JP2008188483A - Fluorine removing agent and its manufacturing method - Google Patents

Fluorine removing agent and its manufacturing method Download PDF

Info

Publication number
JP2008188483A
JP2008188483A JP2007022484A JP2007022484A JP2008188483A JP 2008188483 A JP2008188483 A JP 2008188483A JP 2007022484 A JP2007022484 A JP 2007022484A JP 2007022484 A JP2007022484 A JP 2007022484A JP 2008188483 A JP2008188483 A JP 2008188483A
Authority
JP
Japan
Prior art keywords
fluorine
removing agent
hydroxyapatite
fluorine removing
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007022484A
Other languages
Japanese (ja)
Other versions
JP4822007B2 (en
Inventor
Nobutaka Minowa
信孝 美濃和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Onoda Chemical Industry Co Ltd
Original Assignee
Onoda Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Onoda Chemical Industry Co Ltd filed Critical Onoda Chemical Industry Co Ltd
Priority to JP2007022484A priority Critical patent/JP4822007B2/en
Publication of JP2008188483A publication Critical patent/JP2008188483A/en
Application granted granted Critical
Publication of JP4822007B2 publication Critical patent/JP4822007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluorine removing agent more markedly excellent in its fluorine removing capacity as compared with a conventional fluorine removing agent. <P>SOLUTION: The fluorine removing agent comprises a composite porous body of amorphous hydroxyapatite and porous silica and preferably has an ion exchange capacity of which the F-concentration in an equilibrium state with a fluorine containing liquid with an F-concentration of 10 mg/l is 1% or above and is characterized in that its solubility of phosphorus to water is 3.5 mg/l or below. This fluorine removing agent is manufactured by adding phosphoric acid to a slurry or aqueous solution of calcium silicate compound at a temperature of below 70° to react it with the calcium silicate compound not only to make silica porous but also to produce amorphous hydroxyapatite. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、フッ素除去効果に優れたフッ素除去剤とその製造方法に関する。   The present invention relates to a fluorine removing agent having an excellent fluorine removing effect and a method for producing the same.

フッ素は、アルミニウムの電解精錬工程、リン酸肥料の製造工程、ステンレス鋼等のピクリング工程、シリコン等の電気部品の洗浄工程等から排出される排水や、ごみ焼却場洗煙排水、石炭火力排煙脱硫排水等に含有されているが、排水中のフッ素濃度につては排水基準が規定されており、その基準値以下になるように排水処理がなされている。   Fluorine is the wastewater discharged from the electrolytic refining process of aluminum, the manufacturing process of phosphate fertilizer, the pickling process of stainless steel, etc., the cleaning process of electrical parts such as silicon, the waste incineration smoke cleaning wastewater, the coal fired smoke Although it is contained in desulfurization wastewater, etc., the wastewater standard is prescribed for the fluorine concentration in the wastewater, and wastewater treatment is carried out so as to be below the standard value.

現在、実用化されているフッ素の処理方法としては、(I)カルシウム塩を添加して難溶性のフッ化カルシウム(CaF2)を生成し沈殿分離する方法、(II)アルミニウム塩を添加して水酸化アルミニウム(Al(OH)3)と共沈させ分離する方法、(III)上記カルシウム塩による凝集沈殿方法とアルミニウム塩による凝集沈殿方法を組み合わせる方法などが一般的である。 Fluorine treatment methods that are currently in practical use include (I) a method of adding calcium salt to form poorly soluble calcium fluoride (CaF 2 ) and precipitating it, and (II) adding an aluminum salt. A method of co-precipitation with aluminum hydroxide (Al (OH) 3 ) and separation, and a method (III) of combining the coagulation precipitation method using the calcium salt and the coagulation precipitation method using the aluminum salt are common.

一方、最近では生活環境項目の見直しからフッ素の排水基準が厳しくなる方向にあり、フッ素を更に高度に除去処理する必要が生じてきた。具体的には、1999年4月にフッ素の環境基準値が0.8mg/Lとして定められた(平成11年環境庁告示第14号)。一方、水質汚濁防止法では2001年にフッ素の排出基準が15mg/Lから8mg/Lに強化されて同年7月より施行されているが、さらに厳しい排水基準を設けている自治体もあり、基本的には排水中のフッ素濃度を上記環境基準程度まで下げる技術が望まれている。   On the other hand, there has recently been a trend toward stricter effluent standards for fluorine due to a review of living environment items, and it has become necessary to further remove fluorine. Specifically, in April 1999, the environmental standard value for fluorine was set at 0.8 mg / L (1999 Environmental Agency Notification No. 14). On the other hand, in the Water Pollution Control Law, the fluorine emission standard was strengthened from 15 mg / L to 8 mg / L in 2001 and has been in effect since July of the same year. Therefore, a technology for reducing the fluorine concentration in the wastewater to the above environmental standards is desired.

そこで、カルシウム塩やアルミニウム塩を用いた従来の方法に代わるフッ素除去剤として、例えば、比表面積20m2/g以上の水酸化カルシウムからなるもの(特許文献1)、リン酸類やリン酸化合物からなるもの(特許文献2)、水酸化カルシウムとリン酸カルシウムとからなる塩基性塩〔3Ca3(PO4)2・Ca(OH)2〕のスラリーを利用するもの(特許文献3)、酸化カルシウムや炭酸カルシウムを飽和リン酸水素カリウム溶液とジルコニウム溶液で処理して表面にリン酸カルシウムとジルコニウムとを配位したもの(特許文献4)などが提案されている。 Therefore, as a fluorine removing agent that replaces the conventional method using calcium salt or aluminum salt, for example, one made of calcium hydroxide having a specific surface area of 20 m 2 / g or more (Patent Document 1), phosphoric acid or phosphoric acid compound is used. Using a slurry of basic salt [3Ca 3 (PO 4 ) 2 · Ca (OH) 2 ] composed of calcium hydroxide and calcium phosphate (Patent Document 3), calcium oxide and calcium carbonate Has been proposed (Patent Document 4), in which calcium phosphate and zirconium are coordinated on the surface after treatment with a saturated potassium hydrogen phosphate solution and a zirconium solution.

一方、ヒドロキシアパタイト〔Ca10(PO4)6(OH)2〕はその水酸イオンとフッ素イオンのイオン交換反応によって水中のフッ素を吸着するが、フッ素に対する反応性が低いため、このままでは実用的なフッ素吸着剤として利用できない。
特開2002−254086号公報 特開2002−370093号公報 特開2003−24953号公報 特開2003−62457号公報
On the other hand, hydroxyapatite [Ca 10 (PO 4 ) 6 (OH) 2 ] adsorbs fluorine in water by an ion exchange reaction between its hydroxide ion and fluorine ion, but it has low reactivity to fluorine, so that it is practical as it is. Cannot be used as a new fluorine adsorbent.
JP 2002-254086 A JP 2002-370093 A JP 2003-24953 A Japanese Patent Laid-Open No. 2003-62457

本発明は、従来知られているフッ素除去剤の上記問題を解決したものであり、フッ素に対して従来の除去剤よりも格段に除去能力に優れたフッ素除去剤を提供するものである。   The present invention solves the above-mentioned problems of conventionally known fluorine removing agents, and provides a fluorine removing agent that has a remarkably superior removing ability with respect to fluorine than conventional removing agents.

本発明は、以下に示す構成によって上記課題を解決したフッ素除去吸着剤に関するものである。
(1)非晶質ヒドロキシアパタイトと多孔質シリカとの複合多孔質体からなることを特徴とするフッ素除去剤。
(2)F濃度10mg/lのフッ素含有液と平衡な状態のF濃度が1%以上であるイオン交換容量を有する上記(1)に記載するフッ素除去剤。
(3)複合多孔質体の全細孔容積が0.5ml/g以上である上記(1)または上記(2)に記載するフッ素除去剤。
(4)Cu−αX線回折像における2θ=31.8°のピークの相対強度が1000cps以下であって、最強ピーク後の2θ=35.0°の範囲で相対強度100cps以上の分離したピークを示さない回折像を有する非晶質ヒドロキシアパタイトと多孔質シリカとの複合多孔質体である上記(1)〜上記(3)の何れかに記載するフッ素除去剤。
(5)カルシウムとリンのモル比(Ca/P)が1.5〜2.0である上記(1)〜上記(4)の何れかに記載するフッ素除去剤。
(6)カルシウムとケイ素のモル比(Ca/Si)が0.1〜2.0である上記(1)〜上記(5)の何れかに記載するフッ素除去剤。
(7)水に対するリンの溶解度が3.5mg/l以下である上記(1)〜上記(6)の何れかに記載するフッ素除去剤。
(8)平均粒径10〜60μm、BET比表面積100m2/g以上である上記(1)〜上記(7)の何れかに記載するフッ素除去剤。
(9)珪酸カルシウム化合物のスラリーまたは水溶液に、70℃未満の温度で、リン酸を加えて反応させ、シリカを多孔質化すると共に非晶質ヒドロキシアパタイトを生成させて、多孔質シリカとの複合多孔質体からなるフッ素除去剤を製造する方法。
The present invention relates to a fluorine-removing adsorbent that has solved the above-described problems with the following configuration.
(1) A fluorine removing agent comprising a composite porous body of amorphous hydroxyapatite and porous silica.
(2) The fluorine removing agent according to the above (1) having an ion exchange capacity in which the F concentration in an equilibrium state with a fluorine-containing liquid having an F concentration of 10 mg / l is 1% or more.
(3) The fluorine removing agent as described in (1) or (2) above, wherein the total pore volume of the composite porous material is 0.5 ml / g or more.
(4) A peak separated at a relative intensity of 100 cps or more in a range of 2θ = 35.0 ° after the strongest peak in a relative intensity of 2θ = 31.8 ° in a Cu-α X-ray diffraction image is 1000 cps or less. The fluorine removing agent according to any one of (1) to (3) above, which is a composite porous body of amorphous hydroxyapatite and porous silica having a diffraction image not shown.
(5) The fluorine removing agent according to any one of (1) to (4) above, wherein the molar ratio of calcium to phosphorus (Ca / P) is 1.5 to 2.0.
(6) The fluorine removing agent as described in any one of (1) to (5) above, wherein the molar ratio of calcium to silicon (Ca / Si) is 0.1 to 2.0.
(7) The fluorine removing agent according to any one of (1) to (6) above, wherein the solubility of phosphorus in water is 3.5 mg / l or less.
(8) The fluorine removing agent as described in any one of (1) to (7) above, having an average particle size of 10 to 60 μm and a BET specific surface area of 100 m 2 / g or more.
(9) Adding phosphoric acid to a calcium silicate compound slurry or aqueous solution at a temperature of less than 70 ° C. to react to make the silica porous and produce amorphous hydroxyapatite to form a composite with porous silica A method for producing a fluorine removing agent comprising a porous material.

本発明のフッ素除去剤は、非晶質ヒドロキシアパタイトと多孔質シリカとの複合多孔質体からなるものであり、細孔容積が大きく、好ましくは全細孔容積0.5ml/g以上の複合多孔質体であるため、フッ素に対しイオン交換容量が大きく、交換速度が速いという優れた性質を有している。   The fluorine removing agent of the present invention comprises a composite porous body of amorphous hydroxyapatite and porous silica, and has a large pore volume, preferably a composite pore having a total pore volume of 0.5 ml / g or more. Since it is a material, it has excellent properties such as a large ion exchange capacity with respect to fluorine and a high exchange rate.

本発明のフッ素除去剤は、具体的にはフッ素含有水溶液に添加したときに、F濃度10mg/lのフッ素含有水溶液と平衡状態であるときの複合多孔質体のF濃度が1%以上であるイオン交換容量を有する。   Specifically, when the fluorine removing agent of the present invention is added to a fluorine-containing aqueous solution, the F concentration of the composite porous body is 1% or more when in equilibrium with the fluorine-containing aqueous solution having an F concentration of 10 mg / l. Ion exchange capacity.

本発明のフッ素除去剤を形成するヒドロキシアパタイトは非晶質である。具体的には、例えば、Cu−αX線回折像における2θ=31.8°のピークの相対強度が1000cps以下であって、最強ピーク後の2θ=35.0°の範囲で相対強度100cps以上の分離したピークを示さない回折像を有する非晶質ヒドロキシアパタイトであるので、結晶質のヒドロキシアパタイトよりもフッ素の除去効果が大きい。   The hydroxyapatite forming the fluorine removing agent of the present invention is amorphous. Specifically, for example, the relative intensity of the peak at 2θ = 31.8 ° in the Cu-α X-ray diffraction image is 1000 cps or less, and the relative intensity is 100 cps or more in the range of 2θ = 35.0 ° after the strongest peak. Since it is an amorphous hydroxyapatite having a diffraction image that does not show a separated peak, the effect of removing fluorine is larger than that of crystalline hydroxyapatite.

また、本発明のフッ素除去剤は、好ましくは、ヒドロキシアパタイトのカルシウムとリンのモル比(Ca/P)は1.5〜2.0であり、リンの含有量を一定範囲に制御しているのでリンが溶出し難く、例えば、リン溶解度が3.5mg/l以下であるので、耐水性に優れており、またフッ素除去後の水質を汚染しない。   In the fluorine removing agent of the present invention, preferably, the molar ratio of calcium to phosphorus (Ca / P) of hydroxyapatite is 1.5 to 2.0, and the phosphorus content is controlled within a certain range. Therefore, phosphorus does not easily elute. For example, the solubility of phosphorus is 3.5 mg / l or less, so that it has excellent water resistance and does not contaminate the water quality after fluorine removal.

さらに、本発明のフッ素除去剤は、好ましくは、カルシウムとケイ素のモル比(Ca/Si)が0.1〜2.0であり、非晶質ヒドロキシアパタイトと多孔質シリカが適度な割合で含まれているので、フッ素除去効果が高い。   Furthermore, the fluorine removing agent of the present invention preferably has a molar ratio of calcium to silicon (Ca / Si) of 0.1 to 2.0 and contains amorphous hydroxyapatite and porous silica in an appropriate ratio. Therefore, the fluorine removal effect is high.

本発明のフッ素除去剤は、好ましくは、平均粒径10〜60μm、BET比表面積100m2/g以上のものである。この粒径のものはフッ素含有液との接触面積が十分に大きいので優れたイオン交換性を有しており、フッ素の除去効果に優れ、かつ良好な濾過性および沈降性を有しているので、フッ素除去後の除去剤の固液分離処理が極めて容易である。 The fluorine removing agent of the present invention preferably has an average particle size of 10 to 60 μm and a BET specific surface area of 100 m 2 / g or more. Since this particle size has a sufficiently large contact area with the fluorine-containing liquid, it has excellent ion exchange properties, excellent fluorine removal effect, and good filterability and sedimentation. The solid-liquid separation treatment of the removing agent after removing the fluorine is extremely easy.

本発明のフッ素除去剤は、珪酸カルシウム化合物に、70℃未満の温度でリン酸を反応させることによって、シリカを多孔質化すると共に非晶質ヒドロキシアパタイトを生成させて、多孔質シリカとの複合多孔質体からなるフッ素除去剤を製造することができる。   The fluorine-removing agent of the present invention is a composite of porous silica with silica made porous by reacting calcium silicate compound with phosphoric acid at a temperature of less than 70 ° C. to produce amorphous hydroxyapatite. A fluorine removing agent comprising a porous body can be produced.

以下、本発明を実施形態に基づいて具体的に説明する。なお、%は単位固有の場合を除き質量%である。
〔フッ素除去剤〕
本発明のフッ素除去剤は、非晶質ヒドロキシアパタイトと多孔質シリカとの複合多孔質体である。ヒドロキシアパタイトは一般式〔Ca10(PO4)6(OH)2〕によって表されるリン酸カルシウム化合物であり、水酸基などが置換してイオン交換能を有するが、ヒドロキシアパタイト単独では反応性が低く、実用性に乏しいので、本発明のフッ素除去剤は、非晶質のヒドロキシアパタイトと多孔質シリカとの複合体を形成することによって高いフッ素除去性能を有するようにした。なお、ヒドロキシアパタイトを含有しないシリカは多孔質であってもフッ素とイオン交換反応を生じないのでフッ素を除去する効果がない。
Hereinafter, the present invention will be specifically described based on embodiments. In addition,% is mass% except the case intrinsic | native to a unit.
[Fluorine remover]
The fluorine removing agent of the present invention is a composite porous body of amorphous hydroxyapatite and porous silica. Hydroxyapatite is a calcium phosphate compound represented by the general formula [Ca 10 (PO 4 ) 6 (OH) 2 ]. It has ion exchange capacity by substitution of hydroxyl groups, etc., but hydroxyapatite alone has low reactivity and is practical. Since the property is poor, the fluorine removing agent of the present invention has a high fluorine removing performance by forming a composite of amorphous hydroxyapatite and porous silica. Silica that does not contain hydroxyapatite does not cause an ion exchange reaction with fluorine even if it is porous, and therefore has no effect of removing fluorine.

本発明のフッ素除去剤を形成するヒドロキシアパタイトは非晶質である。具体的には、例えば、Cu−αX線回折像において、2θ=31.8°付近で最強のピークを有し、このピークの相対強度が1000cps以下であって、かつ最強ピーク後の2θ=35.0°の範囲で相対強度100cps以上の分離したピークを示さず、緩やかな回折像を有するものである。   The hydroxyapatite forming the fluorine removing agent of the present invention is amorphous. Specifically, for example, in a Cu-α X-ray diffraction image, it has the strongest peak around 2θ = 31.8 °, the relative intensity of this peak is 1000 cps or less, and 2θ = 35 after the strongest peak. In the range of 0.0 °, no separated peak having a relative intensity of 100 cps or more is shown, and a gentle diffraction image is obtained.

本発明のフッ素除去剤を形成するヒドロキシアパタイトはこのような結晶性の低い非晶質のものであるのでフッ素の除去効果が大きい。なお、上記X線回折像における2θ=31.8°付近の最強ピークの相対強度が1000cpsより大きな高い結晶性を有するヒドロキシアパタイトはフッ素除去性能が非晶質のものよりも低い。因みに、図10〜図12(比較例1〜3)に示すように、結晶性の高いヒドロキシアパタイトは、Cu−αX線回折像において、2θ=(31.8°)、(32.2°)、(32.9°)、(34.0°)に相対強度100cps以上の明瞭な分離した4つのピークが認められるが、本発明のヒドロキシアパタイトはこれらの明瞭に分離したピークを示さず、結晶性の低いものである。   Since the hydroxyapatite forming the fluorine removing agent of the present invention is an amorphous material having such low crystallinity, the effect of removing fluorine is great. In addition, the hydroxyapatite having high crystallinity in which the relative intensity of the strongest peak in the vicinity of 2θ = 31.8 ° in the X-ray diffraction image is higher than 1000 cps has lower fluorine removal performance than that of amorphous. Incidentally, as shown in FIGS. 10 to 12 (Comparative Examples 1 to 3), hydroxyapatite with high crystallinity is 2θ = (31.8 °), (32.2 °) in a Cu-α X-ray diffraction image. , (32.9 °), and (34.0 °), four clearly separated peaks having a relative intensity of 100 cps or more are observed, but the hydroxyapatite of the present invention does not show these clearly separated peaks, It is low in nature.

本発明のフッ素除去剤は、好ましくは、ヒドロキシアパタイトのカルシウムとリンのモル比(Ca/P)が1.5〜2.0である。Ca/Pモル比が1.5より小さく、従ってリンの含有量が上記範囲より多いとリンが溶出しやすくなる。一方、上記モル比が2.0を上回るものは、未反応の珪酸カルシウム化合物が残留し、アパタイトの生成量が不十分となって、フッ素吸着能力が低下するので好ましくない。   The fluorine removing agent of the present invention preferably has a hydroxyapatite calcium to phosphorus molar ratio (Ca / P) of 1.5 to 2.0. If the Ca / P molar ratio is less than 1.5, and therefore the phosphorus content is more than the above range, phosphorus is likely to elute. On the other hand, those having a molar ratio exceeding 2.0 are not preferable because unreacted calcium silicate compounds remain, the amount of apatite produced is insufficient, and the fluorine adsorption capacity decreases.

Ca/Pモル比が上記範囲内のものは、リンが溶出し難く、例えば、リンの溶解度が3.5mg/L以下、好ましくは10mg/L以下であるので、水に対して溶解性が低く、耐水性に優れている。また、リンの溶解度が低いのでフッ素除去後の水質を汚染しない。なお、Ca/Pモル比を調整するには、珪酸カルシウム化合物にリン酸を反応させて本発明のフッ素除去剤を製造する際に、珪酸カルシウム化合物とリン酸の混合量を調整すれば良い。   When the Ca / P molar ratio is within the above range, phosphorus does not easily elute. For example, the solubility of phosphorus is not more than 3.5 mg / L, preferably not more than 10 mg / L. Excellent water resistance. Moreover, since the solubility of phosphorus is low, the water quality after fluorine removal is not contaminated. In order to adjust the Ca / P molar ratio, the mixture amount of the calcium silicate compound and phosphoric acid may be adjusted when the calcium silicate compound is reacted with phosphoric acid to produce the fluorine removing agent of the present invention.

さらに、本発明のフッ素除去剤は、好ましくは、カルシウムとケイ素のモル比(Ca/Si)が0.1〜2.0、より好ましくは0.8〜1.2である。Ca/Siモル比がこの範囲を外れるとヒドロキシアパタイトまたはシリカの何れかの含有量が過小になるのでフッ素除去性能が低下する。なお、Ca/Siモル比を調整するには、原料として用いる珪酸カルシウム化合物のCa/Siモル比が上記範囲のものを用いれば良い。   Furthermore, the fluorine removing agent of the present invention preferably has a calcium to silicon molar ratio (Ca / Si) of 0.1 to 2.0, more preferably 0.8 to 1.2. When the Ca / Si molar ratio is out of this range, the content of either hydroxyapatite or silica becomes too small, so that the fluorine removal performance deteriorates. In order to adjust the Ca / Si molar ratio, the calcium silicate compound used as a raw material may have a Ca / Si molar ratio in the above range.

本発明のフッ素除去剤は、多孔質シリカを含有し、さらに微細な非晶質ヒドロキシアパタイトが多数析出した形態を有するので隙間が多く、好ましくは全細孔容積0.5ml/g以上、より好ましくは0.75ml/g以上である。従って、フッ素に対しイオン交換容量が大きく、交換速度が速い。具体的にはフッ素含有水溶液に添加したときに、F濃度10mg/Lのフッ素含有水溶液と平衡状態になったときの複合多孔質体のF濃度が1%以上であるイオン交換容量を有する。   The fluorine removing agent of the present invention contains porous silica and has a form in which a large number of fine amorphous hydroxyapatite is precipitated, so there are many gaps, preferably a total pore volume of 0.5 ml / g or more, more preferably Is 0.75 ml / g or more. Therefore, the ion exchange capacity is larger than that of fluorine, and the exchange rate is fast. Specifically, when added to a fluorine-containing aqueous solution, the composite porous body has an ion exchange capacity in which the F concentration is 1% or more when in equilibrium with a fluorine-containing aqueous solution having an F concentration of 10 mg / L.

本発明のフッ素除去剤は、平均粒径10〜60μm、BET比表面積100m2/g以上のものが好ましい。この粒径のものはフッ素含有液との接触面積が十分に大きいので優れたイオン交換性を有しており、フッ素の除去効果に優れ、かつ良好な濾過性および沈降性を有しているので、フッ素除去後の除去剤の固液分離処理が極めて容易である。 The fluorine removing agent of the present invention preferably has an average particle size of 10 to 60 μm and a BET specific surface area of 100 m 2 / g or more. This particle size has a sufficiently large contact area with the fluorine-containing liquid, so that it has excellent ion exchange performance, excellent fluorine removal effect, and good filterability and sedimentation. The solid-liquid separation treatment of the removing agent after removing the fluorine is extremely easy.

なお、珪酸カルシウム化合物にリン酸を反応させてヒドロキシアパタイトシリカ複合多孔質体を製造する方法によれば、珪酸カルシウム化合物のカルシウム分がリン酸によって溶出し、粒子表面にヒドロキシアパタイトが析出するので、原料の珪酸カルシウム化合物とほぼ同等の粒径を有する複合多孔質体が生成する。従って、平均粒径10〜60μm、BET比表面積100m2/g以上のフッ素除去剤を得るには、これと同程度の粒径およびBET比表面積を有する珪酸カルシウム化合物を原料として用いれば良い。 According to the method of producing a hydroxyapatite silica composite porous body by reacting calcium silicate compound with phosphoric acid, the calcium content of the calcium silicate compound is eluted with phosphoric acid, and hydroxyapatite is precipitated on the particle surface. A composite porous body having a particle size almost equal to that of the raw material calcium silicate compound is produced. Therefore, in order to obtain a fluorine removing agent having an average particle size of 10 to 60 μm and a BET specific surface area of 100 m 2 / g or more, a calcium silicate compound having a particle size and BET specific surface area comparable to this may be used as a raw material.

〔製造方法〕
本発明のフッ素除去剤として用いるヒドロキシアパタイトシリカ複合多孔質体は、珪酸カルシウム化合物にリン酸を反応させ、カルシウム分を溶出させてシリカ分を多孔質にすると共に、溶出したカルシウム分をヒドロキシアパタイトに転化して析出させることによって製造することができる。
〔Production method〕
The hydroxyapatite silica composite porous body used as a fluorine removing agent of the present invention is prepared by reacting phosphoric acid with a calcium silicate compound to elute the calcium component to make the silica component porous and to convert the eluted calcium component to hydroxyapatite. It can be produced by conversion and precipitation.

従来の製造方法のように、多孔質シリカなどの多孔質材料にヒドロキシアパタイトを含浸または析出させる方法によって製造したものは、基材が多孔質でもヒドロシキアパタイトの析出によってその多孔性が損なわれてしまうので、本発明のような多孔質体を得ることができない。   As in the conventional manufacturing method, the porous material such as porous silica is impregnated or precipitated with hydroxyapatite. Even if the substrate is porous, the porosity is impaired by the precipitation of hydroxyapatite. Therefore, the porous body as in the present invention cannot be obtained.

一方、珪酸カルシウム化合物をリン酸と反応させる製造方法によれば、珪酸カルシウム化合物のカルシウム分がリン酸と反応してヒドロキシアパタイトが生成すると共にシリカが多孔質化するので、多孔性に優れた複合体が形成される。しかも、この多孔質シリカの粒子表面に微細なヒドロキシアパタイトが析出するので、細孔容積が大きく、良好な濾過特性、沈降性、透水性を有する複合多孔質体を得ることができ、さらに生成したヒドロキシアパタイトは水に対する溶解牲も低いという利点を有する。   On the other hand, according to the production method in which the calcium silicate compound is reacted with phosphoric acid, the calcium content of the calcium silicate compound reacts with phosphoric acid to produce hydroxyapatite and the silica is made porous. The body is formed. Moreover, since fine hydroxyapatite precipitates on the surface of the porous silica particles, a composite porous body having a large pore volume, good filtration characteristics, sedimentation, and water permeability can be obtained and further generated. Hydroxyapatite has the advantage of low solubility in water.

なお、シリカ原料を加えず、単に石灰質原料とリン酸を反応させてヒドロキシアパタイト単体を形成したるものは、多孔性の程度が低く、従って十分なフッ素除去性能を有さず、濾過特性、沈降性も低い。   In addition, the silica raw material is not added, and the hydroxyapatite simple substance formed by simply reacting the calcareous raw material with phosphoric acid has a low degree of porosity, and therefore does not have sufficient fluorine removal performance, filtration characteristics, sedimentation The nature is also low.

本発明のフッ素除去剤の原料として用いる珪酸カルシウム化合物は、珪酸原料と石灰原料とを水性スラリーとしたものを、例えばオートクレーブ中において水熱反応を行なって合成した一般的によく知られているものを好適に用いることができる。その種類としては、珪酸カルシウム化合物であれば特に限定されず、例えば、トバモライト、ジャイロライト、ゾノトライトなどの結晶質珪酸カルシウム化合物、あるいは非晶質珪酸カルシウム化合物など何れの珪酸カルシウム化合物を用いることができる。これらは単独で用いても良く、2種以上を組み合わせて用いても良い。また、これらの珪酸カルシウム化合物は粉体に限らず、成形体や塊状物を用いても良い。   The calcium silicate compound used as the raw material of the fluorine removing agent of the present invention is a generally well-known compound synthesized by subjecting a silicic acid raw material and a lime raw material to an aqueous slurry, for example, by hydrothermal reaction in an autoclave. Can be suitably used. The type is not particularly limited as long as it is a calcium silicate compound. For example, any calcium silicate compound such as a crystalline calcium silicate compound such as tobermorite, gyrolite, and zonotlite, or an amorphous calcium silicate compound can be used. . These may be used alone or in combination of two or more. In addition, these calcium silicate compounds are not limited to powders, and may be molded bodies or lumps.

本発明のフッ素除去剤は、カルシウムとケイ素のモル比(Ca/Si)が0.1〜2.0であるのがよく、0.8〜1.2がさらに良いので、このCa/Siモル比を有する珪酸カルシウム化合物を用いるのが好ましい。   The fluorine removing agent of the present invention preferably has a calcium to silicon molar ratio (Ca / Si) of 0.1 to 2.0, and more preferably 0.8 to 1.2. It is preferable to use a calcium silicate compound having a ratio.

珪酸カルシウム化合物の多孔質化およびヒドロシキアパタイト化は、珪酸カルシウム化合物のスラリー、または珪酸カルシウム化合物の浸漬水溶液に、リン酸を添加して行うことができる。   Porous formation and hydrochiapatite formation of the calcium silicate compound can be performed by adding phosphoric acid to a slurry of the calcium silicate compound or an aqueous solution of the calcium silicate compound.

例えば、シリカ粉などの珪酸原料と、消石灰などの石灰原料とを混合し、これに水を加え、水熱反応させて珪酸カルシウム化合物スラリーを製造し、この生成したスラリーにリン酸を加えて、ヒドロシキアパタイト化を行うと良い。水熱反応して生成した珪酸カルシウムにリン酸を作用させることによって、カルシウム分がリン酸と反応してシリカが多孔質化すると共に、ヒドロキシアパタイトが生成する。また、リン酸の濃度や添加速度、液温などの反応条件を制御することによって非晶質のヒドロキシアパタイトが析出する。   For example, a silicic acid raw material such as silica powder and a lime raw material such as slaked lime are mixed, water is added thereto, and hydrothermal reaction is performed to produce a calcium silicate compound slurry, and phosphoric acid is added to the generated slurry, Hydroxiapatite is recommended. By causing phosphoric acid to act on calcium silicate produced by hydrothermal reaction, the calcium component reacts with phosphoric acid to make the silica porous, and hydroxyapatite is produced. Further, amorphous hydroxyapatite is precipitated by controlling the reaction conditions such as the concentration of phosphoric acid, the addition rate, and the liquid temperature.

リン酸濃度は2〜50%、好ましくは5〜40%の範囲がよい。リン酸濃度が2%未満では処理すべき液の量が増大して不都合であり、50%より高い場合は、局部的な液のpHの低下によって微細なヒドロシキアパタイトやシリカ粒子が発生しやすくなるので好ましくない。リン酸に代えて、リン酸アンモニウムやリン酸ナトリウムのような水溶性リン酸塩を用いることもできる。   The phosphoric acid concentration is 2 to 50%, preferably 5 to 40%. If the phosphoric acid concentration is less than 2%, the amount of the liquid to be treated increases, which is inconvenient. If it is higher than 50%, fine hydroxyapatite and silica particles are likely to be generated due to a local decrease in pH of the liquid. This is not preferable. Instead of phosphoric acid, a water-soluble phosphate such as ammonium phosphate or sodium phosphate can be used.

リン酸の添加量は、珪酸カルシウム化合物のカルシウム分とリン酸のモル比(Ca/P)が1.5〜2.0になるように定めることが望ましい。このモル比が2.0を上回ると未反応の珪酸カルシウム化合物が残留し、ヒドロキシアパタイトの生成量が不十分となって、フッ素除去効果が低下する。一方、このモル比が1.5より低いと、リンの溶解度が上がる傾向を有し、耐水性が低下するので好ましくない。   The addition amount of phosphoric acid is desirably determined so that the molar ratio (Ca / P) of calcium content and phosphoric acid of the calcium silicate compound is 1.5 to 2.0. When this molar ratio exceeds 2.0, an unreacted calcium silicate compound remains, the amount of hydroxyapatite produced becomes insufficient, and the fluorine removal effect is reduced. On the other hand, when the molar ratio is lower than 1.5, the solubility of phosphorus tends to increase, and the water resistance decreases.

非晶質のヒドロキシアパタイトを生成させるには、温度70℃未満において、リン酸を添加して珪酸カルシウム化合物のヒドロキシアパタイト化を行う。70℃以上になると、ヒドロキシアパタイトの結晶が発達するようになり、ヒドロキシアパタイトが非晶質にならないので、フッ素除去性能が低下する。温度が低いほど結晶性は低下し、フッ素除去能力が向上するが、製造プロセス上、常温以上の温度が推奨される。   In order to produce amorphous hydroxyapatite, phosphoric acid is added to convert the calcium silicate compound to hydroxyapatite at a temperature of less than 70 ° C. When the temperature is 70 ° C. or higher, hydroxyapatite crystals develop, and the hydroxyapatite does not become amorphous, so that the fluorine removal performance decreases. The lower the temperature, the lower the crystallinity and improve the fluorine removal ability, but a temperature of room temperature or higher is recommended for the manufacturing process.

リン酸の添加速度をコントロールすることによっても、非晶質化を進めることができる。具体的には、pH7未満を維持するよう、好ましくはpH3.0〜7.0未満になるように、リン酸を添加すると良い。 Amorphization can also be promoted by controlling the addition rate of phosphoric acid. Specifically, phosphoric acid may be added so as to maintain a pH of less than 7, preferably a pH of less than 3.0 to 7.0.

なお、極端にリン酸の添加速度が速い場合は、珪酸カルシウム化合物の粒子形状が崩れ、微細なヒドロシキアパタイトやシリカ粒子が発生し、ろ過性、沈降性が劣化する。反応中の溶液のpHを上記範囲になるようにリン酸を添加することによって、非晶質のヒドロキシアパタイトが析出し、フッ素吸着能に優れ、ろ過性、沈降性に優れた複合多孔質体を得ることができる。   In addition, when the addition rate of phosphoric acid is extremely fast, the particle shape of the calcium silicate compound collapses, and fine hydroxyapatite and silica particles are generated, resulting in deterioration of filterability and sedimentation. By adding phosphoric acid so that the pH of the solution during the reaction is in the above range, amorphous hydroxyapatite is precipitated, and a composite porous body excellent in fluorine adsorption ability, filterability and sedimentation is obtained. Obtainable.

ヒドロシキアパタイト化の反応時間は、原料の種類や粒度、粉体または成形体などの形状によって異なり、一概に定めることはできないが、通常は10〜120分程度で十分である。   The reaction time of the hydroxyapatite formation varies depending on the type and particle size of the raw material, and the shape of the powder or the molded body, and cannot be determined generally, but usually about 10 to 120 minutes is sufficient.

珪酸カルシウム化合物にリン酸を反応させることによって、非晶質ヒドロシキアパタイトと多孔質シリカとの多孔質複合体を得ることができるが、この複合体の多孔質度をさらに上げたい場合には、リン酸の添加に先立ち、珪酸カルシウム化合物にリン酸以外の酸を予め作用させ、カルシウム分を酸処理して除去することにより、細孔容積の高い複合体を得ることができる。また、酸処理に代えて、二酸化炭素を吹き込む方法でもよく、あるいは酸性陽イオン交換樹脂を珪酸カルシウム化合物スラリーに加えてカルシウム分を除去しても良い。   A porous composite of amorphous hydroxyapatite and porous silica can be obtained by reacting a calcium silicate compound with phosphoric acid, but if the porosity of this composite is to be further increased, Prior to the addition of phosphoric acid, a complex having a high pore volume can be obtained by previously acting an acid other than phosphoric acid on the calcium silicate compound and removing the calcium component by acid treatment. In place of the acid treatment, carbon dioxide may be blown, or an acidic cation exchange resin may be added to the calcium silicate compound slurry to remove calcium.

カルシウム分を予め除去するために用いる酸としては塩酸、硝酸等の無機酸、酢酸などの有機酸を用いることができる。このときの酸の添加も、先に述べたように珪酸カルシウム化合物からカルシウムが溶出する速度に見合った速度、具体的にはpH3.0以上を保持する速度で徐々に酸を加えていくことが好ましい。pH3.0を下回ると、微細なシリカ粒子が発生し、濾過処理に時間がかかるようになるので好ましくない。   As the acid used for removing the calcium content in advance, inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as acetic acid can be used. As described above, the acid may be added gradually at a rate commensurate with the rate at which calcium is eluted from the calcium silicate compound, specifically, at a rate that maintains a pH of 3.0 or higher. preferable. If the pH is less than 3.0, fine silica particles are generated and the filtration process takes time, which is not preferable.

なお、液温を上げ、または液を攪拌することによって反応速度を促進することができる。カルシウム除去の反応時間は、原料の珪酸カルシウムの種類や粒度、形状などによって異なるが、概ね0.5〜3時間程度で十分である。   The reaction rate can be accelerated by raising the liquid temperature or stirring the liquid. The reaction time for removing calcium varies depending on the type, particle size, shape, etc. of the raw material calcium silicate, but approximately 0.5 to 3 hours is sufficient.

リン酸以外の酸と反応させた後に固液分離して珪酸カルシウム化合物を回収し、これを水洗した後、再び水性スラリーあるいは水に浸漬し、リン酸を添加してヒドロキシアパタイト化を行なう。   After reacting with an acid other than phosphoric acid, solid-liquid separation is performed to recover the calcium silicate compound, which is washed with water and then immersed again in an aqueous slurry or water, and phosphoric acid is added to effect hydroxyapatite formation.

珪酸カルシウム化合物にリン酸を反応させて、シリカの多孔質化とヒドロキシアパタイト化を行った後に、生成物を濾過または遠心分離などによって固液分離し、回収した澱物を乾燥処理することにより、平均粒径10〜60μm、BET比表面積100m2/g以上の非晶質ヒドロキシアパタイト−シリカ複合多孔質体からなるフッ素除去剤を得ることができる。   After reacting calcium silicate compound with phosphoric acid to make silica porous and hydroxyapatite, the product is solid-liquid separated by filtration or centrifugation, and the recovered starch is dried, A fluorine removing agent comprising an amorphous hydroxyapatite-silica composite porous body having an average particle size of 10 to 60 μm and a BET specific surface area of 100 m 2 / g or more can be obtained.

以下、本発明の実施例を比較例と共に示す。なお、製造したフッ素吸着剤体の物性は下記測定方法によって求めた。   Examples of the present invention are shown below together with comparative examples. In addition, the physical property of the manufactured fluorine adsorbent body was calculated | required with the following measuring method.

〔X線回折像〕
ミニフレックスX線回折装置(理学社製)を用い、Cu管球、管電圧30kV、管電流15mA、サンプリング幅0.02°、スキャンスピード4°/分の条件で測定した。
〔平均粒径〕
レーザー回折式粒度分布測定装置(堀場製作所製品:LA-300)を用いて測定した。
[X-ray diffraction image]
Measurement was performed using a mini-flex X-ray diffractometer (manufactured by Rigaku Corporation) under the conditions of Cu tube, tube voltage 30 kV, tube current 15 mA, sampling width 0.02 °, and scan speed 4 ° / min.
[Average particle size]
The measurement was performed using a laser diffraction particle size distribution analyzer (Horiba, Ltd. product: LA-300).

〔比表面積〕
島津製作所製装置(フローソブII)を用い、BET1点法により測定した。
〔細孔容積〕
150℃で1時間真空脱気を行なった試料につき、日本BEL社装置(BELSORP-mini)を用い、窒素吸着法(BJH法)により測定した。
〔Specific surface area〕
Using a Shimadzu apparatus (Flow Sob II), the BET one-point method was used for measurement.
(Pore volume)
About the sample which vacuum deaerated at 150 degreeC for 1 hour, it measured by the nitrogen adsorption method (BJH method) using the Japan BEL apparatus (BELSORP-mini).

〔フッ素濃度・吸着等温線〕
フッ化ナトリウムを水に溶かして5〜200mg/Lに調整した水溶液100mlに対し、試料を0.20g添加し、60℃の恒温槽中で24時間振盪して平衡状態にした。この試料液を濾過し、イオンメーターによって液中のフッ素濃度を求めた。試料が吸着したフッ素量は、液中のフッ素の減少量より計算で求めた。溶液のフッ素濃度と試料が吸着したフッ素量の関係を両対数グラフにプロットして吸着等温線を作成した。この吸着等温線のグラフより、固相中のフッ素濃度1%に平衡な液のF濃度を読み取り、表1に示した。この吸着等温線を各実施例および各比較例について、図1および図2に示した。
[Fluorine concentration and adsorption isotherm]
To 100 ml of an aqueous solution adjusted to 5 to 200 mg / L by dissolving sodium fluoride in water, 0.20 g of the sample was added and shaken in a 60 ° C. constant temperature bath for 24 hours to achieve an equilibrium state. This sample solution was filtered, and the fluorine concentration in the solution was determined by an ion meter. The amount of fluorine adsorbed by the sample was calculated from the amount of decrease in fluorine in the liquid. The relationship between the fluorine concentration of the solution and the amount of fluorine adsorbed by the sample was plotted on a log-log graph to create an adsorption isotherm. From this adsorption isotherm graph, the F concentration of the liquid equilibrated to 1% fluorine concentration in the solid phase was read and shown in Table 1. This adsorption isotherm is shown in FIG. 1 and FIG. 2 for each example and each comparative example.

〔リン濃度〕
純水100mlに対し、試料を0.20g添加し、60℃の恒温槽中で24時間振盪を行ない、この試料液を濾過後、モリブデンブルー法によってリン濃度を求めた。
[Phosphorus concentration]
0.20 g of a sample was added to 100 ml of pure water, shaken in a constant temperature bath at 60 ° C. for 24 hours, and after filtering this sample solution, the phosphorus concentration was determined by the molybdenum blue method.

〔実施例1〕
珪酸原料(平均粒径20μmの非晶質シリカ粉)100gと消石灰100g(Ca/Siモル比0.8)に、水−固形分比15相当分の水を加え、オートクレーブ中で攪拌しながら180℃、4時間水熱反応を行ない、珪酸カルシウム化合物スラリーを形成した。このスラリーを60℃に加熱して、Ca/Pモル比が1.67になる量のリン酸を、pHが7未満を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過して澱物を分離し、乾燥して非晶質ヒドロキシアパタイトと多孔質シリカとからなる複合多孔質体を得た。この物性値を表1および図1に示し、SEM写真を図3に示した。またX線回折グラフを図6に示した。
[Example 1]
To 100 g of silicic acid raw material (amorphous silica powder having an average particle size of 20 μm) and 100 g of slaked lime (Ca / Si molar ratio of 0.8), water corresponding to a water-solid content ratio of 15 is added and stirred while stirring in an autoclave. A hydrothermal reaction was carried out at 4 ° C. for 4 hours to form a calcium silicate compound slurry. The slurry was heated to 60 ° C., and phosphoric acid in an amount such that the Ca / P molar ratio was 1.67 was added while stirring the slurry at a rate that maintained the pH below 7. After the addition, the mixture was stirred for 1 hour, the slurry was filtered to separate the starch, and dried to obtain a composite porous body composed of amorphous hydroxyapatite and porous silica. The physical property values are shown in Table 1 and FIG. 1, and the SEM photograph is shown in FIG. An X-ray diffraction graph is shown in FIG.

〔実施例2〕
珪酸原料として平均粒径10μmの珪石粉末100gを用いた以外は実施例1と同様にして非晶質ヒドロキシアパタイトと多孔質シリカとからなる複合多孔質体を得た。この物性値を表1および図1に示し、SEM写真を図4に示した。またX線回折グラフを図7に示した。
[Example 2]
A composite porous body composed of amorphous hydroxyapatite and porous silica was obtained in the same manner as in Example 1 except that 100 g of silica powder having an average particle size of 10 μm was used as the silicic acid raw material. The physical property values are shown in Table 1 and FIG. 1, and the SEM photograph is shown in FIG. An X-ray diffraction graph is shown in FIG.

〔実施例3〕
珪酸原料(平均粒径20μmの非晶質シリカ粉)100gと消石灰127g(Ca/Siモル比1.0)に、水−固形分比10相当分の水を加え、温浴中で攪拌しながら95℃、15時間水熱反応を行ない、珪酸カルシウム化合物スラリーを形成した。このスラリーを60℃に加熱して、Ca/Pモル比が1.67になる量のリン酸を、pHが7未満を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過して澱物を分離し、乾燥して非晶質ヒドロキシアパタイトと多孔質シリカとからなる複合多孔質体を得た。この物性値を表1、図1、図2に示し、SEM写真を図5に示した。またX線回折グラフを図8に示した。
Example 3
To 100 g of silicic acid raw material (amorphous silica powder having an average particle diameter of 20 μm) and 127 g of slaked lime (Ca / Si molar ratio of 1.0), water corresponding to a water-solid content ratio of 10 is added and stirred while stirring in a warm bath. A hydrothermal reaction was carried out at 15 ° C. for 15 hours to form a calcium silicate compound slurry. The slurry was heated to 60 ° C., and phosphoric acid in an amount such that the Ca / P molar ratio was 1.67 was added while stirring the slurry at a rate that maintained the pH below 7. After the addition, the mixture was stirred for 1 hour, the slurry was filtered to separate the starch, and dried to obtain a composite porous body composed of amorphous hydroxyapatite and porous silica. The physical property values are shown in Table 1, FIG. 1 and FIG. 2, and the SEM photograph is shown in FIG. An X-ray diffraction graph is shown in FIG.

〔実施例4〕
実施例3と同じ珪酸カルシウム化合物スラリーを30℃に加熱して、Ca/Pモル比が1.67になる量のリン酸を、pHが7以上を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過して澱物を分離し、乾燥して非晶質ヒドロキシアパタイトと多孔質シリカとからなる複合多孔質体を得た。この物性値を表1、図1に示した。またX線回折グラフを図9に示した。
Example 4
The same calcium silicate compound slurry as in Example 3 was heated to 30 ° C., and phosphoric acid was added in such an amount that the Ca / P molar ratio was 1.67 while stirring the slurry at a rate that maintained the pH of 7 or higher. . After the addition, the mixture was stirred for 1 hour, the slurry was filtered to separate the starch, and dried to obtain a composite porous body composed of amorphous hydroxyapatite and porous silica. The physical property values are shown in Table 1 and FIG. An X-ray diffraction graph is shown in FIG.

〔比較例1〕
耐火被覆建材用珪酸カルシウム化合物(ゾノトライト)スラリーを予め60℃に加熱して、Ca/Pモル比が1.67になる量のリン酸を、pHが7以上を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過、乾燥して結晶質ヒドロキシアパタイトと多孔質シリカとからなる複合多孔質体を得た。この物性値を表1および図1に示した。またX線回折グラフを図10に示した。
[Comparative Example 1]
Calcium silicate compound (zonotlite) slurry for fireproof coating building material is preheated to 60 ° C., and the slurry is stirred at such a rate that the pH of the Ca / P molar ratio is 1.67 and maintained at a pH of 7 or higher. While adding. After the addition, the mixture was stirred for 1 hour, and the slurry was filtered and dried to obtain a composite porous body composed of crystalline hydroxyapatite and porous silica. The physical property values are shown in Table 1 and FIG. An X-ray diffraction graph is shown in FIG.

〔比較例2〕
実施例3と同じ珪酸カルシウム化合物スラリーを70℃に加熱して、Ca/Pモル比が1.67になる量のリン酸を、pHが7未満を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過して澱物を分離し、乾燥して結晶質ヒドロキシアパタイトと多孔質シリカとからなる複合多孔質体を得た。この物性値を表1、図1に示した。またX線回折グラフを図11に示した。
[Comparative Example 2]
The same calcium silicate compound slurry as in Example 3 was heated to 70 ° C., and phosphoric acid in an amount such that the Ca / P molar ratio was 1.67 was added while stirring the slurry at a rate that maintained the pH below 7. . After the addition, the mixture was stirred for 1 hour, the slurry was filtered to separate the starch, and dried to obtain a composite porous body composed of crystalline hydroxyapatite and porous silica. The physical property values are shown in Table 1 and FIG. The X-ray diffraction graph is shown in FIG.

〔比較例3〕
消石灰スラリーを予め60℃に加熱して、Ca/Pモル比が1.67になる量のリン酸を、pHが7未満を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過、乾燥して結晶質ヒドロキシアパタイトを得た。この物性値を表1および図1に示した。またX線回折グラフを図12に示した。
[Comparative Example 3]
The slaked lime slurry was previously heated to 60 ° C., and phosphoric acid in an amount such that the Ca / P molar ratio was 1.67 was added while stirring the slurry at a rate that maintained the pH below 7. After the addition, the mixture was stirred for 1 hour, and the slurry was filtered and dried to obtain crystalline hydroxyapatite. The physical property values are shown in Table 1 and FIG. An X-ray diffraction graph is shown in FIG.

〔参考例1〕
上記実施例3の珪酸カルシウム化合物スラリーを予め60℃に加熱して、Ca/Pモル比が1.45になる量のリン酸を、pHが7未満を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過、乾燥してヒドロキシアパタイトシリカ複合多孔質体を得た。この物性値を表1および図2に示した。
[Reference Example 1]
The calcium silicate compound slurry of Example 3 above was heated to 60 ° C. in advance and phosphoric acid in an amount such that the Ca / P molar ratio was 1.45 was added while stirring the slurry at a rate that maintained the pH below 7. did. After the addition, the mixture was stirred for 1 hour, and the slurry was filtered and dried to obtain a hydroxyapatite silica composite porous body. The physical property values are shown in Table 1 and FIG.

〔参考例2〕
上記実施例3の珪酸カルシウム化合物スラリーを予め60℃に加熱して、Ca/Pモル比が2.5になる量のリン酸を、pHが7未満を維持する速度でスラリーを攪拌しつつ添加した。添加後、1時間攪拌し、スラリーを濾過、乾燥してヒドロキシアパタイトシリカ複合多孔質体を得た。この物性値を表1および図2に示した。
[Reference Example 2]
The calcium silicate compound slurry of Example 3 above was heated to 60 ° C. in advance, and phosphoric acid in an amount such that the Ca / P molar ratio was 2.5 was added while stirring the slurry at a rate that maintained the pH below 7. did. After the addition, the mixture was stirred for 1 hour, and the slurry was filtered and dried to obtain a hydroxyapatite silica composite porous body. The physical property values are shown in Table 1 and FIG.

図1に示すように、本発明の実施例1〜4は何れもフッ素の吸着量が比較例に比べて格段に勝っており、例えば、液中のF濃度が10mg/lであるとき、これと平衡状態の固相中のF濃度は1.0%以上である。また、表1に示すように、固相中のフッ素濃度1%に平衡な液中のフッ素濃度は、本発明の実施例1〜4では1.9〜3.2mg/lであるのに対して、比較例1は291mg/l、比較例2は70mg、比較例3は74mg/l であり、本発明の実施例の液中フッ素濃度は格段に低く、高いフッ素吸着能力を有することを示している。   As shown in FIG. 1, in each of Examples 1 to 4 of the present invention, the amount of adsorption of fluorine is far superior to the comparative example. For example, when the F concentration in the liquid is 10 mg / l, The F concentration in the solid phase in an equilibrium state is 1.0% or more. Moreover, as shown in Table 1, the fluorine concentration in the liquid equilibrated to 1% fluorine concentration in the solid phase is 1.9 to 3.2 mg / l in Examples 1 to 4 of the present invention. Comparative Example 1 is 291 mg / l, Comparative Example 2 is 70 mg, and Comparative Example 3 is 74 mg / l, indicating that the concentration of fluorine in the examples of the present invention is remarkably low and has a high fluorine adsorption capacity. ing.

比較例1および比較例2はヒドロキシアパタイトと多孔質シリカの複合体であるが、図10〜図11に示すように、ヒドロキシアパタイトの回折角度において明瞭な4つのピークが認められ、ピーク強度が大きく、ヒドロキシアパタイトの結晶性が高い。このため表1に示すように液中のフッ素濃度が大幅に高く、フッ素吸着能力が低いことを示している。また、比較例3は多孔質シリカを含まないヒドロキシアパタイト単体であるのでフッ素吸着能力が低い。   Comparative Example 1 and Comparative Example 2 are a composite of hydroxyapatite and porous silica. As shown in FIGS. 10 to 11, four clear peaks are observed at the diffraction angle of hydroxyapatite, and the peak intensity is large. The crystallinity of hydroxyapatite is high. For this reason, as shown in Table 1, the fluorine concentration in the liquid is significantly high, indicating that the fluorine adsorption capacity is low. Moreover, since the comparative example 3 is a hydroxyapatite simple substance which does not contain porous silica, its fluorine adsorption capacity is low.

一方、実施例1〜4のヒドロキシアパタイトは、図6〜図9に示すように、回折角2θ=31.8°付近で最強のピークを示すが、このピーク相対強度は1000cps以下であって、かつ最強ピーク後の2θ=35.0°の範囲で分離したピークを示さず、緩やかな回折像を有しており、非晶質であることを示している。従って、表1に示すように液中のフッ素濃度が低く、高いフッ素吸着能力を有している。   On the other hand, the hydroxyapatite of Examples 1 to 4, as shown in FIGS. 6 to 9, shows the strongest peak in the vicinity of the diffraction angle 2θ = 31.8 °, but this peak relative intensity is 1000 cps or less, In addition, the peak separated in the range of 2θ = 35.0 ° after the strongest peak is not shown, and it has a gentle diffraction image, indicating that it is amorphous. Therefore, as shown in Table 1, the concentration of fluorine in the liquid is low and the fluorine adsorption capacity is high.

参考例1は、非晶質ヒドロキシアパタイトと多孔質シリカの複合体であり、液中のフッ素濃度は低いが、Ca/Pモル比が好ましい範囲より低いので、リンが溶出しやすく、液中のリン濃度が高い。また、参考例2は非晶質ヒドロキシアパタイトと多孔質シリカの複合体であるが、Ca/Pモル比が好ましい範囲より高いので、ヒドロキシアパタイトの含有量が少なく、フッ素吸着能力がやや低いので、液中のフッ素濃度が実施例1〜4よりも高い。   Reference Example 1 is a composite of amorphous hydroxyapatite and porous silica, and the fluorine concentration in the liquid is low, but the Ca / P molar ratio is lower than the preferred range, so that phosphorus easily elutes, High phosphorus concentration. Reference Example 2 is a composite of amorphous hydroxyapatite and porous silica, but the Ca / P molar ratio is higher than the preferred range, so the hydroxyapatite content is low and the fluorine adsorption capacity is somewhat low. The fluorine density | concentration in a liquid is higher than Examples 1-4.

図2に示すように、本発明の複合多孔質体のCa/Pモル比は低い方がフッ素吸着能力に優れる。特にCa/Pモル比が2.0より高いと(参考例2)、吸着等温線の傾きが急になるので、低濃度に置けるフッ素吸着能の低下が著しくなる。十分なフッ素除去能力を有するにはCa/Pモル比は低い方が良い。一方、表1に示すように、Ca/Pモル比が1.5を下回るとリンの溶解度が急上昇し(参考例1)、リンが溶出して液中のリン濃度が高くなり、処理水が富栄養化する原因となる懸念が生じるため、実用的にはCa/Pモル比は1.5以上にすることが望ましい。   As shown in FIG. 2, the lower the Ca / P molar ratio of the composite porous body of the present invention, the better the fluorine adsorption capacity. In particular, when the Ca / P molar ratio is higher than 2.0 (Reference Example 2), since the slope of the adsorption isotherm becomes steep, the decrease in the fluorine adsorption ability at a low concentration becomes remarkable. A lower Ca / P molar ratio is better to have sufficient fluorine removal capability. On the other hand, as shown in Table 1, when the Ca / P molar ratio is less than 1.5, the solubility of phosphorus rises rapidly (Reference Example 1), phosphorus is eluted and the concentration of phosphorus in the liquid increases, and the treated water becomes Since there is a concern that causes eutrophication, the Ca / P molar ratio is preferably 1.5 or more in practical use.

また、図3〜図5に示すように、本発明の実施例1〜3の粉末は、表面および内部に微細な針状粒子が成長しており、空隙が多い。   As shown in FIGS. 3 to 5, the powders of Examples 1 to 3 of the present invention have fine acicular particles growing on the surface and inside, and there are many voids.

フッ素に対する吸着等温線を示すグラフGraph showing adsorption isotherm for fluorine フッ素に対する吸着等温線を示すグラフGraph showing adsorption isotherm for fluorine 実施例1の複合多孔質体の組織状態を示す電子顕微鏡(SEM)写真Electron microscope (SEM) photograph showing the structural state of the composite porous body of Example 1 実施例2の複合多孔質体の組織状態を示す電子顕微鏡(SEM)写真Electron microscope (SEM) photograph showing the structural state of the composite porous body of Example 2 実施例3の複合多孔質体の組織状態を示す電子顕微鏡(SEM)写真Electron microscope (SEM) photograph showing the structural state of the composite porous body of Example 3 実施例1のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Example 1 実施例2のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Example 2 実施例3のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Example 3 実施例4のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Example 4 比較例1のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Comparative Example 1 比較例2のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Comparative Example 2 比較例3のヒドロキシアパタイトのX線回折図X-ray diffraction pattern of hydroxyapatite of Comparative Example 3

Claims (9)

非晶質ヒドロキシアパタイトと多孔質シリカとの複合多孔質体からなることを特徴とするフッ素除去剤。
A fluorine removing agent comprising a composite porous body of amorphous hydroxyapatite and porous silica.
F濃度10mg/lのフッ素含有液と平衡な状態のF濃度が1%以上であるイオン交換容量を有する請求項1に記載するフッ素除去剤。
The fluorine removing agent according to claim 1, which has an ion exchange capacity in which an F concentration in an equilibrium state with a fluorine-containing liquid having an F concentration of 10 mg / l is 1% or more.
複合多孔質体の全細孔容積が0.5ml/g以上である請求項1または請求項2に記載するフッ素除去剤。
The fluorine removing agent according to claim 1 or 2, wherein the total pore volume of the composite porous body is 0.5 ml / g or more.
Cu−αX線回折像における2θ=31.8°のピークの相対強度が1000cps以下であって、最強ピーク後の2θ=35.0°の範囲で相対強度100cps以上の分離したピークを示さない回折像を有する非晶質ヒドロキシアパタイトと多孔質シリカとの複合多孔質体である請求項1〜請求項3の何れかに記載するフッ素除去剤。
Diffraction in which the relative intensity of the peak at 2θ = 31.8 ° in the Cu-α X-ray diffraction image is 1000 cps or less and does not show a separated peak with a relative intensity of 100 cps or more in the range of 2θ = 35.0 ° after the strongest peak. The fluorine removing agent according to any one of claims 1 to 3, which is a composite porous body of amorphous hydroxyapatite having an image and porous silica.
カルシウムとリンのモル比(Ca/P)が1.5〜2.0である請求項1〜請求項4の何れかに記載するフッ素除去剤。
The fluorine removing agent according to any one of claims 1 to 4, wherein a molar ratio of calcium to phosphorus (Ca / P) is 1.5 to 2.0.
カルシウムとケイ素のモル比(Ca/Si)が0.1〜2.0である請求項1〜請求項5の何れかに記載するフッ素除去剤。
The fluorine removing agent according to any one of claims 1 to 5, wherein a molar ratio of calcium to silicon (Ca / Si) is 0.1 to 2.0.
水に対するリンの溶解度が3.5mg/l以下である請求項1〜請求項6の何れかに記載するフッ素除去剤。
The fluorine removing agent according to any one of claims 1 to 6, wherein the solubility of phosphorus in water is 3.5 mg / l or less.
平均粒径10〜60μm、BET比表面積100m2/g以上である請求項1〜請求項7の何れかに記載するフッ素除去剤。
The fluorine removing agent according to any one of claims 1 to 7, which has an average particle size of 10 to 60 µm and a BET specific surface area of 100 m 2 / g or more.
珪酸カルシウム化合物のスラリーまたは水溶液に、70℃未満の温度で、リン酸を加えて反応させ、シリカを多孔質化すると共に非晶質ヒドロキシアパタイトを生成させて、多孔質シリカとの複合多孔質体からなるフッ素除去剤を製造する方法。 A composite porous body with porous silica by adding phosphoric acid to a slurry or aqueous solution of a calcium silicate compound at a temperature of less than 70 ° C. to react to make the silica porous and to produce amorphous hydroxyapatite. A method for producing a fluorine removing agent comprising:
JP2007022484A 2007-01-31 2007-01-31 Fluorine removal agent and method for producing the same Active JP4822007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007022484A JP4822007B2 (en) 2007-01-31 2007-01-31 Fluorine removal agent and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007022484A JP4822007B2 (en) 2007-01-31 2007-01-31 Fluorine removal agent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2008188483A true JP2008188483A (en) 2008-08-21
JP4822007B2 JP4822007B2 (en) 2011-11-24

Family

ID=39749099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007022484A Active JP4822007B2 (en) 2007-01-31 2007-01-31 Fluorine removal agent and method for producing the same

Country Status (1)

Country Link
JP (1) JP4822007B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547804A (en) * 2020-05-15 2020-08-18 苏州清控环保科技有限公司 Composite defluorinating agent for industrial wastewater, preparation method and method for defluorinating industrial wastewater

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091126B2 (en) * 1996-01-22 2000-09-25 東洋電化工業株式会社 Adsorbent for heavy metals
JP2001146414A (en) * 1999-11-18 2001-05-29 Natl Inst Of Advanced Industrial Science & Technology Meti Method for controlling pore diameter of porous silica aggregate
JP2002137914A (en) * 2000-10-26 2002-05-14 Ube Material Industries Ltd Silicic acid-containing apatite
JP2003126687A (en) * 2001-10-23 2003-05-07 Taihei Chemical Industrial Co Ltd Adsorbing material
JP2006192346A (en) * 2005-01-12 2006-07-27 Yahashi Kogyo Kk Fluorine remover
JP2006205154A (en) * 2004-12-28 2006-08-10 Central Res Inst Of Electric Power Ind Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
JP2006282446A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Hydroxyapatite-coated silica porous body and its manufacturing method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3091126B2 (en) * 1996-01-22 2000-09-25 東洋電化工業株式会社 Adsorbent for heavy metals
JP2001146414A (en) * 1999-11-18 2001-05-29 Natl Inst Of Advanced Industrial Science & Technology Meti Method for controlling pore diameter of porous silica aggregate
JP2002137914A (en) * 2000-10-26 2002-05-14 Ube Material Industries Ltd Silicic acid-containing apatite
JP2003126687A (en) * 2001-10-23 2003-05-07 Taihei Chemical Industrial Co Ltd Adsorbing material
JP2006205154A (en) * 2004-12-28 2006-08-10 Central Res Inst Of Electric Power Ind Method for manufacturing adsorbent consisting essentially of hydroxyapatite crystal
JP2006192346A (en) * 2005-01-12 2006-07-27 Yahashi Kogyo Kk Fluorine remover
JP2006282446A (en) * 2005-03-31 2006-10-19 National Institute Of Advanced Industrial & Technology Hydroxyapatite-coated silica porous body and its manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111547804A (en) * 2020-05-15 2020-08-18 苏州清控环保科技有限公司 Composite defluorinating agent for industrial wastewater, preparation method and method for defluorinating industrial wastewater

Also Published As

Publication number Publication date
JP4822007B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP5201455B2 (en) Phosphorus recovery material, its manufacturing method and phosphorus recovery method
JP4423645B2 (en) Hydroxyapatite silica composite porous material adsorbent and method for producing the same
JP4674896B2 (en) Aluminum silicate, method for producing the same, and method for purifying polyoxyalkylene polyol using the same
JPH0798650B2 (en) Method for producing plate-shaped hydroxyapatite
JP5931369B2 (en) Phosphorus recovery material and method for producing the same
Deng et al. Formation of NaP zeolite from fused fly ash for the removal of Cu (II) by an improved hydrothermal method
JP4336148B2 (en) Magnesium oxide powder and method for producing the same
JP5864045B2 (en) Method for producing phosphorus recovery material
CN108367267B (en) Adsorbent particles
JP6263233B2 (en) Inorganic material for removing harmful substances in wastewater, method for producing the same, and wastewater treatment method
JP2006256891A (en) Aluminum silicate and its production method
JP4822007B2 (en) Fluorine removal agent and method for producing the same
JP4423646B2 (en) Humine substance adsorbent and method for producing the same
JP2006335578A (en) Leaflet-like gypsum dihydrate and its manufacturing method
JP6028652B2 (en) Method for producing fluorine ion adsorbent and fluorine ion adsorbent
JPWO2017061117A1 (en) Adsorbent dispersion and adsorption method
JP6670534B2 (en) Phosphorus recovery material and method for producing the same
JP5946105B2 (en) Phosphorus recovery material and phosphorus recovery method
JP4753182B2 (en) Treatment method for fluorine-containing wastewater
JP4859221B2 (en) Method for producing porous material
JP4512689B2 (en) Hydroxyapatite-coated silica porous material and method for producing the same
JP4189652B2 (en) Adsorbent
JP5099349B2 (en) Adsorbent
JP4729725B2 (en) Silica-based highly active adsorbent material and method for producing the same
JP5099348B2 (en) Adsorbent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110817

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110823

R150 Certificate of patent or registration of utility model

Ref document number: 4822007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250