JP4512689B2 - Hydroxyapatite-coated silica porous material and method for producing the same - Google Patents

Hydroxyapatite-coated silica porous material and method for producing the same Download PDF

Info

Publication number
JP4512689B2
JP4512689B2 JP2005104439A JP2005104439A JP4512689B2 JP 4512689 B2 JP4512689 B2 JP 4512689B2 JP 2005104439 A JP2005104439 A JP 2005104439A JP 2005104439 A JP2005104439 A JP 2005104439A JP 4512689 B2 JP4512689 B2 JP 4512689B2
Authority
JP
Japan
Prior art keywords
acid
hydroxyapatite
producing
raw material
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005104439A
Other languages
Japanese (ja)
Other versions
JP2006282446A (en
Inventor
修二 恒松
耕三 井上
絹江 恒松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2005104439A priority Critical patent/JP4512689B2/en
Publication of JP2006282446A publication Critical patent/JP2006282446A/en
Application granted granted Critical
Publication of JP4512689B2 publication Critical patent/JP4512689B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、触媒担体、脱臭剤、濾過助剤、光拡散シート、インクジェット記録用シート、トナー、感光材料、顔料、太陽電池用基板、液晶表示装置、染料熱転写シート、耐熱性樹脂、紫外線遮蔽剤、ガス検出素子、各種フィラーとして広い範囲にわたる用途をもち、特に化粧品、生物組織用吸着剤、生物組織用分離剤などの生体親和性が要求される用途に対して好適な材料である新規なヒドロキシアパタイト被覆シリカ多孔体及びその製造方法に関するものである。   The present invention relates to a catalyst carrier, a deodorizing agent, a filter aid, a light diffusion sheet, an inkjet recording sheet, a toner, a photosensitive material, a pigment, a solar cell substrate, a liquid crystal display device, a dye thermal transfer sheet, a heat resistant resin, and an ultraviolet shielding agent. Has a wide range of uses as gas detection elements and various fillers, and is a novel hydroxy material that is suitable for applications requiring biocompatibility such as cosmetics, biological tissue adsorbents, and biological tissue separation agents. The present invention relates to an apatite-coated silica porous body and a method for producing the same.

ケイ酸塩材料は、濾過助剤、吸着剤、フィラーなどとして種々の用途に供されている。例えばケイ酸塩系板状結晶のマイカは、種々のフィラーや化粧品として利用されているが(特許文献1、特許文献2参照)、このものは多量のアルミニウムを含み、ケイ酸塩としての純度が低い上に、比表面積が小さく、しかも結晶構造が強固なために、疎水化又は親水化に必要な官能基を導入することがむずかしく、また吸油量が小さいという欠点があり、利用範囲が制限されるのを免れない。   Silicate materials are used in various applications as filter aids, adsorbents, fillers, and the like. For example, silicate-based plate crystal mica is used as various fillers and cosmetics (see Patent Document 1 and Patent Document 2), which contains a large amount of aluminum and has a purity as a silicate. In addition to being low, the specific surface area is small and the crystal structure is strong, so it is difficult to introduce functional groups necessary for hydrophobization or hydrophilization, and the amount of oil absorption is small, which limits the range of use. I can't help it.

そのほか、水ガラスの希釈液を電気透析して得たシリカゾルを水熱処理して生成させたりん片状の低結晶性シリカも知られているが(特許文献3参照)、水熱処理に際して析出してくる結晶性シリカがケイ肺病の原因となるため環境衛生上問題になる上に、りん片状シリカはうろこ状の薄片が積層して構成されているため、屈曲や捩れを生じ、歪曲した形状になりやすく、また比表面積が小さいという欠点を有している。   In addition, flaky low crystalline silica produced by hydrothermal treatment of a silica sol obtained by electrodialysis of a dilute solution of water glass is also known (see Patent Document 3). The crystalline silica that causes silicosis causes problems in environmental hygiene, and the flake-like silica is composed of lamellar scaly flakes, resulting in bending and twisting into a distorted shape. It has a drawback that it is easily formed and the specific surface area is small.

また、ケイ酸ナトリウムを硫酸で処理してナトリウムを除去することにより、ビール懸濁液中のタンパク質やポリフェノールを吸着除去するのに好適なシリカゲルが得られることも知られている(特許文献4参照)。   It is also known that silica gel suitable for adsorbing and removing proteins and polyphenols in beer suspension can be obtained by treating sodium silicate with sulfuric acid to remove sodium (see Patent Document 4). ).

しかしながら、このようなシリカゲルは濾過助剤としての機能を有しない上に、粒子表面においては優れた吸着性を示すが、粒子内部における吸着性は低いし、さらに吸着性を高めようとして微粉砕すると、固液分離の際に目詰りを生じるという欠点がある。   However, such silica gel does not have a function as a filter aid and also exhibits excellent adsorptivity on the particle surface, but the adsorptivity inside the particle is low, and if pulverized to further increase the adsorptivity, There is a drawback that clogging occurs during solid-liquid separation.

このようなシリカゲルのもつ欠点を改良したものとして、本発明者らは、先に、長さ5〜50μm、幅1〜20μm、厚さ0.05〜0.5μm、長さと厚さのアスペクト比100〜300、平均細孔径1〜20nm、全細孔体積0.1〜1.5ml/g、BET比表面積200〜500m2/gを有し、かつX線回折スペクトルにおいて、21°付近及び26.5°付近に2θのピークが存在しないことを特徴とする薄板状シリカ多孔体、及び繊維長5〜50μm、繊維径0.05〜0.5μm、繊維長と繊維径とのアスペクト比100〜300、平均細孔径1〜20nm、全細孔体積0.1〜1.5ml/g、BET比表面積300〜800m2/gを有し、かつX線回折スペクトルにおいて、21°付近及び26.5°付近に2θのピークが存在しないことを特徴とする繊維状シリカ多孔体を提案した(特許文献5参照)。 As an improvement on the disadvantages of such silica gel, the present inventors previously described a length ratio of 5 to 50 μm, a width of 1 to 20 μm, a thickness of 0.05 to 0.5 μm, and an aspect ratio of length to thickness. 100 to 300, average pore diameter of 1 to 20 nm, total pore volume of 0.1 to 1.5 ml / g, BET specific surface area of 200 to 500 m 2 / g, and in the X-ray diffraction spectrum, around 21 ° and 26 A thin plate-like silica porous material having no 2θ peak around 5 °, a fiber length of 5 to 50 μm, a fiber diameter of 0.05 to 0.5 μm, and an aspect ratio of the fiber length to the fiber diameter of 100 to 100 300, average pore diameter of 1 to 20 nm, total pore volume of 0.1 to 1.5 ml / g, BET specific surface area of 300 to 800 m 2 / g, and in the X-ray diffraction spectrum, around 21 ° and 26.5 There is a 2θ peak near ° A fibrous silica porous body characterized by the absence of the porous silica was proposed (see Patent Document 5).

しかしながら、これらのシリカ多孔体は、生体組織の分離剤や吸着剤、化粧品基剤として用いるとき、生体親和性を欠き、十分な効果を発揮できないという欠点がある。
他方、ケイ酸化合物基材をカルシウム塩水溶液とリン酸塩水溶液に交互に浸漬し、基材表面に配向性をもつ骨類似のヒドロキシアパタイトを形成させることにより、生体高分子の分離剤や化粧品原料として好適なヒドロキシアパタイト複合体が得られることが知られている。
However, when these silica porous bodies are used as a biological tissue separating agent, adsorbent, or cosmetic base, they have a drawback that they lack biocompatibility and cannot exhibit sufficient effects.
On the other hand, by separating the silicate compound base material alternately in calcium salt aqueous solution and phosphate aqueous solution to form bone-like hydroxyapatite with orientation on the base material surface, biopolymer separating agent and cosmetic raw material It is known that a suitable hydroxyapatite complex can be obtained.

しかしながら、前記した薄板状又は繊維状シリカ多孔体にヒドロキシアパタイトを被覆し、優れた吸着性能及び分離性能を示し、固体分離に際し目詰りを生じることがなく、しかも生体組織に対する親和性を向上させた複合体とすることはこれまで全く知られていなかった。   However, the thin plate-like or fibrous silica porous body is coated with hydroxyapatite, exhibits excellent adsorption performance and separation performance, does not cause clogging during solid separation, and has improved affinity to living tissue. It has never been known to make a composite.

特開平5−262514号公報(特許請求の範囲その他)JP-A-5-262514 (Claims and others) 特開2000−247630号公報(特許請求の範囲その他)JP 2000-247630 A (Claims and others) 特開平11−29317号公報(特許請求の範囲その他)JP-A-11-29317 (Claims and others) 特開平11−138017号公報(特許請求の範囲その他)Japanese Patent Laid-Open No. 11-138017 (claims and others) 特願2003−418740号(特許請求の範囲その他)Japanese Patent Application No. 2003-418740 (Claims and others)

本発明は、生体組織に対して良好な親和性を有し、吸着性能、分離性能が優れ、しかも使用後の固液分離工程において濾材として目詰りを生じることのない吸着材、あるいは生体組織との親和性を必要とする化粧料基材として好適な新規なシリカ多孔体材料を提供することを目的としてなされたものである。   The present invention has a good affinity for living tissue, has excellent adsorption performance and separation performance, and does not cause clogging as a filter medium in a solid-liquid separation process after use, or living tissue The object of the present invention is to provide a novel porous silica material suitable as a cosmetic base material that requires a high affinity.

本発明者らは、所定の割合のケイ酸原料と石灰原料とを水又は水酸化アルカリ水溶液中で水熱反応を行わせ、ケイ酸カルシウム含有スラリーを調製したのち、酸を加えて副生する酸化カルシウムの一部を溶解除去して多孔体を形成させ、さらにリン酸又はリン酸発生物質を加えて、残存する酸化カルシウムと反応させれば、ヒドロキシアパタイトが生成し、シリカ多孔体の表面がヒドロキシアパタイトで被覆されることを見出し、この知見に基づいて本発明をなすに至った。   The inventors of the present invention perform hydrothermal reaction of a predetermined proportion of a silicic acid raw material and a lime raw material in water or an aqueous alkali hydroxide solution to prepare a calcium silicate-containing slurry, and then add acid to produce a by-product. When a part of calcium oxide is dissolved and removed to form a porous body, and phosphoric acid or a phosphoric acid generating substance is further added and reacted with the remaining calcium oxide, hydroxyapatite is generated, and the surface of the porous silica body is The present inventors have found that it is coated with hydroxyapatite and have come to make the present invention based on this finding.

すなわち、本発明は、長さ0.3〜50μm、幅0.1〜20μm、厚さ0.05〜1.5μm、長さと厚さのアスペクト比5〜300、平均細孔径1〜30nm、全細孔体積0.1〜1.5ml/g、BET比表面積50〜800m2/gを有し、かつX線回折スペクトルにおいて、ヒドロキシアパタイト固有の26°付近及び32°付近に2θのピークが存在することを特徴とするヒドロキシアパタイト被覆シリカ多孔体、及び平均粒子径20μm以下のケイ酸原料粉末と石灰原料粉末とを、それぞれSiO2及びCaOに換算したときのモル比CaO/SiO2が0.6〜5.0になる割合で混合し、水又は水酸化アルカリ水溶液の存在下で水熱反応を行わせて、ケイ酸カルシウム含有水性スラリーを調製したのち、酸性物質を加えてスラリー中の酸化カルシウムの一部を溶解除去して多孔体を形成させ、次いでさらにリン酸又はリン酸発生物質を加えて、残存する酸化カルシウムと反応させてヒドロキシアパタイトを形成させて多孔体の表面をヒドロキシアパタイトで被覆することを特徴とするヒドロキシアパタイト被覆シリカ多孔体の製造方法を提供するものである。 That is, the present invention has a length of 0.3 to 50 μm, a width of 0.1 to 20 μm, a thickness of 0.05 to 1.5 μm, an aspect ratio of length to thickness of 5 to 300, an average pore diameter of 1 to 30 nm, It has a pore volume of 0.1 to 1.5 ml / g, a BET specific surface area of 50 to 800 m 2 / g, and in the X-ray diffraction spectrum, there are 2θ peaks near 26 ° and 32 ° inherent to hydroxyapatite. When the hydroxyapatite-coated silica porous material and the silicic acid raw material powder and the lime raw material powder having an average particle diameter of 20 μm or less are converted into SiO 2 and CaO, respectively, the molar ratio CaO / SiO 2 is 0.00. After mixing at a ratio of 6 to 5.0 and causing a hydrothermal reaction in the presence of water or an aqueous alkali hydroxide solution to prepare a calcium silicate-containing aqueous slurry, an acidic substance is added to the slurry. A part of calcium oxide is dissolved and removed to form a porous body, and then phosphoric acid or a phosphoric acid generating substance is further added to react with the remaining calcium oxide to form hydroxyapatite to form the surface of the porous body. The present invention provides a method for producing a hydroxyapatite-coated silica porous material, which is coated with hydroxyapatite.

本発明のヒドロキシアパタイト被覆シリカ多孔体のベースとなるシリカ多孔体としては、特に限定はされないが、特定の物性をもつ薄板状又は繊維状シリカ多孔体が用いられる。この好ましい薄板状シリカ多孔体は、長さが5〜50μm、好ましくは10〜30μm、幅が1〜20μm、好ましくは5〜10μm、厚さが0.05〜0.5μm、好ましくは0.1〜0.3μmのサイズであり、長さと厚さのアスペクト比が5〜100、好ましくは10〜50の範囲にある。また、このものは平均細孔径1〜20nm、好ましくは3〜10nmの細孔を有し、全細孔体積は0.1〜1.5ml/g、好ましくは0.3〜1.0ml/gであり、かつBET比表面積50〜300m2/g、好ましくは100〜250m2/gを有している。 The silica porous body serving as the base of the hydroxyapatite-coated silica porous body of the present invention is not particularly limited, but a thin plate-like or fibrous silica porous body having specific physical properties is used. This preferred thin plate-like silica porous body has a length of 5 to 50 μm, preferably 10 to 30 μm, a width of 1 to 20 μm, preferably 5 to 10 μm, and a thickness of 0.05 to 0.5 μm, preferably 0.1. The aspect ratio of length to thickness is 5 to 100, preferably 10 to 50. Further, it has pores having an average pore diameter of 1 to 20 nm, preferably 3 to 10 nm, and the total pore volume is 0.1 to 1.5 ml / g, preferably 0.3 to 1.0 ml / g. , and the and a BET specific surface area of 50 to 300 m 2 / g, preferably it has a 100 to 250 m 2 / g.

また、好ましい繊維状シリカ多孔体は、繊維長が5〜50μm、好ましくは10〜30μm、繊維径が0.05〜0.5μm、好ましくは0.1〜0.3μmのサイズであり、繊維長と繊維径のアスペクト比が100〜300、好ましくは70〜250の範囲にある。また、このものは平均細孔径1〜20nm、好ましくは3〜10nmの細孔を有し、全細孔体積は0.1〜1.5ml/g、好ましくは0.3〜1.0ml/gであり、かつBET比表面積300〜800m2/g、好ましくは450〜550m2/gを有している。 Further, a preferred fibrous silica porous body has a fiber length of 5 to 50 μm, preferably 10 to 30 μm, a fiber diameter of 0.05 to 0.5 μm, preferably 0.1 to 0.3 μm, and a fiber length. The aspect ratio of the fiber diameter is in the range of 100 to 300, preferably 70 to 250. Further, it has pores having an average pore diameter of 1 to 20 nm, preferably 3 to 10 nm, and the total pore volume is 0.1 to 1.5 ml / g, preferably 0.3 to 1.0 ml / g. And a BET specific surface area of 300 to 800 m 2 / g, preferably 450 to 550 m 2 / g.

これらのシリカ多孔体は、文献未載の新規物質であり、比較的大きい粒径の粒子のケイ酸原料を用いて得られる従来の薄板状シリカ多孔体がCuKα線を用いて測定したX線回折スペクトルにおいて21°付近及び26.5°付近に顕著なピークを示すのに対し、このピークを全く示さないことによって特徴付けられている。   These silica porous materials are new materials not yet described in the literature, and X-ray diffraction measured by a conventional thin plate-like silica porous material obtained using a silicic acid raw material having a relatively large particle diameter using CuKα rays. In the spectrum, it is characterized by showing prominent peaks around 21 ° and 26.5 °, while not showing any peaks.

この薄板状シリカ多孔体は例えば、平均粒子径が20μm以下のケイ酸原料と石灰原料とを、それぞれSiO2及びCaOに換算したときのモル比CaO/SiO2が0.6〜5.0になる割合で混合し、水又は水酸化アルカリ水溶液の存在下で水熱反応を行わせて、薄板状ケイ酸カルシウム含有水性スラリーを調製したのち、これに酸性物質を導入し、この中の酸化カルシウムを徐々に溶解除去し、薄板状シリカ多孔体を形成させることによって、また繊維状シリカ多孔体は、例えば平均粒子径が20μm以下のケイ酸原料と石灰原料とを、それぞれSiO2及びCaOに換算したときのモル比CaO/SiO2が0.6〜5.0になる割合で混合し、水又は水酸化アルカリ水溶液の存在下で水熱反応を行わせ、まず薄板状ケイ酸カルシウム含有水性スラリーを生成させ、さらに水熱反応を継続させて、繊維状ケイ酸カルシウム含有水性スラリーへと転移させたのち、これに酸性物質を導入し、この中の酸化カルシウムを徐々に溶解除去して、繊維状シリカ多孔体を形成させることによって製造される。 This thin plate-like silica porous body has a molar ratio CaO / SiO 2 of 0.6 to 5.0 when, for example, a silicic acid raw material and a lime raw material having an average particle diameter of 20 μm or less are converted into SiO 2 and CaO, respectively. The mixture is mixed at a ratio, and hydrothermal reaction is carried out in the presence of water or an aqueous alkali hydroxide solution to prepare a thin plate-like calcium silicate-containing aqueous slurry. Then, an acidic substance is introduced into this, and calcium oxide therein Is gradually dissolved and removed to form a thin plate-like silica porous body, and the fibrous silica porous body converts, for example, a silicic acid raw material and a lime raw material having an average particle diameter of 20 μm or less into SiO 2 and CaO, respectively. weight ratio to a molar ratio CaO / SiO 2 when the is 0.6 to 5.0, in the presence of water or an aqueous alkali hydroxide solution to perform the hydrothermal reaction, first lamellar calcium silicate containing After forming an aqueous slurry and continuing the hydrothermal reaction to transfer to an aqueous slurry containing fibrous calcium silicate, an acidic substance is introduced into this, and the calcium oxide therein is gradually dissolved and removed. It is manufactured by forming a fibrous silica porous body.

そして、上記の酸性物質による酸化カルシウムを溶解除去する際に、まず酸化カルシウムの一部を溶解除去させる量の酸性物質を用いてシリカ多孔体を形成させたのち、さらにリン酸又はリン酸発生物質を加えて、残りの酸化カルシウムと反応させると、ヒドロキシアパタイトが生成し、これが多孔体の表面を被覆するので、本発明のヒドロキシアパタイト被覆シリカ多孔体が得られる。   When dissolving and removing calcium oxide by the above acidic substance, first, a porous silica is formed using an acidic substance in an amount that dissolves and removes a part of calcium oxide, and then phosphoric acid or a phosphoric acid generating substance. Is added to react with the remaining calcium oxide to produce hydroxyapatite, which covers the surface of the porous body, so that the hydroxyapatite-coated silica porous body of the present invention is obtained.

上記のリン酸発生物質としては、例えばリン酸三ナトリウム、リン酸三カリウムのようなリン酸三アルカリ金属塩、リン酸水素二ナトリウム、リン酸水素二カリウムのようなリン酸水素二アルカリ金属塩、リン酸二水素ナトリウム、リン酸二水素カリウムのようなリン酸二水素アルカリ金属塩及び対応するアンモニウム塩が用いられる。   Examples of the phosphoric acid-generating substance include trialkali metal phosphates such as trisodium phosphate and tripotassium phosphate, dialkali metal phosphates such as disodium hydrogen phosphate and dipotassium hydrogen phosphate. Alkali metal dihydrogen phosphates such as sodium dihydrogen phosphate, potassium dihydrogen phosphate and the corresponding ammonium salts are used.

なお、上記の薄板状シリカ多孔体の製造に際しては、繊維状シリカ多孔体や二次粒子凝集体が副生するが、水熱反応を薄板状ケイ酸カルシウムの種結晶の存在下で行うと、これらの副生物の生成が抑制され、選択的に薄板状シリカ多孔体を得ることができるので好ましい。   In the production of the lamellar silica porous body, fibrous silica porous bodies and secondary particle aggregates are by-produced, but when the hydrothermal reaction is carried out in the presence of lamellar calcium silicate seed crystals, The production of these by-products is suppressed, and a thin plate-like silica porous body can be selectively obtained, which is preferable.

この種結晶としては、あらかじめケイ酸原料粉末と石灰原料粉末とを水又は水酸化アルカリ水溶液中で水熱反応させて得られる反応混合物の中から、繊維状ケイ酸カルシウム及び二次粒子凝集体のようなきょう雑物を除き、純粋な薄板状ケイ酸カルシウム結晶として回収したものを用いる。   As this seed crystal, from a reaction mixture obtained by hydrothermal reaction of silicate raw material powder and lime raw material powder in water or an aqueous alkali hydroxide solution in advance, fibrous calcium silicate and secondary particle aggregates Excluding such impurities, those recovered as pure lamellar calcium silicate crystals are used.

この種結晶は、ケイ酸原料と石灰原料との合計質量に基づき0.01〜10質量%の割合で添加される。この種結晶としては、通常、長径5〜50μm、厚さ0.05〜0.5μm、長径と厚さのアスペクト比100〜300のものが用いられるが、この種結晶のサイズを適当に選択することにより、得られる薄板状ケイ酸カルシウムの長さを1〜30μmの範囲で調節することができる。   This seed crystal is added at a ratio of 0.01 to 10% by mass based on the total mass of the silicic acid raw material and the lime raw material. As this seed crystal, those having a major axis of 5 to 50 μm, a thickness of 0.05 to 0.5 μm, and an aspect ratio of the major axis to the thickness of 100 to 300 are usually used. The size of the seed crystal is appropriately selected. Thereby, the length of the obtained sheet-like calcium silicate can be adjusted in the range of 1 to 30 μm.

種結晶を添加しない場合には、原料のCaO/SiO2モル比を1.5にした場合、水熱反応条件を適切に選ぶことにより、薄板状ケイ酸カルシウムを生成させることが可能であったが、球状の二次粒子凝集体の混入を避けることができず、この混入を避けるためにはCaO/SiO2モル比を1.9以上にする必要があった。
しかし、本発明方法においては、この種結晶の添加によりCaO/SiO2モル比が1.2以下においても安定的に純粋な薄板状ケイ酸カルシウムを生成させることができる。
In the case where no seed crystal was added, it was possible to produce thin plate-like calcium silicate by appropriately selecting the hydrothermal reaction conditions when the raw material CaO / SiO 2 molar ratio was 1.5. However, mixing of spherical secondary particle aggregates could not be avoided, and in order to avoid this mixing, the CaO / SiO 2 molar ratio had to be 1.9 or more.
However, in the method of the present invention, pure lamellar calcium silicate can be stably produced even when the CaO / SiO 2 molar ratio is 1.2 or less by adding this seed crystal.

また、上記の二次粒子凝集体の形成を抑制するには、ケイ酸原料と石灰原料の合計質量の10倍以上の水又はアルカリ水溶液を用いなければならなかったが、種結晶の添加により4倍程度であっても、二次粒子凝集体の形成なしに薄板状ケイ酸カルシウムを生成させることができる。   Further, in order to suppress the formation of the secondary particle aggregates, water or an alkaline aqueous solution that is 10 times or more the total mass of the silicic acid raw material and the lime raw material must be used. Even if it is about double, lamellar calcium silicate can be produced without forming secondary particle aggregates.

さらに、種結晶を添加しない場合、CaO/SiO2モル比を最適の2.0に選んでも、水熱反応温度のわずかな差により、球状の二次粒子凝集体や繊維状ケイ酸カルシウムを生じ、品質的に不安定になるのを免れなかったが、種結晶の添加により、このような形状の異なる生成物の混入を抑制することができ、安定した品質の薄板状ケイ酸カルシウムを得ることができる。 Furthermore, when seed crystals are not added, even if the CaO / SiO 2 molar ratio is selected to the optimum 2.0, spherical secondary particle aggregates and fibrous calcium silicate are produced due to slight differences in the hydrothermal reaction temperature. Although it was unavoidable that the quality became unstable, the addition of seed crystals can suppress the mixing of products with different shapes, and obtain a thin plate-like calcium silicate of stable quality. Can do.

上記の方法において用いられるケイ酸原料としては、通常ケイ酸原料として用いられているものであればよく、特に制限はない。このようなケイ酸原料としては、例えば石英、ケイ砂、非晶質ケイ酸、ホワイトカーボン、ナトリウム長石、カリ長石、ガラス、陶石、シラス、フライアッシュ、スラグ、パーライトなどのケイ酸含有物質を挙げることができる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。   The silicic acid raw material used in the above method is not particularly limited as long as it is usually used as a silicic acid raw material. Examples of such silicic acid raw materials include silica-containing substances such as quartz, silica sand, amorphous silicic acid, white carbon, sodium feldspar, potash feldspar, glass, porcelain stone, shirasu, fly ash, slag, and pearlite. Can be mentioned. These may be used alone or in combination of two or more.

これらのケイ酸原料は、平均粒子径20μm以下であることが必要であるが、スラリー中の分散性、水熱反応性、経済性など、特に分散したケイ酸カルシウムの板状化及び繊維状化の面から、通常平均粒子径0.01〜20μm、好ましくは0.1〜18μmの範囲のものが選ばれる。   These silicate raw materials need to have an average particle diameter of 20 μm or less, but especially dispersibility in the slurry, hydrothermal reactivity, economy, etc., especially the dispersed calcium silicate plate and fiber In view of the above, an average particle diameter of 0.01 to 20 μm, preferably 0.1 to 18 μm is selected.

次に、このケイ酸原料と併用される石灰原料としては、通常の石灰原料として用いられるもの、例えば生石灰(酸化カルシウム)、消石灰(水酸化カルシウム)などの粉末を用いることができる。これらは単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。この石灰原料の粘度としては、ケイ酸原料と同じ平均粒子径をもつものが好ましいが、それ以外の粒度のものを用いても差し支えない。   Next, as a lime raw material used in combination with this silicic acid raw material, powders such as quick lime (calcium oxide) and slaked lime (calcium hydroxide) used as a normal lime raw material can be used. These may be used alone or in combination of two or more. The viscosity of the lime raw material is preferably one having the same average particle diameter as that of the silicic acid raw material, but other sized particle may be used.

前記シリカ原料と石灰原料は、CaO/SiO2モル比が0.6〜5.0、好ましくは1.0〜4.0の範囲になるような割合で用いることが望ましい。CaO/SiO2モル比0.6以下、又は5.0以上でもケイ酸カルシウムは得られるが、未反応シリカが多量に残り、これを除去しなければならないため、経済的でない。特に好ましい範囲は、1.8以上、特に2.0付近である。 The silica raw material and the lime raw material are desirably used in such a ratio that the CaO / SiO 2 molar ratio is in the range of 0.6 to 5.0, preferably 1.0 to 4.0. Calcium silicate can be obtained even at a CaO / SiO 2 molar ratio of 0.6 or less, or 5.0 or more, but a large amount of unreacted silica remains and must be removed, which is not economical. A particularly preferable range is 1.8 or more, particularly around 2.0.

水熱反応は、上記のケイ酸原料と石灰原料とを所定の割合で水又は水酸化アルカリ水溶液中に分散させて行う。この際の水酸化アルカリ水溶液としては、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムのようなアルカリ金属水酸化物を水に溶解して調製したものが用いられる。これらのアルカリ水酸化物は、単独で用いてもよいし、また2種類以上の混合物として用いてもよい。   The hydrothermal reaction is performed by dispersing the above-described silicic acid raw material and lime raw material in water or an alkali hydroxide aqueous solution at a predetermined ratio. As the alkali hydroxide aqueous solution at this time, for example, a solution prepared by dissolving an alkali metal hydroxide such as lithium hydroxide, sodium hydroxide, or potassium hydroxide in water is used. These alkali hydroxides may be used alone or as a mixture of two or more.

この場合のアルカリ水溶液の濃度としては、0.01〜1.0モルが好ましい。アルカリ水溶液の濃度が0.01モル未満では、生成するケイ酸カルシウムの結晶形態を変化させたり、水熱反応を促進させるアルカリ添加効果が十分に発揮されない。また、1.0モルより高くしても、アルカリ添加効果の向上は認められない。   In this case, the concentration of the alkaline aqueous solution is preferably 0.01 to 1.0 mol. When the concentration of the aqueous alkali solution is less than 0.01 mol, the effect of adding an alkali for changing the crystal form of the generated calcium silicate or promoting the hydrothermal reaction is not sufficiently exhibited. Moreover, even if it exceeds 1.0 mol, the improvement of an alkali addition effect is not recognized.

一方、シリカ原料と石灰原料を含む水又は水酸化アルカリ水溶液スラリーの濃度については特に制限はないが、水熱反応性及び体積効率などを考慮すると、ケイ酸原料と石灰原料との合計量に対し、水性溶媒を2〜30倍質量の割合で含むスラリーが好ましい。   On the other hand, the concentration of water or alkali hydroxide aqueous solution slurry containing silica raw material and lime raw material is not particularly limited, but considering hydrothermal reactivity and volume efficiency, the total amount of silicic acid raw material and lime raw material A slurry containing an aqueous solvent at a ratio of 2 to 30 times mass is preferable.

水熱反応は、例えばオートクレーブ中において、100〜250℃の温度の範囲で実施される。この水熱反応は自生圧力下で進行するが、必要に応じ適当に加圧して反応を行ってもよい。また、反応中は反応速度を促進させるために、必要に応じて撹拌を行ってもよい。   The hydrothermal reaction is carried out in a temperature range of 100 to 250 ° C., for example, in an autoclave. This hydrothermal reaction proceeds under an autogenous pressure, but the reaction may be carried out by appropriately applying pressure as necessary. Moreover, in order to accelerate | stimulate reaction rate during reaction, you may stir as needed.

水熱反応温度が100℃未満では反応速度が遅すぎて長時間を要し、実用的でなく、また250℃を超えると自生圧力が高くなりすぎ、装置面などにおいて経済的に不利になる。反応時間は、スラリ−濃度、原料の種類や粒度、反応温度などに左右され、一概に定めることはできないが、通常は0.5〜24時間程度で十分である。   If the hydrothermal reaction temperature is less than 100 ° C., the reaction rate is too slow, requiring a long time, and is not practical. If the reaction temperature exceeds 250 ° C., the self-generated pressure becomes too high, which is economically disadvantageous in terms of equipment. The reaction time depends on the slurry concentration, the type and particle size of the raw material, the reaction temperature, and the like, and cannot be determined generally, but usually about 0.5 to 24 hours is sufficient.

次に、シリカ多孔体を形成させるために水熱反応を行ったのち、その反応混合物に酸性物質を導入し、副生する酸化カルシウムの一部を溶解、除去する。   Next, after carrying out a hydrothermal reaction to form a porous silica material, an acidic substance is introduced into the reaction mixture, and a part of the by-produced calcium oxide is dissolved and removed.

この際の酸性物質としては、例えば塩酸、硫酸、硝酸、炭酸のような無機酸やギ酸、シュウ酸、酢酸、プロピオン酸、マレイン酸、乳酸、酸性陽イオン交換剤のような有機酸が用いられる。なお、この無機酸は硝酸アンモニウムのような塩の形でもよい。   Examples of the acidic substance used here include inorganic acids such as hydrochloric acid, sulfuric acid, nitric acid, and carbonic acid, and organic acids such as formic acid, oxalic acid, acetic acid, propionic acid, maleic acid, lactic acid, and acidic cation exchangers. . The inorganic acid may be in the form of a salt such as ammonium nitrate.

この無機酸としては、塩酸、硝酸又はそれらの混合物が好ましいが、これらは、電離度が大きく、急激にpHを降下させるので、pHが急激に降下しないように希釈した酸水溶液を徐々に添加する。このようにすれば、ケイ酸カルシウムの形態を変化させることなく、酸化カルシウムが除去される。なお、ケイ酸カルシウムの結晶性に応じては、ケイ酸カルシウムスラリーを室温ないし100℃の範囲で加熱することによって、より効率的に酸化カルシウムを除去することができる。   As the inorganic acid, hydrochloric acid, nitric acid or a mixture thereof is preferable. However, since these have a high degree of ionization and the pH is rapidly lowered, a dilute acid aqueous solution is gradually added so that the pH does not fall abruptly. . If it does in this way, calcium oxide will be removed, without changing the form of calcium silicate. Depending on the crystallinity of calcium silicate, calcium oxide can be more efficiently removed by heating the calcium silicate slurry in the range of room temperature to 100 ° C.

これに対し、電離度が小さい酢酸、炭酸などの場合、高濃度の酸で直接ケイ酸カルシウムを処理しても、酸化カルシウムの除去も徐々に進行し、ケイ酸カルシウムの形態が維持された薄板状シリカ多孔体となる。また、ケイ酸カルシウムスラリーを室温ないし100℃の範囲で加熱すると電離度が大きくなり、酸化カルシウムの除去が促進される。   On the other hand, in the case of acetic acid, carbonic acid, etc. with low ionization degree, even if calcium silicate is directly treated with a high concentration acid, the removal of calcium oxide gradually proceeds and the form of calcium silicate is maintained. A porous silica material is obtained. Further, when the calcium silicate slurry is heated in the range of room temperature to 100 ° C., the degree of ionization increases and the removal of calcium oxide is promoted.

なお、炭酸で処理したケイ酸カルシウムは、薄板状シリカ多孔体と水に難溶性の炭酸カルシウムが得られるため、炭酸カルシウムを塩酸などで溶解除去する必要がある。この酸処理に必要な時間は、ケイ酸カルシウムの結晶化度、使用する酸の種類、濃度、処理条件などにより左右されるが、通常は1〜120分間の範囲である。   The calcium silicate treated with carbonic acid can be obtained by dissolving and removing calcium carbonate with hydrochloric acid or the like because calcium carbonate that is sparingly soluble in the thin plate-like silica porous material and water is obtained. The time required for this acid treatment depends on the crystallinity of calcium silicate, the type of acid used, the concentration, the treatment conditions, etc., but is usually in the range of 1 to 120 minutes.

ケイ酸カルシウムから酸化カルシウムを除去するために用いる酸としては、有機酸も用いることができる。このような有機酸としては、ギ酸、酢酸、シュウ酸、プロピオン酸、マレイン酸、乳酸及び酸性陽イオン交換剤などが好ましい。   As an acid used for removing calcium oxide from calcium silicate, an organic acid can also be used. As such an organic acid, formic acid, acetic acid, oxalic acid, propionic acid, maleic acid, lactic acid, an acidic cation exchanger and the like are preferable.

この酸処理としては、水熱反応により得られるケイ酸カルシウムスラリーに、二酸化炭素ガスを吹き込む方法が、酸化カルシウムを徐々に溶解除去しうる点で有利である。   As this acid treatment, a method in which carbon dioxide gas is blown into a calcium silicate slurry obtained by a hydrothermal reaction is advantageous in that calcium oxide can be gradually dissolved and removed.

このようにして、長さ0.3〜50μm、幅0.1〜20μm、厚さ0.05〜1.5μm、長さと厚さのアスペクト比5〜300、平均細孔径1〜30nm、全細孔体積0.1〜1.5ml/g、BET比表面積50〜800m2/gを有し、かつX線回折スペクトルにおいて、ヒドロキシアパタイト固有の26°付近及び32°付近に2θのピークが存在するヒドロキシアパタイト被覆シリカ多孔体を得ることができる。 Thus, length 0.3-50 μm, width 0.1-20 μm, thickness 0.05-1.5 μm, length-to-thickness aspect ratio 5-300, average pore diameter 1-30 nm, total fineness It has a pore volume of 0.1 to 1.5 ml / g, a BET specific surface area of 50 to 800 m 2 / g, and in the X-ray diffraction spectrum, there are 2θ peaks in the vicinity of 26 ° and 32 ° inherent to hydroxyapatite. A hydroxyapatite-coated silica porous material can be obtained.

本発明によれば、化粧品、生物組織用吸着剤、生物組織用分離剤などの生体親和性が要求される分野において好適に用いられる新規な材料であるヒドロキシアパタイト被覆シリカ多孔体が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the hydroxyapatite covering silica porous body which is a novel material used suitably in the field | area where biocompatibility is requested | required, such as cosmetics, the biological tissue adsorption agent, the biological tissue separation agent, is provided.

以上本発明の課題を解決するための手段について一般的な説明を記述したが、次に実施例により本発明を実施するための最良の形態を説明する。なお、各例中の物性は以下の方法によって求めたものである。   The general description of the means for solving the problems of the present invention has been described above. Next, the best mode for carrying out the present invention will be described by way of examples. In addition, the physical property in each case is calculated | required with the following method.

(1)シリカ原料の平均粒子径と粒度分布
レーザー回析・散乱式粒度分布測定装置を用い、粒子径は体積基準で、平均粒子径(メジアン径)及び粒度分布を求めた。
(1) Average particle size and particle size distribution of silica raw material Using a laser diffraction / scattering type particle size distribution measuring device, the particle size was determined on a volume basis, and the average particle size (median diameter) and particle size distribution were determined.

(2)寸法測定
走査型電子顕微鏡(SEM)を用い、約30個の寸法測定を行い、平均寸法とした。
(2) Dimensional measurement Using a scanning electron microscope (SEM), about 30 dimensional measurements were made to obtain an average dimension.

(3)BET比表面積、全細孔体積及び平均細孔径
BET比表面積測定装置を用い、250℃で十分に加熱脱気した試料について、窒素ガスを吸着させる多点法による比表面積、全細孔体積及び平均細孔径を求めた。
(3) BET specific surface area, total pore volume and average pore diameter Using a BET specific surface area measuring device, a specific surface area based on a multipoint method in which nitrogen gas is adsorbed on a sample sufficiently heated and degassed at 250 ° C., total pores Volume and average pore diameter were determined.

(4)ケイ酸含有率
ケイ酸含有率は、蛍光X線を用いて測定した。
(4) Silicic acid content The silicic acid content was measured using fluorescent X-rays.

(5)透過率(Darcy)
濾過面積9.6cm2の円柱状加圧濾過器を用い、濾過板の上に約3cmのケーク層を形成させ、次にケーク層を崩さないように200mlの水を注ぎ込み、0.5kg/cm2で加圧し、濾液の採取量から透過率(Darcy)を求めた。
(5) Transmittance (Darcy)
Using a cylindrical pressure filter with a filtration area of 9.6 cm 2 , a cake layer of about 3 cm was formed on the filter plate, and then 200 ml of water was poured so as not to break the cake layer, and 0.5 kg / cm The pressure was increased at 2 , and the permeability (Darky) was determined from the amount of filtrate collected.

(6)チトクロームCの吸着率
pH4に調整した500μg/mlのチトクロームC水溶液を100ml採取し、これに試料0.3gを投入して30℃の恒温インキュベ−ターで1時間浸透午後、5Cの濾紙を用いて濾過した。この濾液中のチトクロームCの残量を分光光度計を用いて吸光度(波長410nm)を測定し、初期濃度との差から吸着率を求めた。
(6) Adsorption rate of cytochrome C 100 ml of a 500 μg / ml cytochrome C aqueous solution adjusted to pH 4 was sampled, 0.3 g of the sample was put into this, and infiltrated with a constant temperature incubator at 30 ° C. for 1 hour in the afternoon 5 C filter paper And filtered. Absorbance (wavelength 410 nm) of the remaining amount of cytochrome C in the filtrate was measured using a spectrophotometer, and the adsorption rate was determined from the difference from the initial concentration.

(7)吸油量
JIS K5101に従い、試料1gを使用して行った。
(7) Oil absorption amount According to JIS K5101, 1 g of sample was used.

参考例(種結晶の調製方法)
平均粒子径0.5μmに粉砕した非晶質のケイ酸原料と生石灰原料とを、CaO/SiO2モル比が2.0になるように混合し、原料全量に対して、質量比で20倍質量の0.1モルのNaOH水溶液を加えてかきまぜ、スラリーを調製した。
次いで、このスラリーをオートクレーブ中に入れ、撹拌しながら200℃で4時間水熱反応を行い、ケイ酸カルシウムスラリーを得た。得られたケイ酸カルシウムスラリーが薄板状ケイ酸カルシウムであることをSEM観察で確認した後、スラリーを洗浄濾過して原料全量に対して、質量比で20倍質量の水を加え、ボールミルを用いて48時間湿式粉砕し、洗浄濾過して150℃で乾燥処理することにより、種結晶を得た。
Reference example (seed crystal preparation method)
Amorphous silicic acid raw material and quicklime raw material pulverized to an average particle size of 0.5 μm are mixed so that the CaO / SiO 2 molar ratio is 2.0, and the mass ratio is 20 times the total amount of the raw material. A 0.1 mol NaOH aqueous solution was added and stirred to prepare a slurry.
Next, this slurry was put in an autoclave and subjected to a hydrothermal reaction at 200 ° C. for 4 hours with stirring to obtain a calcium silicate slurry. After confirming that the obtained calcium silicate slurry is lamellar calcium silicate by SEM observation, the slurry was washed and filtered, and water of 20 times mass by mass ratio was added to the total amount of raw materials, and a ball mill was used. The seed crystals were obtained by wet pulverization for 48 hours, washing, filtering and drying at 150 ° C.

平均粒子径17.2μmに粉砕した非晶質のケイ酸原料と生石灰原料とを、CaO/SiO2モル比が2.0になるように混合し、原料全量に対して、質量比で10倍の0.2モルのNaOH水溶液を加えてかきまぜ、スラリーを調製した。次いで、このスラリーをオートクレーブ中に入れ、撹拌しながら200℃で8時間水熱反応を行い、ケイ酸カルシウムスラリーを得た。このスラリーを70℃まで冷却して、0.2モルのNaOH水溶液の中和及びケイ酸カルシウム中の酸化カルシウムの70質量%を溶解除去するのに必要な高濃度の酢酸(濃度99.7%)を添加し、60分間撹拌することによりシリカ多孔体を形成させたのち、残りの30質量%の酸化カルシウムをヒドロキシアパタイト化するのに十分な量のリン酸水素二アンモニウムを添加し、70℃において60分間攪拌しながら反応させ、次いで120℃で乾燥処理することにより、ヒドロキシアパタイト被覆薄板状シリカ多孔体を得た。
このもののは、X線回折スペクトルにおいて、26°付近及び32°付近に2θのピークを有していた。このものの物性を表1に示す。
Amorphous silicic acid raw material crushed to an average particle size of 17.2 μm and quicklime raw material are mixed so that the CaO / SiO 2 molar ratio is 2.0, and the mass ratio is 10 times the total amount of the raw material. A 0.2 mol NaOH aqueous solution was added and stirred to prepare a slurry. Next, this slurry was put in an autoclave and subjected to a hydrothermal reaction at 200 ° C. for 8 hours with stirring to obtain a calcium silicate slurry. The slurry was cooled to 70 ° C. to neutralize 0.2 mol NaOH aqueous solution and to dissolve and remove 70% by mass of calcium oxide in calcium silicate (concentration 99.7%). ) And stirring for 60 minutes to form a porous silica, and then adding a sufficient amount of diammonium hydrogen phosphate to hydroxyapatite the remaining 30% by mass of calcium oxide, The mixture was reacted for 60 minutes with stirring and then dried at 120 ° C. to obtain a hydroxyapatite-coated thin plate-like silica porous material.
This product had 2θ peaks around 26 ° and 32 ° in the X-ray diffraction spectrum. The physical properties of this product are shown in Table 1.

平均粒子径0.5μmに粉砕した非晶質のケイ酸原料と生石灰原料とを、CaO/SiO2モル比が1.5になるように混合し、原料全量に対して、質量比で参考例で得た種結晶0.1wt%と10倍の水を加えてかきまぜ、スラリーを調製した。
次いで、このスラリーをオートクレーブ中に入れ、撹拌しながら200℃で2時間水熱反応を行い、ケイ酸カルシウムスラリーを得た。
次に、ケイ酸カルシウムスラリーを70℃まで冷却し、ケイ酸カルシウム中の酸化カルシウムの70質量%を除去するのに必要な高濃度の酢酸(濃度99.7%)を添加し、10分間撹拌した。これを洗浄濾過した後水を加え、残りの酸化カルシウムをヒドロキシアパタイト化するのに十分な量のリン酸水素二アンモニウムを添加し、70℃で60分間撹拌した後、洗浄濾過して120℃で乾燥処理することにより、ヒドロキシアパタイト被覆薄板状シリカ多孔体を得た。
このもののは、X線回折スペクトルにおいて、26°付近及び32°付近に2θのピークを有していた。このものの物性を表1に示す。
Amorphous silicic acid raw material and quick lime raw material pulverized to an average particle size of 0.5 μm are mixed so that the CaO / SiO 2 molar ratio is 1.5, and a reference example in terms of mass ratio with respect to the total amount of raw material A slurry was prepared by adding 0.1 wt% of the seed crystal obtained in the above and 10 times water and stirring.
Next, this slurry was put in an autoclave and subjected to a hydrothermal reaction at 200 ° C. for 2 hours with stirring to obtain a calcium silicate slurry.
Next, the calcium silicate slurry is cooled to 70 ° C., and high-concentration acetic acid (concentration 99.7%) necessary for removing 70% by mass of calcium oxide in the calcium silicate is added and stirred for 10 minutes. did. After washing and filtering this, water is added, and a sufficient amount of diammonium hydrogen phosphate is added to make the remaining calcium oxide hydroxyapatite. The mixture is stirred at 70 ° C. for 60 minutes, then washed and filtered at 120 ° C. By carrying out the drying treatment, a hydroxyapatite-coated thin plate-like silica porous body was obtained.
This product had 2θ peaks around 26 ° and 32 ° in the X-ray diffraction spectrum. The physical properties of this product are shown in Table 1.

Figure 0004512689
Figure 0004512689

本発明のヒドロキシアパタイト被覆シリカ多孔体は、触媒担体、脱臭剤、濾過助剤、光拡散シート、インクジェット記録用シート、トナー、感光材料、顔料、太陽電池用基板、液晶表示素子、染料熱転写シート、耐熱性樹脂、紫外線遮蔽剤、ガス検出素子、各種フィラーなどとして有用である。   The hydroxyapatite-coated silica porous material of the present invention includes a catalyst carrier, a deodorizing agent, a filter aid, a light diffusion sheet, an inkjet recording sheet, a toner, a photosensitive material, a pigment, a solar cell substrate, a liquid crystal display element, a dye thermal transfer sheet, It is useful as a heat-resistant resin, an ultraviolet shielding agent, a gas detection element, various fillers, and the like.

Claims (10)

長さ0.3〜50μm、幅0.1〜20μm、厚さ0.05〜1.5μm、長さと厚さのアスペクト比5〜300、平均細孔径1〜30nm、全細孔体積0.1〜1.5ml/g、BET比表面積50〜800m2/gを有し、かつX線回折スペクトルにおいて、ヒドロキシアパタイト固有の26°付近及び32°付近に2θのピークが存在することを特徴とするヒドロキシアパタイト被覆シリカ多孔体。 Length 0.3-50 μm, width 0.1-20 μm, thickness 0.05-1.5 μm, length-to-thickness aspect ratio 5-300, average pore diameter 1-30 nm, total pore volume 0.1 It has a BET specific surface area of 50 to 800 m 2 / g and has 2θ peaks in the vicinity of 26 ° and 32 ° inherent to hydroxyapatite in the X-ray diffraction spectrum. Hydroxyapatite-coated silica porous material. 平均粒子径20μm以下のケイ酸原料粉末と石灰原料粉末とを、それぞれSiO2及びCaOに換算したときのモル比CaO/SiO2が0.6〜5.0になる割合で混合し、水又は水酸化アルカリ水溶液の存在下で水熱反応を行わせて、ケイ酸カルシウム含有水性スラリーを調製したのち、酸性物質を加えてスラリー中の酸化カルシウムの一部を溶解除去して多孔体を形成させ、次いでさらにリン酸又はリン酸発生物質を加えて、残存する酸化カルシウムと反応させてヒドロキシアパタイトを形成させて多孔体の表面をヒドロキシアパタイトで被覆することを特徴とするヒドロキシアパタイト被覆シリカ多孔体の製造方法。 Silica raw material powder and lime raw material powder having an average particle size of 20 μm or less are mixed at a ratio of molar ratio CaO / SiO 2 of 0.6 to 5.0 when converted to SiO 2 and CaO, respectively, A hydrothermal reaction is performed in the presence of an aqueous alkali hydroxide solution to prepare an aqueous slurry containing calcium silicate, and then an acidic substance is added to dissolve and remove part of the calcium oxide in the slurry to form a porous body. Then, further adding phosphoric acid or a phosphoric acid generating substance, reacting with the remaining calcium oxide to form hydroxyapatite, and covering the surface of the porous body with hydroxyapatite, Production method. 反応混合物から薄板状シリカ多孔体を分離、回収し、乾燥後さらに300〜1400℃で加熱処理する請求項2記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The method for producing a hydroxyapatite-coated silica porous material according to claim 2, wherein the thin plate-like silica porous material is separated and recovered from the reaction mixture, dried, and further heat-treated at 300 to 1400 ° C. ケイ酸原料が石英、ケイ砂、非晶質ケイ酸、ホワイトカーボン、長石、陶石、ガラス、シラス、フライアッシュ、スラグ及びパーライトの中から選ばれたケイ酸含有物質の少なくとも1種類である請求項2又は3記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The silicic acid raw material is at least one silicic acid-containing substance selected from quartz, silica sand, amorphous silicic acid, white carbon, feldspar, porcelain stone, glass, shirasu, fly ash, slag and perlite. Item 4. A method for producing a hydroxyapatite-coated silica porous material according to Item 2 or 3. 石灰原料が生石灰又は消石灰あるいはその混合物である請求項2、3又は4記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The method for producing a hydroxyapatite-coated silica porous body according to claim 2, 3 or 4, wherein the lime raw material is quick lime, slaked lime or a mixture thereof. 酸性物質が無機酸の水溶液又は希釈水溶液である請求項2ないし5のいずれかに記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The method for producing a porous hydroxyapatite-coated silica according to any one of claims 2 to 5, wherein the acidic substance is an aqueous solution or a diluted aqueous solution of an inorganic acid. 無機酸が塩酸、硫酸、硝酸及び炭酸の中から選ばれた少なくとも1種である請求項6記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The method for producing a porous hydroxyapatite-coated silica according to claim 6, wherein the inorganic acid is at least one selected from hydrochloric acid, sulfuric acid, nitric acid and carbonic acid. 酸性物質が有機酸水溶液である請求項2ないし5のいずれかに記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The method for producing a porous hydroxyapatite-coated silica material according to any one of claims 2 to 5, wherein the acidic substance is an organic acid aqueous solution. 有機酸が、ギ酸、酢酸、シュウ酸、プロピオン酸、マレイン酸、乳酸又は酸性陽イオン交換剤である請求項8記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。   The method for producing a porous hydroxyapatite-coated silica according to claim 8, wherein the organic acid is formic acid, acetic acid, oxalic acid, propionic acid, maleic acid, lactic acid or an acidic cation exchanger. 酸性物質がガス状二酸化炭素である請求項2ないし5のいずれかに記載のヒドロキシアパタイト被覆シリカ多孔体の製造方法。
The method for producing a porous hydroxyapatite-coated silica material according to any one of claims 2 to 5, wherein the acidic substance is gaseous carbon dioxide.
JP2005104439A 2005-03-31 2005-03-31 Hydroxyapatite-coated silica porous material and method for producing the same Expired - Fee Related JP4512689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104439A JP4512689B2 (en) 2005-03-31 2005-03-31 Hydroxyapatite-coated silica porous material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104439A JP4512689B2 (en) 2005-03-31 2005-03-31 Hydroxyapatite-coated silica porous material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006282446A JP2006282446A (en) 2006-10-19
JP4512689B2 true JP4512689B2 (en) 2010-07-28

Family

ID=37404746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104439A Expired - Fee Related JP4512689B2 (en) 2005-03-31 2005-03-31 Hydroxyapatite-coated silica porous material and method for producing the same

Country Status (1)

Country Link
JP (1) JP4512689B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822007B2 (en) * 2007-01-31 2011-11-24 小野田化学工業株式会社 Fluorine removal agent and method for producing the same
JP5692587B2 (en) * 2011-03-14 2015-04-01 株式会社リコー Toner, developer, image forming method, and process cartridge
EP3550658A4 (en) * 2016-12-02 2019-11-27 Asahi Kasei Kabushiki Kaisha Inorganic particles for nonaqueous electrolyte battery

Also Published As

Publication number Publication date
JP2006282446A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JP5128040B2 (en) Precipitated silica and silica gels with and without deposited carbon from biomass ash solutions and processes
CN102459470A (en) Process to prepare a surface-reacted calcium carbonate implementing a weak acid, resulting products and uses thereof
JP2007070164A (en) Silica-calcium carbonate composite particle, its producing method and pigment, filler or paper containing it
JP4613348B2 (en) Method for producing thin plate-like porous silica
Dastoorian et al. Fabrication of poorly crystalline hydroxyapatite nano-particles by rapid auto-ignition route as efficient adsorbent for removal of disperse blue dye
JP5164033B2 (en) Method for producing silica porous aggregate
US8580226B2 (en) Synthesis of sodium titanate and ion exchange use thereof
JP4512689B2 (en) Hydroxyapatite-coated silica porous material and method for producing the same
Feng et al. Preparation of novel porous hydroxyapatite sheets with high Pb2+ adsorption properties by self-assembly non-aqueous precipitation method
Lahnafi et al. NaA zeolite-clay composite membrane formulation and its use as cost-effective water softener
JP5019556B2 (en) Porous particles and method for producing the same
JP2005179086A (en) Planar silica porous body, fibrous silica porous body and their manufacturing method
US4226636A (en) Production of calcium silicate having high specific bulk volume and calcium silicate-gypsum composite
JP3674858B2 (en) Method for producing high specific surface area calcium hydroxide particles
JP3376826B2 (en) Plate-like calcium carbonate-based spherical composite and method for producing the same
JP4096055B2 (en) Plate-like calcium silicate and method for producing the same, plate-like silica porous material obtained from plate-like calcium silicate and method for producing the same
JP6670534B2 (en) Phosphorus recovery material and method for producing the same
JP2004175644A (en) Magnesia particle and its manufacturing method
JP3894518B2 (en) Scale-like low crystalline silica and process for producing the same
JP4729725B2 (en) Silica-based highly active adsorbent material and method for producing the same
JP5099349B2 (en) Adsorbent
JP4189652B2 (en) Adsorbent
JP5386678B2 (en) Hydroxyapatite-containing body, hydroxyapatite-zeolite composite, hydroxyapatite, hydroxyapatite-titanium oxide composite, method for producing hydroxyapatite-zeolite-titanium oxide composite, and functional fiber
Rusmili et al. Rapid synthesis and characterization of nanosodalite synthesized using rice husk ash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070807

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100305

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140521

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees