JP2008185381A - Shape measuring system - Google Patents

Shape measuring system Download PDF

Info

Publication number
JP2008185381A
JP2008185381A JP2007017285A JP2007017285A JP2008185381A JP 2008185381 A JP2008185381 A JP 2008185381A JP 2007017285 A JP2007017285 A JP 2007017285A JP 2007017285 A JP2007017285 A JP 2007017285A JP 2008185381 A JP2008185381 A JP 2008185381A
Authority
JP
Japan
Prior art keywords
projection
test object
image
pattern
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007017285A
Other languages
Japanese (ja)
Other versions
JP4858842B2 (en
Inventor
Tomoaki Yamada
智明 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007017285A priority Critical patent/JP4858842B2/en
Publication of JP2008185381A publication Critical patent/JP2008185381A/en
Application granted granted Critical
Publication of JP4858842B2 publication Critical patent/JP4858842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a shape measuring apparatus capable of accurate three-dimensional shape measurement. <P>SOLUTION: The shape measuring apparatus comprises a projection part 20 for projecting a projection pattern made of slit light S having a prescribed width to an object to be inspected 5; an imaging part 30 for imaging an projection image projected to the object to be inspected every time the slit light S is projected for scanning at regular intervals; an image generating part 41 for multiplying each projection pattern image imaged at the imaging part 30 by three modulation coefficients or more computed according to the scanning location of the slit light S to acquire three modulation images or more, arranging and synthesizing a group of modulation images acquired by the multiplication of the same modulation coefficients in the scanning direction of the slit light S to generate three sinusoidal pattern projection images or more; and a shape measuring part 42 for computing a phase distribution of the object to be inspected 5 on the basis of the three sinusoidal pattern projection images or more to measure the surface shape of the object to be inspected 5 on the basis of the phase distribution. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、光切断法を用いて工業製品等の被検物の三次元形状を測定する形状測定装置に関する。   The present invention relates to a shape measuring apparatus that measures a three-dimensional shape of a test object such as an industrial product using a light cutting method.

工業製品等の物体の表面形状を測定する技術は従来から種々提案されており、その一つに光学式の三次元形状測定装置がある。光学式の三次元形状測定装置も種々の方式や構成のものがあるが、被検物の表面にスリット光からなる投影パターンを投影し、投影パターンを被検物の表面全域に走査させつつ被検物に投影された投影パターンを撮像し、撮像された画像に対し、画素ごとに三角測量の原理を用いて被検物表面の高さを算出し、被検物表面の三次元形状を測定するものがあり、この方式による形状測定方法は一般に光切断法と称されている(例えば、特許文献1参照)。   Various techniques for measuring the surface shape of an object such as an industrial product have been proposed, and one of them is an optical three-dimensional shape measuring apparatus. There are various types of optical three-dimensional shape measuring apparatuses and configurations, but a projection pattern made of slit light is projected onto the surface of the test object, and the projection pattern is scanned over the entire surface of the test object. The projection pattern projected on the specimen is imaged, and the height of the specimen surface is calculated for each pixel using the principle of triangulation for each pixel, and the three-dimensional shape of the specimen surface is measured. The shape measuring method by this method is generally called a light cutting method (for example, see Patent Document 1).

特開平5−272927号公報Japanese Patent Application Laid-Open No. 5-272927

図5に示すように、被検物105に投影されるスリット光Sは所定の幅dを有している。このため、スリット光Sが被検物105のエッジ部分に投影された場合には、スリット光Sの一部が被検物105側を照射し、残りの部分が被検物105の表面外側を抜けて被検物105を保持する支持台110側を照射することがある。これに対して撮像面132a上では、スリット基線方向における同じ位置に対して2本の投影パターンPP1,PP2が撮像されてしまい、このような画像に基づいて正確な形状測定を行うことが難しかった。   As shown in FIG. 5, the slit light S projected on the test object 105 has a predetermined width d. For this reason, when the slit light S is projected onto the edge portion of the test object 105, a part of the slit light S irradiates the test object 105 side, and the remaining part is on the outer surface of the test object 105. There is a case where the side of the support 110 that holds the test object 105 is irradiated. On the other hand, on the imaging surface 132a, two projection patterns PP1 and PP2 are imaged at the same position in the slit base line direction, and it is difficult to perform accurate shape measurement based on such an image. .

本発明は、このような問題に鑑みてなされたものであり、所定幅を有するスリット光を被検物に投影して被検物の三次元形状を測定する形状測定装置において、被検物の形状測定を正確に行うことができるような形状測定装置を提供することを目的としている。   The present invention has been made in view of such problems, and in a shape measuring apparatus that measures a three-dimensional shape of a test object by projecting slit light having a predetermined width onto the test object, the present invention An object of the present invention is to provide a shape measuring apparatus capable of accurately performing shape measurement.

上記目的達成のため、本発明に係る形状測定装置は、所定幅を有して直線状に延びる少なくとも一本のスリット光からなる投影パターンを被検物に投影する投影部と、投影部により投影された投影パターンを被検物に対して相対移動させ、投影パターンにより被検物の表面を走査させる走査部と、スリット光が所定間隔走査される毎に被検物に投影された投影パターンを撮像する撮像部と、撮像部で撮像される投影パターン像のそれぞれに対し、スリット光の走査位置に応じて算定される3以上の変調係数をそれぞれ乗じて3以上の変調画像を取得し、同じ変調係数を乗じて取得された変調画像群をスリット光の走査方向に並べて合成して3以上の正弦波パターン投影画像を生成する画像生成部と、3以上の正弦波パターン投影画像から被検物の位相分布を算出し、位相分布に基づいて被検物の表面形状を測定する形状測定部とを有して構成される。   In order to achieve the above object, a shape measuring apparatus according to the present invention projects a projection pattern made of at least one slit light having a predetermined width and extending linearly onto a test object, and the projection unit projects the projection pattern. A scanning unit that moves the projected pattern relative to the test object and scans the surface of the test object with the projection pattern, and a projection pattern that is projected onto the test object every time the slit light is scanned at a predetermined interval. Multiply three or more modulation coefficients calculated according to the scanning position of the slit light for each of the imaging unit to be imaged and the projection pattern image captured by the imaging unit to obtain three or more modulation images, and the same An image generator for generating three or more sine wave pattern projection images by combining the modulation image groups obtained by multiplying the modulation coefficients in the scanning direction of the slit light, and testing from the three or more sine wave pattern projection images And the calculated phase distribution, and a shape measuring section for measuring the surface shape of the object based on the phase distribution.

なお、前記形状測定部は、前記撮像部で撮像された前記被検物の各像から高さ情報を算出し、前記位相分布と前記高さ情報とにより前記被検物の表面形状を測定するのが好ましい。   The shape measuring unit calculates height information from each image of the test object imaged by the imaging unit, and measures the surface shape of the test object based on the phase distribution and the height information. Is preferred.

また、前記撮像部は、前記被検物の像を結像させる撮像レンズ系と、前記撮像レンズ系により結像された像を撮影する撮像器とから構成され、前記撮像器の撮像面が前記撮像レンズ系の光軸に対して直行する面から傾斜して配置されており、前記撮像面が前記撮像レンズ系を介して前記被検物側において結像する焦点面が、前記投影パターンの投影切断面に一致するように前記パターン投影系を配置しているのが好ましい。   The imaging unit includes an imaging lens system that forms an image of the test object, and an imaging device that captures an image formed by the imaging lens system, and the imaging surface of the imaging device is the imaging surface. The focal plane on which the imaging plane is formed on the object side via the imaging lens system is arranged so as to project the projection pattern, and is inclined from a plane orthogonal to the optical axis of the imaging lens system. The pattern projection system is preferably arranged so as to coincide with the cut surface.

このような本発明に係る形状測定装置によると、スリット光からなる投影パターンを被検物の表面に走査させる構成でありながら、所定走査間隔ごとに撮像された投影パターン像から正弦波パターン投影画像を生成し、これらの投影画像から位相分布を算定して被検物の表面に対する形状測定を行っている。このため、スリット光が所定幅を有して図5に示す状況で投影パターンが投影されても、エッジ部分に相当する測定点に対して算出された位相分布から形状測定を正確に行うことができるようになる。   According to the shape measuring apparatus according to the present invention as described above, a sine wave pattern projection image is obtained from a projection pattern image captured at every predetermined scanning interval, while the projection pattern made of slit light is scanned on the surface of the test object. The shape of the surface of the test object is measured by calculating the phase distribution from these projection images. Therefore, even if the slit light has a predetermined width and the projection pattern is projected in the situation shown in FIG. 5, the shape measurement can be accurately performed from the phase distribution calculated for the measurement point corresponding to the edge portion. become able to.

以下、本発明の好ましい実施形態について説明する。本発明に係る形状測定装置の概略構成を図1に示しており、まず、この形状測定装置について図1を参照して説明する。この形状測定装置1は、被検物5を支持面10a上に載置して保持する支持台10と、支持台10に保持された被検物5にスリット状の投影パターンを投影するパターン投影系20と、被検物5からの反射光を撮像レンズ群31を介して撮像する撮像装置32を有した撮像系30と、撮像系30により撮像された画像データに基づいて被検物5の形状測定を行う演算処理装置40とを有して構成されている。   Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows a schematic configuration of a shape measuring apparatus according to the present invention. First, the shape measuring apparatus will be described with reference to FIG. The shape measuring apparatus 1 includes a support base 10 for placing and holding the test object 5 on the support surface 10a, and a pattern projection for projecting a slit-like projection pattern onto the test object 5 held on the support base 10. The system 20, an imaging system 30 having an imaging device 32 that images reflected light from the test object 5 via the imaging lens group 31, and the test object 5 based on image data captured by the imaging system 30. And an arithmetic processing unit 40 that performs shape measurement.

パターン投影系20は、内部構成を図示略するが、光源からの照明光を受けて所定幅を有した1本のスリット光Sに整形するパターン形成部を有して構成されている。光源は、LED等からなり輝度が一定の照明光を照射する。パターン形成部は、例えばシリンドリカルレンズや、細い帯状の切り欠きを有したスリット板を有して構成される。このパターン投影系20により、図1の紙面直交方向に延びるスリット光Sが投影されると、スリット光Sがのって図1において直線状で示される投影切断面20aの断面輪郭線(投影パターン)が被検物5に投影される。   Although the internal configuration of the pattern projection system 20 is not shown, the pattern projection system 20 includes a pattern forming unit that receives illumination light from a light source and shapes it into one slit light S having a predetermined width. The light source is composed of an LED or the like and emits illumination light having a constant luminance. The pattern forming unit is configured to include, for example, a cylindrical lens or a slit plate having a thin strip-shaped notch. When the slit light S extending in the direction orthogonal to the paper surface of FIG. 1 is projected by the pattern projection system 20, the sectional light contour (projection pattern) of the projected cut surface 20a indicated by the slit light S in a straight line in FIG. ) Is projected onto the test object 5.

撮像系30においては、撮像レンズ群31によって被検物5に投影された投影パターンの像が、CCD等の光電変換素子等が設けられた撮像装置32の撮像面32a上に結像される。撮像装置32により撮像された画像は、演算処理装置40に送られ、ここで以下に説明する画像演算処理がなされ、被検物5の三次元形状測定が行われる。   In the imaging system 30, an image of a projection pattern projected onto the test object 5 by the imaging lens group 31 is formed on an imaging surface 32a of an imaging device 32 provided with a photoelectric conversion element such as a CCD. The image picked up by the image pickup device 32 is sent to the arithmetic processing device 40, where the image arithmetic processing described below is performed, and the three-dimensional shape measurement of the test object 5 is performed.

また、この撮像系30は、いわゆるシャインプルーフ光学系になっており、撮像レンズ群31の主平面31aが撮像系30の光軸30Lに対して直交する平面をなしている一方、撮像装置32の撮像面32aが光軸直交平面に対して傾斜して配置されており、撮像面32aと共役関係にあって撮像面32aが撮像レンズ群31を介して被検物5側において結像する焦点面30fが、光軸直交平面に対して傾斜されて主平面31aおよび撮像面32aと同軸上で交わっている。そして、この焦点面30fが投影切断面20aと一致されるように、撮像面32aやパターン投影系20が配置されている。したがって、この撮像系30においては、焦点面30fと一致されている投影切断面20aの断面輪郭線からの反射光、すなわち投影パターンを、投影されている部分の形状に関わらず常に合焦状態で撮像することができるようになっている。   The imaging system 30 is a so-called Scheimpflug optical system, and the main plane 31a of the imaging lens group 31 forms a plane orthogonal to the optical axis 30L of the imaging system 30, while The imaging plane 32a is disposed so as to be inclined with respect to the plane orthogonal to the optical axis, and is in a conjugate relationship with the imaging plane 32a. The focal plane on which the imaging plane 32a forms an image on the object 5 side via the imaging lens group 31. 30f is inclined with respect to the optical axis orthogonal plane and intersects the main plane 31a and the imaging surface 32a on the same axis. The imaging surface 32a and the pattern projection system 20 are arranged so that the focal plane 30f coincides with the projection cut surface 20a. Therefore, in this imaging system 30, the reflected light from the cross-sectional contour line of the projection cut surface 20a coincident with the focal plane 30f, that is, the projection pattern is always in focus regardless of the shape of the projected portion. An image can be taken.

また、パターン投影系20と撮像系30は、一つのフレームにより一体に固定されて構成されている。支持台10には、支持台10をフレームに対してパターン投影系20および撮像系30の光軸方向およびスリット基線方向と異なる方向に相対移動させる走査装置15が設けられている。このため、走査装置15によって支持台10を移動させながら支持台10に保持された被検物5に対して投影パターンを投影することにより、この投影パターンで被検物5の表面全域が走査される。なお、同じ作用を得るため、支持台10を固定してフレームを移動させるように走査装置を設けてもよい。また、走査装置15には、支持台10の移動方向、すなわち、スリット光の走査方向の位置を検出するためのエンコーダ等からなる位置検出器が設けられており、この検出値は演算処理装置40に出力されるように構成されている。   The pattern projection system 20 and the imaging system 30 are configured to be integrally fixed by one frame. The support table 10 is provided with a scanning device 15 that moves the support table 10 relative to the frame in a direction different from the optical axis direction and the slit base line direction of the pattern projection system 20 and the imaging system 30. Therefore, by projecting the projection pattern onto the test object 5 held on the support table 10 while moving the support table 10 by the scanning device 15, the entire surface of the test object 5 is scanned with this projection pattern. The In order to obtain the same action, a scanning device may be provided so as to move the frame while fixing the support 10. Further, the scanning device 15 is provided with a position detector composed of an encoder or the like for detecting the moving direction of the support 10, that is, the position of the slit light in the scanning direction. It is configured to be output to.

演算処理装置40は、撮像系30から送られた画像に基づき被検物5の表面全域に仮想的に正弦波パターンを投影したような画像(以下、正弦波パターン投影画像と称する)を生成する画像生成部41と、画像生成部41により生成された正弦波パターン投影画像に基づいて被検物5の形状を測定する形状測定部42とを有して構成されている。   The arithmetic processing unit 40 generates an image (hereinafter referred to as a sine wave pattern projection image) that is virtually projected on the entire surface of the test object 5 based on the image sent from the imaging system 30. The image generation unit 41 includes a shape measurement unit 42 that measures the shape of the test object 5 based on the sine wave pattern projection image generated by the image generation unit 41.

以上のように構成された形状測定装置1を用いて被検物5の表面形状を測定する方法を説明する。この測定に際しては、被検物5を保持した支持台10を走査装置15により移動させながら、パターン投影系20によりスリット光Sを投影する。被検物5からの反射光は撮像レンズ群31を介して集光され、撮像装置32に入射して撮像面32aに合焦状態で撮像される。演算処理装置40は、位置検出器の検出値に基づいて、スリット光が所定間隔走査される毎に、撮像面32aに結像された画像を取得する。   A method for measuring the surface shape of the test object 5 using the shape measuring apparatus 1 configured as described above will be described. In this measurement, the slit light S is projected by the pattern projection system 20 while moving the support 10 holding the object 5 by the scanning device 15. The reflected light from the test object 5 is collected through the imaging lens group 31, enters the imaging device 32, and is imaged in the focused state on the imaging surface 32a. The arithmetic processing unit 40 acquires an image formed on the imaging surface 32a every time the slit light is scanned at a predetermined interval based on the detection value of the position detector.

このようにして撮像系30で撮像される画像を図2に例示している。投影パターンは所定の幅dを有しており、基準位置(支持台10の支持面10a)に対する被検物5の高さに応じて変形される。なお、従来知られるように三角測量の原理を用いて、被検物5の表面上の測定点の高さを、投影パターンの変形量δから求めることができる。すなわち、この変形量δは測定点に対する高さ情報として扱うことができる。   An image captured by the imaging system 30 in this way is illustrated in FIG. The projection pattern has a predetermined width d and is deformed according to the height of the test object 5 with respect to the reference position (the support surface 10a of the support base 10). As is conventionally known, the height of the measurement point on the surface of the test object 5 can be obtained from the deformation amount δ of the projection pattern by using the principle of triangulation. That is, the deformation amount δ can be handled as height information with respect to the measurement point.

そして、画像生成部41において、所定走査間隔毎に演算処理装置40に取得された各画像に対し、投影パターン像の輝度に、該投影パターン像が撮像されたスリット光の走査位置に応じて定まる第1〜第3変調係数(これは輝度を変更する係数である)をそれぞれ乗じて、第1〜第3変調画像が取得される。図3には、スリット光の走査位置に対する第1〜第3変調係数のマップα1,α2,α3を示している。これらのマップα1,α2,α3はそれぞれ同一ピッチの正弦曲線になっており、第1変調係数を定めるための第1マップα1に対し、第2変調係数を定めるための第2マップα2は位相が120度ずれたものになっており、第3変調係数を定めるための第3マップα3は位相が240度ずれたものになっている。   Then, the image generation unit 41 determines the brightness of the projection pattern image for each image acquired by the arithmetic processing unit 40 at predetermined scanning intervals according to the scanning position of the slit light from which the projection pattern image is captured. The first to third modulation images are obtained by multiplying the first to third modulation coefficients (which are coefficients for changing the luminance), respectively. FIG. 3 shows maps α1, α2, α3 of the first to third modulation coefficients with respect to the scanning position of the slit light. These maps α1, α2, and α3 are sinusoidal curves having the same pitch, and the second map α2 for determining the second modulation coefficient is different in phase from the first map α1 for determining the first modulation coefficient. The third map α3 for determining the third modulation coefficient is shifted in phase by 240 degrees.

このようにして各画像から取得された3つの変調画像は、演算処理装置40内の第1〜第3メモリに別個に記憶される。各画像において、第1変調係数を乗じて得られた第1変調画像はそれぞれ第1メモリに記憶され、第2変調係数を乗じて得られた第2変調画像はそれぞれ第2メモリに記憶され、第3変調係数を乗じて得られた第3変調画像はそれぞれ第3メモリに記憶される。   The three modulated images acquired from each image in this way are stored separately in the first to third memories in the arithmetic processing unit 40. In each image, the first modulated image obtained by multiplying the first modulation coefficient is stored in the first memory, and the second modulated image obtained by multiplying the second modulation coefficient is stored in the second memory, respectively. Each third modulated image obtained by multiplying the third modulation coefficient is stored in the third memory.

そして、画像生成部41において、各メモリに記憶された変調画像群が、走査方向に並べられて合成される。この合成により、従来の位相シフト法で行われていたように被検物の表面全域に対して正弦波パターンを投影したような3つの縞画像が得られる。図4には第1メモリに記憶された第1変調画像群を合成して生成された第1縞画像Iv1を例示している。この第1縞画像Iv1に対し、第2メモリに記憶された第2変調画像群を合成して生成された第2縞画像は、正弦波パターンの位相が120度ずれた画像となり、第3メモリに記憶された第3変調画像群を合成して生成された第3縞画像は、正弦波パターンの位相が240度ずれた画像となる。 Then, in the image generation unit 41, the modulated image groups stored in the respective memories are arranged in the scanning direction and synthesized. As a result of this synthesis, three fringe images are obtained as if a sine wave pattern was projected over the entire surface of the test object as was done by the conventional phase shift method. FIG. 4 illustrates the first fringe image Iv 1 generated by synthesizing the first modulated image group stored in the first memory. A second striped image generated by synthesizing the second modulated image group stored in the second memory with the first striped image Iv 1 is an image in which the phase of the sine wave pattern is shifted by 120 degrees. The third fringe image generated by synthesizing the third modulated image group stored in the memory is an image in which the phase of the sine wave pattern is shifted by 240 degrees.

このようにして得られた3つの縞画像を用いて、従来の位相シフト法と同様にして位相分布が算出され、算出された位相分布に基づいて被検物5の表面上の各測定点に対する高さが測定される。なお、この位相分布は、同一の測定点に対し、3つの縞画像のそれぞれから得られる3つの輝度値を用いて算出することができる。なお、位相分布を算出して高さを測定する方法においては、位相接続処理を行って形状を特定する必要がある。本構成例においては、縞画像の合成に用いられた各画像において、その投影パターンの変形量δを高さ情報として得ることができるため、位相分布とこの高さ情報とに基づいて、位相接続処理に係る演算処理を行うことなく、被検物5の形状を特定することが可能になる。   Using the three fringe images obtained in this way, a phase distribution is calculated in the same manner as in the conventional phase shift method, and each measurement point on the surface of the test object 5 is calculated based on the calculated phase distribution. Height is measured. This phase distribution can be calculated using the three luminance values obtained from each of the three fringe images for the same measurement point. In the method of calculating the phase distribution and measuring the height, it is necessary to perform the phase connection process and specify the shape. In this configuration example, since the deformation amount δ of the projection pattern can be obtained as height information in each image used for the synthesis of the fringe image, phase connection is performed based on the phase distribution and the height information. The shape of the test object 5 can be specified without performing a calculation process related to the process.

このように本構成例の形状測定装置1においては、所定幅を有するスリット光からなる投影パターンを被検物5の表面全域に走査する光切断法の態様をとる装置構成でありながら、投影パターンの走査間隔毎に取得された各像を変調し、変調された像を並べて合成することにより、正弦波パターンを投影したような縞画像を生成している。そして、この縞画像に基づいて位相分布を算定し、被検物の形状測定が行われる。このため、各測定点においてその測定点の輝度値に基づいて高さを測定することができるようになるため、所定幅を有したスリット光を投影しながらも、エッジ部分の形状測定を正確に行うことができるようになる。また、被検物5の表面に反射率条件が相違する部分があっても、同様にして各測定点ごとに形状測定を正確に行うことができるようになる。   Thus, in the shape measuring apparatus 1 of the present configuration example, the projection pattern is an apparatus configuration that takes the aspect of the light cutting method of scanning the entire surface of the object 5 with the projection pattern made of slit light having a predetermined width. Each image acquired at each scanning interval is modulated, and the modulated images are arranged and combined to generate a fringe image as if a sine wave pattern was projected. Then, the phase distribution is calculated based on the fringe image, and the shape of the test object is measured. For this reason, the height can be measured at each measurement point based on the luminance value of the measurement point, so that the shape of the edge portion can be accurately measured while projecting slit light having a predetermined width. Will be able to do. Further, even if there is a portion where the reflectance condition is different on the surface of the test object 5, the shape measurement can be accurately performed for each measurement point in the same manner.

また、撮像系30の焦点面30fが光軸30Lに対して直交する平面に対して傾斜され、パターン投影系20により投影されるスリット光Sの投影切断面20aと整合される。このため、被検物5に投影された投影パターンが、常に合焦状態で撮像されるようになる。このため、撮像系30の焦点深度を深くする必要がなくなり、撮像レンズ系の開口数を大きくとることができ、解像度が向上されて測定精度が向上される。   Further, the focal plane 30f of the imaging system 30 is inclined with respect to a plane orthogonal to the optical axis 30L, and is aligned with the projection cut surface 20a of the slit light S projected by the pattern projection system 20. For this reason, the projection pattern projected on the test object 5 is always imaged in a focused state. For this reason, it is not necessary to increase the depth of focus of the imaging system 30, the numerical aperture of the imaging lens system can be increased, the resolution is improved, and the measurement accuracy is improved.

これまで本発明に係る形状測定装置の実施形態について説明したが、本発明の範囲は必ずしも上記の構成に限られない。なお、仮想正弦波パターン投影画像を生成するにあたっては、撮像系30により撮像された投影パターンの像の輝度に対して変調係数を乗じる構成に限らず、パターン投影系の光源の輝度を支持台10の移動位置に応じた正弦波パターンに変調させる変調装置を設けて構成してもよい。この場合には、まず、第1の位相の正弦波パターンに沿って変調しながらスリット光を被検物の表面全域に走査し、同様にして順に第2、第3の位相の正弦波パターンに沿って変調しながらスリット光を被検物の表面全域に走査し、各走査時に得られた画像を合成する構成としてもよい。また、走査間隔ごとに支持台10aを間欠移動させ、支持台10の停止位置に応じて輝度を3つの位相パターンのそれぞれに沿って変調したスリット光を投影し、互いに輝度の異なる3つの投影パターンの像を取得し、得られた変調画像を合成する構成としてもよい。これにより、スリット光を被検物5の表面全域に走査する構成の形状測定装置を用いて位相分布を算出して被検物5の形状測定を行うことができるようになり、上記実施形態と同様にして被検物の形状測定を正確に行うことができるようになる。   Although the embodiment of the shape measuring apparatus according to the present invention has been described so far, the scope of the present invention is not necessarily limited to the above configuration. The generation of the virtual sine wave pattern projection image is not limited to the configuration in which the luminance of the projection pattern image captured by the imaging system 30 is multiplied by the modulation coefficient, and the luminance of the light source of the pattern projection system is set to the support base 10. A modulation device that modulates a sine wave pattern according to the moving position may be provided. In this case, first, the slit light is scanned over the entire surface of the object while being modulated along the sine wave pattern of the first phase, and similarly, the sine wave patterns of the second and third phases are sequentially formed. The slit light may be scanned over the entire surface of the object while being modulated along, and the images obtained during each scan may be combined. Further, the support base 10a is intermittently moved at every scanning interval, and slit light whose brightness is modulated along each of the three phase patterns according to the stop position of the support base 10 is projected, and three projection patterns having different brightness from each other are projected. It is good also as a structure which acquires this image and synthesize | combines the obtained modulated image. Thereby, it becomes possible to measure the shape of the test object 5 by calculating the phase distribution using the shape measuring apparatus configured to scan the slit light over the entire surface of the test object 5. Similarly, the shape of the test object can be accurately measured.

本発明に係る形状測定装置の構成図である。It is a block diagram of the shape measuring apparatus which concerns on this invention. 撮像面上に結像された投影パターン像の態様を説明する説明図である。It is explanatory drawing explaining the aspect of the projection pattern image imaged on the imaging surface. 第1〜第3変調係数についての説明図である。It is explanatory drawing about a 1st-3rd modulation coefficient. 第1変調係数が乗じられた投影パターンの像を合成して得られた第1縞画像を説明する説明図である。It is explanatory drawing explaining the 1st fringe image obtained by synthesize | combining the image of the projection pattern multiplied by the 1st modulation coefficient. スリット光が被検物のエッジ部分を照射している状況についての説明図であり、(a)がその状況において形状測定装置を正面視で模式的に示す説明図であり、(b)がその状況において撮像面上に結像される投影パターン像を示す説明図である。It is explanatory drawing about the condition where the slit light is irradiating the edge part of a to-be-tested object, (a) is explanatory drawing which shows a shape measuring apparatus typically by the front view in the condition, (b) is the figure It is explanatory drawing which shows the projection pattern image imaged on an imaging surface in a condition.

符号の説明Explanation of symbols

1 形状測定装置 5 被検物
10 支持台 20 パターン投影系
30 撮像系 40 演算処理装置
41 画像生成部 42 形状測定部
DESCRIPTION OF SYMBOLS 1 Shape measuring device 5 Test object 10 Support stand 20 Pattern projection system 30 Imaging system 40 Arithmetic processing device 41 Image generation part 42 Shape measuring part

Claims (3)

所定幅を有して直線状に延びる少なくとも一本のスリット光からなる投影パターンを被検物に投影する投影部と、
前記投影部により投影された前記投影パターンを前記被検物に対して相対移動させ、前記投影パターンにより前記被検物の表面を走査させる走査部と、
前記スリット光が所定間隔走査される毎に前記被検物に投影された前記投影パターンを撮像する撮像部と、
前記撮像部で撮像される投影パターン像のそれぞれに対し、前記スリット光の走査位置に応じて算定される3以上の変調係数をそれぞれ乗じて3以上の変調画像を取得し、同じ変調係数を乗じて取得された変調画像群を前記スリット光の走査方向に並べて合成して3以上の正弦波パターン投影画像を生成する画像生成部と、
前記3以上の正弦波パターン投影画像から前記被検物の位相分布を算出し、前記位相分布に基づいて前記被検物の表面形状を測定する形状測定部と、を有して構成されることを特徴とする形状測定装置。
A projection unit for projecting a projection pattern made of at least one slit light having a predetermined width and extending linearly onto a test object;
A scanning unit that moves the projection pattern projected by the projection unit relative to the test object, and scans the surface of the test object using the projection pattern;
An imaging unit that images the projection pattern projected onto the test object each time the slit light is scanned at a predetermined interval;
Each of the projection pattern images picked up by the image pickup unit is multiplied by three or more modulation coefficients calculated according to the scanning position of the slit light to obtain three or more modulation images, and multiplied by the same modulation coefficient. An image generation unit that generates three or more sinusoidal pattern projection images by combining the modulation image groups acquired in the scanning direction of the slit light and combining them;
A shape measuring unit that calculates a phase distribution of the test object from the three or more sinusoidal pattern projection images and measures a surface shape of the test object based on the phase distribution. A shape measuring device.
前記形状測定部は、前記撮像部で撮像された前記被検物の各像から高さ情報を算出し、前記位相分布と前記高さ情報とにより前記被検物の表面形状を測定することを特徴とする請求項1に記載の形状測定装置。   The shape measuring unit calculates height information from each image of the test object imaged by the imaging unit, and measures the surface shape of the test object based on the phase distribution and the height information. The shape measuring apparatus according to claim 1, wherein 前記撮像部は、前記被検物の像を結像させる撮像レンズ系と、前記撮像レンズ系により結像された像を撮影する撮像器とから構成され、
前記撮像器の撮像面が前記撮像レンズ系の光軸に対して直行する面から傾斜して配置されており、前記撮像面が前記撮像レンズ系を介して前記被検物側において結像する焦点面が、前記投影パターンの投影切断面に一致するように前記パターン投影系を配置していることを特徴とする請求項1又は2に記載の形状測定装置。
The imaging unit includes an imaging lens system that forms an image of the test object, and an imaging device that captures an image formed by the imaging lens system,
The image pickup surface of the image pickup device is disposed to be inclined from a surface orthogonal to the optical axis of the image pickup lens system, and the image pickup surface is focused on the object side through the image pickup lens system. The shape measuring apparatus according to claim 1, wherein the pattern projection system is arranged such that a surface coincides with a projection cut surface of the projection pattern.
JP2007017285A 2007-01-29 2007-01-29 Shape measuring device Active JP4858842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007017285A JP4858842B2 (en) 2007-01-29 2007-01-29 Shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007017285A JP4858842B2 (en) 2007-01-29 2007-01-29 Shape measuring device

Publications (2)

Publication Number Publication Date
JP2008185381A true JP2008185381A (en) 2008-08-14
JP4858842B2 JP4858842B2 (en) 2012-01-18

Family

ID=39728540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007017285A Active JP4858842B2 (en) 2007-01-29 2007-01-29 Shape measuring device

Country Status (1)

Country Link
JP (1) JP4858842B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080546A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Shape measuring device and shape measuring method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198348A (en) * 1993-12-30 1995-08-01 Sony Corp Measurement device of surface shape
JPH11118443A (en) * 1997-10-15 1999-04-30 Ckd Corp Shape measuring device
JP2002257528A (en) * 2001-03-02 2002-09-11 Ricoh Co Ltd Three-dimensional shape measuring device by phase shift method
JP2004003930A (en) * 2002-04-04 2004-01-08 Nippon Steel Corp Optical shape measuring device and optical shape measuring method
JP2004085467A (en) * 2002-08-28 2004-03-18 Aisin Seiki Co Ltd Device for three dimensional measurement
JP2004184397A (en) * 2002-10-08 2004-07-02 Nippon Steel Corp Method for inspecting defect in shape of band-like body and apparatus therefor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198348A (en) * 1993-12-30 1995-08-01 Sony Corp Measurement device of surface shape
JPH11118443A (en) * 1997-10-15 1999-04-30 Ckd Corp Shape measuring device
JP2002257528A (en) * 2001-03-02 2002-09-11 Ricoh Co Ltd Three-dimensional shape measuring device by phase shift method
JP2004003930A (en) * 2002-04-04 2004-01-08 Nippon Steel Corp Optical shape measuring device and optical shape measuring method
JP2004085467A (en) * 2002-08-28 2004-03-18 Aisin Seiki Co Ltd Device for three dimensional measurement
JP2004184397A (en) * 2002-10-08 2004-07-02 Nippon Steel Corp Method for inspecting defect in shape of band-like body and apparatus therefor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016080546A (en) * 2014-10-17 2016-05-16 新日鐵住金株式会社 Shape measuring device and shape measuring method

Also Published As

Publication number Publication date
JP4858842B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US8243286B2 (en) Device and method for the contactless detection of a three-dimensional contour
US6549288B1 (en) Structured-light, triangulation-based three-dimensional digitizer
US4842411A (en) Method of automatically measuring the shape of a continuous surface
DK2198780T3 (en) Method and Device for Optical Scanning of Three-Dimensional Objects Using a 3D Dental Camera Using Triangulation
JP2002318109A (en) Three-dimensional shape measuring method
JP4939304B2 (en) Method and apparatus for measuring film thickness of transparent film
JP5385703B2 (en) Inspection device, inspection method, and inspection program
JP2011064482A (en) Device and method of high-speed three-dimensional measurement
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
KR100785802B1 (en) Apparatus for measurment of three-dimensional shape
KR101875467B1 (en) 3-dimensional shape measurment apparatus and method thereof
JP5746046B2 (en) 3D measurement method of object surface especially for dentistry
TWI500963B (en) An image capturing device and method
KR100558325B1 (en) The method and device for 3D inspection by moire and stereo vision
JP4858842B2 (en) Shape measuring device
JP2008175604A (en) Optical displacement sensor and displacement measuring device using it
JP3912666B2 (en) Optical shape measuring device
JP2008170281A (en) Shape measuring device and shape measuring method
JP2007187585A (en) Three-dimensional shape measuring apparatus
KR101269128B1 (en) Surface roughness measurement apparatus and method having intermediate view generator
JP4402849B2 (en) Surface shape measuring method and surface shape measuring apparatus
JP2008170282A (en) Shape measuring device
WO2023182095A1 (en) Surface shape measurement device and surface shape measurement method
JP3848586B2 (en) Surface inspection device
JP3236051B2 (en) Lattice plate for three-dimensional shape measurement, device for manufacturing the same, and three-dimensional shape measurement device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111020

R150 Certificate of patent or registration of utility model

Ref document number: 4858842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250