JP2008186939A - プラズマ処理装置及びプラズマ処理方法並びに記憶媒体 - Google Patents

プラズマ処理装置及びプラズマ処理方法並びに記憶媒体 Download PDF

Info

Publication number
JP2008186939A
JP2008186939A JP2007018196A JP2007018196A JP2008186939A JP 2008186939 A JP2008186939 A JP 2008186939A JP 2007018196 A JP2007018196 A JP 2007018196A JP 2007018196 A JP2007018196 A JP 2007018196A JP 2008186939 A JP2008186939 A JP 2008186939A
Authority
JP
Japan
Prior art keywords
electrode
matching circuit
frequency power
power supply
supply unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007018196A
Other languages
English (en)
Inventor
Akira Sato
亮 佐藤
Hitoshi Saito
斉藤  均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP2007018196A priority Critical patent/JP2008186939A/ja
Priority to TW097103104A priority patent/TW200901307A/zh
Priority to KR1020080008472A priority patent/KR100980521B1/ko
Priority to CN2008100092084A priority patent/CN101237742B/zh
Publication of JP2008186939A publication Critical patent/JP2008186939A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

【課題】装置の構成要素を少なくして、装置構成の複雑化を抑え、かつ常に安定したプラズマ処理を行うことができる技術を提供すること。
【解決手段】切替スイッチ51により上部電極3及び下部電極6に選択的に第1の高周波電源部が接続され、自動でインピーダンス値の整合が行われる第1の整合回路41及び第2の整合回路71を備え、プラズマ処理種別が選択されたときに、記憶部のデータを参照し、切替スイッチ51を介して前記高周波電源部5を対応する電極に接続すると共に、第1の整合回路41及び第2の整合回路71のうち、インピーダンス調整回路として機能する整合回路を適切なインピーダンス値に調整する。
【選択図】図6

Description

本発明は、高周波電力により処理ガスをプラズマ化し、そのプラズマにより基板に対してエッチング等の処理を施すプラズマ処理装置及びプラズマ処理方法並びに記憶媒体に関する。
半導体デバイスや液晶表示装置などのフラットパネルの製造工程においては、半導体ウエハやガラス基板といった被処理基板にエッチング処理や成膜処理等のプロセス処理を施すために、プラズマエッチング装置やプラズマCVD成膜装置等のプラズマ処理装置が用いられる。
図13は、特許文献1に記載の平行平板型のプラズマ処理装置を示す図である。このプラズマ処理装置においては、例えばアルミニウムなどからなる処理容器11内に、ガス供給部をなすガスシャワーヘッドを兼用した上部電極12が設けられると共に、この上部電極12に対向するように基板10の載置台を兼用する下部電極13が設けられている。上部電極12は絶縁材14により処理容器11に対して十分に電気的に浮いている状態にあり、整合回路(整合回路)15を介して高周波電源17に接続されてカソード電極として構成されている。
下部電極13は、インピーダンス調整部19を介設した導電路18a、支持板18b及びベローズ体18cを介して処理容器11に接続され、アノード電極として構成されている。処理容器11の上部側は、接地された筐体であるマッチングボックス16を介して接地されている。この装置における高周波電流の導電路は、処理容器11内にプラズマが発生しているときには上部電極12及び下部電極13間は容量結合されるので、高周波電源17→整合回路15→上部電極12→プラズマ→下部電極13→インピーダンス調整部19→処理容器11の壁部→マッチングボックス16→アースとなる。
そしてこの装置では、下部電極13(アノード電極)と処理容器11との間に、容量成分を含むインピーダンス調整部19を設けることにより、上部電極12と処理容器11の壁部との間のプラズマの発生を抑え、こうして処理容器11内に均一なプラズマを発生させるようにしている。
ところで半導体デバイスあるいは液晶ディスプレイに使用されている薄膜トランジスタ(TFT:Thin Film Transistor)の製造プロセスにおいては、被処理体である基板に対して上部電極に高周波電力を印加して処理を行う場合や、下部電極に高周波電力を印加して処理を行う場合があり、これらの処理を連続して行う場合もある。また製造プロセスの時間短縮のためには、これらの連続した処理を1台の装置にて行うことが効果的であり、そのための装置としては、上部電極と下部電極が夫々高周波電源に接続され、上部電極と下部電極の夫々に整合回路とインピーダンス調整部が設けられる構成が考えられる。
このような装置では上部電極側に高周波電力が印加された場合には、上部電極側の整合回路と、下部電極側のインピーダンス調整部が使用され、下部電極側に高周波電力が印加された場合には、下部電極側の整合回路と、上部電極側のインピーダンス調整部が使用されるようになっている。しかしながら、このように上部電極側と下部電極側の夫々に整合回路とインピーダンス調整部を設ける構成では、使用しない場合のある整合回路とインピーダンス調整部とを備えるため、構成要素が多く、構成が複雑になってしまうという問題がある。
また前記製造プロセスを行う際には、夫々の処理の際に、高周波電力を印加する電極を切り替える作業や、高周波電力が印加される電極に対応して、使用されるインピーダンス調整部を選択する作業が必要となる。
この際、同じ電極に高周波電力を印加する場合であっても、高周波の印加電力や処理ガス、処理圧力等のプロセス条件が変化すると、インピーダンス調整部の適切なインピーダンス値が異なり、インピーダンス値を適切な値に調整しないまま処理を行うと、安定したプラズマ処理を行うことができなくなってしまう。しかしながら特許文献1には、装置の複雑化を抑えることや、処理に応じて高周波電源部から高周波電力を印加する電極を切り替えたり、インピーダンス値を調整することについては着眼されておらず、またその解決策についても記載されていない。
特開2005−340760号公報:図1
本発明はこのような事情の下になされたものであり、第1の整合回路及び第2の整合回路のうち、一方を本来の整合回路として用い、他方をインピーダンス調整回路として用いることにより、装置の構成要素を少なくして、装置構成の複雑化を抑え、かつプラズマ処理種別に応じて、高周波電源部が接続される電極の選択と、インピーダンス調整回路として機能する整合回路のインピーダンス値の調整を自動的に行なうことにより、常に安定したプラズマ処理を行うことができる技術を提供することにある。
このため本発明のプラズマ処理装置は、処理容器内に当該処理容器とは絶縁されかつ互いに対向して設けられた第1の電極及び第2の電極と、切替部により第1の電極及び第2の電極に選択的に接続される第1の高周波電源部と、この第1の高周波電源部が第1の電極及び第2の電極に夫々接続されるときに、自動でインピーダンス値の整合が行われる第1の整合回路及び第2の整合回路と、を備え、第1の電極及び第2の電極間に発生したプラズマにより基板が処理される平行平板型のプラズマ処理装置において、
プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値と、を対応づけたデータを記憶する記憶部と、
プラズマ処理種別が選択されたときに、前記記憶部のデータを参照し、切替部を介して前記第1の高周波電源部を対応する電極に接続すると共に、第1の整合回路及び第2の整合回路のうち、インピーダンス調整回路として機能する整合回路を適切なインピーダンス値に調整するための制御信号を出力する制御部と、を備えたことを特徴とする。ここで「第1の電極及び第2の電極が処理容器とは絶縁され」とは、インピーダンス調整回路を除いた部位において処理容器に対して十分電気的に浮いているという意味である。
前記制御部の記憶部は、連続した複数のプラズマ処理種別を含むレシピを備え、前記レシピには、複数のプラズマ処理種別毎に、プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値とを対応づけたデータが記載され、一のレシピを選択することにより、複数のプラズマ処理種別が連続して行われるように構成してもよい。
この際前記第1の高周波電源部を第1の電極に接続したときは、第1の整合回路は整合回路として機能すると共に、第2の整合回路はインピーダンス調整回路として機能し、前記第1の高周波電源部を第2の電極に接続したときは、第2の整合回路は整合回路として機能すると共に、第1の整合回路はインピーダンス調整回路として機能するものである。また前記第2の電極に整合回路を介してその一端側が接続された第2の高周波電源部と、その一端側が前記第1の電極に接続されると共に、他端側が前記処理容器に接続される前記第2の高周波電力用のインピーダンス調整部と、を備えるようにしてもよい。
また本発明のプラズマ処理方法は、処理容器内に当該処理容器とは絶縁されかつ互いに対向して設けられた第1の電極及び第2の電極と、切替部により第1の電極及び第2の電極に選択的に接続される第1の高周波電源部と、この第1の高周波電源部が第1の電極及び第2の電極に夫々接続されるときに、自動でインピーダンス値の整合が行われる第1の整合回路及び第2の整合回路と、を備え、第1の電極及び第2の電極間に発生したプラズマにより基板が処理されるプラズマ処理装置にて行われるプラズマ処理方法において、
プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値と、を対応づけたデータを制御部の記憶部に記憶させる工程と、
プラズマ処理種別を選択する工程と、
選択されたプラズマ処理種別に対応する前記記憶部のデータを参照し、切替部を介して前記第1の高周波電源部を対応する電極に接続すると共に、第1の整合回路及び第2の整合回路のうち、インピーダンス調整回路として機能する整合回路を適切なインピーダンス値に調整するための制御信号を出力する工程と、
基板を処理容器内に載置して、選択されたプラズマ処理種別の処理を前記基板に対して行う工程と、を含むことを特徴とする。
この際前記制御部の記憶部は、連続した複数のプラズマ処理種別を含むレシピを備え、前記レシピには、複数のプラズマ処理種別毎に、プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値と、を対応づけたデータが記載され、一のレシピを選択することにより、複数のプラズマ処理種別が連続して行われるものであってもよい。
さらにまた本発明の記憶媒体は、処理容器内に当該処理容器とは絶縁されかつ互いに対向して設けられた第1の電極及び第2の電極と、切替部により第1の電極及び第2の電極に選択的に接続される第1の高周波電源部と、この第1の高周波電源部が第1の電極及び第2の電極に夫々接続されるときに、自動でインピーダンス値の整合が行われる第1の整合回路及び第2の整合回路と、を備え、第1の電極及び第2の電極間に発生したプラズマにより基板が処理される平行平板型のプラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、前記コンピュータプログラムは、前記プラズマ処理方法を実施するようにステップが組まれていることを特徴とする。
本発明によれば、第1の電極に第1の高周波電源部が接続されているときには、第2の整合回路をインピーダンス調整回路として用い、第2の電極に第1の高周波電源部が接続されているときには、第1の整合回路をインピーダンス調整回路として用いることにより、第1の整合回路及び第2の整合回路のうち、一方を整合回路として用い、他方をインピーダンス調整回路として用いるようにしたので、装置の構成要素が少なくなり、装置構成の複雑化が抑えられる。
またプラズマ処理種別を選択することにより、第1の高周波電源部が接続される電極の選択と、インピーダンス調整回路として機能する整合回路のインピーダンス値の調整と、を自動的に行なうようにしたので、常に安定したプラズマ処理を行うことができる。
本発明のプラズマ処理装置を、液晶ディスプレイ用のガラス基板をエッチングする装置に適用した実施の形態について説明する。図1において2は例えば表面が陽極酸化処理されたアルミニウムからなる角筒形状の処理容器である。この処理容器2の上部には、ガス供給部であるガスシャワーヘッドを兼用する第1の電極をなす上部電極3が設けられており、この上部電極3は、処理容器2の上面の開口部30の開口縁に沿って設けられた絶縁材31により処理容器2に対して十分電気的に浮いている状態となっている。
また上部電極3であるガスシャワーヘッドは、ガス供給路32を介して処理ガス供給系に接続されると共に、ガス供給路32から供給されたガスを多数のガス孔33から処理容器2内に供給するように構成されている。この例では、処理ガス供給系は、処理ガスであるSFガスの供給源34と、Clガスの供給源35と、Oガスの供給源36とを備えており、夫々の供給源34,35,36は、例えば開閉バルブと流量調整部とを組み合わせて構成された流量調整バルブV1,V2,V3を介して前記ガス供給路32に接続されている。
前記上部電極3は、導電路40a、第1の整合回路41、第1の同軸ケーブル40及び切替部をなす切替スイッチ51を介して、10MHz〜30MHz、例えば13.56MHzのプラズマ発生用の第1の高周波電力を出力する第1の高周波電源部5に接続されている。また処理容器2における前記開口部30を囲み、その中に第1の整合回路41が包有されるように第1のマッチングボックス42が設けられている。この第1のマッチングボックス42は、前記第1の同軸ケーブル40の外部導体と、前記高周波電源部5の筐体を介して接地されている。この例では、第1のマッチングボックス42が第1の整合回路41の接地筐体に相当する。
処理容器2の底部には、基板10を載置する載置台を兼用した第2の電極をなす下部電極6が設けられており、この下部電極6は、絶縁材60を介して支持部61に支持されている。従って下部電極6は、処理容器2から電気的に十分浮いた状態になっている。支持部61の下面における中央部には、処理容器2の底壁に形成された開口部20を貫通して下方に伸びる保護管62が設けられている。この保護管62の下面は、当該保護管62よりも大径の導電性の支持板63により支持されかつ管内が塞がれている。この支持板63の周縁には導電性のベローズ体64の下端が固定されると共に、このベローズ体64の上端は処理容器2の前記開口部20の開口縁に固定されている。ベローズ体64は保護管62が配置されている内部空間と大気側空間とを気密に区画すると共に、図示しない昇降機構により支持板63を介して載置台6を昇降できるようになっている。
下部電極6には、保護管62内に設けられた導電路65aの一端が接続され、この導電路65aの他端側には第2の整合回路71が接続されている。前記保護管62の下部側には第2のマッチングボックス72が設けられており、この内部には前記第2の整合回路71が設けられ、更に第2の整合回路71は第2の同軸ケーブル65、切替スイッチ51を介して前記第1の高周波電源部5が接続されている。前記第2のマッチングボックス72は、前記第2の同軸ケーブル65の外部導体と前記高周波電源部5の筐体を介して接地されている。この例では、第2のマッチングボックス72が第2の整合回路71の接地筐体に相当する。
ここで前記第1の整合回路41と第2の整合回路71とについて図2を用いて説明する。先ず第1の整合回路41について説明すると、例えばインダクタ81と2つの容量可変コンデンサ82a,82bとの組み合わせにより構成されている。そして前記第1の整合回路41は、第1の高周波電源部5側を上流側とすると、上部電極3と第1の高周波電源部5とを接続する第1の同軸ケーブル40の一端に、前記インダクタ81と容量可変コンデンサ82aとが上流側からこの順序で設けられ、その容量可変コンデンサ82aの一端側は導電路40aを介して前記上部電極3に接続され、前記インダクタ81の他端側が前記切替スイッチ51を介して第1の高周波電源部5に接続されるように設けられている。また前記インダクタ81の上流側は分岐しており、その他端側は容量可変コンデンサ82bを介して第1のマッチングボックス42を経て接地されるように設けられている。
一方前記第2の整合回路71も、例えばインダクタ81と2つの容量可変コンデンサ82との組み合わせにより構成され、前記第2の整合回路71は、第1の高周波電源部5側を上流側とすると、下部電極6と第1の高周波電源部5とを接続する第2の同軸ケーブル65の一端に、前記インダクタ81と容量可変コンデンサ82aとが上流側からこの順序で設けられ、その容量可変コンデンサ82aの一端側は導電路65aを介して前記下部電極6に接続され、前記インダクタ81の他端側が前記切替スイッチ51を介して第1の高周波電源部5に接続されるように設けられている。また前記インダクタ81の上流側は分岐しており、その他端側は容量可変コンデンサ82bを介して第2のマッチングボックス72を経て接地されるように設けられている。
図1に戻って全体構成の説明を続けると、下部電極6は2MHz〜6MHz、例えば3.2kWの高周波電力を出力する第2の高周波電源部52に接続されている。この第2の高周波電源部52からは、プラズマ中のイオンを基板10側に引き込む役割を果たすバイアス電力用の第2の高周波電力が出力される。また前記第2のマッチングボックス72の内部には第2の高周波電力用の整合回路である第3の整合回路67が設けられ、この第3の整合回路67は、導電路66aを介して下部電極6に接続されると共に、第3の同軸ケーブル66を介して第2の高周波電源52に接続されている。この際前記第2のマッチングボックス72は、前記同軸ケーブル66の外部導体と前記第2の高周波電源部52の筐体を介して接地されている。さらに上部電極3と第1のマッチングボックス42との間には、導電路46を介して第2の高周波電力用のインピーダンス調整回路であるインピーダンス調整回路47が設けられており、このインピーダンス調整回路47は第1のマッチングボックス42を介して処理容器2の上部例えば天井部に接続されている。
ここで上部電極3と第1の整合回路41との間、及び下部電極6と第2の整合回路71との間には、例えば第1及び第2の整合回路41,71の内部に、第1の高周波電源部5の高周波の帯域に対応する高周波のみを通過させるためのハイパスフィルタ(図示せず)が設けられると共に、第3の整合回路67の内部には、第2の高周波電源部52の高周波の帯域に対応する高周波のみを通過させるためのローパスフィルタ(図示せず)が設けられており、第1の高周波電源部5と第2の高周波電源部52との間で相手方の高周波成分が入力されないようになっている。またインピーダンス調整回路47には前記ローパスフィルタ(図示せず)が設けられている。
前記処理容器2の側壁には排気路21が接続され、この排気路21には真空排気手段22が接続されている。更に処理容器2の側壁には、基板10の搬送口23を開閉するためのゲートバルブ24が設けられている。さらに上部電極3と下部電極4には、夫々例えば1〜10MΩの抵抗25,26が接続されている。
このような装置では、切替スイッチ51により、上部電極3に第1の高周波電源部5を接続する場合と、下部電極6に第1の高周波電源部5を接続する場合とを切り替えられるようになっており、上部電極3に第1の高周波電源部5が接続されたときには、例えば図3(a)に示すように、第1の整合回路41が整合回路(図にMとして示す(以下同じ))、第2の整合回路71がインピーダンス調整回路(図にZとして示す(以下同じ))として夫々機能し、下部電極6に第1の高周波電源部5が接続されたときには、例えば図3(b)に示すように、第2の整合回路71が整合回路M、第1の整合回路がインピーダンス調整回路Zとして夫々機能するように構成されている。
そして前記第1及び第2の整合回路41,71は、整合回路Mとして機能するときには、第1の高周波電源部5から見た装置全体の入力インピーダンスが50Ωになるようにそのインピーダンス値が自動制御され、インピーダンス調整回路Zとして機能するときには、夫々のアクチュエータ例えば容量可変コンデンサ82のトリム機構を駆動するモータに後述する制御部100から制御信号が出力され、プラズマ処理種別に応じてそのインピーダンス値が調整されるようになっている。また前記インピーダンス調整回路47についても、アクチュエータ例えば容量可変コンデンサのトリム機構を駆動するモータに後述する制御部100から制御信号が出力され、インピーダンス値が調整されるようになっている。
ここで高周波電流のリターン経路について説明すると、上部電極3に第1の高周波電源部5が接続されたときには、図4に示すように、第1の高周波電源部5→第1の同軸ケーブル40→第1の整合回路41→上部電極3→プラズマ→下部電極6→第2の整合回路71→第2のマッチングボックス72→処理容器2の壁部→第1のマッチングボックス42→第1の同軸ケーブル40の外部導体→第1の高周波電源部5の筐体→接地の経路で高周波電流が流れることになる。
つまりこの場合には、整合回路Mとして機能する第1の整合回路41では、容量可変コンデンサ82aのインピーダンス値と、容量可変コンデンサ82bのインピーダンス値との調整により、容量可変コンデンサ82a側に向けて高周波電流が流れるように自動制御される。さらにインピーダンス調整回路Zとして機能する第2の整合回路71では、第2の同軸ケーブル65の終端が第1の高周波電源部5に接続されていないので、高周波は切替スイッチ51側ではなく第2のマッチングボックス72側へ伝送される。この際下部電極6は、第2の同軸ケーブル65の終端が第1の高周波電源部5に接続されていないため電気的に浮いた状態にあるが、抵抗26に接続されているため、直流電流のチャージアップが防止される。
ここで、背景技術の項目において記載したように、上部電極3からプラズマを介して処理容器2の壁部に高周波電流が流れるおそれがあるため、上部電極3から下部電極6を通り処理容器2の上部に至るまでの正常なリターン経路のインピーダンス値を、上部電極3→プラズマ→処理容器2の壁部を含むいわば異常な経路のインピーダンスよりも小さくして、前記正常なリターン経路で高周波電流が流れるように、インピーダンス調整回路Zとして機能する第2の整合回路71のインピーダンス値が調整される。
また下部電極6に第1の高周波電源部5が接続されたときには、図5に示すように、第1の高周波電源部5→第2の同軸ケーブル65→第2の整合回路71→下部電極6→プラズマ→上部電極3→第1の整合回路41→第1のマッチングボックス42→処理容器2の壁部→第2のマッチングボックス72→第2の同軸ケーブル65の外部導体→高周波電源部5の筐体→接地の経路で高周波電流が流れることになる。
つまりこの場合には、整合回路Mとして機能する第2の整合回路71では容量可変コンデンサ82aのインピーダンス値と、容量可変コンデンサ82bのインピーダンス値との調整により、容量可変コンデンサ82a側に向けて高周波電流が流れるように設定される。さらにインピーダンス調整回路Zとして機能する第1の整合回路41では、第1の同軸ケーブル40の終端が第1の高周波電源部5に接続されていないので、高周波は切替スイッチ51側ではなく第1のマッチングボックス42側へ伝送される。この際上部電極3は、第1の同軸ケーブル40の終端が第1の高周波電源部5に接続されていないため電気的に浮いた状態にあるが、抵抗25に接続されているため、直流電流のチャージアップが防止される。
ここで下部電極6からプラズマを介して処理容器2の壁部に高周波電流が流れることを抑えるため、下部電極6から上部電極3を通り、処理容器2の下部に至るまでの正常なリターン経路のインピーダンス値を、下部電極6→プラズマ→処理容器2の壁部を含むいわば異常な経路のインピーダンスよりも小さくして、前記正常なリターン経路で高周波電流が流れるように、インピーダンス調整回路Zとして機能する第1の整合回路41のインピーダンス値が調整される。
また第2の高周波電源52からのバイアス用の第2の高周波電力を下部電極6に印加したときには、第2の高周波電源52からの高周波電流は、高周波電源52→第3の同軸ケーブル66→第3の整合回路67→下部電極6→プラズマ→上部電極3→インピーダンス調整回路47→第1のマッチングボックス42→処理容器2の壁部→第2のマッチングボックス72→第3の同軸ケーブル66の外部導体→第2の高周波電源部52の筐体→接地の経路で流れる。このためインピーダンス調整回路47は、下部電極6からプラズマ、上部電極3及び処理容器2の壁部を介して第2のマッチングボックス72に至るまでの第2の高周波電源52における高周波のインピーダンス値が、下部電極6からプラズマ及び処理容器2の壁部を介して第2のマッチングボックス72に至るまでの第2の高周波電源52における高周波のインピーダンス値よりも小さくなるようにそのインピーダンス値が調整される。
ここで上記の正常なリターン経路の第1及び第2の整合回路41,71、インピーダンス調整回路47のインピーダンス値を小さくするにあたっては、例えば第1及び第2の整合回路41,71、インピーダンス調整回路47のインピーダンス値を種々変えて当該経路を流れる電流値を求め、それが最大値となるように設定すること、つまり正常な経路のインピーダンスが最小になるように設定することが望ましい。このようにして予めプラズマ処理の種別に応じてインピーダンス調整回路Zとして用いられるときの第1及び第2の整合回路41,71の適切なインピーダンス値と、インピーダンス調整回路47の適切なインピーダンス値を、試行錯誤的に実験により求めておき、これを後述するように制御部100の記憶部に格納しておく。
さらにまた上述のプラズマ処理装置は、第1の高周波電源部5、第2の高周波電源部52、切替スイッチ51、第1の整合回路41、第2の整合回路71、インピーダンス調整回路47、処理ガス供給系の流量調整バルブV1〜V3、真空排気手段22等の駆動制御を行うコンピュータからなる制御部100を備えている。この制御部100は、例えばコンピュータプログラムからなる記憶部をなすプログラム格納部を有している。
このプログラム格納部には、プラズマ処理の種別と、切替スイッチ51により選択される電極と、前記第1の高周波電源部5を上部電極3に接続したときに、インピーダンス調整回路として機能する第2の整合回路71の適切なインピーダンス値と、前記第1の高周波電源部5を下部電極6に接続したときに、インピーダンス調整回路として機能する第1の整合回路41の適切なインピーダンス値と、を対応づけたデータが記憶されている。
より具体的には、プラズマ処理の種別と、切替スイッチ51により選択される電極と、インピーダンス調整回路として機能するときの第1の整合回路41又は第2の整合回路71の適切なインピーダンス値と、第2の高周波電源部52からのバイアス用高周波電力の印加の有無と、印加する高周波の電力と、処理ガスの種類及び流量と、処理温度と、処理圧力と、インピーダンス調整回路47の適切なインピーダンス値とを夫々対応づけたデータを例えばテーブルとして記憶しておき、処理の種別を選択したときにその処理に対応する前記適切な調整値を対応するテーブルから読み出し、各部に制御部100から制御信号が出力されるように構成されている。
ここで例えばプラズマ処理を連続して行う場合には、例えば図6に示すように、プラズマ処理のステップ毎に前記テーブルを作成し、これらのテーブルを1つのレシピに処理の順番に沿って記載しておくことにより、1つのレシピを選択することによって複数のプラズマ処理種別が連続して行われるようになっている。なお図6のレシピ1、レシピ2及びインピーダンス値Z1〜Z5については、後述する薄膜トランジスタ(TFT:Thin Film Transistor)の製造プロセスにて説明する。
そして前記プログラムが制御部100に読み出されることにより、制御部100によってプラズマ処理装置全体の作用が制御される。なおこのプログラムは、例えばフレキシブルディスク、ハードディスク、コンパクトディスク、マグネットオプティカルディスク、メモリーカード等の記憶媒体に収納された状態でプログラム格納部に格納される。
このようなプラズマ処理装置の作用効果について、例えば本発明のプラズマ処理装置を用いて、液晶ディスプレイに使用されている薄膜トランジスタを4枚のマスクを使用して製造する4マスクプロセスを実施する場合を例にして説明する。この4マスクプロセスは、ハーフトーンレジストマスクを用いて、ソース・ドレインパターンとチャネルパターンのエッチングを行うものである。
先ず4マスクプロセスの工程について簡単に説明すると、先ず図7(a)に示すように、ガラス基板101表面に例えばアルミニウム(Al)合金よりなる金属膜を形成し、第1のマスク102を用いて選択的にウェットエッチングを行ってゲート電極103を形成する。次いで図7(b)に示すように、ゲート電極103の上に、例えばシリコン窒化膜よりなるゲート絶縁膜104、トランジスタのチャネルをなす不純物をほとんど含まないアモルファスシリコン層105、トランジスタのソース・ドレインとしてN型不純物をドープしたN+アモルファスシリコン層106を下からこの順序で形成し、その上に例えばモリブデンなどの高融点金属よりなる金属膜107を形成する。図7(b)中108はハーフトーンレジストマスクよりなる第2のマスクである。続いて図7(c)に示すように、前記第2のマスク108を用いて前記金属膜107の選択的ウェットエッチングを行い、ソース・ドレイン層109を形成する。
この後、図8(a)に示すように、前記第2のマスク108を用いてアイランドを形成するためのドライエッチング工程を実施し(第1のステップ)、次いで図8(b)に示すように、前記第2のマスク108のハーフトーンアッシング工程を実施する(第2のステップ)。次いで図8(c)に示すように、前記第2のマスク108を用いてソース・ドレイン層109にチャネル部110を形成して、ソース・ドレイン配線を形成するためのドライエッチング工程を行なう(第3のステップ)。
しかる後、図9(a)に示すように、前記第2のマスク108を用いてN+アモルファスシリコン層106と、アモルファスシリコン層105とに対して、アモルファスシリコン層105を残すようにドライエッチング工程を実施し(第4のステップ)、こうしてTFTのチャネルとなる不純物をほとんど含まないアモルファスシリコン層105を形成する。
続いて、図9(b)に示すように、前記第2のマスク108を除去し、ソース・ドレイン層109の上に例えばシリコン窒化膜等よりなるパッシべーション膜111を形成し、第3のマスク112を用いて、コンタクトホールを形成するためのドライエッチング工程(第5のステップ)を実施する。そして、図9(c)に示すように、前記第3のマスク112を除去し、酸化インジニウム錫(ITO)等よりなる透明導電膜113を形成した後、第4のマスク114を用いて前記透明導電膜113を選択的にドライエッチングして、画素電極のパターンニングを行い、不要な第4のマスク114を除去することにより、TFTが形成される。
そして本発明のプラズマ処理装置では、前記第1のステップ〜第5のステップが実施される。この際、第1のステップ〜第4のステップは連続して行われるので、例えば図6に示すように、レシピ1に第1のステップ〜第4のステップについて、ステップ毎に前記データ、つまり処理種別と、高周波電力が印加される電極と、インピーダンス調整回路として機能する第1の整合回路41又は第2の整合回路71の適切なインピーダンス値と、第2の高周波電源部52からのバイアス用高周波電力の印加の有無と、印加する高周波の電力と、処理ガスの種類及び流量と、処理温度と、処理圧力と、インピーダンス調整回路47の適切なインピーダンス値とを夫々対応づけたデータをテーブルとして作成し、これらのテーブルを処理の順番に沿って記載し、制御部100の記憶部に格納しておく。また第5のステップについては、当該ステップのみのテーブルを作成し、レシピ2として前記記憶部に格納しておく。なお図6のレシピ1、レシピ2では図示の便宜上、テーブルの一部を記載している。
始めに、ゲートバルブ24を開いて図示しないロードロック室から図示しない搬送アームにより、前記図7(c)に示す工程まで終了した基板10を処理容器2内に搬入し、当該基板10を下部電極6内を貫通する図示しない昇降ピンとの間の協同動作により下部電極6の上に受け渡し、ゲートバルブ24を閉じる。
次に制御部100によりレシピ1を選択する。レシピ1を選択すると、第1のステップのデータが読み出され、各部に出力される。そして下部電極6に第1の高周波電源部5が接続され、第1の整合回路41がインピーダンス調整回路として機能し、当該整合回路41のインピーダンス値Z1が読み出され、適切な値に調整される。続いて処理ガス供給系から上部電極3を通じて処理容器2内にSFガスとClガスとを例えば夫々500sccm、5000sccmの流量で供給すると共に、真空排気手段22により真空排気することにより処理容器2内を例えば50mTorr(7Pa)の圧力に維持する。そして第1の高周波電源部5から下部電極6に例えば13.56MHz、10kWの高周波電力を印加すると共に、第2の高周波電源52から下部電極6に例えば3.2MHz、10kWのバイアス用の高周波電力を印加する。この際第2の整合回路71は整合回路として機能するので、第1の高周波電源部5から見た装置全体の入力インピーダンスが50Ωとなるようにインピーダンス値が自動的に制御され、このようにしてアイランドの形成処理である第1のステップが実施される。
こうして第1のステップを終了した後、基板10を下部電極6の上に載置したまま、次のステップである第2のステップのデータを読み出し、各部に出力する。このステップでは上部電極3に第1の高周波電源部5が接続されるので、第2の整合回路71がインピーダンス調整回路として機能し、当該整合回路71のインピーダンス値Z2がデータから読み出された適切な値に調整される。そして処理容器2内にSFガスとOガスとを例えば夫々700sccm、7000sccmの流量で供給すると共に、処理容器2内を例えば200mTorr(26Pa)の圧力に維持する。また第1の高周波電源部5から上部電極3に例えば13.56MHz、15kWの高周波電力を印加して、整合回路として機能する第1の整合回路41のインピーダンス値を既述のように自動的に制御し、このようにしてハーフトーンアッシング処理である第2のステップを実施する。
こうして第2のステップが終了した後、基板10を下部電極6の上に載置したまま、次のステップである第3のステップのデータを読み出し、各部に出力する。このステップでは下部電極6に第1の高周波電源部5が接続されるので、第1の整合回路41がインピーダンス調整回路として機能し、当該整合回路41のインピーダンス値Z3が適切な値に調整される。そして処理容器2内にClガスとOガスとを例えば夫々1000sccm、1000sccmの流量で供給すると共に、処理容器2内を例えば100mTorr(13Pa)の圧力に維持する。また第1の高周波電源部5から上部電極3に例えば13.56MHz、7kWの高周波電力を印加すると共に、第2の高周波電源部52から下部電極6に例えば3.2MHz、7kWのバイアス用高周波電力を印加して、整合回路として機能する第2の整合回路71のインピーダンス値を既述のように自動的に制御し、このようにしてチャネル部のソース・ドレインのエッチング処理である第3のステップを実施する。
こうして第3のステップが終了した後、基板10を下部電極6の上に載置したまま、次のステップである第4のステップを実施する。このステップでは下部電極6に第1の高周波電源部5が接続されるので、第1の整合回路41がインピーダンス調整回路として機能し、当該整合回路41のインピーダンス値Z4が適切な値に調整される。そして処理容器2内にSFガスとClガスとを例えば夫々500sccm、5000sccmの流量で供給すると共に、処理容器2内を50mTorr(7Pa)の圧力に維持する。また第1の高周波電源部5から下部電極6に例えば13.56MHz、5kWの高周波電力を印加すると共に、第2の高周波電源部52から下部電極6に例えば3.2MHz、5kWのバイアス用高周波電力を印加して、整合回路として機能する第2の整合回路71のインピーダンス値を既述のように自動的に制御し、このようにしてチャネル部のエッチング処理である第4のステップを実施する。こうして第1のステップ、第2のステップ、第3のステップ、第4のステップを連続して行い、レシピ1を終了する。
この後、当該プラズマ処理装置から基板10を搬出して、パッシべーション111膜と、第3のマスク112とを形成する工程を実施した後、基板10を本発明のプラズマ処理装置に搬入し、レシピ2を選択して第5のステップのデータを読み出し、各部に出力する。このステップでは上部電極3に第1の高周波電源部5が接続されるので、第2の整合回路71がインピーダンス調整回路として機能し、当該整合回路71のインピーダンス値Z5が適切な値に調整される。
そして上部電極3を通じて処理容器2内にSFガスとOガスとを例えば夫々2500sccm、2500sccmの流量で供給すると共に、真空排気手段22により処理容器2内を50mTorr(7Pa)の圧力に維持する。また第1の高周波電源部5から上部電極3に例えば13.56MHz、10kWの高周波電力を印加すると共に、第2の高周波電源部52から下部電極6に例えば3.2MHz、10kWのバイアス用高周波電力を印加して、整合回路として機能する第1の整合回路41のインピーダンス値を既述のように自動的に制御し、このようにしてコンタクトホールのエッチング処理である第5のステップを実施し、レシピ2を終了する。
このようなプラズマ処理装置では、上部電極3に高周波電源部5が接続されているときには、第2の整合回路71をインピーダンス調整回路として用い、下部電極6に高周波電源部5が接続されているときには、第1の整合回路41をインピーダンス調整回路として用いることにより、第1の整合回路41及び第2の整合回路71のうち、一方を整合回路として用い、他方をインピーダンス調整回路として用いるようにし、常に両方の整合回路を用いるようにしたので、上部電極3側と下部電極6側に夫々整合回路とインピーダンス調整回路を設ける構成に比べて装置の構成要素が少なくなり、装置構成の複雑化が抑えられる。
この際、第1及び第2の整合回路41,71のうち、第1の高周波電源部5に接続されていない側の整合回路をインピーダンス調整回路として用いるが、後述の実施例より明らかなように、整合回路の容量可変コンデンサ82のアクチュエータのトリム位置を調整することにより、インピーダンス値が変化し、インピーダンス値の調整を行なうことができるため、従来の整合回路を改良することなく、インピーダンス調整回路として用いることができる。このため設計変更を行う必要がなく、設計の負担が軽減され、またコストの面からも有効である。
またプラズマ処理の種別を選択することにより、切替スイッチ51による第1の高周波電源部5が接続される電極の選択と、第1の整合回路41及び第2の整合回路71のうち、インピーダンス調整回路として機能する整合回路のインピーダンス値の調整とが自動的に行われるので、常にプラズマ処理の種別に応じた最適なインピーダンス値の調整が行なわれることになり、常に安定したプラズマ処理を行うことができる。
ここで前記第1及び第2の整合回路41、71のインピーダンス値の最適な調整値は、高周波電力が印加される電極が上部電極3と下部電極6のいずれになるかによっても異なるし、高周波電力が印加される電極が同じであっても、高周波の印加電力や処理ガスの種類、処理圧力によっても最適な調整値が変化するので、予め前記最適な調整値を求めて、制御部100の記憶部に、プラズマ処理種別と、第1の高周波電源部5に接続される電極と、インピーダンス調整回路として機能する整合回路の適切なインピーダンス値のデータをテーブルとして格納しておき、処理毎にテーブルを読み出して、各部の調整作業を行なうことは、安定したプラズマ処理を行うためには有効である。
またプラズマ処理種別を連続して行う場合であっても、処理のステップ毎に前記テーブルを作成し、これらのテーブルを1つのレシピに処理の順番に沿って記載して記憶部に格納することにより、1つのレシピを選択することによって複数のプラズマ処理種別が自動的に連続して行われるため、より第1の高周波電源部5と上部電極3又は下部電極6との切替や、第1の整合回路41又は第2の整合回路71のインピーダンス値の調整作業をスムーズに行うことができ、スループットの向上を図ることができる。
ここで前記プラズマ処理の種別の具体例としては、1枚の基板に対して、互いに異なるエッチング処理を連続して行う場合において各エッチング処理毎に前記適切な設定値を決めておく例、あるいは連続成膜プロセスを行う場合に各成膜処理毎に前記適切な設定値を決めておく例などが挙げられる。
また処理容器2内にてプラズマを発生させたときには、既述のように前記正常なリターン経路のインピーダンス値がほぼ最小値となるように設定されていて、前記異常な経路のインピーダンス値よりも小さくなっているため、上部電極3又は下部電極6と処理容器2の壁部との間でプラズマが立ちにくくなっている。このため上部電極3と下部電極6との間にプラズマが集中し、基板10上のプラズマは面内均一性の高いものとなるので、例えばエッチング処理やアッシング処理等のプラズマ処理を行なう場合には、処理速度の面内均一性が高く、従って面内で均一なプラズマ処理を行うことができる。
また上述の実施の形態では、第2の高周波電源部52からバイアス用の高周波電力を下部電極6に印加しているが、第1の整合回路41と第2の整合回路71に夫々ハイパスフィルタを設けると共に、第3の整合回路67とインピーダンス調整回路47に夫々ローパスフィルタを設けているので、夫々の高周波電流の経路に他の高周波電流が入りこむことが抑えられる。
続いて本発明の効果を確認するための実験例について述べる。
A.実験方法
試験装置として図1に示すような平行平板型のプラズマ処理装置であって、第1の高周波電源部5を第1の整合回路41に接続して当該上部電極3に高周波電力を印加し、第2の整合回路71をインピーダンス調整回路として用いる装置を使用し、第2の整合回路71のインピーダンス値を変えて実験を行った。前記インピーダンス値は容量可変コンデンサ82bは固定とし、容量可変コンデンサ82aのトリマの位置を種々変えることにより当該整合回路71のインピーダンス値を種々の値に設定し、各設定値毎に処理容器2で発生したプラズマの状態を目視で観察すると共に、前記第2の整合回路71と処理容器2との間の導電路に流れる電流(下部電極6に流れる電流)を検出した。プラズマの発生条件については、上部電極3及び下部電極6の間を60mmに設定し、プラズマ発生用ガスとしてSFガス、Clガス及びOガスの混合ガスを用い、高周波電源の周波数、電力を夫々13、56MHz、7.5kwに設定し、圧力を150mTorr(20Pa)に設定した。
B.実験結果
図10は、前記第2の整合回路71の容量可変コンデンサ82a,82bのトリマ位置と、当該整合回路71のインピーダンス値の関係を示した特性図、図11は、前記第2の整合回路71の容量可変コンデンサ82a,82bのトリマ位置と下部電極6に流れる電流(下部電流)の値の関係を示した特性図であり、図12は前記容量可変コンデンサ82a,82bのトリマ位置とプラズマの目視状態との関係を示した説明図である。プラズマの目視状態については、発光状態の均一性が極めて高い(◎)、発光状態の均一性が概ね良好(○)、発光状態の均一性がやや悪い(△)、発光状態の均一性が悪い(×)の4通りの評価を用いた。また図10においてインピーダンス調整回路のインピーダンス値の単位はΩ、図11において電流値の単位はAである。
この結果から分かるように、第2の整合回路71のインピーダンス値を変化させることで、下部電極6に流れる電流及びプラズマ状態も変化することが認められた。この結果より、第1及び第2の整合回路41,71を用いた場合においても、インピーダンス調整を行なうことができることが理解される。
下部電流は、トリマ位置7にて最大値となっており、このときのプラズマの状態が最も良い。従って下部電流がほぼ最大値になるようにインピーダンス値を調整することが好ましい。別の言い方をすれば、下部電流値がほぼ最大になるということは、上部電極3からプラズマを介して処理容器2の壁部に流れる電流がほぼ最小になっているということであり、上部電極3と処理容器2の壁部との間の放電が抑えられ、プラズマの均一性が向上するということである。
以上において本発明では、第1の整合回路41及び第2の整合回路71をインピーダンス調整回路として用いるときのインピーダンス値の調整は、既述のように夫々の容量可変コンデンサ82bは固定とし、容量可変コンデンサ82aのトリマ位置を変えることにより行ってもよいし、容量可変コンデンサ82a,82bの夫々のトリマ位置を変えることにより行ってもよいし、容量可変コンデンサ82aは固定とし、容量可変コンデンサ82bのトリマ位置を変えることにより行ってもよい。
本発明の実施の形態であるプラズマ処理装置の全体構成の概略を示す縦断側面図である。 上記の実施の形態の第1の整合回路及び第2の整合回路を示す回路図である。 上記の実施の形態の作用を説明するための構成図である。 上記の実施の形態の作用を説明するための構成図である。 上記の実施の形態の作用を説明するための構成図である。 本発明のプラズマ処理装置に用いられる制御部の概略を示す構成図である。 薄膜トランジスタの製造工程を示す工程図である。 薄膜トランジスタの製造工程を示す工程図である。 薄膜トランジスタの製造工程を示す工程図である。 本発明の効果を確認するための実験の結果であるインピーダンス調整回路の調整位置とインピーダンス値との関係を示す説明図である。 上記一の実験結果であるインピーダンス調整回路の調整位置と高周波電流との関係を示す説明図である。 上記一の実験結果であるプラズマの発生状態の目視結果を示す説明図である。 従来のプラズマ処理装置の全体構成の概略を示す縦断側面図である。
符号の説明
10 基板
2 処理容器
3 上部電極
31 絶縁材
32 ガス供給路
40 第1の同軸ケーブル
41 第1の整合回路
42 第1のマッチングボックス
5 第1の高周波電源部
51 切替スイッチ
52 第2の高周波電源部
6 下部電極
60 絶縁材
65 第2の同軸ケーブル
71 第2の整合回路
72 第2のマッチングボックス
100 制御部

Claims (7)

  1. 処理容器内に当該処理容器とは絶縁されかつ互いに対向して設けられた第1の電極及び第2の電極と、切替部により第1の電極及び第2の電極に選択的に接続される第1の高周波電源部と、この高周波電源部が第1の電極及び第2の電極に夫々接続されるときに、自動でインピーダンス値の整合が行われる第1の整合回路及び第2の整合回路と、を備え、第1の電極及び第2の電極間に発生したプラズマにより基板が処理される平行平板型のプラズマ処理装置において、
    プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値と、を対応づけたデータを記憶する記憶部と、
    プラズマ処理種別が選択されたときに、前記記憶部のデータを参照し、切替部を介して前記第1の高周波電源部を対応する電極に接続すると共に、第1の整合回路及び第2の整合回路のうち、インピーダンス調整回路として機能する整合回路を適切なインピーダンス値に調整するための制御信号を出力する制御部と、を備えたことを特徴とするプラズマ処理装置。
  2. 前記制御部の記憶部は、連続した複数のプラズマ処理種別を含むレシピを備え、前記レシピには、複数のプラズマ処理種別毎に、プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値とを対応づけたデータが記載され、一のレシピを選択することにより、複数のプラズマ処理種別が連続して行われることを特徴とする請求項1記載のプラズマ処理装置。
  3. 前記第1の高周波電源部を第1の電極に接続したときは、第1の整合回路は整合回路として機能すると共に、第2の整合回路はインピーダンス調整回路として機能し、前記第1の高周波電源部を第2の電極に接続したときは、第2の整合回路は整合回路として機能すると共に、第1の整合回路はインピーダンス調整回路として機能することを特徴とする請求項1又は2記載のプラズマ処理装置。
  4. 前記第2の電極に整合回路を介してその一端側が接続された第2の高周波電源部と、
    その一端側が前記第1の電極に接続されると共に、他端側が前記処理容器に接続される第2の高周波電力用のインピーダンス調整部と、を備えることを特徴とする請求項1ないし3のいずれか一に記載のプラズマ処理装置。
  5. 処理容器内に当該処理容器とは絶縁されかつ互いに対向して設けられた第1の電極及び第2の電極と、切替部により第1の電極及び第2の電極に選択的に接続される第1の高周波電源部と、この第1の高周波電源部が第1の電極及び第2の電極に夫々接続されるときに、自動でインピーダンス値の整合が行われる第1の整合回路及び第2の整合回路と、を備え、第1の電極及び第2の電極間に発生したプラズマにより基板が処理されるプラズマ処理装置にて行われるプラズマ処理方法において、
    プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値と、を対応づけたデータを制御部の記憶部に記憶させる工程と、
    プラズマ処理種別を選択する工程と、
    選択されたプラズマ処理種別に対応する前記記憶部のデータを参照し、切替部を介して前記第1の高周波電源部を対応する電極に接続すると共に、第1の整合回路及び第2の整合回路のうち、インピーダンス調整回路として機能する整合回路を適切なインピーダンス値に調整するための制御信号を出力する工程と、
    基板を処理容器内に載置して、選択されたプラズマ処理種別の処理を前記基板に対して行う工程と、を含むことを特徴とするプラズマ処理方法。
  6. 前記制御部の記憶部は、連続した複数のプラズマ処理種別を含むレシピを備え、前記レシピには、複数のプラズマ処理種別毎に、プラズマ処理種別と、前記切替部により選択される電極と、前記第1の高周波電源部を第1の電極に接続したときに、インピーダンス調整回路として機能する第2の整合回路の適切なインピーダンス値及び、前記第1の高周波電源部を第2の電極に接続したときに、インピーダンス調整回路として機能する第1の整合回路の適切なインピーダンス値と、を対応づけたデータが記載され、一のレシピを選択することにより、複数のプラズマ処理種別が連続して行われることを特徴とする請求項5記載のプラズマ処理方法。
  7. 処理容器内に当該処理容器とは絶縁されかつ互いに対向して設けられた第1の電極及び第2の電極と、切替部により第1の電極及び第2の電極に選択的に接続される第1の高周波電源部と、この第1の高周波電源部が第1の電極及び第2の電極に夫々接続されるときに、自動でインピーダンス値の整合が行われる第1の整合回路及び第2の整合回路と、を備え、第1の電極及び第2の電極間に発生したプラズマにより基板が処理される平行平板型のプラズマ処理装置に用いられ、コンピュータ上で動作するコンピュータプログラムを格納した記憶媒体であって、
    前記コンピュータプログラムは、請求項5又は6記載のプラズマ処理方法を実施するようにステップが組まれていることを特徴とする記憶媒体。
JP2007018196A 2007-01-29 2007-01-29 プラズマ処理装置及びプラズマ処理方法並びに記憶媒体 Pending JP2008186939A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007018196A JP2008186939A (ja) 2007-01-29 2007-01-29 プラズマ処理装置及びプラズマ処理方法並びに記憶媒体
TW097103104A TW200901307A (en) 2007-01-29 2008-01-28 Plasma treatment equipment and plasma treatment method, and storage medium
KR1020080008472A KR100980521B1 (ko) 2007-01-29 2008-01-28 플라즈마 처리 장치, 플라즈마 처리 방법 및 기억 매체
CN2008100092084A CN101237742B (zh) 2007-01-29 2008-01-29 等离子体处理装置和等离子体处理方法以及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007018196A JP2008186939A (ja) 2007-01-29 2007-01-29 プラズマ処理装置及びプラズマ処理方法並びに記憶媒体

Publications (1)

Publication Number Publication Date
JP2008186939A true JP2008186939A (ja) 2008-08-14

Family

ID=39729784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007018196A Pending JP2008186939A (ja) 2007-01-29 2007-01-29 プラズマ処理装置及びプラズマ処理方法並びに記憶媒体

Country Status (4)

Country Link
JP (1) JP2008186939A (ja)
KR (1) KR100980521B1 (ja)
CN (1) CN101237742B (ja)
TW (1) TW200901307A (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012004108A (ja) * 2010-05-18 2012-01-05 Semiconductor Energy Lab Co Ltd プラズマ処理装置
JP2012518253A (ja) * 2009-02-13 2012-08-09 アプライド マテリアルズ インコーポレイテッド プラズマチャンバ電極のためのrf母線およびrf帰還母線
JP2014078685A (ja) * 2012-09-21 2014-05-01 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2020074271A (ja) * 2019-09-25 2020-05-14 キヤノンアネルバ株式会社 エッチング装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6084417B2 (ja) * 2012-09-28 2017-02-22 株式会社ダイヘン インピーダンス調整装置
KR102049754B1 (ko) 2017-12-27 2019-11-28 (주)모토닉 하이브리드 차량용 오일펌프 제어장치의 내구성 평가장치 및 평가방법
US10269540B1 (en) * 2018-01-25 2019-04-23 Advanced Energy Industries, Inc. Impedance matching system and method of operating the same
KR20220095349A (ko) * 2020-12-29 2022-07-07 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778699A (ja) * 1993-09-08 1995-03-20 Anelva Corp プラズマ処理装置
JP2002056999A (ja) * 2000-08-11 2002-02-22 Alps Electric Co Ltd プラズマ処理装置およびプラズマ処理装置の性能確認システム
JP2002540615A (ja) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション 高周波バイアスの制御を伴うプラズマ処理方法および装置
JP2004096066A (ja) * 2002-07-12 2004-03-25 Tokyo Electron Ltd プラズマ処理装置及び可変インピーダンス手段の校正方法
JP2005340760A (ja) * 2004-04-30 2005-12-08 Tokyo Electron Ltd プラズマ処理装置
JP2006286791A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Ltd プラズマ処理装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5900103A (en) * 1994-04-20 1999-05-04 Tokyo Electron Limited Plasma treatment method and apparatus
KR20010056655A (ko) * 1999-12-16 2001-07-04 황 철 주 반도체 소자 제조 장치
JP2003179045A (ja) * 2001-12-13 2003-06-27 Tokyo Electron Ltd プラズマ処理装置及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0778699A (ja) * 1993-09-08 1995-03-20 Anelva Corp プラズマ処理装置
JP2002540615A (ja) * 1999-03-31 2002-11-26 ラム リサーチ コーポレーション 高周波バイアスの制御を伴うプラズマ処理方法および装置
JP2002056999A (ja) * 2000-08-11 2002-02-22 Alps Electric Co Ltd プラズマ処理装置およびプラズマ処理装置の性能確認システム
JP2004096066A (ja) * 2002-07-12 2004-03-25 Tokyo Electron Ltd プラズマ処理装置及び可変インピーダンス手段の校正方法
JP2005340760A (ja) * 2004-04-30 2005-12-08 Tokyo Electron Ltd プラズマ処理装置
JP2006286791A (ja) * 2005-03-31 2006-10-19 Tokyo Electron Ltd プラズマ処理装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012518253A (ja) * 2009-02-13 2012-08-09 アプライド マテリアルズ インコーポレイテッド プラズマチャンバ電極のためのrf母線およびrf帰還母線
JP2012004108A (ja) * 2010-05-18 2012-01-05 Semiconductor Energy Lab Co Ltd プラズマ処理装置
JP2014078685A (ja) * 2012-09-21 2014-05-01 Tokyo Electron Ltd プラズマ処理装置及びプラズマ処理方法
JP2020074271A (ja) * 2019-09-25 2020-05-14 キヤノンアネルバ株式会社 エッチング装置

Also Published As

Publication number Publication date
CN101237742B (zh) 2011-05-11
KR20080071086A (ko) 2008-08-01
KR100980521B1 (ko) 2010-09-06
CN101237742A (zh) 2008-08-06
TW200901307A (en) 2009-01-01

Similar Documents

Publication Publication Date Title
JP2008186939A (ja) プラズマ処理装置及びプラズマ処理方法並びに記憶媒体
US9177823B2 (en) Plasma etching method and plasma etching apparatus
JP4553247B2 (ja) プラズマ処理装置
US9011637B2 (en) Plasma processing apparatus and method of manufacturing semiconductor device
US9208997B2 (en) Method of etching copper layer and mask
TWI385721B (zh) Etching method and etching device
US20060081337A1 (en) Capacitive coupling plasma processing apparatus
US20060221540A1 (en) Capacitive coupling plasma processing apparatus
JP5347868B2 (ja) 載置台構造及びプラズマ成膜装置
US20040238124A1 (en) Plasma treatment apparatus
US9150969B2 (en) Method of etching metal layer
KR20100100632A (ko) 플라즈마 에칭 방법, 플라즈마 에칭 장치 및 컴퓨터 기억 매체
KR20080092903A (ko) 플라즈마 처리 장치
WO2015016149A1 (ja) 基板処理装置、半導体装置の製造方法および記録媒体
US11880052B2 (en) Structure and method of mirror grounding in LCoS devices
KR20190132553A (ko) 반도체 장치의 제조 방법
TWI635545B (zh) 以選擇的蝕刻劑氣體混合物與操作變數之調變修整無機光阻
JP4865352B2 (ja) プラズマ処理装置及びプラズマ処理方法
US20060273733A1 (en) Plasma processing chamber, potential controlling apparatus, potential controlling method, program for implementing the method, and storage medium storing the program
US11244804B2 (en) Etching method, plasma processing apparatus, and processing system
JP2008118015A (ja) フォーカスリングおよびプラズマ処理装置
CN109860026A (zh) 制备多晶硅薄膜的方法、阵列基板、显示面板
JP2004200378A (ja) 半導体装置の作製方法
JP7433169B2 (ja) 制御方法、及び、誘導結合プラズマ処理装置
JP2004103680A (ja) コンタクトホールの形成方法及び液晶表示装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120306

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703