JP2008189945A - METHOD FOR MANUFACTURING THICK-WALL 13Cr-BASE STAINLESS STEEL PIPE - Google Patents

METHOD FOR MANUFACTURING THICK-WALL 13Cr-BASE STAINLESS STEEL PIPE Download PDF

Info

Publication number
JP2008189945A
JP2008189945A JP2007022087A JP2007022087A JP2008189945A JP 2008189945 A JP2008189945 A JP 2008189945A JP 2007022087 A JP2007022087 A JP 2007022087A JP 2007022087 A JP2007022087 A JP 2007022087A JP 2008189945 A JP2008189945 A JP 2008189945A
Authority
JP
Japan
Prior art keywords
less
steel pipe
stainless steel
temperature
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007022087A
Other languages
Japanese (ja)
Other versions
JP4940970B2 (en
Inventor
Yukio Miyata
由紀夫 宮田
Masato Tanaka
全人 田中
Masaaki Shoji
雅朗 正司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007022087A priority Critical patent/JP4940970B2/en
Publication of JP2008189945A publication Critical patent/JP2008189945A/en
Application granted granted Critical
Publication of JP4940970B2 publication Critical patent/JP4940970B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thick-wall seamless pipe of a 13Cr martensitic stainless steel which can stably secure desired strength and has high toughness. <P>SOLUTION: The seamless steel pipe comprises, by mass%, 0.15-0.22% C, 1.0% or less Si, 1.0% or less Mn, 0.020% or less P, 0.010% or less S, and 12-14% Cr. The manufacturing method comprises the steps of: heating the above seamless steel pipe to a heating temperature (T) which is 900°C or higher and satisfies T≥2.5×CR+1,015 (wherein (T) is a heating temperature (°C), and CR is an average cooling rate (°C/min) in between 700 to 600°C); subjecting the pipe to quenching treatment which cools it to a temperature of 100°C or lower at a cooling rate of CR that is equal to or higher than that in radiational cooling; and subsequently subjecting the pipe to tempering treatment which heats it to the Ac<SB>1</SB>transformation temperature or lower. Thus manufactured thick-wall seamless pipe of the 13Cr martensitic stainless steel stably has a yield strength of a 551-MPa (80 ksi) grade, and has high toughness. The seamless steel pipe may also contain one or more elements of Cu and Ni, one or more elements of V and Nb, or Al. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、原油あるいは天然ガスの油井、ガス井に使用される油井用13Crマルテンサイト系ステンレス鋼管に係り、とくに、厚肉継目無鋼管を安定して製造する方法に関する。   The present invention relates to oil wells for crude oil or natural gas, and 13Cr martensitic stainless steel pipes for oil wells used for gas wells, and more particularly to a method for stably producing thick-walled seamless steel pipes.

近年、原油価格の高騰や、近い将来に予想される石油資源の枯渇化に対処するために、掘削技術の発達は目覚しく、従来、省みられなかったような深層油田や、一旦は開発が放棄されていた腐食性の強いガスを伴うような油田に対する開発が、世界的規模で盛んになっている。このような油田は一般に深度が極めて深いため、その雰囲気は高温、高圧でかつ、腐食性ガスを随伴する厳しい環境となっている。このような油田の増加に伴い、油井用鋼管として、とくに耐食性に優れる鋼管が要望されている。   In recent years, in order to cope with soaring crude oil prices and the depletion of oil resources expected in the near future, the development of drilling technology has been remarkable, and deep oil fields that have not been excluded in the past, or once abandoned development The development of oil fields with highly corrosive gas has been thriving on a global scale. Such oil fields are generally very deep, so the atmosphere is a high temperature, high pressure, and a harsh environment with corrosive gas. With such an increase in oil fields, steel pipes that are particularly excellent in corrosion resistance have been demanded as oil well steel pipes.

このような耐食性に優れた鋼管は、とくに油井において中央に配置され、内側を生産流体(原油)が流れるチュービング、および該チュービングの外側に配置される、プロダクションケーシングとして、使用されることになる。とくに、ケーシングは、地層の圧力に抗し、抗壁の崩壊を防止することが主たる役割であり、一般により高強度で、厚肉の鋼管が使用されている。   Such a steel pipe excellent in corrosion resistance is used as a production casing which is arranged in the center in an oil well, in which a production fluid (crude oil) flows inside, and outside the tubing. In particular, the casing mainly plays a role of resisting the pressure of the formation and preventing the collapse of the anti-wall, and generally a high-strength and thick-walled steel pipe is used.

また、近年、ロシアやカナダなどの寒冷地における油田開発も活発になっており、使用される油井用鋼管にはさらに優れた低温靭性を保持することが要求されている。
このようなことから、とくにプロダクションケーシング用として、耐食性に優れ、高強度でかつ高靭性の厚肉鋼管が要望されている。
1980年代から、CO2等を含む環境下の油田、ガス田では、油井用鋼管として、耐CO2腐食性に優れた13%Crマルテンサイト系ステンレス鋼管が使用されてきた。しかし、通常の13%Crマルテンサイト系ステンレス鋼管は、耐CO2腐食性に優れるものの、低温靭性が低く、寒冷地での使用が制限されていた。
In recent years, oil fields have been actively developed in cold regions such as Russia and Canada, and the steel pipes used for oil wells are required to have further excellent low temperature toughness.
For this reason, there is a demand for a thick steel pipe having excellent corrosion resistance, high strength and high toughness, particularly for production casings.
Since the 1980s, 13% Cr martensitic stainless steel pipes with excellent resistance to CO 2 corrosion have been used as oil well pipes in oil and gas fields that contain CO 2 and other environments. However, normal 13% Cr martensitic stainless steel pipes have excellent resistance to CO 2 corrosion, but have low low-temperature toughness, which limits their use in cold regions.

このような問題に対し、例えば、特許文献1には、C:0.15 〜0.22%を含み、Si、Mn、S、Al、Nを適正範囲に調整し、Pを0.008%以下に低減し、さらにB:0.0005〜0.02%を添加し、Cr:11〜14%を含有する低温靭性に優れた高強度マルテンサイト系ステンレス鋼管が提案されている。特許文献1に記載された技術は、オーステナイト化温度を950℃以下の低温とする熱処理を施すことにより結晶粒を微細化し、降伏応力:650MPa以上の高強度を有し、かつ優れた低温靭性を有する鋼管が得られるとしている。
特開2001-323339号公報
For such a problem, for example, Patent Document 1 includes C: 0.15 to 0.22%, Si, Mn, S, Al, and N are adjusted to an appropriate range, and P is reduced to 0.008% or less. A high strength martensitic stainless steel pipe excellent in low temperature toughness containing B: 0.0005 to 0.02% and Cr: 11 to 14% has been proposed. The technique described in Patent Document 1 refines the crystal grains by heat treatment at a low austenitizing temperature of 950 ° C. or lower, yield strength: high strength of 650 MPa or more, and excellent low temperature toughness. It is said that the steel pipe which has is obtained.
JP 2001-323339 A

13%Crマルテンサイト系ステンレス鋼は、焼入れ性が高く、オーステナイト化後空冷しても、マルテンサイト組織(焼入れ組織)を得ることができる。しかし、特許文献1に記載された技術におけるようにオーステナイト化温度を低温とすると、とくに肉厚が10mm以上の厚肉鋼管では、極端な強度低下を生ずる場合があり、再熱処理等の工程を必要とするため、生産性が大きく阻害されるという問題があった。   13% Cr martensitic stainless steel has high hardenability and can obtain a martensitic structure (quenched structure) even when air-cooled after austenitizing. However, when the austenitizing temperature is lowered as in the technique described in Patent Document 1, particularly in a thick steel pipe having a thickness of 10 mm or more, an extreme strength reduction may occur, and a process such as reheat treatment is required. Therefore, there is a problem that productivity is greatly hindered.

本発明は、上記した従来技術の問題を解決し、安定して所望の強度を確保できかつ高靭性を有する、肉厚が10mm以上の厚肉13Crマルテンサイト系ステンレス継目無鋼管の製造方法を提案することを目的とする。なお、ここでいう「高靭性」とは、シャルピー衝撃試験の試験温度:−20℃における吸収エネルギーvE−20が50J以上である場合をいうものとする。 The present invention proposes a method for manufacturing a thick 13Cr martensitic stainless steel seamless pipe having a wall thickness of 10 mm or more, which can solve the above-described problems of the prior art and can stably secure desired strength and has high toughness. The purpose is to do. The term “high toughness” as used herein refers to the case where the absorbed energy vE- 20 at the test temperature of the Charpy impact test: −20 ° C. is 50 J or more.

本発明者らは、上記した目的を達成するために、13Crマルテンサイト系ステンレス鋼管の機械的特性に及ぼす焼入れ条件の影響について、鋭意検討した。
まず、本発明者らが行った実験結果について説明する。
表1に示す組成の、圧延まま13Crマルテンサイト系ステンレス鋼管(外径φ87mm×肉厚14.8mm)を用意した。これら鋼管から、試験片(φ4mm×10mm)を採取し、該試験片に900〜1000℃の範囲の各温度に加熱(保持:5min)したのち、肉厚8mm〜30mmの鋼管の放冷時に相当する冷却(冷却停止温度:50℃以下)を施し、冷却中の熱膨張変化を測定するとともに、冷却完了後、硬さ(ビッカース硬さHV:試験力:98N)を測定した。なお、放冷時の冷却は、伝熱計算により求めた冷却曲線をもとにした。
In order to achieve the above-mentioned object, the present inventors diligently studied the influence of quenching conditions on the mechanical properties of 13Cr martensitic stainless steel pipe.
First, experimental results conducted by the present inventors will be described.
A 13Cr martensitic stainless steel pipe (outer diameter φ87 mm × thickness 14.8 mm) having the composition shown in Table 1 was prepared. From these steel pipes, test pieces (φ4mm × 10mm) are collected, heated to each temperature in the range of 900-1000 ° C (holding: 5 min), and then the steel pipe with a wall thickness of 8-30mm is allowed to cool. The cooling (cooling stop temperature: 50 ° C. or less) was applied, and the change in thermal expansion during cooling was measured, and after completion of cooling, the hardness (Vickers hardness HV: test force: 98 N) was measured. In addition, cooling at the time of standing_to_cool was based on the cooling curve calculated | required by heat transfer calculation.

Figure 2008189945
得られた結果を、加熱温度Tと冷却速度CRとの関係で図1に示す。○印または□印中の数字は冷却後の試験片の硬さHVである。なお、冷却中の熱膨張変化でフェライト変態が明瞭に認められた場合を□印で示している。○印はフェライト変態が認められない場合である。図1から、13Crマルテンサイト系ステンレス鋼管においては、フェライト変態が生じると、強度の急激な低下が生じるため、安定して所望の強度を確保するためには、加熱温度Tと冷却速度CRとの関係は、次(1)式
T ≧ 2.5CR+1015 ……(1)
(ここで、T:焼入れ加熱温度(℃)、CR:700〜600℃の平均冷却速度(℃/min))
を満足する必要があることを見いだした。焼入れ時の冷却速度CRは鋼管の肉厚でほぼ決定されるため、肉厚に応じて焼入れ加熱温度を上記した(1)式を満足するように調整すれば、フェライトの生成による極端な強度低下を生じることなく、安定して所望の強度を有する厚肉鋼管の製造が可能となることを新規に見いだした。
Figure 2008189945
The obtained results are shown in FIG. 1 in relation to the heating temperature T and the cooling rate CR. The numbers in the circles or squares are the hardness HV of the specimen after cooling. The case where the ferrite transformation is clearly recognized by the thermal expansion change during cooling is indicated by □. A circle indicates a case where no ferrite transformation is observed. From FIG. 1, in the 13Cr martensitic stainless steel pipe, when ferrite transformation occurs, the strength sharply decreases. Therefore, in order to ensure a desired strength stably, the heating temperature T and the cooling rate CR are The relationship is the following formula (1) T ≧ 2.5CR + 1015 (1)
(Here, T: quenching heating temperature (° C), CR: average cooling rate of 700-600 ° C (° C / min))
I found it necessary to satisfy. Since the cooling rate CR during quenching is almost determined by the thickness of the steel pipe, if the quenching heating temperature is adjusted so as to satisfy the above equation (1) according to the thickness, an extreme decrease in strength due to the formation of ferrite. It has been newly found that it is possible to produce a thick-walled steel pipe having a desired strength stably without causing any problems.

なお、所望の強度とは、米国石油協会(API)企画の5CT、L80級、すなわち降伏強さ80ksi(551MPa)級、あるいはそれ以上の強度レベルを前提とする。
この発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。すなわち、この発明の要旨は次のとおりである。
(1)mass%で、C:0.15〜0.22%、Si:1.0%以下、Mn:1.0%以下、P:0.020%以下、S:0.010%以下、Cr:12〜14%、を含有し、残部Feおよび不可避的不純物からなる組成を有する継目無鋼管に、930℃以上の温度に加熱し、放冷以上の冷却速度CRで100℃以下の温度まで冷却する焼入れ処理を施し、ついでAc変態点以下の温度に加熱する焼戻処理を施すに当り、前記焼入れ処理の加熱温度Tと前記冷却速度CRとの関係が次(1)式
T ≧2.5CR+1015 …(1)
(ここで、T:加熱温度(℃)、CR:700〜600℃の平均冷却速度(℃/min))
を満足するように調整することを特徴とする厚肉13Crマルテンサイト系ステンレス継目無鋼管の製造方法。
The desired strength is assumed to be a strength level of 5CT, L80 class, that is, yield strength 80 ksi (551 MPa) class, or higher, planned by the American Petroleum Institute (API).
The present invention has been completed based on the above findings and further studies. That is, the gist of the present invention is as follows.
(1) In mass%, C: 0.15-0.22%, Si: 1.0% or less, Mn: 1.0% or less, P: 0.020% or less, S: 0.010% or less, Cr: 12-14%, the balance a seamless steel pipe having a composition consisting of Fe and unavoidable impurities, was heated to a temperature above 930 ° C., subjected to a quenching treatment to cool to a temperature of 100 ° C. or less cool than the cooling rate CR, then Ac 1 transformation point In performing the tempering process for heating to the following temperature, the relationship between the heating temperature T of the quenching process and the cooling rate CR is expressed by the following equation (1).
T ≧ 2.5CR + 1015 (1)
(Where T: heating temperature (° C.), CR: average cooling rate of 700 to 600 ° C. (° C./min))
A method for producing a thick-walled 13Cr martensitic stainless steel seamless pipe characterized by satisfying the above requirements.

(2)(1)において、前記組成に加えてさらに、mass%で、Cu:0.25%以下、Ni:0.5%以下のうちの1種または2種を含有する組成とすることを特徴とする厚肉13Crマルテンサイト系ステンレス継目無鋼管の製造方法。
(3)(1)または(2)において、前記組成に加えてさらに、mass%で、V:0.10%以下、Nb:0.10%以下のうちの1種または2種を含有する組成とすることを特徴とする厚肉13Crマルテンサイト系ステンレス継目無鋼管の製造方法。
(2) In (1), in addition to the above-mentioned composition, the thickness further includes a composition containing one or two of Cu: 0.25% or less and Ni: 0.5% or less in mass%. Manufacturing method of 13Cr martensitic stainless steel seamless steel pipe.
(3) In (1) or (2), in addition to the above-mentioned composition, the composition further includes one or two of mass: V: 0.10% or less and Nb: 0.10% or less. A method for producing a featured thick 13Cr martensitic stainless steel seamless pipe.

(4)(1)ないし(3)のいずれかにおいて、前記組成に加えてさらに、mass%で、Al:0.10%以下を含有する組成とすることを特徴とする厚肉13Crマルテンサイト系ステンレス継目無鋼管の製造方法。
(5)(1)ないし(4)のいずれかにおいて、前記加熱温度Tが1000℃以下であることを特徴とする厚肉13Crマルテンサイト系ステンレス継目無鋼管の製造方法。
(4) In any one of (1) to (3), in addition to the above-described composition, the thick 13Cr martensitic stainless steel seam is characterized by having a composition containing, in mass%, Al: 0.10% or less. Manufacturing method of steelless pipe.
(5) The method for producing a thick 13Cr martensitic stainless steel seamless pipe according to any one of (1) to (4), wherein the heating temperature T is 1000 ° C. or less.

本発明によれば、生産性を阻害することなく容易に、安定して降伏強さ:551MPa(80ksi)級あるいはそれ以上の強度を確保でき、かつ高靭性をも合わせ有する厚肉13Crマルテンサイト系ステンレス継目無鋼管を製造でき、産業上格段の効果を奏する。   According to the present invention, a thick 13Cr martensite system that can easily and stably secure yield strength: 551 MPa (80 ksi) grade or higher without impairing productivity, and also has high toughness. Stainless steel seamless steel pipes can be manufactured, and there are significant industrial effects.

本発明で使用する13Crマルテンサイト系ステンレス継目無鋼管の製造方法は、とくに限定する必要はないが、つぎのような工程で製造することが好ましい。下記に示す組成の溶鋼を、転炉、電気炉、真空溶解炉等の通常公知の溶製方法で溶製し、連続鋳造法、造塊−分塊圧延法等、通常の方法でビレット等の鋼管素材とすることが好ましい。ついで、これら鋼管素材を加熱し、通常のマンネスマン−プラグミル方式、あるいはマンネスマン−マンドレルミル方式の製造工程を用いて熱間加工し造管して、所望寸法の継目無鋼管とする。造管後、継目無鋼管は、空冷以上の冷却速度で室温まで冷却することが好ましい。これにより、鋼管の組織を、マルテンサイト相をベース相とする組織とすることができる。なお、プレス方式による熱間押出で継目無鋼管を製造してもよい。   Although the manufacturing method of the 13Cr martensitic stainless steel seamless pipe used in the present invention is not particularly limited, it is preferably manufactured by the following steps. Molten steel having the composition shown below is melted by a generally known melting method such as a converter, electric furnace, vacuum melting furnace, etc. It is preferable to use a steel pipe material. Subsequently, these steel pipe materials are heated and hot-worked and formed using a normal Mannesmann-plug mill system or Mannesmann-Mandrel mill process to obtain seamless steel pipes of desired dimensions. After the pipe making, the seamless steel pipe is preferably cooled to room temperature at a cooling rate equal to or higher than air cooling. Thereby, the structure | tissue of a steel pipe can be made into the structure | tissue which makes a martensite phase a base phase. In addition, you may manufacture a seamless steel pipe by the hot extrusion by a press system.

まず、本発明で使用する13Crマルテンサイト系ステンレス継目無鋼管の組成限定理由について説明する。以下、とくに断らない限りmass%は、単に%と記す。
C:0.15〜0.22%
Cは、マルテンサイト系ステンレス鋼の強度に関係する重要な元素であり、所望の強度、および優れた熱間加工性を確保するためには、本発明では0.15%以上の含有を必要とする。一方、0.22%を超える含有は、靭性を低下させるとともに、焼割れ、置割れ等に対する感受性が増大する。このため、Cは0.15〜0.22%の範囲に限定した。なお、好ましくは0.18〜0.21%である。
First, the reasons for limiting the composition of the 13Cr martensitic stainless steel seamless pipe used in the present invention will be described. Hereinafter, unless otherwise specified, mass% is simply written as%.
C: 0.15-0.22%
C is an important element related to the strength of martensitic stainless steel, and in the present invention, it is necessary to contain 0.15% or more in order to ensure desired strength and excellent hot workability. On the other hand, if the content exceeds 0.22%, the toughness is lowered and the sensitivity to fire cracking, cracking and the like increases. For this reason, C was limited to the range of 0.15-0.22%. In addition, Preferably it is 0.18 to 0.21%.

Si:1.0%以下
Siは、通常の製鋼過程において脱酸剤として作用する元素であり、0.01%以上含有させることが望ましいが、1.0%を超えて含有すると、δ−フェライトが多量に生成し所望の強度を確保できにくくなり、さらに熱間加工性も低下する。このために、Siは1.0%以下に限定した。なお、好ましくは0.05〜0.5%である。
Si: 1.0% or less
Si is an element that acts as a deoxidizing agent in the normal steelmaking process, and it is desirable to contain 0.01% or more, but if it exceeds 1.0%, a large amount of δ-ferrite is formed and the desired strength can be secured. It becomes difficult, and hot workability also decreases. For this reason, Si was limited to 1.0% or less. In addition, Preferably it is 0.05 to 0.5%.

Mn:1.0%以下
Mnは、オーステナイト形成元素であり、δ−フェライトの生成を抑制し、熱間加工性を向上させる効果を有する元素であり、0.1%以上含有することが望ましい。一方、1.0%を超える含有は、靭性に悪影響を及ぼす。このため、Mnは1.0%以下に限定した。なお、好ましくは0.2〜0.8%である。
Mn: 1.0% or less
Mn is an austenite-forming element, is an element that has the effect of suppressing the formation of δ-ferrite and improving hot workability, and is preferably contained in an amount of 0.1% or more. On the other hand, the content exceeding 1.0% adversely affects toughness. For this reason, Mn was limited to 1.0% or less. In addition, Preferably it is 0.2 to 0.8%.

P:0.020%以下
Pは、偏析しやすい元素であり、特に継目無鋼管素材の中心偏析部に濃化すると熱間加工性を著しく低下させ、継目無鋼管の製造に大きな支障をもたらすとともに、靭性、耐食性を低下させるため、可及的に低減することが望ましいが、極端な低減は製造コストの上昇を招く。工業的に比較的安価に実施可能でかつ熱間加工性、靭性、耐食性を劣化させない範囲として、Pは0.020%以下に限定した。なお、好ましくは0.015%以下である。
P: 0.020% or less P is an element that easily segregates. In particular, when concentrated in the central segregation part of seamless steel pipe material, hot workability is remarkably lowered, and it causes a major hindrance to the production of seamless steel pipe, and toughness In order to reduce the corrosion resistance, it is desirable to reduce as much as possible, but extreme reduction leads to an increase in manufacturing cost. P is limited to 0.020% or less as a range that can be industrially implemented at a relatively low cost and does not deteriorate hot workability, toughness, and corrosion resistance. In addition, Preferably it is 0.015% or less.

S:0.010%以下
Sは、パイプ製造過程において熱間加工性を著しく劣化させる元素であり、可及的に少ないことが望ましいが、0.010%以下に低減すれば通常工程でのパイプ製造が可能となることから、Sは0.010%以下に限定した。なお、好ましくは0.003%以下である。
Cr:12〜14%
Crは、保護被膜を形成して耐食性を向上させる元素である。このような効果を得るためには、12%以上の含有を必要とする。一方、Crはフェライト形成元素であるため、14%を超えて含有すると、δ−フェライトの生成が著しくなり、熱間加工性が低下し、さらには所望の強度を確保することが難しくなる。このため、Crは12〜14%の範囲に限定した。なお、好ましくは12.5〜13.5%である。
S: 0.010% or less S is an element that significantly deteriorates hot workability in the pipe manufacturing process, and it is desirable that it be as small as possible, but if it is reduced to 0.010% or less, pipes can be manufactured in the normal process Therefore, S is limited to 0.010% or less. In addition, Preferably it is 0.003% or less.
Cr: 12-14%
Cr is an element that improves the corrosion resistance by forming a protective film. In order to obtain such an effect, the content of 12% or more is required. On the other hand, since Cr is a ferrite-forming element, if it exceeds 14%, δ-ferrite is remarkably produced, hot workability is lowered, and it is difficult to secure a desired strength. For this reason, Cr was limited to the range of 12-14%. In addition, Preferably it is 12.5 to 13.5%.

上記した成分が基本の成分であるが、これら基本の組成に加えてさらに、Cu:0.25%以下、Ni:0.5%以下のうちの1種または2種、および/または、V:0.10%以下、Nb:0.10%以下のうちの1種または2種、および/または、Al:0.10%以下、を選択して含有することができる。
Cu:0.25%以下、Ni:0.5%以下のうちの1種または2種
Cu、Niはいずれも、保護皮膜を強固にして耐食性を向上させる元素であり、必要に応じて選択して含有できる。
The above-mentioned components are basic components. In addition to these basic compositions, Cu: 0.25% or less, Ni: 0.5% or less, and / or V: 0.10% or less, Nb: One or two of 0.10% or less and / or Al: 0.10% or less can be selected and contained.
One or two of Cu: 0.25% or less, Ni: 0.5% or less
Cu and Ni are both elements that strengthen the protective film and improve the corrosion resistance, and can be selected and contained as necessary.

このような効果を得るためには、Cu:0.1%以上、Ni:0.1%以上含有することが好ましい。一方、Cu:0.25%を超える含有は、熱間加工性が低下し、また、Ni:0.5%を超える含有は、Ac1変態点が低下し、焼戻に長時間を要するため、効率的な強度調整が困難となる。このため、含有する場合には、Cu:0.25%以下、Ni:0.5%以下にそれぞれ限定することが好ましい。 In order to obtain such an effect, it is preferable to contain Cu: 0.1% or more and Ni: 0.1% or more. On the other hand, when Cu exceeds 0.25%, the hot workability decreases, and when Ni exceeds 0.5%, the Ac 1 transformation point decreases and tempering takes a long time, which is efficient. Strength adjustment becomes difficult. For this reason, when it contains, it is preferable to limit to Cu: 0.25% or less and Ni: 0.5% or less, respectively.

V:0.10%以下、Nb:0.10%以下のうちの1種または2種
V、Nbはいずれも、強度を上昇させる作用を有する元素であり、必要に応じて選択して含有できる。このような効果を得るためには、V:0.01%以上、Nb:0.005%以上含有することが望ましいが、V:0.10%、Nb:0.10%を超える含有は、靱性が低下する。このため、含有する場合には、V:0.10%以下、Nb:0.10%以下にそれぞれ限定することが好ましい。
One or two of V: 0.10% or less and Nb: 0.10% or less V and Nb are elements having an action of increasing the strength, and can be selected and contained as necessary. In order to acquire such an effect, it is desirable to contain V: 0.01% or more and Nb: 0.005% or more, but inclusion exceeding V: 0.10% and Nb: 0.10% reduces toughness. For this reason, when it contains, it is preferable to limit to V: 0.10% or less and Nb: 0.10% or less, respectively.

Al:0.10%以下
Alは、強力な脱酸作用を有する元素であり、このような効果を得るためには、0.001%以上含有することが望ましいが、0.10%を超える含有は、清浄性や靭性に悪影響を及ぼす。このため、Alは0.10%以下に限定することが好ましい。なお、好ましくは0.05%以下である。
Al: 0.10% or less
Al is an element having a strong deoxidizing action, and in order to obtain such an effect, it is desirable to contain 0.001% or more, but inclusion exceeding 0.10% adversely affects cleanliness and toughness. For this reason, it is preferable to limit Al to 0.10% or less. In addition, Preferably it is 0.05% or less.

上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としてはN:0.04%以下、O:0.01%以下が許容できる。
本発明では、上記した組成を有する継目無鋼管に、930℃以上の温度T(℃)に加熱し、放冷以上の冷却速度CR(℃/min)で100℃以下の温度、好ましくは室温まで冷却する焼入れ処理を施す。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include N: 0.04% or less and O: 0.01% or less.
In the present invention, a seamless steel pipe having the above-described composition is heated to a temperature T (° C.) of 930 ° C. or higher, and is cooled to a temperature of 100 ° C. or lower, preferably room temperature, at a cooling rate CR (° C./min) of standing or higher. Apply a quenching treatment to cool.

本発明では、焼入れ処理における加熱温度Tは、930℃以上でかつ、冷却速度CRとの関係で次(1)式
T ≧2.5CR+1015 …(1)
(ここで、T:加熱温度(℃)、CR:700〜600℃の平均冷却速度(℃/min))
を満足するように調整する。
In the present invention, the heating temperature T in the quenching process is 930 ° C. or higher and the following equation (1) in relation to the cooling rate CR:
T ≧ 2.5CR + 1015 (1)
(Where T: heating temperature (° C.), CR: average cooling rate of 700 to 600 ° C. (° C./min))
Adjust to satisfy.

焼入れ処理の加熱温度Tが930℃未満では、オーステナイト単相域に加熱したとしても冷却に際しフェライトが生成しやすく、焼入れ後の組織を所望のマルテンサイト組織とすることができなくなる。また、焼入れ処理の加熱温度Tが、前記(1)式を満足しない場合には、焼入れ処理の冷却に際し、フェライトが生成し、強度の顕著な低下を伴う。このため、焼入れ処理における加熱温度Tを、930℃以上でかつ、冷却速度CRとの関係で前記(1)式を満足するように調整するものとした。なお、焼入れ処理の加熱温度Tは、結晶粒の粗大化し、高靭性を確保する観点から1050℃以下とすることが好ましい。なお、より好ましくは1000℃以下である。   When the heating temperature T of the quenching treatment is less than 930 ° C., even if the austenite single phase region is heated, ferrite is likely to be generated upon cooling, and the quenched structure cannot be made into a desired martensite structure. In addition, when the heating temperature T in the quenching process does not satisfy the formula (1), ferrite is generated during the cooling of the quenching process, and the strength is significantly reduced. For this reason, the heating temperature T in the quenching process is adjusted to be 930 ° C. or higher and satisfy the above expression (1) in relation to the cooling rate CR. The heating temperature T in the quenching treatment is preferably set to 1050 ° C. or lower from the viewpoint of coarsening crystal grains and ensuring high toughness. In addition, More preferably, it is 1000 degrees C or less.

また、加熱温度Tに加熱したのちの冷却は、放冷あるいは水冷等、放冷以上の冷却速度CRで冷却(焼入れ)する。ここで、使用する冷却速度CRは、鋼管の肉厚に依存し、管内面での700〜600℃の平均冷却速度を用いるものとする。なお、冷却は、100℃以下の温度まで、好ましくは室温まで行う。冷却の停止温度が100℃を超える温度では、所望のマルテンサイト組織が得られず、所望の強度を確保できなくなる場合がある。   In addition, the cooling after heating to the heating temperature T is performed (quenching) at a cooling rate CR higher than that of cooling, such as cooling or water cooling. Here, the cooling rate CR to be used depends on the thickness of the steel pipe, and an average cooling rate of 700 to 600 ° C. on the inner surface of the pipe is used. The cooling is performed to a temperature of 100 ° C. or lower, preferably to room temperature. If the cooling stop temperature exceeds 100 ° C., the desired martensite structure may not be obtained, and the desired strength may not be ensured.

なお、焼入れ処理における加熱温度Tは、前記した(1)式を満足するように、冷却速度の支配因子である肉厚に応じて選定しても、より優れた靭性を確保するために、加熱温度Tを低温に設定し、前期(1)式を満足するように冷却速度CRが大きい強制冷却を選定しても良い。
なお、強制冷却は、ファンによる送風、ミスト噴霧などを適宜選択し所望の冷却速度が確保できるようにすればよい。
In addition, even if the heating temperature T in the quenching process is selected according to the wall thickness that is the controlling factor of the cooling rate so as to satisfy the above-described formula (1), The temperature T may be set to a low temperature, and forced cooling with a large cooling rate CR may be selected so as to satisfy the formula (1).
Note that the forced cooling may be performed by appropriately selecting fan blowing, mist spraying, or the like so as to ensure a desired cooling rate.

焼入れ処理を施された継目無鋼管は、ついで、Ac1変態点以下の温度に加熱する焼戻処理を施される。この焼戻処理により、所望の強度とさらには所望の高靭性、所望の優れた耐食性を有する継目無鋼管となる。焼戻処理の加熱温度がAc1変態点を超える高温では、オーステナイトが生成し、冷却時にマルテンサイトに変態するため、靭性が低下するとともに所望の強度に調整することが難しくなる。また、焼戻処理の加熱温度は600℃以上とすることが好ましい。焼戻処理の加熱温度が600℃未満では、所望の高靭性を確保できなくなる。 The seamless steel pipe that has been subjected to the quenching treatment is then subjected to a tempering treatment in which the steel pipe is heated to a temperature below the Ac 1 transformation point. By this tempering treatment, a seamless steel pipe having desired strength, further desired high toughness, and desired excellent corrosion resistance is obtained. If the heating temperature of the tempering treatment exceeds the Ac 1 transformation point, austenite is generated and transformed into martensite during cooling, so that the toughness is lowered and it is difficult to adjust to the desired strength. The heating temperature for the tempering treatment is preferably 600 ° C. or higher. If the heating temperature in the tempering treatment is less than 600 ° C., the desired high toughness cannot be ensured.

表2に示す組成の鋼管素材を、1250℃に加熱したのち、マンネスマン・プラグミル方式、あるいはモデル継目無鋼管圧延機による熱間加工により継目無鋼管に造管し、造管後空冷し、表3に示す外径(mm)×肉厚(mm)の継目無鋼管とした。
得られた継目無鋼管から、試験片素材を切り出し、表3に示す加熱条件で加熱したのち、表3に示す冷却条件で冷却する焼入れ処理を施した。さらに表3に示す条件で焼戻する焼戻処理を施した。なお、焼戻処理後、放冷した。
After the steel pipe material with the composition shown in Table 2 is heated to 1250 ° C, it is formed into a seamless steel pipe by the Mannesmann plug mill method or hot working with a model seamless steel pipe rolling mill, and then air-cooled after the pipe making. A seamless steel pipe having an outer diameter (mm) × thickness (mm) shown in FIG.
A specimen material was cut out from the obtained seamless steel pipe, heated under the heating conditions shown in Table 3, and then subjected to a quenching treatment for cooling under the cooling conditions shown in Table 3. Further, a tempering treatment was carried out under the conditions shown in Table 3. In addition, it cooled after the tempering process.

なお、焼入れ処理後の試験片素材から、硬さ試験片(大きさ:肉厚×10mm幅×10mm長さ)を採取し、管軸方向に垂直な断面を研磨し、ビッカース硬度計(試験力:98N)を用いて、JIS Z 2244の規定に準拠して、ビッカース硬さHVを測定した。測定点は、肉厚中央で3点とし、それらを算術平均してその鋼管の焼入れ後硬さとした。
また、焼入れ処理−焼戻処理後の試験片素材から、JIS Z 2201の規定に準拠して、管軸方向に引張方向が一致するようにJIS 12号引張試験片を採取し、JIS Z 2241の規定に準拠して引張試験を実施し、降伏強さYS、引張強さTS、および伸びElを測定し、さらに降伏比YRを算出した。
In addition, a hardness test piece (size: thickness x 10 mm width x 10 mm length) is taken from the test piece material after quenching, and the cross section perpendicular to the tube axis direction is polished to obtain a Vickers hardness tester (test force). : 98N), and Vickers hardness HV was measured in accordance with the provisions of JIS Z 2244. The measurement points were three points at the center of the wall thickness, and these were arithmetically averaged to be the hardness after quenching of the steel pipe.
In addition, JIS No. 12 tensile test specimens were collected from the specimen material after quenching and tempering so that the tensile direction coincides with the pipe axis direction in accordance with the provisions of JIS Z 2201. A tensile test was performed according to the regulations, the yield strength YS, the tensile strength TS, and the elongation El were measured, and the yield ratio YR was calculated.

また、焼入れ処理−焼戻処理後の試験片素材から、JIS Z 2242の規定に準拠して、試験片の長さ方向が管軸方向に一致するようにVノッチ試験片を採取し、−20℃でシャルピー衝撃試験を実施し、−20℃における吸収エネルギー(J)を求め、靭性を評価した。なお、各3本ずつ行い、それらの算術平均をその鋼管の−20℃における吸収エネルギーvE−20(J)とした。 In addition, a V-notch test piece was sampled from the specimen material after quenching and tempering so that the length direction of the test specimen coincided with the pipe axis direction in accordance with the provisions of JIS Z 2242. A Charpy impact test was conducted at 0 ° C., the absorbed energy (J) at −20 ° C. was determined, and the toughness was evaluated. In addition, 3 each was performed and the arithmetic average was made into the absorbed energy vE- 20 (J) in -20 degreeC of the steel pipe.

さらに、焼入れ処理−焼戻処理後の試験片素材から、厚さ3mm×幅30mm×長さ40mmの腐食試験片を機械加工によって作製し、腐食試験を実施した。
腐食試験は、オートクレーブ中に保持された試験液:20%NaCl水溶液(液温:80℃、30気圧のCO2ガス雰囲気)中に、腐食試験片を浸漬し、浸漬期間を2週間として実施した。腐食試験後の試験片について、重量を測定し、腐食試験前後の重量減から計算した腐食速度を求めた。
Furthermore, a corrosion test piece having a thickness of 3 mm, a width of 30 mm, and a length of 40 mm was produced from the specimen material after quenching and tempering by machining, and a corrosion test was performed.
The corrosion test was performed by immersing the corrosion test piece in a test solution retained in an autoclave: 20% NaCl aqueous solution (liquid temperature: 80 ° C., CO 2 gas atmosphere at 30 atm) and the immersion period was 2 weeks. . The test piece after the corrosion test was weighed, and the corrosion rate calculated from the weight loss before and after the corrosion test was obtained.

得られた結果を表4に示す。   The results obtained are shown in Table 4.

Figure 2008189945
Figure 2008189945

Figure 2008189945
Figure 2008189945

Figure 2008189945
本発明例はいずれも、10mm厚を超える厚肉の鋼管であるにもかかわらず、降伏強さYS:551MPa以上の高強度と、vE−20:50J以上の高靭性とを安定して確保でき、しかも腐食量も少なく、油井用として好適な優れた耐食性を有している鋼管となっている。一方、本発明の範囲を外れる比較例は、顕著な強度低下が見られ、所望のYS:551MPa以上を確保できなかった。
Figure 2008189945
All of the examples of the present invention can stably secure a high strength of yield strength YS: 551 MPa or more and a high toughness of vE- 20 : 50 J or more despite being a thick steel pipe exceeding 10 mm in thickness. In addition, the steel pipe has a low corrosion amount and excellent corrosion resistance suitable for oil wells. On the other hand, in the comparative example outside the scope of the present invention, a significant decrease in strength was observed, and the desired YS: 551 MPa or more could not be secured.

ビッカース硬さHVに及ぼす焼入れ処理の加熱温度Tと冷却速度CRの関係を示すグラフである。It is a graph which shows the relationship between the heating temperature T and the cooling rate CR of the quenching process which affects Vickers hardness HV.

Claims (5)

mass%で、
C:0.15〜0.22%、 Si:1.0%以下、
Mn:1.0%以下、 P:0.020%以下、
S:0.010%以下、 Cr:12〜14%、
を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼管に、930℃以上の温度に加熱し、放冷以上の冷却速度CRで100℃以下の温度まで冷却する焼入れ処理を施し、ついでAc1変態点以下の温度に加熱する焼戻処理を施すに当り、前記焼入れ処理の加熱温度Tと前記冷却速度CRとの関係が下記(1)式を満足するように調整することを特徴とする厚肉13Crマルテンサイト系ステンレス鋼管の製造方法。

T ≧ 2.5CR+1015 …(1)
ここで、T:加熱温度(℃)、CR:700〜600℃の平均冷却速度(℃/min)
mass%
C: 0.15-0.22%, Si: 1.0% or less,
Mn: 1.0% or less, P: 0.020% or less,
S: 0.010% or less, Cr: 12-14%,
A steel pipe having a composition comprising the balance Fe and inevitable impurities is heated to a temperature of 930 ° C. or higher, and is quenched to a temperature of 100 ° C. or lower at a cooling rate CR that is not lower than that of cooling. In performing a tempering process for heating to a temperature equal to or lower than 1 transformation point, the relationship between the heating temperature T of the quenching process and the cooling rate CR is adjusted so as to satisfy the following expression (1). Manufacturing method for thick 13Cr martensitic stainless steel pipe.
Record
T ≧ 2.5CR + 1015 (1)
Here, T: heating temperature (° C.), CR: average cooling rate of 700 to 600 ° C. (° C./min)
前記組成に加えてさらに、mass%で、Cu:0.25%以下、Ni:0.5%以下のうちの1種または2種を含有する組成とすることを特徴とする請求項1に記載の厚肉13Crマルテンサイト系ステンレス鋼管の製造方法。   In addition to the said composition, it is set as the composition containing 1 type or 2 types of Cu: 0.25% or less and Ni: 0.5% or less by mass%, The thick 13Cr of Claim 1 characterized by the above-mentioned. Manufacturing method of martensitic stainless steel pipe. 前記組成に加えてさらに、mass%で、V:0.10%以下、Nb:0.10%以下のうちの1種または2種を含有する組成とすることを特徴とする請求項1または2に記載の厚肉13Crマルテンサイト系ステンレス鋼管の製造方法。   3. The thickness according to claim 1, wherein in addition to the composition, the composition further includes one or two of mass%, V: 0.10% or less, and Nb: 0.10% or less. Manufacturing method for meat 13Cr martensitic stainless steel pipe. 前記組成に加えてさらに、mass%で、Al:0.10%以下を含有する組成とすることを特徴とする請求項1ないし3のいずれかに記載の厚肉13Crマルテンサイト系ステンレス鋼管の製造方法。   The method for producing a thick 13Cr martensitic stainless steel pipe according to any one of claims 1 to 3, wherein in addition to the composition, the composition further includes mass: Al: 0.10% or less. 前記加熱温度Tが1000℃以下であることを特徴とする請求項1ないし4のいずれかに記載の厚肉13Crマルテンサイト系ステンレス鋼管の製造方法。   The method for producing a thick 13Cr martensitic stainless steel pipe according to any one of claims 1 to 4, wherein the heating temperature T is 1000 ° C or lower.
JP2007022087A 2007-01-31 2007-01-31 Manufacturing method for thick 13Cr stainless steel pipe Active JP4940970B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022087A JP4940970B2 (en) 2007-01-31 2007-01-31 Manufacturing method for thick 13Cr stainless steel pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022087A JP4940970B2 (en) 2007-01-31 2007-01-31 Manufacturing method for thick 13Cr stainless steel pipe

Publications (2)

Publication Number Publication Date
JP2008189945A true JP2008189945A (en) 2008-08-21
JP4940970B2 JP4940970B2 (en) 2012-05-30

Family

ID=39750316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022087A Active JP4940970B2 (en) 2007-01-31 2007-01-31 Manufacturing method for thick 13Cr stainless steel pipe

Country Status (1)

Country Link
JP (1) JP4940970B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111930A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Cr-CONTAINING STEEL PIPE HAVING EXCELLENT HIGH PRESSURE CARBON DIOXIDE CORROSION RESISTANCE
CN102172626A (en) * 2010-12-29 2011-09-07 天津钢管集团股份有限公司 Hot rolling production method for super 13Cr oil pipes with diameter of 48 to 89 millimeters
WO2014119251A1 (en) 2013-01-31 2014-08-07 Jfeスチール株式会社 Manufacturing method and manufacturing equipment for seamless steel pipe or tube with excellent toughness
CN106567002A (en) * 2016-11-15 2017-04-19 上海大学 Medical osteotome for mandible plastic surgery and preparation method thereof
CN113481434A (en) * 2021-06-21 2021-10-08 邯郸新兴特种管材有限公司 Thick-wall super 13Cr seamless steel pipe with yield strength of 125 steel grade and production method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310822A (en) * 1998-04-30 1999-11-09 Nippon Steel Corp Production of high strength martensitic stainless steel tube excellent in low temperature toughness
JP2005336599A (en) * 2003-10-31 2005-12-08 Jfe Steel Kk High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP2006312772A (en) * 2005-05-09 2006-11-16 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11310822A (en) * 1998-04-30 1999-11-09 Nippon Steel Corp Production of high strength martensitic stainless steel tube excellent in low temperature toughness
JP2005336599A (en) * 2003-10-31 2005-12-08 Jfe Steel Kk High strength stainless steel pipe for line pipe excellent in corrosion resistance and method for production thereof
JP2006312772A (en) * 2005-05-09 2006-11-16 Sumitomo Metal Ind Ltd Martensitic stainless steel for oil well and method for manufacturing martensitic stainless steel pipe for oil well

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010111930A (en) * 2008-11-07 2010-05-20 Jfe Steel Corp Cr-CONTAINING STEEL PIPE HAVING EXCELLENT HIGH PRESSURE CARBON DIOXIDE CORROSION RESISTANCE
CN102172626A (en) * 2010-12-29 2011-09-07 天津钢管集团股份有限公司 Hot rolling production method for super 13Cr oil pipes with diameter of 48 to 89 millimeters
WO2014119251A1 (en) 2013-01-31 2014-08-07 Jfeスチール株式会社 Manufacturing method and manufacturing equipment for seamless steel pipe or tube with excellent toughness
CN106567002A (en) * 2016-11-15 2017-04-19 上海大学 Medical osteotome for mandible plastic surgery and preparation method thereof
CN113481434A (en) * 2021-06-21 2021-10-08 邯郸新兴特种管材有限公司 Thick-wall super 13Cr seamless steel pipe with yield strength of 125 steel grade and production method thereof
CN113481434B (en) * 2021-06-21 2022-05-31 邯郸新兴特种管材有限公司 Thick-wall super 13Cr seamless steel pipe with yield strength of 125 steel grade and production method thereof

Also Published As

Publication number Publication date
JP4940970B2 (en) 2012-05-30

Similar Documents

Publication Publication Date Title
JP5145793B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
US10240221B2 (en) Stainless steel seamless pipe for oil well use and method for manufacturing the same
JP5092204B2 (en) Stainless steel pipe for oil wells with excellent pipe expandability
JP5640762B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
US10151011B2 (en) High-strength stainless steel seamless tube or pipe for oil country tubular goods, and method of manufacturing the same
JP4978073B2 (en) High toughness ultra-high strength stainless steel pipe for oil wells with excellent corrosion resistance and method for producing the same
US9758850B2 (en) High strength stainless steel seamless pipe with excellent corrosion resistance for oil well and method of manufacturing the same
JP6315159B1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
US11827949B2 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP5582307B2 (en) High strength martensitic stainless steel seamless pipe for oil wells
JPWO2019065116A1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP5499575B2 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
JP2010209402A (en) High-strength stainless steel pipe having high toughness and excellent corrosion resistance for oil well
US20210198764A1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JPWO2019065115A1 (en) Martensitic stainless steel seamless pipe for oil well pipe and method for producing the same
CN112955576A (en) Martensitic stainless steel seamless steel pipe for oil well pipe and method for producing same
JP4940970B2 (en) Manufacturing method for thick 13Cr stainless steel pipe
JP2008297602A (en) Stainless steel pipe having superior pipe expandability for oil well, and manufacturing method therefor
JP4470617B2 (en) High strength stainless steel pipe for oil wells with excellent carbon dioxide corrosion resistance
JP5640777B2 (en) Cr-containing steel pipe for line pipes with excellent intergranular stress corrosion cracking resistance in weld heat affected zone
JP4529269B2 (en) High Cr martensitic stainless steel pipe for line pipe excellent in corrosion resistance and weldability and method for producing the same
JP2007332431A (en) Stainless steel pipe for oil well having excellent pipe expansibility
JP2004107773A (en) Stainless steel pipe for line pipe having excellent corrosion resistance
WO2013161089A1 (en) Cr-CONTAINING STEEL PIPE FOR LINEPIPE EXCELLENT IN INTERGRANULAR STRESS CORROSION CRACKING RESISTANCE OF WELDED HEAT AFFECTED ZONE
JP5399635B2 (en) Stainless steel pipe for oil well with excellent pipe expandability and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120213

R150 Certificate of patent or registration of utility model

Ref document number: 4940970

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250