced. Can do.
  • the rotating shaft of the first electric motor is a hollow rotating shaft having a hollow inside so that the scanning light irradiated from below passing through the hollow rotating shaft is reflected toward the reflecting mirror.
  • a follower mirror may be provided immediately above the hollow rotation shaft.
  • the sub-reflecting mirror may be attached to the rotating unit and rotate with the rotating unit about a vertical direction as an axis.
  • the angle and interval of the scanning lines can be set freely and easily while avoiding the noise problem of the speed change mechanism when high-speed scanning is performed without increasing the size of the electric motor.
  • FIG. 1 shows a schematic configuration of the optical scanning device of the present embodiment, and first, an optical system will be mainly described.
  • the optical scanning device 30 irradiates an object around the optical scanning device 30 with the scanning light, acquires the shape of the surrounding space as point cloud data by reflected light from the surroundings, and measures the shape of the object. is there.
  • As light laser light is generally used.
  • the optical scanning device 30 is disposed above the first electric motor 32, the second electric motor 48, and the first electric motor 32 at a position shifted laterally from the rotation axis of the first electric motor 32. And a main reflecting mirror 34 for irradiating the object (not shown) with scanning light and receiving reflected light from the object.
  • the main reflecting mirror 34 is connected to the second electric motor 48 and is rotatable around a rotation axis A (rotation axis of the second electric motor 48) having an axis in a direction inclined by a predetermined angle with respect to the horizontal plane. In addition, it is provided so as to be rotatable about a vertical rotation axis Z integrally with a rotation unit 38 described later.
  • the rotation axis A is provided so as to pass through the center of the reflecting surface of the main reflecting mirror 34.
  • the rotating shaft of the first electric motor 32 is a hollow shaft 36 whose center is hollow.
  • a rotating portion 38 (see FIGS. 2 and 3) that is integrated with the hollow shaft 36 and rotates about the vertical rotation axis Z is fixed to the upper end portion of the hollow shaft 36.
  • a main reflecting mirror 34 and a sub-reflecting mirror 50 are attached to the rotating portion 38.
  • the sub-reflecting mirror 50 is disposed directly above the hollow shaft 36 with its reflecting surface facing the main reflecting mirror 34.
  • the sub-reflecting mirror 50 reflects the scanning light that has passed through the hollow shaft 36 from below toward the main reflecting mirror 34 and reflects the reflected light from the main reflecting mirror 34 so as to pass through the hollow shaft 36. .
  • the scanning light incident on the main reflecting mirror 34 from the sub-reflecting mirror 50 is incident on the same straight line with respect to the rotation axis A, that is, incident on the center of the reflecting surface of the main reflecting mirror 34.
  • the reflecting surface of the main reflecting mirror 34 has a point-symmetric shape about the rotation axis of rotation, and there is no change in the external shape seen from the rotation axis direction due to the rotation position of the rotation axis of rotation of the main reflection mirror 34.
  • a lower reflecting mirror 45 is disposed below the hollow shaft 36 of the first electric motor 32.
  • the lower reflecting mirror 45 has a function of introducing scanning light into the hollow shaft 36 and reflecting the reflected light that has passed through the hollow shaft 36 in the lateral direction.
  • the laser light emitting device 26 that outputs the scanning light is provided not at a position directly below the first electric motor 32 but at a position shifted in the lateral direction.
  • the laser light emitting device 26 makes the scanning light incident on the lower reflecting mirror 45 through the plurality of mirrors 25.
  • the scanning light When the scanning light is incident on the object, the scanning light is scattered and reflected by the object.
  • the reflected light is reflected by the reflecting surface of the main reflecting mirror 34 and enters the sub-reflecting mirror 50.
  • the subreflector 50 reflects the reflected light vertically downward.
  • the reflected light reflected by the secondary reflecting mirror 50 passes through the hollow shaft 36 vertically downward.
  • the reflected light that has passed through the hollow shaft 36 vertically downward is incident on the laser light receiving device 28 via a light receiving optical system 27 that is constituted by a convex lens that is reflected by the lower reflecting mirror 45 and collects the reflected light.
  • a data processing device (not shown) is connected to the laser light receiving device 28, and the distance from the reflected light received by the laser light receiving device 28 to the measurement object can be calculated. By detecting the angle, the direction in which the scanning light is irradiated can be calculated. It is possible to calculate the three-dimensional coordinate data based on these distance and direction information.
  • the data processing apparatus may
  • FIG. 2 is a perspective view of the optical scanning device according to the present embodiment
  • FIG. 3 is a side view thereof, and the mechanical configuration of the optical scanning device according to the present embodiment will be described.
  • the main reflecting mirror 34 rotates about the rotation axis A facing a direction having a predetermined angle with respect to the horizontal plane, and scans the scanning light in the vertical direction.
  • the main reflecting mirror 34 is integrated with the rotating unit 38, rotates around the vertical rotation axis Z that is a rotation axis facing in the vertical direction, and scans the scanning light in the horizontal direction.
  • the vertical rotation axis of this embodiment is a hollow shaft 36.
  • the rotating portion 38 fixed to the hollow shaft 36 includes a base portion 54 that is a portion fixed to the hollow shaft 36, a column portion 55 that extends upward from the base portion 54 and is attached with a follower mirror 50, and a base portion 54. And a main reflector mounting portion 57 extending obliquely upward.
  • the main reflecting mirror 34 and a second electric motor 48 that rotates the main reflecting mirror 34 are disposed in the main reflecting mirror mounting portion 57.
  • the main reflecting mirror 34 of this embodiment is a rod mirror having a reflecting surface in which the tip of a cylindrical rod is inclined at a predetermined angle that is an angle other than perpendicular or parallel to the axial direction of the rod (rotation axis A). Adopted.
  • the rod mirror is a reflecting surface formed by cutting the tip of a rod formed of glass or the like at a predetermined angle and depositing a reflecting film such as metal on the cutting surface.
  • the predetermined angle is 45 °, but the predetermined angle is not limited to 45 °.
  • the second electric motor 48 is attached to the main reflecting mirror 34 so that the rotation axis A of the main reflecting mirror 34 has an angle of 45 ° with respect to the horizontal plane. That is, the main reflector mounting portion 57 is also provided with an inclination of 45 ° with respect to the base portion 54 disposed in the horizontal direction.
  • a hinge part (not shown) etc. may be provided between the main reflector attachment part 57 and the base part 54, and the angle with respect to the horizontal surface of the main reflector attachment part 57 may be provided so that adjustment is possible.
  • the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane can be adjusted.
  • the adjustment of the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is not the adjustment of the angle of the main reflecting mirror mounting portion 57 with respect to the base 54, but the main reflecting mirror 34 and the main reflecting mirror mounting portion 57 of the second electric motor 48.
  • the mounting angle may be adjustable.
  • the range in which the scanning lines are concentrated can be adjusted in the vertical direction, and in particular, the interval between the scanning lines in the range to be scanned can be reduced. Can do. This point will be described later with reference to FIGS.
  • the optical scanning device 30 is provided with a base portion 39 at the lowermost portion, and the base portion 39 is configured as an installation surface on the ground or floor surface.
  • the first electric motor 32 is disposed on a base 40 provided above a predetermined distance from the base portion 39.
  • Support pillars 41 for supporting the base 40 are respectively arranged at the four corners of the upper surface of the base portion 39.
  • a support column 33 extending from the base 40 toward the upper end of the rotating unit 38 is provided.
  • a horizontal portion 35 extending in the horizontal direction is provided at the upper end of the column 33.
  • the front end of the horizontal portion 35 extends to a position directly above the hollow shaft 36.
  • a wireless transmission / reception unit 44 is provided on the lower surface of the front end of the horizontal unit 35.
  • a wireless transmission / reception unit 46 capable of wireless communication with the wireless transmission / reception unit 44 is provided at a position facing the wireless transmission / reception unit 44 and on the upper surface of the rotation unit 38. For this reason, it is possible to perform communication between the rotation part 38 and the part which does not rotate.
  • the rotation unit 38 is equipped with a rotation control unit (not shown), a rotation drive unit (not shown), and a power source (not shown) of the second electric motor 48. Further, it is necessary to output rotation angle information from the rotation control unit to the outside of the rotation unit 38. Therefore, a rotation angle signal is output from the rotation control unit to the wireless transmission / reception unit 46 through a wiring (not shown), and the wireless transmission / reception unit 44 provided in the horizontal unit 35 receives the rotation angle signal.
  • a rotation angle signal is output from the rotation control unit to the wireless transmission / reception unit 46 through a wiring (not shown), and the wireless transmission / reception unit 44 provided in the horizontal unit 35 receives the rotation angle signal.
  • wireless communication communication means such as short-range wireless communication such as Bluetooth (registered trademark), wireless LAN, ZigBee (registered trademark), infrared light, and optical communication can be employed.
  • short-range wireless communication such as Bluetooth (registered trademark), wireless LAN, ZigBee (registered trademark), infrared light, and optical communication
  • Bluetooth registered trademark
  • wireless LAN wireless local area network
  • ZigBee registered trademark
  • infrared light and optical communication
  • FIG. 4 and 5 are enlarged views of the main reflecting mirror 34.
  • FIG. The main reflecting mirror 34 of this embodiment inclines the tip of a cylindrical rod at a predetermined angle that is an angle other than perpendicular or parallel to the axial direction of the rod (rotational axis A having a predetermined angle with respect to the horizontal plane).
  • a rod mirror with a reflective surface is used.
  • the rod mirror is a reflecting surface formed by cutting the tip of a rod formed of glass or the like at a predetermined angle and depositing a reflecting film such as metal on the cutting surface.
  • the inclination angle with respect to the axial direction of the rod is 45 °, but this angle is not limited to 45 °.
  • the axis direction of the rotation axis A is set to be 45 ° with respect to the horizontal plane, but the angle of the axis direction of the rotation axis A is limited to 45 °. Not what you want.
  • the angle of the rotation axis A in the axial direction is preferably set in the range of 10 ° to 80 ° with respect to the horizontal plane.
  • the rotation axis A of the main reflecting mirror 34 is provided so as to coincide with the axis of the rod mirror and pass through the center of the reflecting surface.
  • the reflected light reflected from the object does not reduce the light receiving area of the reflected light depending on the angle even if the main reflecting mirror 34 rotates around the rotation axis A. Can be. For this reason, the point cloud data based on reflected light can be acquired reliably.
  • the light receiving area can be prevented from being reduced depending on the rotation angle without increasing the area of the reflecting surface of the reflecting mirror as in the case of the conventional scanning device. Resistance can be prevented from increasing, and noise and vibration can be reduced.
  • FIG. 6 shows scanning when the angle of the rotation axis A of the main reflector 34 with respect to the horizontal plane is 45 °, the rotation speed about the vertical rotation axis Z is 300 rpm, and the rotation speed about the rotation axis A is 10000 rpm. Shows the state of light. According to this, the scanning light is scanned within a range of an elevation angle of 45 ° and a depression angle of 45 ° from the horizontal plane. In this case, the upper and lower measurements are not performed, but the scanning lines are concentrated in the horizontal direction. Therefore, when the horizontal information of the measurement target is important, the scanning light is increased in the horizontal direction of the measurement target. Irradiation can be performed at a high density, and scanning with higher resolution becomes possible.
  • FIG. 7 shows scanning when the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is 30 °, the rotation speed around the vertical rotation axis Z is 300 rpm, and the rotation speed around the rotation axis A is 10000 rpm. Shows the state of light. According to this, the scanning light is scanned within the range of the elevation angle 60 ° and the depression angle 60 ° from the horizontal plane. In this case, the measurable range is expanded on both the upper side and the lower side than the state of FIG.
  • FIG. 8 shows scanning when the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is 60 °, the rotation speed around the vertical rotation axis Z is 300 rpm, and the rotation speed around the rotation axis A is 10000 rpm. Shows the state of light. According to this, the scanning light is scanned in the range of the elevation angle 30 ° and the depression angle 30 ° from the horizontal plane. In this case, measurement is performed only in a range of 60 ° in the vertical direction, but since the scanning lines are concentrated in this range, the information in the horizontal direction to be measured is more important than the state of FIG. This is effective when it is desired to carry out measurement in this range particularly precisely.
  • the scanning location of the scanning light can be selected, and the location where measurement is to be performed more precisely On the other hand, it is possible to measure by increasing the density of the scanning lines.
  • the rod mirror is employed as the main reflecting mirror.
  • the reflecting mirror is not limited to the rod mirror.
  • a rotation shaft 66 arranged on the same straight line as the horizontal rotation axis is attached to a flat plate reflecting mirror 64 having a reflection surface with a predetermined angle with respect to the horizontal rotation axis directed in the horizontal direction. It may be a configuration.
  • the laser light emitting device 26 and the laser light receiving device 28 are shifted below the first electric motor 32 and in the lateral direction.
  • a laser distance measuring device An example of arranging at different positions has been described. This is because it is difficult to place a large laser distance measuring device with high distance measuring accuracy directly below the first electric motor 32 due to space problems.
  • the main reflecting mirror 34 since the main reflecting mirror 34 is rotationally driven by the second electric motor 48, the main reflecting mirror 34 does not have to be disposed on the rotation axis of the first electric motor 32. Is arranged at a position shifted laterally from the rotation axis of the first electric motor 32. For this reason, a space is created immediately above the first electric motor 32.
  • the laser distance measuring device can be arranged in the space immediately above the first electric motor 32.
  • the entire configuration of the optical scanning device 30 including the laser distance measuring device can be reduced in size. Is possible.
  • the small laser distance measuring device 68 designed to save space as described above it is possible to stabilize the distance measuring accuracy with the configuration capable of high-speed scanning as in the present invention. Therefore, the overall accuracy in practical use does not deteriorate.
  • optical scanning device of the present invention is not limited to laser light as the scanning light, and light emitted by other light emitting elements may be employed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

The present invention addresses the problem of providing an optical scanner with which it is possible to raise the measurement precision without increasing the size of the electric motor. As a solution, this optical scanner is provided with: a first electric motor (32); a rotary part (38) that can rotate via the rotational driving force of the first electric motor (32) with the vertical direction as the axis; a main reflecting mirror (34) that is attached to the rotary part (38), rotates together with the rotary part (38) with the vertical direction as the axis, shines the scanning light toward an object, and receives reflected light from the object; and a second electric motor (48) that is attached to the rotary part (38) and rotates the main reflecting mirror (34) with, as the axis, a direction having a predetermined angle relative to the horizontal plane.

Description

光走査装置Optical scanning device
 本発明は、光走査装置に関する。 The present invention relates to an optical scanning device.
 三次元距離測定を行うためにレーザ光を用いた光走査装置が従来より提案されており、例えば特許文献1及び特許文献2のような構成が開示されている。 Conventionally, an optical scanning device using a laser beam for performing a three-dimensional distance measurement has been proposed. For example, configurations such as Patent Document 1 and Patent Document 2 are disclosed.
 特許文献1に開示されている光走査装置は、水平回転軸及び鉛直回転軸の双方を中心に回転する平板反射鏡を設けている。
 この平板反射鏡は、発光素子から放出された光を測定空間に正反射させ、その後測定空間の物体で反射されて戻ってくる反射光を再び正反射させて、受光素子に送る。
 平板反射鏡は、水平回転軸を中心に回転するようにミラーマウントによって支持されている。ミラーマウントには、上下移動体の内壁面に形成されたガイドレール内に挿入される回転ガイド軸が設けられている。
 また、平板反射鏡は、モータ(電動機)の回転力が加えられる回転部材によって鉛直回転軸を中心に回転するように設けられている。
 このため、単一のモータの回転駆動によって、平板反射鏡は、水平回転軸を中心に搖動すると同時に鉛直回転軸を中心として回転する。
The optical scanning device disclosed in Patent Document 1 includes a flat plate reflecting mirror that rotates around both a horizontal rotation axis and a vertical rotation axis.
This flat reflector reflects the light emitted from the light emitting element into the measurement space and then reflects the reflected light reflected by the object in the measurement space again to send it to the light receiving element.
The flat reflector is supported by a mirror mount so as to rotate about a horizontal rotation axis. The mirror mount is provided with a rotating guide shaft that is inserted into a guide rail formed on the inner wall surface of the vertical moving body.
The flat reflector is provided so as to rotate about the vertical rotation axis by a rotating member to which a rotational force of a motor (electric motor) is applied.
For this reason, the flat mirror is rotated about the horizontal rotation axis and simultaneously rotated about the vertical rotation axis by the rotational drive of a single motor.
 また、特許文献2に開示されている光走査装置は、単一のモータで平板反射鏡を鉛直回転軸及び水平回転軸を中心に回転させる機構を備えている。このモータの回転駆動力は、ギアボックスを回転させる平ギアに伝達され、ギアボックスは鉛直回転軸を中心に回転する。
 鉛直回転軸の中心には回転しない中空のウォームギアが配置されている。
 この中空のウォームギアに螺合するウォームホイールは、ギアボックス内に設けられており、ギアボックスの回転に伴ってウォームギアと螺合して回転する。
 ウォームホイールの回転軸には平板反射鏡の水平回転軸に連結された平ギアが取り付けられている。ギアボックスと一体となって鉛直回転する水平回転軸を中心に平板反射鏡が回転する。
 すなわち、単一のモータの回転駆動によって、平板反射鏡は、水平回転軸及び鉛直回転軸を中心として回転する。
In addition, the optical scanning device disclosed in Patent Document 2 includes a mechanism that rotates a flat reflector around a vertical rotation axis and a horizontal rotation axis with a single motor. The rotational driving force of this motor is transmitted to a spur gear that rotates the gear box, and the gear box rotates about the vertical rotation axis.
A hollow worm gear that does not rotate is arranged at the center of the vertical rotation shaft.
The worm wheel that is screwed into the hollow worm gear is provided in the gear box, and is rotated by screwing with the worm gear as the gear box rotates.
A spur gear connected to the horizontal rotating shaft of the flat reflector is attached to the rotating shaft of the worm wheel. The flat plate mirror rotates about a horizontal rotation axis that rotates vertically integrally with the gear box.
That is, the flat mirror is rotated about the horizontal rotation axis and the vertical rotation axis by the rotational drive of a single motor.
 さらに特許文献3では、単一のモータの駆動力をギアによって鉛直回転軸と水平回転軸の2つの回転軸が駆動するよう分配して平板反射鏡を回転させる機構においての、鉛直回転速度と水平回転速度の比率の設定について記載している。この比率を適切な比率とすることで光走査の空間密度を精細にすることが可能である。 Furthermore, in Patent Document 3, the vertical rotation speed and horizontal rotation in a mechanism for rotating a flat reflector by distributing the driving force of a single motor so that two rotation shafts, a vertical rotation shaft and a horizontal rotation shaft, are driven by a gear. It describes the setting of the rotation speed ratio. By setting this ratio to an appropriate ratio, it is possible to make the spatial density of optical scanning fine.
特開2010-527024号公報JP 2010-527024 A 特許第5620603号公報Japanese Patent No. 5620603 特願2015-008133号Japanese Patent Application No. 2015-008133
 上述したように従来の光走査装置によれば、1つの電動機によって平板反射鏡を水平回転軸及び鉛直回転軸の双方の回転軸を中心にして回転又は揺動させ、走査光を対象空間に照射している。
 特に特許文献3の装置では、光走査装置による走査線は、上下左右に走査されるため対象空間に対して斜めに形成され、この斜めの走査線が平板反射鏡を中心として全ての方向に形成される。このように、走査線が斜めに形成されることで、特に計測対象物が人工物の場合には鉛直方向及び水平方向に延びる直線が多くなるため、このような人工物の計測に対して検出精度が向上する。
As described above, according to the conventional optical scanning device, the flat mirror is rotated or oscillated around the rotation axes of the horizontal rotation axis and the vertical rotation axis by one electric motor to irradiate the target light with the scanning light. is doing.
In particular, in the apparatus of Patent Document 3, the scanning lines by the optical scanning apparatus are formed obliquely with respect to the target space because they are scanned vertically and horizontally, and the oblique scanning lines are formed in all directions around the flat plate reflector. Is done. In this way, since the scanning lines are formed obliquely, there are more straight lines extending in the vertical direction and the horizontal direction, particularly when the measurement object is an artificial object. Accuracy is improved.
 ところで、従来の光走査装置において、さらに走査線の間隔を小さくしたり、あるいは一周期の計測にかかる時間を短くするためには、高速走査を実現する必要がある。
 高速走査を実現するには、鉛直回転軸を中心とした回転速度を上昇させる必要があるが、これには電動機を大型化する必要がある。しかしながら電動機を大型化すると他の構成の大型化や耐久性等も検討しなくてはならず高コスト化してしまうという課題がある。
 また、鉛直回転軸と水平回転軸を変速機構等を介して高速で回転させる場合、変速機構等の騒音が大きくなる課題がある。
By the way, in the conventional optical scanning device, it is necessary to realize high-speed scanning in order to further reduce the interval between the scanning lines or shorten the time required for one cycle measurement.
In order to realize high-speed scanning, it is necessary to increase the rotation speed around the vertical rotation axis, but this requires an increase in the size of the electric motor. However, when the electric motor is increased in size, there is a problem that the increase in cost and cost must be studied for increasing the size and durability of other components.
Moreover, when rotating a vertical rotating shaft and a horizontal rotating shaft at high speed via a transmission mechanism etc., there exists a subject that the noise of a transmission mechanism etc. becomes large.
 また、鉛直回転軸と水平回転軸の回転速度の比率を適正なバランスに設定しないと、走査線の間隔を小さくすることができず、小さな形状の検出ができなくなる。
 例えば、水平回転軸を中心とした回転速度の方が鉛直回転軸を中心とした回転速度よりも数十倍速くなっているような状態では、走査線は鉛直に近くなってしまい、鉛直方向に延びる構造物の検出が困難になる。
 このように、電動機を大型化して鉛直回転軸を中心とした回転速度を上げようとしても、水平回転軸を中心とした回転速度とのバランスを調整するための変速機等の必要な構造も大型化・複雑化しなくてはならなくなってしまう。
Further, unless the ratio of the rotation speeds of the vertical rotation axis and the horizontal rotation axis is set to an appropriate balance, the interval between the scanning lines cannot be reduced, and a small shape cannot be detected.
For example, in a state where the rotation speed about the horizontal rotation axis is several tens of times faster than the rotation speed about the vertical rotation axis, the scanning line becomes nearly vertical, It becomes difficult to detect the extending structure.
In this way, even if the electric motor is increased in size to increase the rotation speed around the vertical rotation axis, the necessary structure such as a transmission for adjusting the balance with the rotation speed around the horizontal rotation axis is also large. It will be necessary to make it more complicated.
 そこで本発明は上記課題を解決すべくなされ、その目的とするところは、電動機の大型化をせず、且つ走査線の角度と間隔を自由且つ容易に設定することができる光走査装置を提供することにある。 Accordingly, the present invention is made to solve the above-described problems, and an object of the present invention is to provide an optical scanning device that can set the angle and interval of scanning lines freely and easily without increasing the size of the electric motor. There is.
 本発明にかかる光走査装置によれば、第1の電動機と、該第1の電動機の回転駆動力によって鉛直方向を軸線として回転可能な回転部と、該回転部に取り付けられ、前記回転部とともに鉛直方向を軸線として回転し、走査光を対象物へ向けて照射するとともに対象物からの反射光を受光する主反射鏡と、前記回転部に取り付けられ、水平面に対して所定角度を有する方向を軸線として前記主反射鏡を回転させる第2の電動機と、を具備することを特徴としている。
 この構成を採用することによって、主反射鏡の鉛直方向を軸線とした回転(公転)と、水平面に対して所定角度を有する方向を軸線とした回転(自転)のそれぞれの回転数を別個に設定することが可能である。このため、高速走査を行う場合においても変速機等の構造を備えなくてもよく、装置全体を大型化しなくても高速走査が可能であり走査線の間隔と計測にかかる時間を柔軟に設定することができる。また、主反射鏡の自転は水平方向を軸線としておらず、水平面に対して所定角度を有する方向を軸線としている。このため、主反射鏡の自転速度と比較して、公転速度(垂直方向の回転速度)が低い設定であってもこの角度を変更することで走査線の角度を適切に設定することが可能である。
According to the optical scanning device of the present invention, the first electric motor, the rotating part that can be rotated about the vertical direction by the rotational driving force of the first electric motor, and the rotating part are attached to the rotating part and together with the rotating part A main reflector that rotates about the vertical direction as an axis, irradiates scanning light toward the object and receives reflected light from the object, and a direction attached to the rotating unit and having a predetermined angle with respect to a horizontal plane. And a second electric motor that rotates the main reflecting mirror as an axis.
By adopting this configuration, the number of rotations of rotation (revolution) with the vertical direction of the main reflector as the axis and rotation with the direction having a predetermined angle with respect to the horizontal plane (rotation) are set separately. Is possible. For this reason, it is not necessary to provide a structure such as a transmission even when performing high-speed scanning, and high-speed scanning is possible without increasing the size of the entire apparatus, and the interval between scanning lines and the time required for measurement can be set flexibly. be able to. Further, the rotation of the main reflecting mirror does not use the horizontal direction as an axis, but uses a direction having a predetermined angle with respect to a horizontal plane as an axis. Therefore, even if the revolution speed (rotational speed in the vertical direction) is set lower than the rotation speed of the main reflecting mirror, the angle of the scanning line can be set appropriately by changing this angle. is there.
 また、前記主反射鏡の反射面は、前記第2の電動機による回転軸に対して直角又は平行な角度以外の所定角度を有し、前記主反射鏡の反射面には、前記第2の電動機による回転軸に対して平行に走査光が入射されることを特徴としてもよい。
 この構成によれば、第2の電動機による回転軸を中心に回転する主反射鏡の反射面の反射光が受光できる範囲が主反射鏡の回転位置によらず同じ面積になるため、主反射鏡の受光量を回転角度によらず一定の条件にできる。
The reflecting surface of the main reflecting mirror has a predetermined angle other than an angle perpendicular to or parallel to the rotation axis of the second electric motor, and the reflecting surface of the main reflecting mirror includes the second electric motor. The scanning light may be incident in parallel to the rotation axis.
According to this configuration, the range in which the reflected light of the reflecting surface of the main reflecting mirror rotating around the rotation axis by the second electric motor can be received is the same area regardless of the rotation position of the main reflecting mirror. The amount of received light can be made constant regardless of the rotation angle.
 また、前記主反射鏡は、前記第2の電動機による回転軸に沿って延びる円柱状のロッドの先端が、前記第2の電動機による回転軸に対して直角又は平行な角度以外の所定角度で形成された反射面を有するロッドミラーであることを特徴としてもよい。
 この構成によれば、反射面と回転軸が1本のロッドで構成されているので、第2の電動機の回転軸を中心に回転させた場合、空気抵抗を小さくすることができ、また風切り音の発生などを低減することができる。
The main reflecting mirror is formed such that a tip of a cylindrical rod extending along a rotation axis by the second electric motor is formed at a predetermined angle other than an angle perpendicular to or parallel to the rotation axis by the second electric motor. It may be a rod mirror having a reflecting surface.
According to this configuration, since the reflecting surface and the rotation shaft are configured by a single rod, the air resistance can be reduced and the wind noise can be reduced when the second motor is rotated around the rotation shaft. Can be reduced.
 また、前記第2の電動機による回転軸は、前記主反射鏡の反射面の中心を通り、前記走査光は、前記反射鏡の反射面の中心に入射することを特徴としてもよい。
 この構成によれば、主反射鏡を回転させたときに回転軸線方向から見た主反射鏡の形状の変化が無くなるので、走査光が対象物に照射されて乱反射し主反射鏡に戻ってきた光である反射光を、主反射鏡の回転位置によって光量を変動させること無く、安定して反射させることができる。
The rotation axis by the second electric motor may pass through the center of the reflecting surface of the main reflecting mirror, and the scanning light may enter the center of the reflecting surface of the reflecting mirror.
According to this configuration, when the main reflector is rotated, there is no change in the shape of the main reflector viewed from the direction of the rotation axis, so that the scanning light is irradiated to the object and irregularly reflected and returned to the main reflector. Reflected light, which is light, can be reflected stably without changing the amount of light depending on the rotational position of the main reflecting mirror.
 また、前記主反射鏡の水平面に対する所定角度を調整可能に設けられていることを特徴としてもよい。
 この構成によれば、主反射鏡の水平面に対する所定角度を調整することで、特に走査したい範囲に対して集中して走査線を集めるようにし、特に走査したい範囲の走査線の間隔を小さくすることができる。
In addition, a predetermined angle with respect to a horizontal plane of the main reflecting mirror may be adjustable.
According to this configuration, the predetermined angle with respect to the horizontal plane of the main reflecting mirror is adjusted so that the scanning lines are concentrated particularly on the area to be scanned, and the interval between the scanning lines in the area to be scanned is particularly reduced. Can do.
 また、前記第1の電動機の回転軸は、内部が中空の中空回転軸であって、該中空回転軸内を通過して下方から照射された走査光を前記反射鏡に向けて反射させるように 該中空回転軸の直上に従反射鏡を具備することを特徴としてもよい。 Further, the rotating shaft of the first electric motor is a hollow rotating shaft having a hollow inside so that the scanning light irradiated from below passing through the hollow rotating shaft is reflected toward the reflecting mirror. A follower mirror may be provided immediately above the hollow rotation shaft.
 また、前記従反射鏡は、前記回転部に取り付けられて前記回転部とともに鉛直方向を軸線として回転することを特徴としてもよい。 Further, the sub-reflecting mirror may be attached to the rotating unit and rotate with the rotating unit about a vertical direction as an axis.
 本発明によれば、電動機の大型化をせず、高速走査をした場合の変速機構の騒音問題等を回避しながら、走査線の角度と間隔を自由且つ容易に設定することができる。 According to the present invention, the angle and interval of the scanning lines can be set freely and easily while avoiding the noise problem of the speed change mechanism when high-speed scanning is performed without increasing the size of the electric motor.
光走査装置の概略構成を示す説明図である。It is explanatory drawing which shows schematic structure of an optical scanning device. 光走査装置の斜視図である。It is a perspective view of an optical scanning device. 光走査装置の側面図である。It is a side view of an optical scanning device. 主反射鏡の説明図である。It is explanatory drawing of a main reflective mirror. 図4に示した主反射鏡を、回転軸を中心に180°回転させたところを示す説明図である。It is explanatory drawing which shows the place which rotated the main reflecting mirror shown in FIG. 4 180 degrees centering | focusing on the rotating shaft. 回転軸の水平面に対する角度を45°とした場合の球体内を操作した場合に発生する走査線の説明図である。It is explanatory drawing of the scanning line which generate | occur | produces when operating the spherical body when the angle with respect to the horizontal surface of a rotating shaft is 45 degrees. 回転軸の水平面に対する角度を60°とした場合の球体内を操作した場合に発生する走査線の説明図である。It is explanatory drawing of the scanning line which generate | occur | produces when operating the spherical body when the angle with respect to the horizontal surface of a rotating shaft is 60 degrees. 回転軸の水平面に対する角度を30°とした場合の球体内を操作した場合に発生する走査線の説明図である。It is explanatory drawing of the scanning line which generate | occur | produces when operating the spherical body when the angle with respect to the horizontal surface of a rotating shaft is 30 degrees. 主反射鏡の他の実施形態を示す説明図である。It is explanatory drawing which shows other embodiment of the main reflective mirror. 小型のレーザ距離測定装置を採用した場合の実施形態を示す側面図である。It is a side view which shows embodiment at the time of employ | adopting a small laser distance measuring apparatus.
 図1に、本実施形態の光走査装置の概略構成を示し、最初に主として光学系について説明する。
 光走査装置30は、走査光を光走査装置30の周囲の対象物に照射し、周囲からの反射光によって周囲の空間の形状を点群データとして取得し、対象物の形状を計測するものである。光としては、一般的にはレーザ光が用いられる。
FIG. 1 shows a schematic configuration of the optical scanning device of the present embodiment, and first, an optical system will be mainly described.
The optical scanning device 30 irradiates an object around the optical scanning device 30 with the scanning light, acquires the shape of the surrounding space as point cloud data by reflected light from the surroundings, and measures the shape of the object. is there. As light, laser light is generally used.
 光走査装置30は、第1の電動機32と、第2の電動機48と、第1の電動機32の上方であって第1の電動機32の回転軸線上からは横方向に偏移した位置に配置され、対象物(図示せず)に走査光を照射し、且つ対象物からの反射光を受光するための主反射鏡34とを備えている。 The optical scanning device 30 is disposed above the first electric motor 32, the second electric motor 48, and the first electric motor 32 at a position shifted laterally from the rotation axis of the first electric motor 32. And a main reflecting mirror 34 for irradiating the object (not shown) with scanning light and receiving reflected light from the object.
 主反射鏡34は、第2の電動機48に接続されており、水平面に対して所定角度傾斜した方向に軸線を有する回転軸A(第2の電動機48の回転軸)を中心に回転可能であり、且つ後述する回転部38と一体となって鉛直回転軸Zを中心に回転可能に設けられている。なお、回転軸Aは、主反射鏡34の反射面の中心を通るように設けられている。 The main reflecting mirror 34 is connected to the second electric motor 48 and is rotatable around a rotation axis A (rotation axis of the second electric motor 48) having an axis in a direction inclined by a predetermined angle with respect to the horizontal plane. In addition, it is provided so as to be rotatable about a vertical rotation axis Z integrally with a rotation unit 38 described later. The rotation axis A is provided so as to pass through the center of the reflecting surface of the main reflecting mirror 34.
 第1の電動機32の回転軸は、中心が中空である中空軸36である。中空軸36の上端部には、中空軸36と一体になって鉛直回転軸Zを中心に回転する回転部38(図2、図3参照)が固定されている。この回転部38に主反射鏡34及び従反射鏡50が取り付けられている。
 従反射鏡50は、中空軸36の直上に、その反射面を主反射鏡34に向けて配置されている。従反射鏡50は、中空軸36内を下方から通過してきた走査光を主反射鏡34に向けて反射し、且つ主反射鏡34からの反射光が中空軸36内を通過するように反射する。
The rotating shaft of the first electric motor 32 is a hollow shaft 36 whose center is hollow. A rotating portion 38 (see FIGS. 2 and 3) that is integrated with the hollow shaft 36 and rotates about the vertical rotation axis Z is fixed to the upper end portion of the hollow shaft 36. A main reflecting mirror 34 and a sub-reflecting mirror 50 are attached to the rotating portion 38.
The sub-reflecting mirror 50 is disposed directly above the hollow shaft 36 with its reflecting surface facing the main reflecting mirror 34. The sub-reflecting mirror 50 reflects the scanning light that has passed through the hollow shaft 36 from below toward the main reflecting mirror 34 and reflects the reflected light from the main reflecting mirror 34 so as to pass through the hollow shaft 36. .
 また、従反射鏡50から主反射鏡34に入射される走査光は回転軸Aに対して同一直線上に入射すること、すなわち主反射鏡34の反射面の中心に入射することが好ましい。
 主反射鏡34の反射面は、自転の回転軸を中心とした点対称の形状であり、主反射鏡34の自転の回転軸の回転位置による回転軸線方向から見た外観形状の変化が無いため、走査光を主反射鏡34の反射面の中心に入射させることにより、対象物へ入射した走査光が乱反射して主反射鏡34へ戻ってくる光である反射光を、主反射鏡34の自転の回転軸の回転位置による反射光量の変動をきたすこと無く、後述の従反射鏡50へ安定して反射させることができる。
Further, it is preferable that the scanning light incident on the main reflecting mirror 34 from the sub-reflecting mirror 50 is incident on the same straight line with respect to the rotation axis A, that is, incident on the center of the reflecting surface of the main reflecting mirror 34.
The reflecting surface of the main reflecting mirror 34 has a point-symmetric shape about the rotation axis of rotation, and there is no change in the external shape seen from the rotation axis direction due to the rotation position of the rotation axis of rotation of the main reflection mirror 34. By making the scanning light incident on the center of the reflecting surface of the main reflecting mirror 34, the reflected light, which is the light that is irregularly reflected by the scanning light incident on the object and returns to the main reflecting mirror 34, is reflected on the main reflecting mirror 34. It is possible to stably reflect the reflected light to a sub-reflecting mirror 50 described later without causing a variation in the amount of reflected light due to the rotational position of the rotation axis of rotation.
 第1の電動機32の中空軸36の下方には、下部反射鏡45が配置されている。下部反射鏡45は、中空軸36へ走査光を導入し、且つ中空軸36内を通過した反射光を横方向へ反射させる機能を有する。
 走査光を出力するレーザ発光装置26は、第1の電動機32の直下ではなく、横方向にずれた位置に設けられている。レーザ発光装置26は、複数のミラー25を介して下部反射鏡45に走査光を入射する。
A lower reflecting mirror 45 is disposed below the hollow shaft 36 of the first electric motor 32. The lower reflecting mirror 45 has a function of introducing scanning light into the hollow shaft 36 and reflecting the reflected light that has passed through the hollow shaft 36 in the lateral direction.
The laser light emitting device 26 that outputs the scanning light is provided not at a position directly below the first electric motor 32 but at a position shifted in the lateral direction. The laser light emitting device 26 makes the scanning light incident on the lower reflecting mirror 45 through the plurality of mirrors 25.
 なお、走査光が対象物に入射されると走査光は対象物で散乱して反射される。この反射光は、主反射鏡34の反射面で反射して従反射鏡50に入射する。従反射鏡50は、反射光を鉛直下向きに反射する。従反射鏡50で反射した反射光は、中空軸36内を鉛直下向きに通過する。
 中空軸36内を鉛直下向きに通過した反射光は、下部反射鏡45によって反射され反射光を集光する凸レンズ等から構成される受光光学系27を介してレーザ受光装置28に入射される。レーザ受光装置28にはデータ処理装置(図示せず)が接続されており、レーザ受光装置28で受光した反射光から測定対象までの距離が算出でき、また図示しないロータリーエンコーダ等により各回転軸の角度を検出することにより、走査光が照射された方向が算出できる。これらの距離と方向の情報に基づいて三次元座標データを算出することが可能となる。
 データ処理装置としては通常のパーソナルコンピュータ等であってもよいし、データ処理用の専用機であってもよい。
When the scanning light is incident on the object, the scanning light is scattered and reflected by the object. The reflected light is reflected by the reflecting surface of the main reflecting mirror 34 and enters the sub-reflecting mirror 50. The subreflector 50 reflects the reflected light vertically downward. The reflected light reflected by the secondary reflecting mirror 50 passes through the hollow shaft 36 vertically downward.
The reflected light that has passed through the hollow shaft 36 vertically downward is incident on the laser light receiving device 28 via a light receiving optical system 27 that is constituted by a convex lens that is reflected by the lower reflecting mirror 45 and collects the reflected light. A data processing device (not shown) is connected to the laser light receiving device 28, and the distance from the reflected light received by the laser light receiving device 28 to the measurement object can be calculated. By detecting the angle, the direction in which the scanning light is irradiated can be calculated. It is possible to calculate the three-dimensional coordinate data based on these distance and direction information.
The data processing apparatus may be an ordinary personal computer or a dedicated machine for data processing.
 次に、図2に本実施形態にかかる光走査装置の斜視図を、図3に側面図を示し、本実施形態にかかる光走査装置の機械的構成について説明する。
 上述したように主反射鏡34は、水平面に対して所定角度を有する方向を向く回転軸Aを中心に回転し、走査光を上下方向に走査する。
 また、主反射鏡34は回転部38と一体になって、鉛直方向を向く回転軸である鉛直回転軸Zを中心に回転し、走査光を水平方向に走査する。本実施形態の鉛直回転軸は中空軸36である。
Next, FIG. 2 is a perspective view of the optical scanning device according to the present embodiment, FIG. 3 is a side view thereof, and the mechanical configuration of the optical scanning device according to the present embodiment will be described.
As described above, the main reflecting mirror 34 rotates about the rotation axis A facing a direction having a predetermined angle with respect to the horizontal plane, and scans the scanning light in the vertical direction.
Further, the main reflecting mirror 34 is integrated with the rotating unit 38, rotates around the vertical rotation axis Z that is a rotation axis facing in the vertical direction, and scans the scanning light in the horizontal direction. The vertical rotation axis of this embodiment is a hollow shaft 36.
 中空軸36に固定されている回転部38は、中空軸36に固定される箇所である基部54と、基部54から上方に向けて延び従反射鏡50を取り付けている柱部55と、基部54から斜め上方に向けて延びる主反射鏡取付部57とを具備している。 The rotating portion 38 fixed to the hollow shaft 36 includes a base portion 54 that is a portion fixed to the hollow shaft 36, a column portion 55 that extends upward from the base portion 54 and is attached with a follower mirror 50, and a base portion 54. And a main reflector mounting portion 57 extending obliquely upward.
 主反射鏡取付部57には、主反射鏡34と、これを回転させる第2の電動機48とが配置されている。
 本実施形態の主反射鏡34は、円柱状のロッドの先端をロッドの軸線方向(回転軸A)に対して垂直又は平行以外の角度である所定角度に傾斜させた反射面を有するロッドミラーを採用している。ロッドミラーとは、ガラス等で形成されたロッドの先端を所定角度に切断し、この切断面に金属等の反射膜を蒸着させるなどして形成することで反射面としたものである。
 本実施形態では、所定角度として45°となるようにしているが、所定角度としては45°に限定するものではない。
The main reflecting mirror 34 and a second electric motor 48 that rotates the main reflecting mirror 34 are disposed in the main reflecting mirror mounting portion 57.
The main reflecting mirror 34 of this embodiment is a rod mirror having a reflecting surface in which the tip of a cylindrical rod is inclined at a predetermined angle that is an angle other than perpendicular or parallel to the axial direction of the rod (rotation axis A). Adopted. The rod mirror is a reflecting surface formed by cutting the tip of a rod formed of glass or the like at a predetermined angle and depositing a reflecting film such as metal on the cutting surface.
In the present embodiment, the predetermined angle is 45 °, but the predetermined angle is not limited to 45 °.
 また、第2の電動機48は、主反射鏡34の回転軸Aが水平面に対して45°の角度を有するよう、主反射鏡34に取り付けられている。
 すなわち、主反射鏡取付部57も水平方向に配置された基部54に対して45°傾斜して設けられている。
The second electric motor 48 is attached to the main reflecting mirror 34 so that the rotation axis A of the main reflecting mirror 34 has an angle of 45 ° with respect to the horizontal plane.
That is, the main reflector mounting portion 57 is also provided with an inclination of 45 ° with respect to the base portion 54 disposed in the horizontal direction.
 なお、主反射鏡取付部57と基部54との間にヒンジ部(図示せず)等を設け、主反射鏡取付部57の水平面に対する角度を調整可能に設けてもよい。このような構成により、主反射鏡34の回転軸Aの水平面に対する角度を調整することができる。なお、主反射鏡34の回転軸Aの水平面に対する角度の調整は、主反射鏡取付部57の基部54に対する角度調整ではなく、主反射鏡34及び第2の電動機48の主反射鏡取付部57への取付け角度を調整可能としてもよい。
 なお、このように主反射鏡34の回転軸Aの水平面に対する角度を調整した場合、従反射鏡50の角度調整も行う必要がある。このため、従反射鏡50にもヒンジ等(図示せず)の調整手段を設ける必要がある。
In addition, a hinge part (not shown) etc. may be provided between the main reflector attachment part 57 and the base part 54, and the angle with respect to the horizontal surface of the main reflector attachment part 57 may be provided so that adjustment is possible. With such a configuration, the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane can be adjusted. The adjustment of the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is not the adjustment of the angle of the main reflecting mirror mounting portion 57 with respect to the base 54, but the main reflecting mirror 34 and the main reflecting mirror mounting portion 57 of the second electric motor 48. The mounting angle may be adjustable.
When the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is adjusted in this way, it is necessary to adjust the angle of the sub reflecting mirror 50 as well. For this reason, it is necessary to provide adjusting means such as a hinge (not shown) in the subreflector 50 as well.
 このように、主反射鏡34の回転軸Aの水平面に対する角度を調整することで、走査線の集中する範囲を上下方向で調整することでき、特に走査したい範囲の走査線の間隔を小さくすることができる。この点については図6~図8に基づいて後述する。 In this way, by adjusting the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane, the range in which the scanning lines are concentrated can be adjusted in the vertical direction, and in particular, the interval between the scanning lines in the range to be scanned can be reduced. Can do. This point will be described later with reference to FIGS.
 光走査装置30は、最下部に土台部39が設けられ、土台部39が地面又は床面等への設置面として構成されている。
 第1の電動機32は、土台部39から所定距離離れた上方に設けられた基台40に配置されている。土台部39の上面の四隅には、基台40を支持するための支持柱41がそれぞれ配置されている。
The optical scanning device 30 is provided with a base portion 39 at the lowermost portion, and the base portion 39 is configured as an installation surface on the ground or floor surface.
The first electric motor 32 is disposed on a base 40 provided above a predetermined distance from the base portion 39. Support pillars 41 for supporting the base 40 are respectively arranged at the four corners of the upper surface of the base portion 39.
 基台40から、回転部38の上端部に向けて延びる支柱33が設けられている。支柱33の上端には水平方向に延びる水平部35が設けられている。水平部35の先端は、中空軸36の直上にまで延びる。
 水平部35の先端部下面には、無線送受信部44が設けられている。
 また、この無線送受信部44と対向する位置であって、回転部38の上面には、無線送受信部44と無線通信可能な無線送受信部46が設けられている。このため、回転部38と回転しない部分との間での通信を行うことが可能である。
A support column 33 extending from the base 40 toward the upper end of the rotating unit 38 is provided. A horizontal portion 35 extending in the horizontal direction is provided at the upper end of the column 33. The front end of the horizontal portion 35 extends to a position directly above the hollow shaft 36.
A wireless transmission / reception unit 44 is provided on the lower surface of the front end of the horizontal unit 35.
In addition, a wireless transmission / reception unit 46 capable of wireless communication with the wireless transmission / reception unit 44 is provided at a position facing the wireless transmission / reception unit 44 and on the upper surface of the rotation unit 38. For this reason, it is possible to perform communication between the rotation part 38 and the part which does not rotate.
 回転部38には、第2の電動機48の回転制御部(図示せず)、回転駆動部(図示せず)、電源(図示せず)が搭載されている。また、回転制御部からは回転部38の外部へ回転角度情報を出力する必要がある。
 そこで、回転制御部から図示しない配線を通じて無線送受信部46へ回転角度信号が出力され、水平部35に設けられた無線送受信部44が回転角度信号を受信する。無線送受信部46及び無線送受信部44をそれぞれ鉛直回転軸Z上に配置することにより、回転部38が回転したとしても回転中に無線データの送受信を良好に行うことができる。また、無線通信としては、Bluetooth(登録商標)、無線LAN、ZigBee(登録商標)等の近距離無線通信、赤外線、光通信などの通信手段を採用することができる。なお本実施例では近接タイプの通信装置を用いたため計測用光のケラレによる測定不能範囲が存在するが、異なるタイプの通信装置を使用することでケラレの無い測定が可能となる。
The rotation unit 38 is equipped with a rotation control unit (not shown), a rotation drive unit (not shown), and a power source (not shown) of the second electric motor 48. Further, it is necessary to output rotation angle information from the rotation control unit to the outside of the rotation unit 38.
Therefore, a rotation angle signal is output from the rotation control unit to the wireless transmission / reception unit 46 through a wiring (not shown), and the wireless transmission / reception unit 44 provided in the horizontal unit 35 receives the rotation angle signal. By arranging the wireless transmission / reception unit 46 and the wireless transmission / reception unit 44 on the vertical rotation axis Z, even when the rotation unit 38 rotates, transmission / reception of wireless data can be satisfactorily performed. As wireless communication, communication means such as short-range wireless communication such as Bluetooth (registered trademark), wireless LAN, ZigBee (registered trademark), infrared light, and optical communication can be employed. In this embodiment, since a proximity type communication device is used, there is a measurement impossible range due to vignetting of measurement light. However, by using a different type of communication device, measurement without vignetting is possible.
 図4及び図5に主反射鏡34の拡大図を示す。
 本実施形態の主反射鏡34は、円柱状のロッドの先端をロッドの軸線方向(水平面に対して所定角度を有する回転軸A)に対して垂直又は平行以外の角度である所定角度に傾斜させた反射面を有するロッドミラーを採用している。ロッドミラーとは、ガラス等で形成されたロッドの先端を所定角度に切断し、この切断面に金属等の反射膜を蒸着させるなどして形成することで反射面としたものである。
 本実施形態では、ロッドの軸線方向に対する傾斜角度として45°となるようにしているが、この角度としては45°に限定するものではない。
4 and 5 are enlarged views of the main reflecting mirror 34. FIG.
The main reflecting mirror 34 of this embodiment inclines the tip of a cylindrical rod at a predetermined angle that is an angle other than perpendicular or parallel to the axial direction of the rod (rotational axis A having a predetermined angle with respect to the horizontal plane). A rod mirror with a reflective surface is used. The rod mirror is a reflecting surface formed by cutting the tip of a rod formed of glass or the like at a predetermined angle and depositing a reflecting film such as metal on the cutting surface.
In the present embodiment, the inclination angle with respect to the axial direction of the rod is 45 °, but this angle is not limited to 45 °.
 また、本実施形態の図4、図5では、回転軸Aの軸線方向を、水平面に対して45°となるように設定しているが、回転軸Aの軸線方向の角度は45°に限定するものではない。
 回転軸Aの軸線方向の角度は、水平面に対して10°~80°の範囲で設定することが好ましい。
4 and 5 of the present embodiment, the axis direction of the rotation axis A is set to be 45 ° with respect to the horizontal plane, but the angle of the axis direction of the rotation axis A is limited to 45 °. Not what you want.
The angle of the rotation axis A in the axial direction is preferably set in the range of 10 ° to 80 ° with respect to the horizontal plane.
 また、主反射鏡34の回転軸Aは、ロッドミラーの軸線と同一軸線となるように一致させ、且つ反射面の中心を通るように設けられている。
 主反射鏡34を、回転軸Aを中心に回転させることによって、回転軸Aと平行に入射する走査光は、その回転軸Aの回転角度に拘わらず、走査光の反射方向に対して常に同一の面積の反射面を向けることができるため、対象物からの反射光を常に同一のレベルで受光することが可能となり、回転軸Aの回転角度に拘わらず測距が安定する。
The rotation axis A of the main reflecting mirror 34 is provided so as to coincide with the axis of the rod mirror and pass through the center of the reflecting surface.
By rotating the main reflecting mirror 34 around the rotation axis A, the scanning light incident parallel to the rotation axis A is always the same with respect to the reflection direction of the scanning light regardless of the rotation angle of the rotation axis A. Therefore, the reflected light from the object can be always received at the same level, and the distance measurement is stable regardless of the rotation angle of the rotation axis A.
 そして、本実施形態の主反射鏡34によれば、対象物から反射された反射光は、主反射鏡34が回転軸Aを中心に回転しても角度によって反射光の受光面積を小さくならないようにすることができる。このため、反射光に基づく点群データを確実に取得できる。
 また、従来の技術の走査装置のように反射鏡の反射面の面積を大きくしなくても、回転角度によって受光面積が小さくならないようにできるので、構造的に低コストで実現可能であり、空気抵抗を大きくしないようにでき、騒音や振動の発生を低減できる。
According to the main reflecting mirror 34 of the present embodiment, the reflected light reflected from the object does not reduce the light receiving area of the reflected light depending on the angle even if the main reflecting mirror 34 rotates around the rotation axis A. Can be. For this reason, the point cloud data based on reflected light can be acquired reliably.
In addition, the light receiving area can be prevented from being reduced depending on the rotation angle without increasing the area of the reflecting surface of the reflecting mirror as in the case of the conventional scanning device. Resistance can be prevented from increasing, and noise and vibration can be reduced.
 図6に、主反射鏡34の回転軸Aの水平面に対する角度を45°とし、鉛直回転軸Zを中心とした回転数を300rpm、回転軸Aを中心とした回転数を10000rpmとした場合の走査光の様子を示す。
 これによると、走査光は水平面より仰角45°及び俯角45°の範囲内が走査されることになる。
 この場合、上部及び下部の計測は行われないが、その分走査線が水平方向に集中するので、計測対象の水平方向の情報が重要な場合などにおいて、計測対象の水平方向へ走査光を高密度で照射させることができ、より解像度の高い走査が可能となる。
FIG. 6 shows scanning when the angle of the rotation axis A of the main reflector 34 with respect to the horizontal plane is 45 °, the rotation speed about the vertical rotation axis Z is 300 rpm, and the rotation speed about the rotation axis A is 10000 rpm. Shows the state of light.
According to this, the scanning light is scanned within a range of an elevation angle of 45 ° and a depression angle of 45 ° from the horizontal plane.
In this case, the upper and lower measurements are not performed, but the scanning lines are concentrated in the horizontal direction. Therefore, when the horizontal information of the measurement target is important, the scanning light is increased in the horizontal direction of the measurement target. Irradiation can be performed at a high density, and scanning with higher resolution becomes possible.
 図7に、主反射鏡34の回転軸Aの水平面に対する角度を30°とし、鉛直回転軸Zを中心とした回転数を300rpm、回転軸Aを中心とした回転数を10000rpmとした場合の走査光の様子を示す。
 これによると、走査光は水平面より仰角60°及び俯角60°の範囲内が走査されることになる。
 この場合、図6の状態よりも計測可能範囲が上側及び下側ともに拡張される。
FIG. 7 shows scanning when the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is 30 °, the rotation speed around the vertical rotation axis Z is 300 rpm, and the rotation speed around the rotation axis A is 10000 rpm. Shows the state of light.
According to this, the scanning light is scanned within the range of the elevation angle 60 ° and the depression angle 60 ° from the horizontal plane.
In this case, the measurable range is expanded on both the upper side and the lower side than the state of FIG.
 図8に、主反射鏡34の回転軸Aの水平面に対する角度を60°とし、鉛直回転軸Zを中心とした回転数を300rpm、回転軸Aを中心とした回転数を10000rpmとした場合の走査光の様子を示す。
 これによると、走査光は水平面より仰角30°及び俯角30°の範囲内が走査されることになる。
 この場合、水平方向の上下60°の範囲しか計測が行われないが、その分走査線がこの範囲に集中するので、図6の状態よりも計測対象の水平方向の情報の重要性が高く、この範囲の計測を特に精密に実施したい場合などにおいて有効である。
FIG. 8 shows scanning when the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane is 60 °, the rotation speed around the vertical rotation axis Z is 300 rpm, and the rotation speed around the rotation axis A is 10000 rpm. Shows the state of light.
According to this, the scanning light is scanned in the range of the elevation angle 30 ° and the depression angle 30 ° from the horizontal plane.
In this case, measurement is performed only in a range of 60 ° in the vertical direction, but since the scanning lines are concentrated in this range, the information in the horizontal direction to be measured is more important than the state of FIG. This is effective when it is desired to carry out measurement in this range particularly precisely.
 図6~図8に示したように、主反射鏡34の回転軸Aの水平面に対する角度を変更することにより、走査光の走査個所を選択することができ、より精密に計測を行いたい場所に対して走査線の密度を増やして計測することができる。 As shown in FIGS. 6 to 8, by changing the angle of the rotation axis A of the main reflecting mirror 34 with respect to the horizontal plane, the scanning location of the scanning light can be selected, and the location where measurement is to be performed more precisely On the other hand, it is possible to measure by increasing the density of the scanning lines.
 なお、上述した実施形態では、主反射鏡としてロッドミラーを採用した場合について説明したが、反射鏡としてはロッドミラーに限定されない。
 例えば図9に示すように、水平方向に向かう水平回転軸に対して所定の角度の反射面を有する平板反射鏡64に、水平回転軸と同一直線上に配置された回転軸66が取り付けられた構成であってもよい。
In the above-described embodiment, the case where the rod mirror is employed as the main reflecting mirror has been described. However, the reflecting mirror is not limited to the rod mirror.
For example, as shown in FIG. 9, a rotation shaft 66 arranged on the same straight line as the horizontal rotation axis is attached to a flat plate reflecting mirror 64 having a reflection surface with a predetermined angle with respect to the horizontal rotation axis directed in the horizontal direction. It may be a configuration.
 また、上述した実施形態においては、レーザ発光装置26及びレーザ受光装置28(以下、これらをまとめてレーザ測距装置と称する)を第1の電動機32の下方であって且つ横方向に偏移させた位置に配置させる例について説明した。これは、測距精度が高い大型のレーザ測距装置を、第1の電動機32の直下に配置することはスペース的な問題から困難であるためである。 In the above-described embodiment, the laser light emitting device 26 and the laser light receiving device 28 (hereinafter collectively referred to as a laser distance measuring device) are shifted below the first electric motor 32 and in the lateral direction. An example of arranging at different positions has been described. This is because it is difficult to place a large laser distance measuring device with high distance measuring accuracy directly below the first electric motor 32 due to space problems.
 一方、本発明によれば、主反射鏡34を第2の電動機48によって回転駆動させるため、主反射鏡34を第1の電動機32の回転軸線上に配置させなくてもよく、主反射鏡34は第1の電動機32の回転軸線から横方向に偏移した位置に配置されている。このため、第1の電動機32の直上には空間が生じる。 On the other hand, according to the present invention, since the main reflecting mirror 34 is rotationally driven by the second electric motor 48, the main reflecting mirror 34 does not have to be disposed on the rotation axis of the first electric motor 32. Is arranged at a position shifted laterally from the rotation axis of the first electric motor 32. For this reason, a space is created immediately above the first electric motor 32.
 したがって、測距精度より省スペースを優先した設計の小型のレーザ測距装置であれば、レーザ測距装置を第1の電動機32の直上の空間に配置することが可能となる。
 例えば、図10に示すように、小型のレーザ測距装置68を、回転部38の基部54に配置することにより、レーザ測距装置を含めた光走査装置30全体の構成を小型化することが可能である。
 また、上述のような省スペースを優先した設計の小型のレーザ測距装置68を採用したとしても、本発明のように高速走査可能な構成で測距精度を安定化させることが可能となっているので、実用上全体的な精度が悪くなるということはない。
Therefore, if the small laser distance measuring device is designed so that space saving is given priority over the distance measuring accuracy, the laser distance measuring device can be arranged in the space immediately above the first electric motor 32.
For example, as shown in FIG. 10, by arranging a small laser distance measuring device 68 on the base 54 of the rotating unit 38, the entire configuration of the optical scanning device 30 including the laser distance measuring device can be reduced in size. Is possible.
Further, even when the small laser distance measuring device 68 designed to save space as described above is adopted, it is possible to stabilize the distance measuring accuracy with the configuration capable of high-speed scanning as in the present invention. Therefore, the overall accuracy in practical use does not deteriorate.
 また、本発明の光走査装置としては、その走査光としてレーザ光に限定するものではなく、他の発光素子によって発光した光を採用してもよい。
 
In addition, the optical scanning device of the present invention is not limited to laser light as the scanning light, and light emitted by other light emitting elements may be employed.

Claims (7)

  1.  第1の電動機と、
     該第1の電動機の回転駆動力によって鉛直方向を軸線として回転可能な回転部と、
     該回転部に取り付けられ、前記回転部とともに鉛直方向を軸線として回転し、走査光を対象物へ向けて照射するとともに対象物からの反射光を受光する主反射鏡と、
     前記回転部に取り付けられ、水平面に対して所定角度を有する方向を軸線として前記主反射鏡を回転させる第2の電動機と、を具備することを特徴とする光走査装置。
    A first electric motor;
    A rotating part that is rotatable about the vertical direction as an axis by the rotational driving force of the first electric motor;
    A main reflector that is attached to the rotating unit, rotates together with the rotating unit about the vertical direction as an axis, irradiates the scanning light toward the object, and receives reflected light from the object;
    An optical scanning device comprising: a second electric motor that is attached to the rotating unit and rotates the main reflecting mirror about an axis that has a predetermined angle with respect to a horizontal plane.
  2.  前記主反射鏡の反射面は、前記第2の電動機による回転軸に対して直角又は平行な角度以外の所定角度を有し、
     前記主反射鏡の反射面には、前記第2の電動機による回転軸に対して平行に走査光が入射されることを特徴とする請求項1記載の光走査装置。
    The reflecting surface of the main reflecting mirror has a predetermined angle other than a right angle or a parallel angle with respect to a rotation axis by the second electric motor,
    2. The optical scanning device according to claim 1, wherein scanning light is incident on the reflecting surface of the main reflecting mirror in parallel with the rotation axis of the second electric motor.
  3.  前記主反射鏡は、
     前記第2の電動機による回転軸に沿って延びる円柱状のロッドの先端が、前記第2の電動機による回転軸に対して直角又は平行な角度以外の所定角度で形成された反射面を有するロッドミラーであることを特徴とする請求項2記載の光走査装置。
    The main reflector is
    A rod mirror having a reflecting surface in which a tip of a cylindrical rod extending along a rotation axis by the second electric motor is formed at a predetermined angle other than an angle perpendicular to or parallel to the rotation axis by the second electric motor. The optical scanning device according to claim 2, wherein:
  4.  前記第2の電動機による回転軸は、前記主反射鏡の反射面の中心を通り、前記走査光は、前記反射鏡の反射面の中心に入射することを特徴とする請求項2又は請求項3記載の光走査装置。 The rotation axis of the second electric motor passes through the center of the reflecting surface of the main reflecting mirror, and the scanning light is incident on the center of the reflecting surface of the reflecting mirror. The optical scanning device described.
  5.  前記主反射鏡の水平面に対する所定角度を調整可能に設けられていることを特徴とする請求項1~請求項4のうちのいずれか1項記載の光走査装置。 5. The optical scanning device according to claim 1, wherein a predetermined angle with respect to a horizontal plane of the main reflector is adjustable.
  6.  前記第1の電動機の回転軸は、内部が中空の中空回転軸であって、
     該中空回転軸内を通過して下方から照射された走査光を前記反射鏡に向けて反射させるように該中空回転軸の直上に従反射鏡を具備することを特徴とする請求項1~請求項5のうちのいずれか1項記載の光走査装置。
    The rotating shaft of the first electric motor is a hollow rotating shaft having a hollow inside,
    The sub-reflector is provided directly above the hollow rotary shaft so as to reflect the scanning light irradiated from below through the hollow rotary shaft toward the reflecting mirror. 6. The optical scanning device according to any one of items 5.
  7.  前記従反射鏡は、
     前記回転部に取り付けられて前記回転部とともに鉛直方向を軸線として回転することを特徴とする請求項6記載の光走査装置。
    The subreflector is
    The optical scanning device according to claim 6, wherein the optical scanning device is attached to the rotating unit and rotates together with the rotating unit about a vertical direction as an axis.
PCT/JP2017/002294 2016-01-28 2017-01-24 Optical scanner WO2017130944A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-014901 2016-01-28
JP2016014901A JP6883738B2 (en) 2016-01-28 2016-01-28 Optical scanning device

Publications (1)

Publication Number Publication Date
WO2017130944A1 true WO2017130944A1 (en) 2017-08-03

Family

ID=59397871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002294 WO2017130944A1 (en) 2016-01-28 2017-01-24 Optical scanner

Country Status (2)

Country Link
JP (1) JP6883738B2 (en)
WO (1) WO2017130944A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932692A (en) * 2019-03-28 2019-06-25 尹建霞 A kind of coaxial bilateral servo Radar IF simulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11340336B2 (en) 2017-12-07 2022-05-24 Ouster, Inc. Rotating light ranging system with optical communication uplink and downlink channels

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936639A (en) * 1972-08-12 1974-04-05
JP2001069380A (en) * 1999-06-25 2001-03-16 Nec Corp Two shaft driving mechanism, picture input device using the same and light projection device
JP2005148071A (en) * 2003-11-15 2005-06-09 Samsung Electronics Co Ltd Three-dimensional locating sensor
JP2009531674A (en) * 2006-03-31 2009-09-03 ファロ テクノロジーズ インコーポレーテッド Apparatus and method for capturing a region in 3D
JP2010048897A (en) * 2008-08-19 2010-03-04 Seiko Epson Corp Optical scanner and image forming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282235A (en) * 1990-03-29 1991-12-12 Shimadzu Corp Optical scanning device in optical ct scanner
KR101046040B1 (en) * 2008-09-23 2011-07-01 삼성전기주식회사 Space scan device of autonomous vehicle
JP5484976B2 (en) * 2010-03-23 2014-05-07 株式会社豊田中央研究所 Optical scanning device and distance measuring device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4936639A (en) * 1972-08-12 1974-04-05
JP2001069380A (en) * 1999-06-25 2001-03-16 Nec Corp Two shaft driving mechanism, picture input device using the same and light projection device
JP2005148071A (en) * 2003-11-15 2005-06-09 Samsung Electronics Co Ltd Three-dimensional locating sensor
JP2009531674A (en) * 2006-03-31 2009-09-03 ファロ テクノロジーズ インコーポレーテッド Apparatus and method for capturing a region in 3D
JP2010048897A (en) * 2008-08-19 2010-03-04 Seiko Epson Corp Optical scanner and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109932692A (en) * 2019-03-28 2019-06-25 尹建霞 A kind of coaxial bilateral servo Radar IF simulation

Also Published As

Publication number Publication date
JP2017134294A (en) 2017-08-03
JP6883738B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
US7190465B2 (en) Laser measurement system
US10261174B2 (en) Laser radar device
JP5653715B2 (en) Laser surveyor
US20200141729A1 (en) Target Instrument And Surveying System
KR100882737B1 (en) 3 dimensional distance sensor and method for operating the same
JP2002511928A (en) Method and apparatus for orienting a distance detection sensor based on energy
JP6209021B2 (en) Surveying instrument
JP2008134163A (en) Three-dimensional range-finding device
US20100053595A1 (en) Three dimensional laser range finder sensor
CN109507679A (en) A kind of laser scanner and laser radar system
WO2017130944A1 (en) Optical scanner
WO2017130942A1 (en) Optical scanner
CN109298405B (en) Scanning device
JP2012225821A (en) Laser sensor device
KR20210009119A (en) Lidar apparatus for vehicle
JP6653051B2 (en) Optical scanning device
JP2022103971A (en) Optical scanning device and rangefinder
JP2018054408A (en) Surveying device
JP2017223608A (en) Surveying device
KR102249842B1 (en) 3D scanner device
WO2015182708A1 (en) Three-dimensional drive device
US10422864B2 (en) 3D measurement device with rotor in a nested configuration
KR20100052969A (en) Three-dimensional space scanner
JP4293484B2 (en) Light reflector for surveying instrument
JP2003207580A (en) Laser type snow depth meter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744174

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744174

Country of ref document: EP

Kind code of ref document: A1