JP2008187754A - Heating element cooling structure and drive unit - Google Patents

Heating element cooling structure and drive unit Download PDF

Info

Publication number
JP2008187754A
JP2008187754A JP2007016280A JP2007016280A JP2008187754A JP 2008187754 A JP2008187754 A JP 2008187754A JP 2007016280 A JP2007016280 A JP 2007016280A JP 2007016280 A JP2007016280 A JP 2007016280A JP 2008187754 A JP2008187754 A JP 2008187754A
Authority
JP
Japan
Prior art keywords
fin
radiating
heating element
refrigerant
cooling structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007016280A
Other languages
Japanese (ja)
Other versions
JP4982194B2 (en
Inventor
Kazuo Aoki
一雄 青木
Junji Tsuruoka
純司 鶴岡
Seiji Yasui
誠二 安井
Yasushi Kamata
靖 蒲田
Hideyuki Miyahara
英行 宮原
Masaharu Kumagai
政晴 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Nakamura Manufacturing Co Ltd
Nakamura Seisakusho KK
Original Assignee
Aisin AW Co Ltd
Nakamura Manufacturing Co Ltd
Nakamura Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Nakamura Manufacturing Co Ltd, Nakamura Seisakusho KK filed Critical Aisin AW Co Ltd
Priority to JP2007016280A priority Critical patent/JP4982194B2/en
Publication of JP2008187754A publication Critical patent/JP2008187754A/en
Application granted granted Critical
Publication of JP4982194B2 publication Critical patent/JP4982194B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Motor Or Generator Frames (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a heating element cooling structure which has proper heat dissipation performance at low cost, and to obtain a drive unit which is improved in reliability, by comprising the heating element cooling structure. <P>SOLUTION: The heating element cooling structure is constituted in such a manner that a refrigerant space R is formed between a heat-dissipating face 53a, connected thermally to the heating element and an opposing face 2a formed so as to oppose the heat-dissipating face 53a, a plurality of heat-dissipating fins 56 arranged erect directed toward the opposing face 2a from the heat dissipation face 53a are arranged in the refrigerant space R, in parallel with one another; and an inter-fin passage Rp where a refrigerant circulates is formed between each of the plurality of adjacent fins 56. The structure also comprises the drive unit, and the heat-dissipating fins 56 are energized toward the opposing face 2a by being deformed elastically, in a state where the heat dissipation fins 56 abut against the opposing face 2a and are formed into a meandering shape which has a plurality of curved parts along the circulating direction of the refrigerant. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造に関する。   In the present invention, a refrigerant space is formed between a heat radiating surface thermally connected to the heat generator and a counter surface disposed to face the heat radiating surface, and the counter surface is formed in the refrigerant space from the heat radiating surface to the counter surface. The present invention relates to a heating element cooling structure in which a plurality of radiating fins erected toward the side are arranged in parallel, and an inter-fin passage through which the refrigerant flows is formed between adjacent ones of the radiating fins.

電動機を車両の駆動源とする場合、電動機はその制御のためのインバータやそのインバータ制御のためのECU等を必要とする。こうしたインバータ等は、電動機に対してパワーケーブルで接続されるものであるため、電動機とは分離させて適宜の位置に配設可能であるが、車載上の便宜性から、電動機を内蔵する駆動装置と一体化させる配置が採られる場合がある。
ところで、現状の技術では、インバータ等の耐熱温度は電動機の耐熱温度に対して低い。そこで、上記のようにインバータ等を、電動機を内蔵する駆動装置と一体化させる場合、インバータ等を熱的に保護すべく、電動機からインバータ等への直接的な熱伝達を遮断する何らかの手段が必要である。また、インバータ等は、自身の素子による発熱で温度上昇するため、耐熱温度以下に保つために冷却を必要とする。
When an electric motor is used as a drive source for a vehicle, the electric motor requires an inverter for controlling the electric motor and an ECU for controlling the inverter. Since such an inverter is connected to the electric motor with a power cable, it can be separated from the electric motor and disposed at an appropriate position. However, for convenience on the vehicle, a driving device incorporating the electric motor is provided. There is a case where an arrangement to be integrated is adopted.
By the way, with the current technology, the heat resistance temperature of the inverter or the like is lower than the heat resistance temperature of the electric motor. Therefore, when integrating an inverter or the like with a drive unit incorporating an electric motor as described above, some means for interrupting direct heat transfer from the electric motor to the inverter or the like is necessary to thermally protect the inverter or the like. It is. In addition, since the temperature of the inverter and the like rises due to heat generated by its own elements, cooling is required to keep it below the heat-resistant temperature.

こうした事情から、電動機と、前記電動機を収容する駆動装置ケースと、前記電動機を制御するインバータとを備えた駆動装置において、そのインバータ更には電動機を冷却するための冷却構造を有するものが知られている(例えば、特許文献1を参照。)。
かかる特許文献1に記載の駆動装置に備えられる冷却構造は、インバータと熱的に接続された放熱面と、当該放熱面と対向配置され上記駆動装置ケースと熱的に接続された対向面との間に、冷媒空間を形成し、その冷媒空間に、インバータケース側の放熱面から駆動装置ケース側のケース面に向けて立設された複数の放熱フィンを並列配置して、それら複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路を形成している。そして、この種の冷却構造は、冷媒ポンプにより上記冷媒空間に供給された冷媒が、上記並列配置された複数のフィン間通路に通流することで、上記放熱面を介してインバータを冷却し、上記対向面を介して電動機を冷却することができる。
Under these circumstances, in a drive device including an electric motor, a drive device case that houses the electric motor, and an inverter that controls the electric motor, an inverter that has a cooling structure for cooling the electric motor is known. (For example, refer to Patent Document 1).
The cooling structure provided in the driving device described in Patent Document 1 includes a heat dissipation surface thermally connected to the inverter, and a facing surface that is disposed opposite to the heat dissipation surface and is thermally connected to the drive device case. A refrigerant space is formed between the plurality of heat radiation fins arranged in parallel from the heat radiation surface on the inverter case side to the case surface on the drive device case side in the refrigerant space. An inter-fin passage through which the refrigerant flows is formed between adjacent ones. And this kind of cooling structure cools an inverter via the above-mentioned radiating surface by allowing the refrigerant supplied to the above-mentioned refrigerant space by the refrigerant pump to flow through the plurality of inter-fin passages arranged in parallel, The electric motor can be cooled via the facing surface.

国際公開WO2004/025807号公報International Publication WO 2004/025807

上記のようなインバータ等の発熱体を冷却するための発熱体冷却構造においては、発熱体を確実に冷却するために、各フィン間通路に均等に冷媒を流通させることが好ましい。
各フィン間通路における冷媒の流通状態を均一に保つためには、各フィン間通路を流通する冷媒が、フィン間通路同士を行き来するのを防止することが必要であり、夫々の放熱フィンを対向面に対して隙間なく当接させなければならない。しかし、夫々の放熱フィンを対向面に対して隙間なく当接させるためには、放熱面から対向面までの距離と夫々の放熱フィンの高さとが一致するよう寸法管理を厳密に行う必要があり、製造コストが増加するという問題があった。
更に、この種の発熱体冷却構造においては、その放熱能力をあげることが当然に必要となる。
In the heating element cooling structure for cooling a heating element such as an inverter as described above, it is preferable that the refrigerant is allowed to flow evenly through the passages between the fins in order to reliably cool the heating element.
In order to keep the refrigerant flow in each fin passage uniform, it is necessary to prevent the refrigerant flowing through each fin passage from going back and forth between the fin passages. It must abut against the surface without any gaps. However, in order to bring each radiating fin into contact with the opposing surface without any gap, it is necessary to strictly manage the dimensions so that the distance from the radiating surface to the opposing surface matches the height of each radiating fin. There was a problem that the manufacturing cost increased.
Furthermore, in this type of heating element cooling structure, it is naturally necessary to increase its heat dissipation capability.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、低コストで良好な放熱能力を有する発熱体冷却構造を実現し、更に、その発熱体冷却構造を備えることにより信頼性の高い駆動装置を実現する点にある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to realize a heating element cooling structure having a good heat dissipation capability at low cost, and further to provide reliability by including the heating element cooling structure. It is in the point which implement | achieves a high drive device.

本発明に係る発熱体冷却構造の第1特徴構成は、発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造であって、
前記放熱フィンが前記対向面に当接する当接状態で、前記放熱フィンが弾性変形して前記対向面に付勢されるとともに、前記放熱フィンが前記冷媒の流通方向に沿って複数の曲部を有する蛇行状に形成されている点にある。
The first characteristic configuration of the heating element cooling structure according to the present invention is that a refrigerant space is formed between a heat radiating surface thermally connected to the heat generating element and a facing surface disposed to face the heat radiating surface.
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A heating element cooling structure formed,
In the abutting state where the radiating fin is in contact with the facing surface, the radiating fin is elastically deformed and biased to the facing surface, and the radiating fin has a plurality of curved portions along the flow direction of the refrigerant. It is in the point formed in the meandering shape which has.

本構成によれば、放熱フィンが前記対向面に当接する当接状態で、前記放熱フィンが弾性変形して前記対向面に付勢される。即ち、放熱フィンを弾性変形させて、その弾性力を利用して、放熱フィンと対向面とを当接させるので、放熱フィンの弾性変形により寸法誤差を吸収しつつ放熱フィンと対向面とを当接させることができる。このため、放熱フィンの寸法管理をそれほど厳密に行うことなく、放熱フィンと対向面とを確実に当接させることができるので、フィン間通路同士の間を冷媒が行き来するのを防止することができ、各フィン間通路における冷媒の流通状態を均一に保つことができる。
更に、放熱フィンが冷媒の流通方向に沿って蛇行状に形成されているため、冷媒がフィン間通路を蛇行して流れ、流れを局所的な渦を伴ったものとでき、熱伝達が促進されて、放熱能力を高めることができる。
上述の結果、低コストで良好な放熱能力を有する発熱体冷却構造を実現することができる。
According to this configuration, the heat dissipating fin is elastically deformed and biased to the facing surface in a contact state where the heat dissipating fin contacts the facing surface. In other words, since the heat radiation fin is elastically deformed and its elastic force is used to bring the heat radiation fin into contact with the opposite surface, the heat radiation fin is brought into contact with the opposite surface while absorbing a dimensional error by elastic deformation of the heat radiation fin. Can be touched. For this reason, since it can be made to contact | abut a radiation fin and an opposing surface reliably, without performing dimension management of a radiation fin so much, it can prevent that a refrigerant | coolant goes back and forth between passages between fins. It is possible to maintain a uniform flow state of the refrigerant in the fin passages.
Furthermore, since the radiating fins are formed in a meandering manner along the refrigerant flow direction, the refrigerant meanders through the fin passages, and the flow is accompanied by a local vortex, which promotes heat transfer. Therefore, the heat dissipation capability can be increased.
As a result of the above, it is possible to realize a heating element cooling structure having good heat dissipation capability at low cost.

上述の発熱体冷却構造において、前記付勢された状態で、前記放熱フィンの先端が前記対向面に食い込むと好適である。   In the above-described heating element cooling structure, it is preferable that the tips of the radiating fins bite into the facing surface in the biased state.

本構成のように、放熱フィンの先端部が対向面に食い込ませることにより、放熱フィンの弾性変形に加えて対向面への食い込みによっても寸法誤差を吸収することができるので、放熱フィンをより確実に対向面に当接させることができる。また、放熱フィンの先端部を対向面に食い込ませることにより、フィン間通路同士の間の密閉性が向上するので、フィン間通路同士の間を冷媒が行き来することを一層確実に防止することができる。   Since the tip of the radiating fin bites into the opposing surface as in this configuration, dimensional errors can be absorbed not only by elastic deformation of the radiating fin but also by biting into the opposing surface. Can be brought into contact with the opposite surface. In addition, since the sealing portion between the fin passages is improved by biting the tip of the radiating fin into the opposing surface, it is possible to more reliably prevent the refrigerant from going back and forth between the fin passages. it can.

上述の発熱体冷却構造において、前記対向面が弾性変形可能な部材で形成してあると好適である。   In the heating element cooling structure described above, it is preferable that the facing surface is formed of a member that can be elastically deformed.

本構成により、対向面に放熱フィンを当接させると、弾性変形可能な対向面が弾性変形して、その弾性力と放熱フィンの弾性力とで、放熱フィンと対向面とが確実に当接する。
また、放熱フィンの先端部を対向面に食い込ませる場合は、対向面が弾性変形するので、容易に放熱フィンの先端部を対向面に食い込ませることができる。
この結果、フィン間通路間の密閉性が向上し、各フィン間通路を流通する冷媒がフィン間通路同士の間を行き来することを一層確実に防止することができる。
With this configuration, when the radiating fin is brought into contact with the facing surface, the elastically deformable facing surface is elastically deformed, and the radiating fin and the facing surface are reliably brought into contact with each other by the elastic force and the elastic force of the radiating fin. .
Moreover, when the front-end | tip part of a radiation fin bites into an opposing surface, since an opposing surface elastically deforms, the front-end | tip part of a radiation fin can be easily bite into an opposing surface.
As a result, the airtightness between the inter-fin passages is improved, and the refrigerant flowing through each inter-fin passage can be more reliably prevented from going back and forth between the inter-fin passages.

本発明に係る発熱体冷却構造の第2特徴構成は、発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造であって、
前記放熱フィンが前記冷媒の流通方向に沿って複数の曲部を有する蛇行状に形成されているとともに、
前記対向面が弾性変形可能な部材で形成してあり、前記放熱フィンの先端が前記対向面に食い込ませてある点にある。
The second characteristic configuration of the heating element cooling structure according to the present invention is that a refrigerant space is formed between a heat radiating surface thermally connected to the heat generating element and a facing surface disposed to face the heat radiating surface.
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A heating element cooling structure formed,
The radiating fin is formed in a meandering shape having a plurality of curved portions along the flow direction of the refrigerant,
The opposing surface is formed of an elastically deformable member, and the tips of the heat radiating fins are bitten into the opposing surface.

本構成によれば、対向面が弾性変形可能な部材で形成してあり、放熱フィンの先端を対向面に食い込ませるので、放熱フィンの先端が対向面に食い込む際の対向面の弾性変形により寸法誤差を吸収して、放熱フィンと対向面とを確実に当接させることができる。
更に、放熱フィンが冷媒の流通方向に沿って蛇行状に形成されているため、冷媒がフィン間通路を蛇行して流れ、流れを局所的な渦を伴ったものとでき、熱伝達が促進されて、放熱能力を高めることができる。
According to this configuration, the opposing surface is formed of a member that can be elastically deformed, and the tip of the radiating fin bites into the opposing surface. Therefore, the size of the radiating fin from the elastic deformation of the opposing surface when the tip of the radiating fin bites into the opposing surface is measured. The error can be absorbed and the radiating fin and the opposing surface can be brought into contact with each other reliably.
Furthermore, since the radiating fins are formed in a meandering manner along the refrigerant flow direction, the refrigerant meanders through the fin passages, and the flow is accompanied by a local vortex, which promotes heat transfer. Therefore, the heat dissipation capability can be increased.

これまで説明してきた発熱体冷却構造において、前記放熱フィンの先端部に、前記冷媒の流通方向に沿ってフィン高さ方向の凹凸が形成してあると好適である。   In the heating element cooling structure described so far, it is preferable that an unevenness in the fin height direction is formed at the tip of the radiating fin along the flow direction of the refrigerant.

本構成により、放熱フィンは、その先端部に、冷媒の流通方向に沿ってフィン高さ方向の凹部と凸部とが順次連なる形状となる。この結果、放熱フィンを弾性変形させる際に必要な力が小さくて済むので、放熱フィンを容易に弾性変形させることができる。
また、放熱フィンの先端部を対向面に食い込ませる場合には、放熱フィンの先端部を食い込ませるために必要な対向面の変形量が、凹凸がある分小さくて済むので、放熱フィンを対向面に容易に食い込ませることができる。
With this configuration, the heat dissipating fin has a shape in which a concave portion and a convex portion in the fin height direction are successively connected to the tip portion along the refrigerant flow direction. As a result, since the force required for elastically deforming the radiating fins is small, the radiating fins can be easily elastically deformed.
In addition, when the tip of the radiating fin is bitten into the opposing surface, the amount of deformation of the opposing surface required to bite the tip of the radiating fin is small, so that the amount of unevenness can be reduced. Can be easily bited into.

このように放熱フィンの先端に凹凸を設ける構成の場合は、必ずしも放熱フィンを蛇行状に形成する必要はない。例えば、放熱フィンを全体として平板状に立ち上げ、先端に凹凸を形成しておいてもよい。
即ち、本発明に係る発熱体冷却構造の第3特徴構成として、
発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造であって、
前記放熱フィンの先端部に、前記冷媒の流通方向に沿ってフィン高さ方向の凹凸が形成してあり、
前記放熱フィンが前記対向面に当接する当接状態で、前記放熱フィンが弾性変形して前記対向面に付勢される構成とできる。
この構成にあっては、放熱フィンは、例えば平板状でも蛇行状でもよいが、冷媒の流通方向に沿ってフィン高さ方向の凹部と凸部とが順次連なる形状となる。この結果、放熱フィンを弾性変形させる際に必要な力が小さくて済むので、放熱フィンを容易に弾性変形させることができる。結果、凹凸部の全面を当接面に当接させて、フィン間流路間で流れの均等化を図ることができる。
また、放熱フィンの先端部を対向面に食い込ませる場合には、放熱フィンの先端部を食い込ませるために必要な対向面の変形量が、凹凸がある分小さくて済むので、放熱フィンを対向面に容易に食い込ませることができる。
Thus, in the case of the configuration in which the radiating fins are provided with irregularities, the radiating fins need not necessarily be formed in a meandering shape. For example, the heat dissipating fins as a whole may be raised in a flat plate shape, and irregularities may be formed at the tip.
That is, as the third characteristic configuration of the heating element cooling structure according to the present invention,
A refrigerant space is formed between the heat dissipating surface thermally connected to the heating element and the facing surface disposed to face the heat dissipating surface,
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A heating element cooling structure formed,
Concavities and convexities in the fin height direction are formed along the flow direction of the refrigerant at the front end portion of the heat radiating fins,
The heat dissipation fin is elastically deformed and biased to the opposite surface in a contact state where the heat dissipation fin is in contact with the opposite surface.
In this configuration, the heat dissipating fins may be flat or meandering, for example, but have a shape in which the concave and convex portions in the fin height direction are successively connected along the refrigerant flow direction. As a result, since the force required for elastically deforming the radiating fins is small, the radiating fins can be easily elastically deformed. As a result, the entire surface of the concavo-convex portion can be brought into contact with the contact surface, so that the flow can be equalized between the fin channels.
In addition, when the tip of the radiating fin is bitten into the opposing surface, the amount of deformation of the opposing surface required to bite the tip of the radiating fin is small, so that the amount of unevenness can be reduced. Can be easily bited into.

上記のような発熱体冷却構造を備えた発熱体冷却構造物を得るには、
発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造物を製造するに際して、
前記放熱フィンを形成するに、放熱フィンの先端部に、前記冷媒の流通方向に沿って、フィン高さ方向の凹凸を形成し、
前記凹凸が形成された放熱フィンを前記対向面に押し当て、
前記冷媒の流通方向に沿った前記凹凸の全面を前記対向面に当接させることとできる。
In order to obtain a heating element cooling structure including the heating element cooling structure as described above,
A refrigerant space is formed between the heat dissipating surface thermally connected to the heating element and the facing surface disposed to face the heat dissipating surface,
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. When manufacturing the formed heating element cooling structure,
To form the heat dissipation fin, at the tip of the heat dissipation fin, along the flow direction of the refrigerant, to form irregularities in the fin height direction,
Pressing the radiating fin on which the irregularities are formed against the facing surface,
The entire surface of the unevenness along the flow direction of the refrigerant can be brought into contact with the facing surface.

上述の構成において、前記放熱フィンが、前記放熱面から対向面に向けて斜めに立設されていると好適である。   In the above-described configuration, it is preferable that the heat dissipating fins stand upright from the heat dissipating surface toward the opposing surface.

本構成のように、放熱フィンが、放熱面から対向面に向けて斜めに立設されていると放熱フィンの立設方向における長さが長くなり、放熱フィンの伝熱面積が拡大され、放熱能力の向上を図ることができる。この結果、発熱体冷却構造の放熱能力をより一層高めることができる。
また、放熱フィンを弾性変形させる場合には、放熱フィンが、放熱面から対向面に向けて斜めに立設されていると、放熱フィンを対向面に当接させた際に放熱フィンが受ける押圧力のうち、放熱フィンに垂直な方向の成分が大きくなり、放熱フィンが弾性変形しやすくなるので、放熱フィンを確実に対向面に当接させることができる。
If the radiating fins are erected obliquely from the radiating surface toward the opposite surface as in this configuration, the length of the radiating fins in the standing direction becomes longer, the heat transfer area of the radiating fins is expanded, and Capability can be improved. As a result, the heat dissipation capability of the heating element cooling structure can be further enhanced.
Also, when elastically deforming the radiating fin, if the radiating fin is erected diagonally from the radiating surface toward the opposing surface, the radiating fin receives a push when the radiating fin is brought into contact with the opposing surface. Of the pressure, the component in the direction perpendicular to the heat radiating fins is increased, and the heat radiating fins are easily elastically deformed, so that the heat radiating fins can be reliably brought into contact with the opposing surface.

上述の発熱体冷却構造において、前記放熱フィンが、前記放熱面から対向面に向かうに従って彎曲して形成してあると好適である。   In the above-described heating element cooling structure, it is preferable that the radiating fin is bent and formed from the radiating surface toward the opposing surface.

本構成のように、放熱フィンが、前記放熱面から対向面に向かうに従って彎曲して形成してあると放熱フィンの立設方向における長さが長くなり、放熱フィンの伝熱面積が拡大され、放熱能力の向上を図ることができる。この結果、発熱体冷却構造の放熱能力をより一層高めることができる。
また、放熱フィンを弾性変形させる場合には、放熱フィンを対向面に当接させた際に放熱フィンが受ける押圧力のうち、放熱フィンに垂直な方向の成分が大きくなり、放熱フィンが弾性変形しやすくなるので、放熱フィンを確実に対向面に当接させることができる。
また、放熱フィンの先端部のみならず、先端部付近の変形された部分も対向面に当接することとなり、当接面積を増加させることができる。このため、放熱フィンを確実に対向面に当接させることができる。
As in this configuration, if the radiating fin is bent as it goes from the radiating surface toward the opposing surface, the length in the standing direction of the radiating fin becomes longer, and the heat transfer area of the radiating fin is expanded, It is possible to improve the heat dissipation capability. As a result, the heat dissipation capability of the heating element cooling structure can be further enhanced.
In addition, when elastically deforming the radiating fins, the component in the direction perpendicular to the radiating fins out of the pressing force received by the radiating fins when the radiating fins are brought into contact with the opposing surface increases, and the radiating fins are elastically deformed. Since it becomes easy to do, a radiation fin can be made to contact | abut to an opposing surface reliably.
Further, not only the front end portion of the radiating fin but also the deformed portion near the front end portion comes into contact with the opposing surface, and the contact area can be increased. For this reason, a radiation fin can be made to contact | abut to an opposing surface reliably.

上述の発熱体冷却構造において、前記放熱フィンの先端部の厚さが、前記放熱フィンの基端部の厚さよりも小さく設定してあると好適である。   In the above-described heating element cooling structure, it is preferable that the thickness of the distal end portion of the radiating fin is set smaller than the thickness of the proximal end portion of the radiating fin.

本構成のように、放熱フィンの先端部の厚さが、放熱フィンの基端部の厚さよりも小さく設定してあると、放熱フィンのうち対向面に当接する先端部付近の変形が容易になり、対向面の形状に併せて変形することができる。このため、放熱フィンを確実に対向面に当接させることができる。
また、放熱フィンの先端部を対向面に食い込ませる場合は、厚さの小さい放熱フィンの先端部に押圧力が集中することとなるので、容易に放熱フィンの先端部を対向面に食い込ませることができる。
If the thickness of the tip of the radiating fin is set smaller than the thickness of the base end of the radiating fin as in this configuration, deformation near the tip of the radiating fin that contacts the opposing surface is easy. Therefore, it can be deformed in accordance with the shape of the facing surface. For this reason, a radiation fin can be made to contact | abut to an opposing surface reliably.
In addition, when the tip of the radiating fin is bitten into the opposing surface, the pressing force is concentrated on the tip of the radiating fin having a small thickness, so the tip of the radiating fin should be easily bited into the opposing surface. Can do.

本発明に係る駆動装置の第1特徴構成は、電動機と、
前記電動機を収容する駆動装置ケースと、
前記電動機を制御するインバータとを備えると共に、
上述の何れかの発熱体冷却構造を、前記インバータを前記発熱体として備えた点にある。
The first characteristic configuration of the drive device according to the present invention is an electric motor,
A drive case for housing the electric motor;
An inverter for controlling the electric motor,
One of the heating element cooling structures described above is that the inverter is provided as the heating element.

本構成によれば、上記のようにインバータを、電動機を内蔵する駆動装置と一体化させる場合でも、上述した本発明に係る発熱体冷却構造を、インバータを発熱体として備えるので、当該発熱体冷却構造の特徴構成と同様の特徴構成を発揮して、インバータの熱を良好に放熱させて、インバータを熱的に保護することができる。   According to this configuration, even when the inverter is integrated with the drive device incorporating the electric motor as described above, the heating element cooling structure according to the present invention described above is provided with the inverter as a heating element. A characteristic configuration similar to the structural configuration of the structure can be exhibited, and the inverter can be radiated well to protect the inverter thermally.

上述の駆動装置において、前記駆動装置ケースが、前記放熱面に対して前記対向面側に設けられ、前記駆動装置ケースと前記対向面が熱的に接続されていると好適である。   In the above-described driving device, it is preferable that the driving device case is provided on the facing surface side with respect to the heat dissipation surface, and the driving device case and the facing surface are thermally connected.

本構成によれば、駆動装置ケースが放熱面に熱的に接続されているので、駆動装置ケース内部の電動機等から発生した熱を、放熱面を介して冷媒側に良好に放熱させることができる。   According to this configuration, since the drive device case is thermally connected to the heat radiating surface, the heat generated from the electric motor or the like inside the drive device case can be radiated well to the refrigerant side through the heat radiating surface. .

本発明に係る発熱体冷却構造及びそれを備えた駆動装置の実施の形態について、図面に基づいて説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of a heating element cooling structure and a drive device including the same according to the present invention will be described with reference to the drawings.

図2に示すように、本発明の駆動装置(以下、「本駆動装置」と呼ぶ。)は、電動機1と、電動機1を収容する駆動装置ケース2とを備え、電動機1を制御するインバータ3と、本発明の発熱体冷却構造50(以下、「本冷却構造」と呼ぶ。)を採用する。また、この発熱体冷却構造を備えたもの(例えば駆動装置)が、本願にいう発熱体冷却構造物である。   As shown in FIG. 2, the drive device of the present invention (hereinafter referred to as “the present drive device”) includes an electric motor 1 and a drive device case 2 that houses the electric motor 1, and an inverter 3 that controls the electric motor 1. The heating element cooling structure 50 of the present invention (hereinafter referred to as “the present cooling structure”) is employed. Moreover, the thing (for example, drive device) provided with this heat generating body cooling structure is a heat generating body cooling structure said to this application.

尚、本駆動装置は、電気自動車やハイブリッド車等に用いられる駆動装置を構成するもので、駆動装置ケース2は、電動機1としてのモータ又はジェネレータ若しくはそれら両方と、ディファレンシャル装置、カウンタギヤ機構等の付属機構を収容している。
一方、本冷却構造50は、詳細については後述するが、図1に示すように、インバータ3や電動機1等の発熱体が発生した熱を、冷媒循環路4においてラジエータ42との間で循環する冷媒に対して放熱させて、当該発熱体を熱的に保護するものである。
The drive device constitutes a drive device used for an electric vehicle, a hybrid vehicle, and the like. The drive device case 2 includes a motor and / or generator as the electric motor 1, a differential device, a counter gear mechanism, and the like. Accommodates attached mechanisms.
On the other hand, as will be described in detail later, the cooling structure 50 circulates heat generated by a heating element such as the inverter 3 and the electric motor 1 with the radiator 42 in the refrigerant circulation path 4 as shown in FIG. The heat is radiated to the refrigerant to thermally protect the heating element.

上記インバータ3は、バッテリ電源の直流をスイッチング作用で交流(電動機が3相交流電動機の場合は3相交流)に変換するスイッチングトランジスタや付随の回路素子と、それらを配した回路基板からなるパワーモジュールを意味する。
そして、このインバータ3は、その基板自体又は別部材を基板に取り付けることで基板と一体化されたヒートシンク53の上面側に取り付けられている。そして、そのヒートシンク53の下面が、インバータ3と熱的に接続された放熱面53aとして形成されている。
尚、インバータ3は、当該インバータ3雨水や埃から保護すべく、インバータケース5で覆われている。
The inverter 3 is a power module comprising a switching transistor for converting a direct current of a battery power source into an alternating current (a three-phase alternating current when the motor is a three-phase alternating current motor) by a switching action, and an associated circuit element, and a circuit board on which the switching transistor is arranged Means.
And this inverter 3 is attached to the upper surface side of the heat sink 53 integrated with the board | substrate by attaching the board | substrate itself or another member to a board | substrate. The lower surface of the heat sink 53 is formed as a heat radiating surface 53 a thermally connected to the inverter 3.
The inverter 3 is covered with an inverter case 5 in order to protect the inverter 3 from rainwater and dust.

一方、電動機1は、駆動装置ケース2に収容され、その駆動ケース2の上面が、当該放熱面53aと対向配置され、且つ、電動機1と熱的に接続された対向面2aが形成されている。
即ち、駆動装置ケース2の上面には、ヒートシンク53を駆動装置ケース2の上に搭載した状態で、ヒートシンク53の下面即ち放熱面53aとの間に後述する冷媒空間Rを形成するための矩形の凹部が形成されている。そして、その凹部の底面が上記対向面2aとなる。
また、上記駆動装置ケース2の上面とヒートシンク53の下面との間には、図示は省略するが、上記冷媒空間Rを外部に対して密閉するためにシール材が適宜設けられている。
尚、本願において放熱面53a及び対向面2aがインバータ3及び電動機1と熱的に接続されるとは、インバータ3及び電動機1が発生した熱が直接又は間接的に、当該放熱面53a及び対向面2aに伝達される状態を言う。
On the other hand, the electric motor 1 is accommodated in the driving device case 2, the upper surface of the driving case 2 is disposed to face the heat radiating surface 53 a, and the opposed surface 2 a that is thermally connected to the electric motor 1 is formed. .
That is, a rectangular space for forming a refrigerant space R described later between the lower surface of the heat sink 53, that is, the heat radiating surface 53a, in a state where the heat sink 53 is mounted on the upper surface of the drive device case 2 on the upper surface of the drive device case 2. A recess is formed. And the bottom face of the recessed part becomes the said opposing surface 2a.
Further, although not shown, a sealing material is appropriately provided between the upper surface of the driving device case 2 and the lower surface of the heat sink 53 in order to seal the refrigerant space R from the outside.
In the present application, the heat dissipation surface 53a and the opposing surface 2a are thermally connected to the inverter 3 and the electric motor 1 because the heat generated by the inverter 3 and the electric motor 1 is directly or indirectly generated. The state transmitted to 2a.

本冷却構造50は、上記ヒートシンク53の放熱面53aと上記駆動装置ケース2の対向面2aとの間に冷媒空間Rを形成し、当該冷媒空間Rに、放熱面53aから対向面2aに向けて立設された複数の放熱フィン56を並列配置して、当該複数の放熱フィン56の夫々の隣接間に冷媒が通流するフィン間通路Rpを形成してなる。そして、後述する冷媒循環路に設けられた冷媒ポンプ41により冷媒空間Rに供給された冷媒を、上記並列配置された複数のフィン間通路Rpに通流させることで、上記放熱面53aを介してインバータ3が冷却され、更には、上記対向面2aを介して電動機1が冷却されることになる。   In the cooling structure 50, a refrigerant space R is formed between the heat radiation surface 53a of the heat sink 53 and the facing surface 2a of the drive device case 2, and in the refrigerant space R, the heat radiation surface 53a faces the facing surface 2a. A plurality of radiating fins 56 that are erected are arranged in parallel to form an inter-fin passage Rp through which the refrigerant flows between adjacent ones of the plurality of radiating fins 56. And the refrigerant | coolant supplied to the refrigerant | coolant space R by the refrigerant | coolant pump 41 provided in the refrigerant | coolant circulation path mentioned later is made to flow through the said several fin channel | path Rp arrange | positioned in parallel, via the said heat radiating surface 53a. The inverter 3 is cooled, and further, the electric motor 1 is cooled via the facing surface 2a.

図3に示すように、並列配置された複数の放熱フィン56は、放熱フィン56が、冷媒の通流方向に沿って複数の曲部56a,56bを有する蛇行状に形成されている。
具体的には、放熱フィン56は、特定の方向に屈曲する曲部56aと、当該曲部56aとは反対に屈曲する曲部56bとを交互に配置した状態で、ジグザグ状に形成されている。
この構成により、複数の放熱フィン56の夫々の隣接間に形成される夫々のフィン間通路Rpが、冷媒の通流方向を屈折させる屈折部分を有する蛇行状、具体的にはジグザグ状のものとされている。よって、放熱フィン56の伝熱面積の拡大、及び、冷媒流れにおける乱流の発生促進が図られて、放熱能力が向上されている。
As shown in FIG. 3, the plurality of heat dissipating fins 56 arranged in parallel are formed in a meandering shape in which the heat dissipating fins 56 have a plurality of curved portions 56 a and 56 b along the flow direction of the refrigerant.
Specifically, the radiating fins 56 are formed in a zigzag shape in a state in which curved portions 56a bent in a specific direction and curved portions 56b bent opposite to the curved portions 56a are alternately arranged. .
With this configuration, each inter-fin passage Rp formed between adjacent ones of the plurality of radiating fins 56 has a meandering shape, specifically a zigzag shape having a refracting portion that refracts the flow direction of the refrigerant. Has been. Therefore, the heat transfer area of the radiating fins 56 is expanded and the generation of turbulent flow in the refrigerant flow is promoted, so that the heat radiating capability is improved.

更に、放熱フィン56の両側壁面が互いに異なる形状に形成されている。具体的には、放熱フィン56が有する複数の曲部56a,56bの少なくとも一つが、放熱フィン56の両側壁面56c,56dを互いに異なる曲状に形成してなる異形曲部56aとして構成されており、更に、その異形曲部56aが、山部側の側壁面56cを弓状に形成し、谷部側の側壁面56dを角状に形成したものとなっている。
そして、このような構成により、フィン間通路Rpにおいて互いに異なる両側壁面56c,56dに挟まれた部分の通路幅W1、即ち一対の曲部56aで挟まれた屈折部分の通路幅W1が、他の部分の通路幅W2よりも広くなり、当該フィン間通路Rpが、屈折部分で通路幅が拡大変化する蛇行状のものとなる。よって、このようなフィン間通路Rpに冷媒が通流すると、当該冷媒の流速が上記屈折部分において変化するなどして、冷媒の流れにおける乱流の発生が促進され、放熱能力が一層向上されることになる。
Furthermore, the both side wall surfaces of the radiation fin 56 are formed in different shapes. Specifically, at least one of the plurality of curved portions 56a and 56b included in the radiating fin 56 is configured as a deformed curved portion 56a formed by forming both side wall surfaces 56c and 56d of the radiating fin 56 in different curved shapes. Further, the irregularly shaped curved portion 56a is formed such that the side wall surface 56c on the peak portion side is formed in a bow shape, and the side wall surface 56d on the valley side is formed in a square shape.
With such a configuration, the passage width W1 of the portion sandwiched between the opposite side wall surfaces 56c and 56d in the inter-fin passage Rp, that is, the passage width W1 of the refraction portion sandwiched between the pair of curved portions 56a, The passage width W2 of the portion becomes wider and the inter-fin passage Rp has a meandering shape in which the passage width is enlarged and changed in the refracted portion. Therefore, when the refrigerant flows through such an inter-fin passage Rp, the flow velocity of the refrigerant changes in the refraction portion, and the generation of turbulent flow in the refrigerant flow is promoted, and the heat dissipation capability is further improved. It will be.

図4及び図5に示すように、上記複数の放熱フィン56は、熱交換面積確保のために、インバータケース2側の放熱面53aから対向面2aに向けて冷媒空間R内に延び出し、冷媒空間Rをその厚さ方向に横断する。
更に、放熱フィン56の先端部56eは、駆動装置ケース2側の対向面2aに対して、熱伝導を許容する状態で当接している。これにより、複数のフィン間通路Rpにおいて、冷媒が放熱フィン56の先端側を通って相互に行き来することが防止されて安定して冷媒が通流し、放熱能力が略均一なものとなる。更に、電動機1等から対向面2aに伝わる熱が当該放熱フィン56を介して冷媒側に良好に放熱されることになる。
As shown in FIGS. 4 and 5, the plurality of radiating fins 56 extend into the refrigerant space R from the radiating surface 53a on the inverter case 2 side toward the facing surface 2a in order to secure a heat exchange area. The space R is traversed in the thickness direction.
Furthermore, the front-end | tip part 56e of the radiation fin 56 is contact | abutting in the state which accept | permits heat conduction with respect to the opposing surface 2a by the side of the drive device case 2. FIG. As a result, in the plurality of inter-fin passages Rp, the refrigerant is prevented from passing back and forth through the front end side of the radiating fins 56, the refrigerant flows stably, and the heat radiating ability becomes substantially uniform. Furthermore, the heat transmitted from the electric motor 1 or the like to the facing surface 2 a is favorably radiated to the refrigerant side through the radiation fins 56.

図5に示すように、放熱フィン56は、対向面2aに当接する当接状態で、放熱フィン56が弾性変形して対向面2aに付勢されている。つまり、放熱フィン56の高さが、冷媒空間Rの厚さ方向長さよりも大きく設定してあり、ヒートシンク53を駆動装置ケース2の上に搭載すると、放熱フィン56が弾性変形し、その弾性力により、放熱フィン56の先端部56eが対向面2aに当接する。このように、放熱フィン56の弾性変形により寸法誤差を吸収しつつ放熱フィン56と対向面2aとを当接させるので、放熱フィン56の寸法管理をそれほど厳密に行うことなく、放熱フィン56と対向面2aとを確実に当接させることができる   As shown in FIG. 5, the radiation fins 56 are in contact with the opposing surface 2 a and are urged toward the opposing surface 2 a by elastic deformation of the radiation fins 56. That is, the height of the radiating fin 56 is set to be larger than the length in the thickness direction of the refrigerant space R, and when the heat sink 53 is mounted on the drive device case 2, the radiating fin 56 is elastically deformed, and its elastic force Thereby, the front-end | tip part 56e of the radiation fin 56 contact | abuts to the opposing surface 2a. As described above, since the heat radiation fin 56 and the facing surface 2a are brought into contact with each other while absorbing a dimensional error due to elastic deformation of the heat radiation fin 56, the heat radiation fin 56 is opposed to the heat radiation fin 56 without performing strict size management. The surface 2a can be reliably brought into contact with the surface 2a.

更に、図5に示すように、放熱フィン56は、放熱面53aから対向面2aに向けて斜めに立設されているとともに、放熱面53aから対向面2aに向かうに従って彎曲して形成してある。これにより、放熱フィン56を対向面2aに当接させた際に放熱フィン56が受ける押圧力のうち、放熱フィン56に垂直な方向の成分が大きくなり、放熱フィン56が弾性変形しやすくなるので、放熱フィン56を確実に対向面2aに当接させることができる。また、放熱フィン56の先端部56eのみならず、先端部56e付近の変形された部分も対向面2aに当接する(押し当てられる)こととなり、当接面積を増加させることができる。このため、放熱フィンを確実に対向面2aに当接させることができる。また、放熱フィン56の伝熱面積が拡大され、放熱能力の向上させることができる。   Further, as shown in FIG. 5, the heat radiation fins 56 are obliquely erected from the heat radiation surface 53a toward the facing surface 2a, and are bent so as to extend from the heat radiation surface 53a toward the facing surface 2a. . As a result, the component in the direction perpendicular to the radiation fins 56 of the pressing force received by the radiation fins 56 when the radiation fins 56 are brought into contact with the opposing surface 2a increases, and the radiation fins 56 are easily elastically deformed. The heat radiating fins 56 can be reliably brought into contact with the facing surface 2a. Further, not only the front end portion 56e of the radiating fin 56 but also a deformed portion in the vicinity of the front end portion 56e comes into contact with (being pressed against) the opposing surface 2a, and the contact area can be increased. For this reason, a radiation fin can be made to contact | abut to the opposing surface 2a reliably. In addition, the heat transfer area of the heat radiating fins 56 is expanded, and the heat radiating capacity can be improved.

更に、放熱フィン56は、その先端部56eの厚さが基端部56fの厚さよりも小さく設定してある。これにより、放熱フィン56のうち対向面2aに当接する先端部56e付近の変形が容易になり、対向面2aの形状に併せて容易に変形することができる。   Further, the radiating fin 56 is set such that the distal end portion 56e is thinner than the proximal end portion 56f. Thereby, deformation | transformation of the front-end | tip part 56e contact | abutted to the opposing surface 2a among the radiation fins 56 becomes easy, and it can deform | transform easily according to the shape of the opposing surface 2a.

また、図1及び図3に示すように、冷媒空間Rの一方側の側端部には、当該冷媒空間Rに冷媒を流入させる流入側ポート51と当該冷媒空間Rから冷媒を流出させる流出側ポート52とが互いに平行に接続されている。更に、冷媒空間Rにおいて、冷媒流入部Riと冷媒流出部Roとが互いに平行に形成され、冷媒流入部Riには流入側ポート51が、冷媒流出部Roには流出側ポート52が、夫々接続されている。そして、冷媒流入部Riと冷媒流出部Roとの間を横断する形態で、複数のフィン間通路Rpが並列配置されている。   Further, as shown in FIGS. 1 and 3, at one side end portion of the refrigerant space R, an inflow side port 51 through which the refrigerant flows into the refrigerant space R and an outflow side through which the refrigerant flows out from the refrigerant space R. Ports 52 are connected in parallel to each other. Further, in the refrigerant space R, the refrigerant inflow portion Ri and the refrigerant outflow portion Ro are formed in parallel with each other, and the inflow side port 51 is connected to the refrigerant inflow portion Ri, and the outflow side port 52 is connected to the refrigerant outflow portion Ro. Has been. A plurality of inter-fin passages Rp are arranged in parallel so as to cross between the refrigerant inflow portion Ri and the refrigerant outflow portion Ro.

放熱フィンは、特に限定されないが、弾性変形が可能であり、熱伝導の良好な例えばアルミニウム・アルミニウム合金・銅合金・ステンレス鋼などの金属板材料を、切削工具Tにより順次削り起こすことで形成することができる。無論、成形等の手法で製造してもよい。
即ち、図6に示すように、切削工具Tの先端形状を、角状に形成された側壁面56d形状に合わせた山形の先端形状を有する切削工具Tを作成し、その切削工具Tにより、上記放熱面53aを、微小間隔で連続して削り起こすことで、互いに並列に配置された複数の放熱フィン56が形成される。
そして、この切削工具Tによる削りこみ深さや削り角度等の種々の条件を適切に決定することにより、切削工具Tの先端の山形頂点により形成される放熱フィン56の曲部56aにおいて、切削工具Tに当接する側の側壁面56dが角状に形成されるのに対して、それとは反対側の側壁面56cが引張応力等により弓状に形成される。
さらに、この製造手法を採用すると、放熱フィン56の先端部56eに容易に、冷媒の流通方向に沿ったフィン高さ方向の凹凸を形成できる。そして、このようにして形成された放熱フィン56を対向面2aに押し当てることにより、図4に示すように、放熱フィン56の先端部56eに形成された凹凸が変形し、冷媒の流れ方向に沿った全面が対向面2aに確実に当接した構造を容易に実現できる。
The heat radiating fin is not particularly limited, but can be elastically deformed, and is formed by sequentially cutting up a metal plate material such as aluminum, aluminum alloy, copper alloy, and stainless steel with good heat conduction by the cutting tool T. be able to. Of course, you may manufacture by methods, such as shaping | molding.
That is, as shown in FIG. 6, a cutting tool T having a mountain-shaped tip shape in which the tip shape of the cutting tool T is matched with the square-shaped side wall surface 56d shape is created. A plurality of heat radiating fins 56 arranged in parallel to each other are formed by continuously scraping the heat radiating surface 53a at a minute interval.
Then, by appropriately determining various conditions such as a cutting depth and a cutting angle by the cutting tool T, the cutting tool T can be formed at the curved portion 56a of the radiating fin 56 formed by the chevron of the tip of the cutting tool T. On the other hand, the side wall surface 56d on the side abutting on the side wall is formed in a square shape, whereas the side wall surface 56c on the opposite side is formed in a bow shape due to tensile stress or the like.
Furthermore, when this manufacturing method is employed, the unevenness in the fin height direction along the refrigerant flow direction can be easily formed on the tip 56e of the heat radiating fin 56. Then, by pressing the radiating fin 56 formed in this manner against the opposing surface 2a, the unevenness formed at the tip 56e of the radiating fin 56 is deformed as shown in FIG. It is possible to easily realize a structure in which the entire entire surface is in contact with the opposing surface 2a.

次に、上記冷媒空間Rが接続されている上記冷媒循環路4について、図1に基づいて説明を加える。
冷媒循環路4は、ヒートシンク53と駆動装置ケース2との間の冷媒空間Rを通して単一の冷媒を循環させるものとされている。冷媒循環路4は、圧送源としての冷媒ポンプ41と、熱交換器としてのラジエータ42と、それらをつなぐ通路43,44,45とから構成されている。
Next, the refrigerant circulation path 4 to which the refrigerant space R is connected will be described based on FIG.
The refrigerant circulation path 4 is configured to circulate a single refrigerant through the refrigerant space R between the heat sink 53 and the drive device case 2. The refrigerant circulation path 4 includes a refrigerant pump 41 as a pressure supply source, a radiator 42 as a heat exchanger, and passages 43, 44, and 45 connecting them.

尚、冷媒ポンプ41の駆動モータ等の付属設備については、図示を省略されている。冷媒循環路4の起点としての冷媒ポンプ41の吐出側通路43は、冷媒空間Rの入口側の流入側ポート51に接続され、冷媒空間Rの出口側の流出側ポート52は、戻り通路44を経てラジエータ42の入口側に接続され、ラジエータ42の出口側が冷媒ポンプ41の吸込側通路45に接続されている。したがって、この冷媒循環路4において、冷却水などの冷媒は、冷媒ポンプ41から送り出された後、冷媒空間Rに形成されたフィン間通路Rpを流れる際にインバータ3を構成するモジュールからの熱と駆動装置ケース2の熱を吸収して加熱され、戻り通路44を経由でラジエータ42に送り込まれて空気への放熱により冷却され、冷媒ポンプ41に戻されて一巡のサイクルを終わる循環を繰り返すことになる。
なお、この冷媒循環路4は、途中、例えば戻り通路44の部分で、更なる冷却のために駆動装置ケース2内を通る通路とすることもできる。
In addition, about attachment equipment, such as a drive motor of the refrigerant pump 41, illustration is abbreviate | omitted. The discharge side passage 43 of the refrigerant pump 41 as the starting point of the refrigerant circulation path 4 is connected to the inflow side port 51 on the inlet side of the refrigerant space R, and the outflow side port 52 on the outlet side of the refrigerant space R passes through the return passage 44. Then, it is connected to the inlet side of the radiator 42, and the outlet side of the radiator 42 is connected to the suction side passage 45 of the refrigerant pump 41. Therefore, in this refrigerant circulation path 4, the refrigerant such as cooling water is sent from the refrigerant pump 41 and then flows from the module constituting the inverter 3 when flowing through the inter-fin passage Rp formed in the refrigerant space R. The heat of the drive device case 2 is absorbed and heated, sent to the radiator 42 via the return passage 44, cooled by heat radiation to the air, and returned to the refrigerant pump 41 to repeat the circulation that completes one cycle. Become.
The refrigerant circulation path 4 may be a path that passes through the inside of the drive device case 2 for further cooling, for example, in the return path 44 partway.

〔別実施形態〕
(1)上記実施の形態では、放熱フィン56を特定の方向に屈曲する曲部56aと当該曲部56aとは反対に屈曲する曲部56bとを交互に配置したジグザグ状に形成し、当該複数の放熱フィン56の夫々の隣接間に形成される夫々のフィン間通路Rpをジグザグ状のものとしたが、これら放熱フィン56及びフィン間通路Rpを上記ジグザグ状以外のあらゆる形状の蛇行状に構成することができる。
例えば、図7及び図8に示すように、放熱フィン56を、特定の方向に屈曲する一対の曲部56aと、当該曲部56aとは反対に屈曲する一対の曲部56bとを交互に配置した蛇行状に形成することができる。
また、この場合においても、放熱フィン56が有する複数の曲部56a,56bの少なくとも一つを、放熱フィン56の両側壁面56c,56dを互いに異なる曲状に形成してなる異形曲部56aとして構成し、更に、その異形曲部56aが、山部側の側壁面56cを弓状に形成し、谷部側の側壁面56dを角状に形成することができる。
[Another embodiment]
(1) In the above embodiment, the radiating fins 56 are formed in a zigzag shape in which curved portions 56a that bend in a specific direction and curved portions 56b that are bent opposite to the curved portions 56a are alternately arranged. The fin-to-fin passages Rp formed between adjacent ones of the radiating fins 56 are zigzag-shaped, but the radiating fins 56 and the fin-to-fin passages Rp are configured in a meandering shape other than the zigzag shape. can do.
For example, as shown in FIGS. 7 and 8, the heat dissipating fins 56 are alternately arranged with a pair of bent portions 56a bent in a specific direction and a pair of bent portions 56b bent opposite to the bent portions 56a. Can be formed in a meandering shape.
Also in this case, at least one of the plurality of curved portions 56a, 56b of the radiating fin 56 is configured as a deformed curved portion 56a formed by forming both side wall surfaces 56c, 56d of the radiating fin 56 in different curved shapes. Further, the irregularly shaped curved portion 56a can form the side wall surface 56c on the mountain side in an arc shape and the side wall surface 56d on the valley side in a square shape.

(2)上述の実施形態において、放熱フィン56が、放熱面53aから対向面2aに向けて斜めに立設されているとともに、放熱面53aから対向面2aに向かうに従って彎曲して形成してあり、更に放熱フィン56の先端部56eの厚さが基端部56fの厚さよりも小さく設定してあるものを例に説明した。しかし、放熱フィン56の形状は上述のものに限られるものではなく、放熱フィン56が対向面2aに当接する当接状態で、放熱フィン56が弾性変形して対向面2aに付勢されるものであれば何れの形状であってもよい。
例えば、放熱フィンを放熱面53aから対向面2aに向けて斜めに且つ直線状態で立設させたり、放熱面53aから対向面2aに向けて真っ直ぐに立設させても構わない。また、放熱フィン56の先端部56eと基端部56fの大きさを同じに設定してもかまわない。
(2) In the above-described embodiment, the radiating fins 56 are obliquely erected from the radiating surface 53a toward the facing surface 2a, and are bent and formed from the radiating surface 53a toward the facing surface 2a. Further, an example in which the thickness of the distal end portion 56e of the radiating fin 56 is set smaller than the thickness of the proximal end portion 56f has been described. However, the shape of the radiating fins 56 is not limited to that described above, and the radiating fins 56 are elastically deformed and urged against the opposing surface 2a while the radiating fins 56 are in contact with the opposing surface 2a. Any shape may be used.
For example, the radiating fins may be erected obliquely and linearly from the radiating surface 53a toward the opposing surface 2a, or may be erected straight from the radiating surface 53a toward the opposing surface 2a. Further, the size of the distal end portion 56e and the proximal end portion 56f of the radiating fin 56 may be set to be the same.

(3)また、上述の実施形態において、放熱フィンを弾性変形可能に構成する例を示したが、以下に示すようなものであってもよい。
即ち、図9に示すように、駆動装置ケース2の上面には、インバータケース5を駆動装置ケース2の上に搭載した状態で、インバータケース5の下面即ち放熱面53aとの間に冷媒空間Rを形成するための矩形の凹部が形成されている。そして、その凹部の底面に、例えばゴム・樹脂・スポンジなどの弾性変形可能な弾性部材57が設けてあり、この弾性部材57が上記対向面2aとなる。なお、凹部自身を例えば樹脂等の弾性変形可能な部材で形成して、その底面を対向面2aとしてもよい。
(3) Moreover, although the example which comprises a radiation fin elastically deformable was shown in the above-mentioned embodiment, it may be as shown below.
That is, as shown in FIG. 9, on the upper surface of the drive device case 2, the refrigerant space R is formed between the lower surface of the inverter case 5, that is, the heat radiating surface 53a, with the inverter case 5 mounted on the drive device case 2. A rectangular recess is formed for forming the. An elastic member 57 that can be elastically deformed, such as rubber, resin, or sponge, is provided on the bottom surface of the concave portion, and the elastic member 57 serves as the facing surface 2a. Note that the recess itself may be formed of an elastically deformable member such as a resin, and its bottom surface may be used as the facing surface 2a.

更に、図9の例では、この放熱フィン56は、放熱面53aから対向面2aに向けて真っ直ぐに立設させてあり且つ基端部56fの厚さよりも先端部56eの厚さが小さく設定してある。具体的には放熱フィン56の先端部56eを尖らせた形状にしてある。
また、放熱フィン56の高さが、媒空間Rを形成するための矩形の凹部の開口部から弾性部材57までの距離よりもやや大きく設定してあり、インバータケース5を駆動装置ケース2の上に搭載すると、対向面2aが弾性変形して放熱フィン56の先端が対向面2aに食い込んだ状態となる。
Further, in the example of FIG. 9, the heat radiating fins 56 are erected straight from the heat radiating surface 53a toward the opposing surface 2a, and the thickness of the distal end portion 56e is set smaller than the thickness of the base end portion 56f. It is. Specifically, the tip 56e of the heat radiating fin 56 is sharpened.
Further, the height of the radiation fin 56 is set to be slightly larger than the distance from the opening of the rectangular recess for forming the medium space R to the elastic member 57, and the inverter case 5 is placed above the drive device case 2. When mounted on the opposite surface 2a, the opposing surface 2a is elastically deformed, and the tips of the heat radiating fins 56 bite into the opposing surface 2a.

このように、放熱フィン56を対向面2aに当接させる際に、対向面2aを弾性変形させて当該対向面2aに放熱フィン56の先端を食い込ませることにより、寸法誤差を吸収して、放熱フィン56と対向面2aとを確実に当接させることができる。   As described above, when the radiating fin 56 is brought into contact with the opposing surface 2a, the opposing surface 2a is elastically deformed so that the tip of the radiating fin 56 bites into the opposing surface 2a, thereby absorbing a dimensional error and radiating heat. The fin 56 and the opposing surface 2a can be contact | abutted reliably.

また、本実施形態において、図10に示すように、前記冷媒の流通方向に沿って、凹部と凸部とが順次連なる形状に形成してある。放熱フィン56の形状をこのようにすることにより、放熱フィン56を対向面2aに食い込ませる際に必要な対向面2aの弾性変形量が、凹凸がある分小さくて済むので、放熱フィン56を対向面2aに容易に食い込ませることができる。   Moreover, in this embodiment, as shown in FIG. 10, it forms in the shape where a recessed part and a convex part continue in order along the distribution direction of the said refrigerant | coolant. By making the shape of the radiating fins 56 in this way, the elastic deformation amount of the opposing surface 2a required when the radiating fins 56 bite into the opposing surface 2a can be reduced by the unevenness. It is possible to easily bite into the surface 2a.

なお、この実施の形態では、放熱フィン56を、放熱面53aから対向面2aに向けて真っ直ぐに立設する例を示した。しかし、例えば、図11に示すように、放熱フィン56を、放熱面53aから対向面2aに向けて斜めに且つ放熱面53aから対向面2aに向かうに従って彎曲して立設させたり、放熱面53aから対向面2aに向けて斜めに且つ直線状態で立設させても構わない。また、放熱フィン56の先端部56eは必ずしも尖らせる必要はない。
また、この実施形態において、放熱フィン56及び対向面2aの双方を弾性変形可能に構成してもよい。
In this embodiment, the example in which the radiating fins 56 are erected straight from the radiating surface 53a toward the facing surface 2a is shown. However, for example, as shown in FIG. 11, the radiating fins 56 are bent upright from the heat radiating surface 53a toward the facing surface 2a at an angle and from the heat radiating surface 53a toward the facing surface 2a. May be erected obliquely and in a straight line toward the facing surface 2a. Further, it is not always necessary to sharpen the tip 56e of the radiating fin 56.
Moreover, in this embodiment, you may comprise both the radiation fin 56 and the opposing surface 2a so that elastic deformation is possible.

(4)上記実施の形態では、本冷却構造50を本駆動装置のインバータ3や電動機1等の発熱体が発生した熱を冷媒に対して放熱させて当該発熱体を熱的に保護するものとして構成したが、別に、本冷却構造を、別の装置においてインバータや他の電子部品等の発生した熱を冷媒に対して放熱させるように構成しても構わない。
(5)これまで説明してきた実施の形態では、放熱フィン56を介する放熱を高いものとするため、放熱フィン56が冷媒の流通方向に蛇行する好適な実施形態に関して説明した。しかしながら、本願の一つの目的は、放熱フィン56の高さ方向の管理を甘い状態としても、フィン間通路同士で流れを均等とすることにある。この要件からは、先に説明したように冷媒の流通方向において全面で、夫々の放熱フィン56が対向面2aに隙間なく当接していればよい。
そこで、放熱フィン56は、必ずしも蛇行状とされる必要はなく、任意形状、例えば、直線状(放熱フィンは平板状となり、フィン間流路は直線状となる)に放熱面23aから立設されるものとしてもよい。但し、その放熱フィンの先端に高さ方向の凹凸を設け、当該放熱フィン56を対向面2aに押し当てて当接させることにより、容易に、放熱フィン56が対向面2aに隙間なく当接した発熱体冷却構造を実現できる。
(4) In the above embodiment, the cooling structure 50 is configured to radiate heat generated by a heating element such as the inverter 3 or the electric motor 1 of the driving device to the refrigerant to thermally protect the heating element. Although configured, separately, the present cooling structure may be configured to dissipate heat generated by an inverter, other electronic components, and the like in another device to the refrigerant.
(5) In the embodiments described so far, in order to increase heat dissipation through the heat dissipation fins 56, the preferred embodiments in which the heat dissipation fins 56 meander in the refrigerant flow direction have been described. However, one object of the present application is to make the flow uniform between the fin-to-fin passages even if the management in the height direction of the heat dissipating fins 56 is unsatisfactory. From this requirement, as described above, it is only necessary that the respective heat radiation fins 56 are in contact with the opposing surface 2a without any gap over the entire surface in the refrigerant flow direction.
Therefore, the heat radiating fins 56 do not necessarily have a meandering shape, and are erected from the heat radiating surface 23a in an arbitrary shape, for example, a straight shape (the heat radiating fins are flat and the flow path between the fins is straight). It is good also as a thing. However, by providing unevenness in the height direction at the tips of the radiating fins and pressing the radiating fins 56 against the opposing surface 2a to make contact, the radiating fins 56 easily contact the opposing surface 2a without any gaps. A heating element cooling structure can be realized.

本発明に係る発熱体冷却構造及び駆動装置は、低コストで良好な放熱能力を有する発熱体冷却構造、及び、その発熱体冷却構造を備えることにより信頼性の高い駆動装置として有効に利用可能である。   The heating element cooling structure and driving device according to the present invention can be effectively used as a highly reliable driving device by including a heating element cooling structure having a good heat dissipation capability at low cost and the heating element cooling structure. is there.

発熱体冷却構造の冷媒循環路の状態を示す図The figure which shows the state of the refrigerant circuit of a heat generating body cooling structure 発熱体冷却構造を備えた駆動装置の概略構成を示す断面図Sectional drawing which shows schematic structure of the drive device provided with the heat generating body cooling structure 冷媒空間の状態を示す平面図Plan view showing state of refrigerant space 冷媒空間の状態を示す断面図Sectional view showing state of refrigerant space 放熱フィンの詳細を示す部分断面図Partial sectional view showing details of heat dissipation fins 放熱フィンの形成方法を示す斜視図The perspective view which shows the formation method of a radiation fin 別実施形態における冷媒空間の状態を示す平面図The top view which shows the state of the refrigerant | coolant space in another embodiment. 別実施形態における冷媒空間の状態を示す断面図Sectional drawing which shows the state of the refrigerant | coolant space in another embodiment. 別実施形態における冷媒空間の状態を示す部分断面図Partial sectional drawing which shows the state of the refrigerant | coolant space in another embodiment. 別実施形態における冷媒空間の状態を示す部分断面図Partial sectional drawing which shows the state of the refrigerant | coolant space in another embodiment. 別実施形態における冷媒空間の状態を示す部分断面図Partial sectional drawing which shows the state of the refrigerant | coolant space in another embodiment.

符号の説明Explanation of symbols

1:電動機
2a:対向面
3:インバータ
7:インバータケース
50:発熱体冷却構造
56:放熱フィン
56e:先端部
56f:基端部
R:冷媒空間
Rp:フィン間通路
1: Electric motor 2a: Opposing surface 3: Inverter 7: Inverter case 50: Heating element cooling structure 56: Radiating fin 56e: Tip 56f: Base end R: Refrigerant space Rp: Inter-fin passage

Claims (12)

発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造であって、
前記放熱フィンが前記対向面に当接する当接状態で、前記放熱フィンが弾性変形して前記対向面に付勢されるとともに、前記放熱フィンが前記冷媒の流通方向に沿って複数の曲部を有する蛇行状に形成されている発熱体冷却構造。
A refrigerant space is formed between the heat dissipating surface thermally connected to the heating element and the facing surface disposed to face the heat dissipating surface,
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A heating element cooling structure formed,
In the abutting state where the radiating fin is in contact with the facing surface, the radiating fin is elastically deformed and biased to the facing surface, and the radiating fin has a plurality of curved portions along the flow direction of the refrigerant. A heating element cooling structure formed in a meandering shape.
前記付勢された状態で、前記放熱フィンの先端が前記対向面に食い込む請求項1に記載の発熱体冷却構造。   The heating element cooling structure according to claim 1, wherein a tip of the radiation fin bites into the facing surface in the biased state. 前記対向面が弾性変形可能な部材で形成してある請求項1又は2に記載の発熱体冷却構造。   The heating element cooling structure according to claim 1, wherein the facing surface is formed of a member that can be elastically deformed. 発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造であって、
前記放熱フィンが前記冷媒の流通方向に沿って複数の曲部を有する蛇行状に形成されているとともに、
前記対向面が弾性変形可能な部材で形成してあり、前記放熱フィンの先端が前記対向面に食い込ませてある発熱体冷却構造。
A refrigerant space is formed between the heat dissipating surface thermally connected to the heating element and the facing surface disposed to face the heat dissipating surface,
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A heating element cooling structure formed,
The radiating fin is formed in a meandering shape having a plurality of curved portions along the flow direction of the refrigerant,
The heating element cooling structure in which the opposing surface is formed of an elastically deformable member, and the tips of the radiating fins bite into the opposing surface.
前記放熱フィンの先端部に、前記冷媒の流通方向に沿ってフィン高さ方向の凹凸が形成してある請求項1〜4の何れか一項に記載の発熱体冷却構造。   The heating element cooling structure according to any one of claims 1 to 4, wherein unevenness in a fin height direction is formed at a front end portion of the heat radiating fin along a flow direction of the refrigerant. 発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造であって、
前記放熱フィンの先端部に、前記冷媒の流通方向に沿ってフィン高さ方向の凹凸が形成してあり、
前記放熱フィンが前記対向面に当接する当接状態で、前記放熱フィンが弾性変形して前記対向面に付勢される発熱体冷却構造。
A refrigerant space is formed between the heat dissipating surface thermally connected to the heating element and the facing surface disposed to face the heat dissipating surface,
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A heating element cooling structure formed,
Concavities and convexities in the fin height direction are formed along the flow direction of the refrigerant at the front end portion of the heat radiating fins,
A heating element cooling structure in which the radiating fin is elastically deformed and urged against the opposing surface in a contact state where the radiating fin contacts the opposing surface.
前記放熱フィンが、前記放熱面から対向面に向けて斜めに立設されている請求項1〜6の何れか一項に記載の発熱体冷却構造。   The heating element cooling structure according to any one of claims 1 to 6, wherein the radiating fin is erected obliquely from the radiating surface toward the opposing surface. 前記放熱フィンが、前記放熱面から対向面に向かうに従って彎曲して形成してある請求項1〜7の何れか一項に記載の発熱体冷却構造。   The heating element cooling structure according to any one of claims 1 to 7, wherein the radiating fin is bent and formed from the radiating surface toward the opposing surface. 前記放熱フィンの先端部の厚さが、前記放熱フィンの基端部の厚さよりも小さく設定してある請求項1〜8の何れか一項に記載の発熱体冷却構造。   The heating element cooling structure according to any one of claims 1 to 8, wherein a thickness of a distal end portion of the radiation fin is set smaller than a thickness of a proximal end portion of the radiation fin. 電動機と、
前記電動機を収容する駆動装置ケースと、
前記電動機を制御するインバータとを備えると共に、
請求項1〜9の何れか一項に記載の発熱体冷却構造を、前記インバータを前記発熱体として備えた駆動装置。
An electric motor,
A drive case for housing the electric motor;
An inverter for controlling the electric motor,
A drive device comprising the heating element cooling structure according to any one of claims 1 to 9 and the inverter as the heating element.
前記駆動装置ケースが、前記放熱面に対して前記対向面側に設けられ、前記駆動装置ケースと前記対向面が熱的に接続されている請求項10に記載の駆動装置。   The drive device according to claim 10, wherein the drive device case is provided on the facing surface side with respect to the heat dissipation surface, and the drive device case and the facing surface are thermally connected. 発熱体と熱的に接続された放熱面と、当該放熱面と対向配置された対向面との間に、冷媒空間が形成され、
前記冷媒空間に、前記放熱面から前記対向面に向けて立設された複数の放熱フィンが並列配置されて、当該複数の放熱フィンの夫々の隣接間に前記冷媒が通流するフィン間通路が形成されている発熱体冷却構造を備えた発熱体冷却構造物の製造方法であって、
前記放熱フィンを形成するに、放熱フィンの先端部に、前記冷媒の流通方向に沿って、フィン高さ方向の凹凸を形成し、
前記凹凸が形成された放熱フィンを前記対向面に押し当て、
前記冷媒の流通方向に沿った前記凹凸の全面を前記対向面に当接させる発熱体冷却構造物の製造方法。
A refrigerant space is formed between the heat dissipating surface thermally connected to the heating element and the facing surface disposed to face the heat dissipating surface,
In the refrigerant space, a plurality of radiating fins erected from the radiating surface toward the opposing surface are arranged in parallel, and an inter-fin passage through which the refrigerant flows between adjacent ones of the radiating fins. A method of manufacturing a heating element cooling structure including a heating element cooling structure that is formed,
To form the heat dissipation fin, at the tip of the heat dissipation fin, along the flow direction of the refrigerant, to form irregularities in the fin height direction,
Pressing the radiating fin on which the irregularities are formed against the facing surface,
The manufacturing method of the heat generating body cooling structure which makes the said uneven | corrugated whole surface contact | abut the said opposing surface along the distribution direction of the said refrigerant | coolant.
JP2007016280A 2007-01-26 2007-01-26 Heating element cooling structure, driving device, and method of manufacturing heating element cooling structure Active JP4982194B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016280A JP4982194B2 (en) 2007-01-26 2007-01-26 Heating element cooling structure, driving device, and method of manufacturing heating element cooling structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016280A JP4982194B2 (en) 2007-01-26 2007-01-26 Heating element cooling structure, driving device, and method of manufacturing heating element cooling structure

Publications (2)

Publication Number Publication Date
JP2008187754A true JP2008187754A (en) 2008-08-14
JP4982194B2 JP4982194B2 (en) 2012-07-25

Family

ID=39730428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016280A Active JP4982194B2 (en) 2007-01-26 2007-01-26 Heating element cooling structure, driving device, and method of manufacturing heating element cooling structure

Country Status (1)

Country Link
JP (1) JP4982194B2 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135673A (en) * 2008-12-08 2010-06-17 Toshiba Schneider Inverter Corp Radiator of semiconductor device
JP2011171686A (en) * 2010-02-22 2011-09-01 Nakamura Mfg Co Ltd Metal-based printed board with heat radiation part
JP2012129280A (en) * 2010-12-14 2012-07-05 Toyota Motor Corp Semiconductor cooling device and manufacturing method of the same
JP2012156322A (en) * 2011-01-26 2012-08-16 Toyota Motor Corp Heat exchanger
WO2012114475A1 (en) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 Cooling device
WO2013002424A1 (en) * 2011-06-29 2013-01-03 Kabushiki Kaisha Toyota Jidoshokki Heat exchange units
JP2014096979A (en) * 2012-11-08 2014-05-22 Lg Innotek Co Ltd Motor
WO2014182357A1 (en) * 2013-05-07 2014-11-13 Magnadrive Corporation Apparatus, systems and methods for reducing noise generated by rotating couplings and drives
JP2015126207A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Semiconductor device
WO2015141714A1 (en) * 2014-03-20 2015-09-24 富士電機株式会社 Cooler, and semiconductor module using same
CN108574365A (en) * 2017-03-10 2018-09-25 郑州宇通客车股份有限公司 A kind of fluid-cooled electrical machine shell and the fluid-cooled electrical machine using the fluid-cooled electrical machine shell
JP2019140803A (en) * 2018-02-09 2019-08-22 本田技研工業株式会社 Rotary electric machine unit
WO2019201702A1 (en) * 2018-04-19 2019-10-24 Zf Friedrichshafen Ag Liquid cooling system for an electric machine
CN110880484A (en) * 2018-09-05 2020-03-13 株式会社电装 Semiconductor device with a plurality of semiconductor chips
CN111756165A (en) * 2020-07-31 2020-10-09 诸暨亚目发动机有限公司 Heat dissipation assembly for high-power motor in high-load state
JP2022016078A (en) * 2020-07-10 2022-01-21 トヨタ自動車株式会社 Cooling unit
CN115857226A (en) * 2022-12-29 2023-03-28 惠科股份有限公司 Backlight module and display device
CN117134539A (en) * 2023-09-11 2023-11-28 贝德凯利电气(苏州)有限公司 Water-cooling heat dissipation structure of high-voltage direct-current fan

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200278A (en) * 1997-01-13 1998-07-31 Yaskawa Electric Corp Cooler
JPH11355623A (en) * 1998-06-05 1999-12-24 Sony Corp Heat dissipating device for video camera
WO2004025807A1 (en) * 2002-09-13 2004-03-25 Aisin Aw Co., Ltd. Drive device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10200278A (en) * 1997-01-13 1998-07-31 Yaskawa Electric Corp Cooler
JPH11355623A (en) * 1998-06-05 1999-12-24 Sony Corp Heat dissipating device for video camera
WO2004025807A1 (en) * 2002-09-13 2004-03-25 Aisin Aw Co., Ltd. Drive device

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010135673A (en) * 2008-12-08 2010-06-17 Toshiba Schneider Inverter Corp Radiator of semiconductor device
JP2011171686A (en) * 2010-02-22 2011-09-01 Nakamura Mfg Co Ltd Metal-based printed board with heat radiation part
JP2012129280A (en) * 2010-12-14 2012-07-05 Toyota Motor Corp Semiconductor cooling device and manufacturing method of the same
JP2012156322A (en) * 2011-01-26 2012-08-16 Toyota Motor Corp Heat exchanger
WO2012114475A1 (en) * 2011-02-23 2012-08-30 トヨタ自動車株式会社 Cooling device
JP5051322B1 (en) * 2011-02-23 2012-10-17 トヨタ自動車株式会社 Cooler
WO2013002424A1 (en) * 2011-06-29 2013-01-03 Kabushiki Kaisha Toyota Jidoshokki Heat exchange units
JP2014096979A (en) * 2012-11-08 2014-05-22 Lg Innotek Co Ltd Motor
US10211696B2 (en) 2012-11-08 2019-02-19 Lg Innotek Co., Ltd. Motor
WO2014182357A1 (en) * 2013-05-07 2014-11-13 Magnadrive Corporation Apparatus, systems and methods for reducing noise generated by rotating couplings and drives
CN105379085A (en) * 2013-05-07 2016-03-02 麦格纳驱动公司 Apparatus, systems and methods for reducing noise generated by rotating couplings and drives
JP2015126207A (en) * 2013-12-27 2015-07-06 三菱電機株式会社 Semiconductor device
WO2015141714A1 (en) * 2014-03-20 2015-09-24 富士電機株式会社 Cooler, and semiconductor module using same
JPWO2015141714A1 (en) * 2014-03-20 2017-04-13 富士電機株式会社 Cooler and semiconductor module using the same
US9960100B2 (en) 2014-03-20 2018-05-01 Fuji Electric Co., Ltd Cooler and semiconductor module using same
CN108574365A (en) * 2017-03-10 2018-09-25 郑州宇通客车股份有限公司 A kind of fluid-cooled electrical machine shell and the fluid-cooled electrical machine using the fluid-cooled electrical machine shell
US10668799B2 (en) 2018-02-09 2020-06-02 Honda Motor Co., Ltd. Rotary electric machine unit
JP2019140803A (en) * 2018-02-09 2019-08-22 本田技研工業株式会社 Rotary electric machine unit
WO2019201702A1 (en) * 2018-04-19 2019-10-24 Zf Friedrichshafen Ag Liquid cooling system for an electric machine
US11232995B2 (en) 2018-09-05 2022-01-25 Denso Corporation Semiconductor device
CN110880484A (en) * 2018-09-05 2020-03-13 株式会社电装 Semiconductor device with a plurality of semiconductor chips
CN110880484B (en) * 2018-09-05 2024-05-24 株式会社电装 Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2022016078A (en) * 2020-07-10 2022-01-21 トヨタ自動車株式会社 Cooling unit
JP7359089B2 (en) 2020-07-10 2023-10-11 トヨタ自動車株式会社 cooling unit
US11808533B2 (en) 2020-07-10 2023-11-07 Toyota Jidosha Kabushiki Kaisha Cooling unit
CN111756165A (en) * 2020-07-31 2020-10-09 诸暨亚目发动机有限公司 Heat dissipation assembly for high-power motor in high-load state
CN115857226A (en) * 2022-12-29 2023-03-28 惠科股份有限公司 Backlight module and display device
CN115857226B (en) * 2022-12-29 2024-03-19 惠科股份有限公司 Backlight module and display device
CN117134539A (en) * 2023-09-11 2023-11-28 贝德凯利电气(苏州)有限公司 Water-cooling heat dissipation structure of high-voltage direct-current fan
CN117134539B (en) * 2023-09-11 2024-03-19 贝德凯利电气(苏州)有限公司 Water-cooling heat dissipation structure of high-voltage direct-current fan

Also Published As

Publication number Publication date
JP4982194B2 (en) 2012-07-25

Similar Documents

Publication Publication Date Title
JP4982194B2 (en) Heating element cooling structure, driving device, and method of manufacturing heating element cooling structure
JP4861840B2 (en) Heating element cooling structure and driving device
JP5895301B2 (en) Heat exchanger
JP4876975B2 (en) Cooling device and heat receiving member for electronic equipment
US20050011635A1 (en) Cold plate with vortex generator
US20060021737A1 (en) Liquid cooling device
US20130175021A1 (en) Servo amplifier with heat sink having two sets of heat-releasing plates perpendicular to each other
TW200529733A (en) Liquid cooling system and electronic apparatus having the same therein
JP4027353B2 (en) Cooling structure
WO2012169012A1 (en) Cooler
JP7118186B2 (en) Heat dissipation device
TW200820404A (en) Water-cooled heat sink and water-cooled system
US20080290500A1 (en) Semiconductor device
JP2011091088A (en) Heat radiation structure of heating element and semiconductor device using the heat radiation structure
JP3201784U (en) Cooling device for computer arithmetic unit
JP5667739B2 (en) Heat sink assembly, semiconductor module, and semiconductor device with cooling device
US20020186538A1 (en) Cooling module and the system using the same
JP2013105720A (en) Battery temperature control unit
JP2007250701A (en) Cooling device for electronic equipment
JP2010210202A (en) Heat exchange body
JP4737117B2 (en) Electronic device cooling device and heat receiving member
JP2012028720A (en) Cooling apparatus
JP2005011928A (en) Liquid-cooling circulation system
JP2006278735A (en) Cooling device
JP2005235838A (en) Heat radiator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150427

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4982194

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250