JP2007187585A - Three-dimensional shape measuring apparatus - Google Patents

Three-dimensional shape measuring apparatus Download PDF

Info

Publication number
JP2007187585A
JP2007187585A JP2006006729A JP2006006729A JP2007187585A JP 2007187585 A JP2007187585 A JP 2007187585A JP 2006006729 A JP2006006729 A JP 2006006729A JP 2006006729 A JP2006006729 A JP 2006006729A JP 2007187585 A JP2007187585 A JP 2007187585A
Authority
JP
Japan
Prior art keywords
optical path
path length
light
change
interference fringe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006006729A
Other languages
Japanese (ja)
Other versions
JP4218809B2 (en
Inventor
Toshiyuki Matsuoka
利幸 松岡
Eiji Tsujimura
映治 辻村
Masaya Sugai
雅也 菅井
Mitsuo Takeda
光夫 武田
Pavlovsky Michal
パヴロフスキー ミハル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
University of Electro Communications NUC
Original Assignee
Anritsu Corp
University of Electro Communications NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp, University of Electro Communications NUC filed Critical Anritsu Corp
Priority to JP2006006729A priority Critical patent/JP4218809B2/en
Publication of JP2007187585A publication Critical patent/JP2007187585A/en
Application granted granted Critical
Publication of JP4218809B2 publication Critical patent/JP4218809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique capable of reducing optical processing and reliably performing three-dimensional measurements by a simple size. <P>SOLUTION: In an optical system, a beam splitter 5 multiplexes wide-band light and coherent light, branches them into a reference optical path having a reference mirror and a measuring optical path in which an object to be measured is arranged, makes them incident and irradiated, multiplexes reflected light from the reference mirror and each reflected light from an irradiation location within an irradiation range of the object to be measured, and outputs them. An optical path length changing means 8 changes the optical path length of the measuring optical path, and a camera 10 images output from an optical path formation part according to the changes to acquire data on interference fringes. An optical path length detection means 14 uses changes in the interference fringes due to the coherence light to changes in the optical path length as a scale to determine the optical length of the measuring optical path generated by the interference fringes due to the wide-band light. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、複数のスペクトラム(以下、波長で説明する。)を有する広帯域光(例えば、白色光)による干渉現象を用いて被測定物の形状を立体的に測定する三次元形状測定装置に関する。特に、広帯域光の一方を遠端に参照鏡を有する参照光路に入射し、広帯域光の他方を遠端に被測定物を有する測定光路へ入射し、参照鏡(反射鏡)及び被測定物からの各戻り光による干渉を生じさせる干渉部(干渉計)において、参照光路又は測定光路のいずれかの光路長を変化して得られた干渉縞が生ずる光路長を基に、被測定物の形状を測定する三次元形状測定装置であって、その干渉縞が生ずる光路長を信頼性良く求める技術に関する。   The present invention relates to a three-dimensional shape measuring apparatus that three-dimensionally measures the shape of an object to be measured using an interference phenomenon caused by broadband light (for example, white light) having a plurality of spectrums (hereinafter, described in terms of wavelengths). In particular, one of the broadband light is incident on a reference optical path having a reference mirror at the far end, and the other of the broadband light is incident on a measurement optical path having an object to be measured at the far end, from the reference mirror (reflecting mirror) and the object to be measured. The shape of the object to be measured based on the optical path length in which the interference fringes obtained by changing the optical path length of either the reference optical path or the measurement optical path in the interference section (interferometer) that causes interference due to each return light It is related with the technique which calculates | requires reliably the optical path length which the interference fringe produces.

一般的に、上記の干渉現象を用いた形状測定装置においては、参照光路と測定光路の双方の光路長が等しくなったときに、干渉縞が最大の輝度を示すことを利用している。つまり、参照光路又は測定光路のいずれかの光路長を変化させ(以下、参照光路の光路長を固定とし、測定光路の光路長を変化させるとして説明する。)、そのとき生じる干渉縞が最大の輝度を示す位置の光路長(光路長の変化量)を、光路長の変化方向における被測定物の変位として測定している(特許文献1、2)。   In general, the shape measuring apparatus using the above interference phenomenon utilizes the fact that interference fringes exhibit the maximum luminance when the optical path lengths of both the reference optical path and the measurement optical path are equal. That is, the optical path length of either the reference optical path or the measurement optical path is changed (hereinafter, the optical path length of the reference optical path is fixed and the optical path length of the measurement optical path is changed), and the interference fringes generated at that time are the largest. The optical path length (change amount of the optical path length) at the position indicating the luminance is measured as the displacement of the object to be measured in the optical path length change direction (Patent Documents 1 and 2).

特許文献1においては、ピエゾアクチュエータにより(ピエゾを電圧駆動することにより)測定光路の光路長を変化させるとともに、撮像手段により被測定物のある測定点における光路長の変化に対応する干渉縞を撮像する。そして、その撮像データから干渉縞の最大輝度となる点のピエゾ駆動電圧という電気量を検出することで、そのときの測定光路の光路長)を検出している。   In Patent Document 1, the optical path length of the measurement optical path is changed by piezo actuators (by driving the piezo voltage), and the interference fringes corresponding to the change in the optical path length at a certain measurement point of the object to be measured are imaged by the imaging means. To do. Then, by detecting an electrical quantity called a piezo driving voltage at a point where the maximum luminance of the interference fringes is detected from the imaged data, the optical path length of the measurement optical path at that time is detected.

特許文献1の方法によれば、簡単であるが、信頼性に乏しい恐れがある。つまり、ピエゾ等の素子の特性がそのまま測定確度等に影響する恐れがある。したがって、周囲環境、経年変化等によってその影響を受けやすい。この影響を防止しようとすると、校正手段(方法)が必要になる。   According to the method of Patent Document 1, although it is simple, there is a fear that the reliability is poor. That is, the characteristics of elements such as piezos may directly affect the measurement accuracy. Therefore, it is easily affected by the surrounding environment, secular change and the like. In order to prevent this influence, a calibration means (method) is required.

特許文献2の方法によれば、白色光を参照光路と測定光路に分岐して入力させ、その参照光路の参照鏡からの戻り光から所定の波長の光を光学的狭帯域フィルタで抽出し、抽出した光の繰り返しで、干渉縞のピークが現れる測定光路の光路長を求めている。この場合は、確度が改善されるが、光の領域で狭帯域フィルタで抽出するため、規模的に大きくなる問題がある。   According to the method of Patent Document 2, white light is branched and input to a reference optical path and a measurement optical path, and light of a predetermined wavelength is extracted from the return light from the reference mirror in the reference optical path by an optical narrowband filter. The optical path length of the measurement optical path in which the peak of the interference fringe appears is obtained by repeating the extracted light. In this case, the accuracy is improved, but there is a problem that it becomes large in scale because it is extracted by a narrow band filter in the light region.

特開2000−310518号公報JP 2000-310518 A USP662894号公報USP 662894

本発明は、光学的処理を減らし、簡易な規模で、三次元測定を信頼性良く行える技術を提供する。   The present invention provides a technique for reducing the optical processing and performing the three-dimensional measurement with a simple scale and with high reliability.

上記目的と達成するために、ほぼ単一な波長のコヒーレント光の干渉縞の波長(周期)は、そのコヒーレント光と一致することに着眼している。つまり、測定光路の光路長を変化させたときの複数波長を含む広帯域光の干渉縞とほぼ単一な波長のコヒーレント光の干渉縞を撮像し、広帯域光の干渉縞が生じる光路長(例えば、干渉縞のピーク等の特徴が生ずる光路長)をコヒーレント光の干渉縞をスケールとしてスケーリング(値付け)する構成とした。広帯域光による干渉縞が生じる光路長は、測定光路の光路長をある基準位置から変化させたときの変化量(移動量)で表しても良い。また、複数波長を含む広帯域光の干渉縞とその複数波長から抽出した一部波長の干渉縞を基に、スケーリングする構成とした。   In order to achieve the above object, the present inventors have focused on the fact that the wavelength (period) of interference fringes of coherent light having a substantially single wavelength coincides with the coherent light. In other words, when the optical path length of the measurement optical path is changed, the interference fringes of the broadband light including a plurality of wavelengths and the interference fringes of the coherent light having a substantially single wavelength are imaged, and the optical path length in which the interference fringes of the broadband light are generated (for example, The optical path length in which features such as interference fringe peaks occur is scaled (valued) using the interference fringes of coherent light as a scale. The optical path length in which the interference fringes due to the broadband light are generated may be expressed by a change amount (movement amount) when the optical path length of the measurement optical path is changed from a certain reference position. In addition, scaling is performed on the basis of interference fringes of broadband light including a plurality of wavelengths and interference fringes of partial wavelengths extracted from the plurality of wavelengths.

具体的には、請求項1に記載の発明は、複数スペクトラムを有する広帯域光を出力する広帯域光源(1)と、
ほぼ単波長成分のコヒーレント光を出力するコヒーレント光源(11)と、
該広帯域光及びコヒーレント光を合波して参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させ、前記参照鏡からの反射光と照射された前記被測定物の照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、
前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、
該光路長可変手段による該光路長の変化に対応して、前記光路形成部からの出力を撮像することによって干渉縞のデータを取得する撮像手段(10)と、
該撮像手段が出力するデータにより、前記広帯域光による干渉縞が生ずる前記参照光路又は前記測定光路のいずれか一方の光路長を、該光路長の変化に対する前記コヒーレント光による干渉縞の変化を基に求める光路長検出手段(14)と、を備えた。
Specifically, the invention described in claim 1 includes a broadband light source (1) that outputs broadband light having a plurality of spectra,
A coherent light source (11) that outputs coherent light having a substantially single wavelength component;
The broadband light and the coherent light are combined and branched into a reference optical path having a reference mirror and a measurement optical path in which the object to be measured is arranged, and the reflected light from the reference mirror and the irradiated object to be measured An optical path forming unit (5) for combining and outputting each reflected light from the irradiation position of the irradiation range;
Optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path;
In response to the change in the optical path length by the optical path length varying means, the imaging means (10) for acquiring interference fringe data by imaging the output from the optical path forming unit;
Based on the data output from the imaging means, the optical path length of either the reference optical path or the measurement optical path in which the interference fringe due to the broadband light is generated is based on the change in the interference fringe due to the coherent light with respect to the change in the optical path length. And a desired optical path length detection means (14).

請求項2に記載の発明は、請求項1に記載の発明において、前記撮像手段は、前記光路長可変手段が変化させる前記光路長の変化に対する時間変化に応じて撮像し、
前記光路長検出手段は、該撮像手段が出力するデータを基に、前記時間変化に対する前記広帯域光による干渉縞の特徴点と前記時間変化に対する前記コヒーレント光による干渉縞の変化とを対比して、前記広帯域光による干渉縞の特徴点を該コヒーレント光の波長を基に光路長に換算して求める構成とした。
According to a second aspect of the present invention, in the first aspect of the present invention, the image pickup unit picks up an image in accordance with a change in time with respect to the change in the optical path length changed by the optical path length variable unit,
The optical path length detection means, based on the data output by the imaging means, contrasts the characteristic points of the interference fringes due to the broadband light with respect to the time change and the changes in interference fringes due to the coherent light with respect to the time change, The feature point of the interference fringes due to the broadband light is obtained by converting it to the optical path length based on the wavelength of the coherent light.

請求項3に記載の発明は、請求項2に記載の発明において、前記光路長検出手段は、撮像手段が出力するデータから少なくとも前記コヒーレント光の成分を分波する分波手段(14a)と、該撮像手段が出力するデータを基に前記時間変化に対する前記広帯域光による干渉縞の特徴点を求める白色光干渉縞光路長検出手段(14c)と、分波された前記コヒーレント光の成分により前記時間変化に対する前記コヒーレント光による干渉縞の変化を求めるとともに、前記特徴点と前記コヒーレント光による干渉縞の変化とを対比して、前記コヒーレント光の波長を基に光路長に換算して求めるコヒーレント光路長参照手段(14b)とを備えた。   The invention according to claim 3 is the invention according to claim 2, wherein the optical path length detection means includes a demultiplexing means (14a) for demultiplexing at least a component of the coherent light from data output by the imaging means. White light interference fringe optical path length detection means (14c) for obtaining feature points of interference fringes by the broadband light with respect to the time change based on data output from the imaging means, and the time by the demultiplexed component of the coherent light A coherent optical path length obtained by converting an interference fringe due to the coherent light with respect to a change and comparing the characteristic point with a change in the interference fringe due to the coherent light and converting the characteristic point into an optical path length based on the wavelength of the coherent light. Reference means (14b).

請求項4に記載の発明は、請求項2に記載の発明において、前記コヒーレント光による干渉縞の変化は、該干渉縞の振幅又は位相の周期的変化であることを特徴とする請求項1、2又は3に記載の三次元形状測定装置。   The invention according to claim 4 is the invention according to claim 2, wherein the change in interference fringe due to the coherent light is a periodic change in amplitude or phase of the interference fringe. The three-dimensional shape measuring apparatus according to 2 or 3.

請求項5に記載の発明は、請求項2に記載の発明において、前記光路長検出手段が、照射された前記被測定物の照射範囲の各照射位置における前記参照光路又は前記測定光路のいずれか一方の光路長を求めた結果に基づいて、一照射位置の光路長と他の照射位置の光路長との差を基に、各照射位置の相対的変位を求める変位演算手段(15)と、を備えた。   The invention according to claim 5 is the invention according to claim 2, wherein the optical path length detection means is either the reference optical path or the measurement optical path at each irradiation position in the irradiation range of the irradiated object to be measured. Based on the result of obtaining one optical path length, based on the difference between the optical path length at one irradiation position and the optical path length at the other irradiation position, a displacement calculation means (15) for obtaining a relative displacement at each irradiation position; Equipped with.

請求項6に記載の発明は、請求項2に記載の発明において、前記広帯域光による干渉縞の特徴点は、該干渉縞の振幅のピーク点又は該広帯域光に含まれる少なくとも2つ以上のスペクトル成分の位相の交点である構成とした。   According to a sixth aspect of the present invention, in the second aspect of the present invention, the feature point of the interference fringe due to the broadband light is an amplitude peak point of the interference fringe or at least two or more spectra included in the broadband light. It was set as the structure which is the intersection of the phase of a component.

請求項7に記載の発明は、複数スペクトルを有する広帯域光を出力する広帯域光源(1)と、
該広帯域光を参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させ、前記参照鏡からの反射光と前記被測定物の照射された照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、
前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、
該光路長可変手段による該光路長の変化に応じて、前記光路形成部からの出力を撮像することによって干渉縞のデータを取得する撮像手段(10)と、
前記撮像手段が出力するデータから、ほぼ単一スペクトル成分のコヒーレント光を抽出し、前記広帯域光による干渉縞が生ずる前記参照光路又は前記測定光路のいずれか一方の光路長を、該光路長の変化に対する前記コヒーレント光による干渉縞の変化を基に求める光路長検出手段(14)と、を備えた。
The invention according to claim 7 is a broadband light source (1) for outputting broadband light having a plurality of spectra;
The broadband light is branched and incident on a reference optical path having a reference mirror and a measurement optical path on which the object to be measured is placed, and the reflected light from the reference mirror and the irradiation position of the irradiation range irradiated by the object to be measured are incident. An optical path forming section (5) for combining and outputting each reflected light;
Optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path;
An imaging means (10) for acquiring interference fringe data by imaging an output from the optical path forming unit in accordance with a change in the optical path length by the optical path length varying means;
From the data output by the imaging means, coherent light of almost a single spectral component is extracted, and the optical path length of either the reference optical path or the measurement optical path in which interference fringes due to the broadband light are generated is changed in the optical path length. And an optical path length detection means (14) obtained based on a change in interference fringes due to the coherent light.

請求項8に記載の発明は、複数波長成分を有する広帯域光を出力する広帯域光源(1)と、
該広帯域光を参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させて照射し、前記参照鏡からの反射光と前記被測定物の照射された照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、
前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、
該光路長可変手段による該光路長の変化に応じて、前記光路形成部からの出力を撮像することによって干渉縞のデータを取得する撮像手段(10)と、
前記撮像手段が出力するデータより、少なくとも2つ以上のスペクトル成分を抽出する分波手段(14d)と、前記2つ以上のスペクトル成分の各干渉縞の位相変化の交点を求める干渉縞光路長検出手段(14f)と、前記位相変化の交点における前記参照光路又は前記測定光路のいずれか一方の光路長を、前記2つ以上のスペクトル成分のうちいずれか一つによる干渉縞の変化を参照して求めるコヒーレント光路長参照手段(14e)とを備えた。
The invention according to claim 8 is a broadband light source (1) that outputs broadband light having a plurality of wavelength components;
The broadband light is branched and incident on a reference optical path having a reference mirror and a measurement optical path on which the object to be measured is placed, and the reflected light from the reference mirror and the irradiation range irradiated by the object to be measured are irradiated. An optical path forming section (5) for combining and outputting each reflected light from the position;
Optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path;
An imaging means (10) for acquiring interference fringe data by imaging an output from the optical path forming unit in accordance with a change in the optical path length by the optical path length varying means;
Demultiplexing means (14d) for extracting at least two or more spectral components from the data output by the imaging means, and interference fringe optical path length detection for obtaining the intersection of the phase changes of each interference fringe of the two or more spectral components. The optical path length of either the reference optical path or the measurement optical path at the intersection of the means (14f) and the phase change is referred to the interference fringe change due to any one of the two or more spectral components. And a coherent optical path length reference means (14e) to be obtained.

請求項9に記載の発明は、複数スペクトル成分を有する広帯域光を出力する広帯域光源(1)と、該広帯域光を、参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させて、前記参照鏡からの反射光と照射された前記被測定物の照射範囲の各照射位置からの反射光を合波して出力する光路形成部(5)と、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、該光路長が変化するときの時間軸上の所定時間間隔で、前記光路形成部からの出力を撮像することによって前記広帯域光による干渉縞のデータを取得する撮像手段(10)と、該撮像手段が出力するデータを基に、前記広帯域光による干渉縞の特徴点が生ずる前記所定時間間隔に対する時間位置を基に前記各照射位置の光路長を求める光路長検出手段(14)と、を備えた三次元形状測定装置において、
ほぼ単波長成分の参照光を出力するコヒーレント光源(11)と、
該コヒーレント光を前記広帯域光に合波して前記光路形成部に入射させる合成部(12)と、を備え、
前記光路長検出手段は、前記広帯域光による干渉縞の特徴点が生ずる前記所定時間間隔に対する時間位置を、前記撮像手段が出力する前記コヒーレント光による干渉縞の前記時間間隔に対する振幅変化又はその位相変化を基準として表す構成とした。
According to the ninth aspect of the present invention, a broadband light source (1) that outputs broadband light having a plurality of spectral components, and the broadband light is branched into a reference optical path having a reference mirror and a measurement optical path in which an object to be measured is arranged. An optical path forming unit (5) that combines the reflected light from the reference mirror and the reflected light from each irradiation position of the irradiated range of the object to be measured, and the reference optical path or The optical path length varying means (8) for changing the optical path length of any one of the measurement optical paths, and imaging the output from the optical path forming section at a predetermined time interval on the time axis when the optical path length changes. Based on the imaging means (10) for acquiring the interference fringe data by the broadband light and the data output from the imaging means based on the time position with respect to the predetermined time interval at which the characteristic point of the interference fringe by the broadband light is generated Of each irradiation position The optical path length detecting means for determining the path length (14), in the three-dimensional shape measurement device equipped with,
A coherent light source (11) for outputting a reference light having a substantially single wavelength component;
A combining unit (12) that combines the coherent light with the broadband light and enters the optical path forming unit;
The optical path length detecting means indicates a time position with respect to the predetermined time interval at which a characteristic point of the interference fringe due to the broadband light occurs, and an amplitude change or a phase change with respect to the time interval of the interference fringe due to the coherent light output from the imaging means. Is represented as a reference.

請求項1、2、3及び9は、広帯域光とコヒーレント光の双方によるそれぞれの干渉縞を撮像手段で同時に撮像して、撮像手段から得られるそれぞれの干渉縞のデータ(電気信号としてのデータ)基に、広帯域光による干渉縞が生ずる光路長を、コヒーレント光による干渉縞の変化を参照して求める構成とした。したがって、コヒーレント光源は必要とするものの、電気的な処理で、つまり容易な構成で、コヒーレント光の干渉縞の繰り返し間隔(コヒーレント光の波長に等しい)で信頼性良く測定ができる。   In the first, second, third, and ninth aspects, each interference fringe by both the broadband light and the coherent light is simultaneously imaged by the imaging means, and data of each interference fringe obtained from the imaging means (data as an electrical signal) Based on this, the optical path length in which the interference fringes due to the broadband light are generated is obtained with reference to the change of the interference fringes due to the coherent light. Therefore, although a coherent light source is required, measurement can be performed with high reliability by electrical processing, that is, with a simple configuration and with a repetition interval of interference fringes of coherent light (equal to the wavelength of coherent light).

請求項6、8は、広帯域光による干渉縞の位置として干渉縞の特徴を表すピーク位置(いずれも、位置は光路長上の位置)を求めるにあたって、広帯域光による干渉縞のうち、異なる2つの波長成分による2つの干渉縞の位相を基に求めることから、より精度良く測定できる。   In the sixth and eighth aspects of the present invention, when obtaining the peak position representing the characteristic of the interference fringe as the position of the interference fringe by the broadband light (both positions are positions on the optical path length), two different fringes of the interference fringe by the broadband light are used. Since it calculates | requires based on the phase of two interference fringes by a wavelength component, it can measure more accurately.

請求項7、8は、コヒーレント光源を用いずにその代わりとして、広帯域光の一部の波長を抽出してその干渉縞を用いることから、より構成が簡単になる。   In the seventh and eighth aspects, instead of using the coherent light source, instead of extracting a part of the wavelength of the broadband light and using the interference fringes, the configuration is further simplified.

本発明に係る実施形態を、図を用いて説明する。図1は、第1の実施形態の機能構成を示す図である。図2は、図1の光路長検出手段14を説明するための図である。図3は、図1の分波手段14aを説明するための図である。図4は、ピエゾ8に代わる光路長可変手段の例である。図5は、第2の実施形態の機能構成を示す図である。図6は、第3の実施形態の機能構成を示す図である。   Embodiments according to the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a functional configuration of the first embodiment. FIG. 2 is a diagram for explaining the optical path length detection means 14 of FIG. FIG. 3 is a diagram for explaining the demultiplexing unit 14a of FIG. FIG. 4 shows an example of an optical path length varying means that replaces the piezo 8. FIG. 5 is a diagram illustrating a functional configuration of the second embodiment. FIG. 6 is a diagram illustrating a functional configuration of the third embodiment.

[1.第1の実施形態の全体構成]
第1の実施形態は、上記したように、広帯域光とコヒーレント光の双方によるそれぞれの干渉縞を撮像手段10で撮像して、撮像手段10から得られるそれぞれの干渉縞のデータを基に、広帯域光による干渉縞が生ずる光路長(光路長を干渉縞が生ずるまでに光路長を変化させたときの変化量でも良い。)を、コヒーレント光による干渉縞の変化を参照して求める構成である。
以下の説明で、測定光路の光路長を変化させたときに、干渉縞が生ずる光路長(光路長を干渉縞が生ずるまでに光路長を変化させたときの変化量)を「特定光路長」と言うことがある。
[1. Overall Configuration of First Embodiment]
In the first embodiment, as described above, the interference fringes due to both the broadband light and the coherent light are imaged by the imaging means 10, and the broadband is obtained based on the data of the interference fringes obtained from the imaging means 10. In this configuration, an optical path length in which an interference fringe due to light occurs (the optical path length may be a change amount when the optical path length is changed before the interference fringe is generated) is obtained with reference to a change in interference fringe due to coherent light.
In the following description, when the optical path length of the measurement optical path is changed, the optical path length in which the interference fringe is generated (the change amount when the optical path length is changed before the interference fringe is generated) is referred to as “specific optical path length”. There are times.

第1の実施形態は、大きく分けて、コヒーレント光による干渉縞をカメラ10(撮像手段)で撮像して、その干渉縞の繰り返しからスケールを生成する場合と、広帯域光による干渉縞が生ずる光路長(特定光路長)を、コヒーレント光による干渉縞の変化(スケール)を参照して求める場合の二つがある。これらの動作はほぼ同時でも良いし、又は先にスケールを生成して、その後に光路長を求める動作であっても良い。前者の同時動作は、動作に時間差が殆ど無いので、環境変化、測定条件の違いの影響を受けることが少ない。後者の時系列的な動作であっても、短時間の時間差であるから室内等で同じ条件で測定している分には、ほぼ前者と同様に信頼性の良い結果が得られる。   The first embodiment is broadly divided into a case where an interference fringe due to coherent light is imaged by the camera 10 (imaging means), and a scale is generated from the repetition of the interference fringe, and an optical path length in which the interference fringe due to broadband light occurs. There are two cases where the (specific optical path length) is obtained with reference to a change (scale) of interference fringes due to coherent light. These operations may be performed almost simultaneously, or may be an operation in which a scale is generated first and an optical path length is obtained thereafter. Since the former simultaneous operation has almost no time difference in operation, it is less affected by environmental changes and differences in measurement conditions. Even in the latter time-series operation, since the time difference is a short time, a reliable result can be obtained in the same manner as in the former if the measurement is performed under the same conditions in a room or the like.

「1.1 広帯域光(白色光)による干渉縞を生成する光学系の構成]
図1の光源1は、広帯域に亘る多数の波長成分を有しコヒーレンシーの低い広帯域光を出射する光源であって、ここでは、例えば、白色光源を用いる。コリメータレンズ2は、光源2からの白色光(広帯域光)を集光してビームスプリッター3へ送る。ビームスプリッター3は、白色光の方向を変換して対物レンズ4へ送る。対物レンズ4は、白色光を平行光にしてビームスプリッター5(光路形成部)へ送る。ビームスプリッター5は、対物レンズ4から受けた白色光を2方向へ分岐し、一つは測定光として被測定物7へ送り(ビームスプリッター5から被測定物7への光路を測定光路とする。)、他の一つは参照光として参照鏡6へ送る(ビームスプリッター5から参照鏡6への光路を参照光路とする。)。この例では、ビームスプリッター5と参照鏡6との間は固定、つまり参照光路の光路長は一定の固定長さとされている。
ビームスプリッター5の代わりに、ハーフミラーで構成することともできる。
"1.1 Configuration of optical system for generating interference fringes by broadband light (white light)"
The light source 1 in FIG. 1 is a light source that emits broadband light having a large number of wavelength components over a wide band and low coherency. Here, for example, a white light source is used. The collimator lens 2 collects the white light (broadband light) from the light source 2 and sends it to the beam splitter 3. The beam splitter 3 converts the direction of white light and sends it to the objective lens 4. The objective lens 4 converts white light into parallel light and sends it to the beam splitter 5 (optical path forming unit). The beam splitter 5 branches the white light received from the objective lens 4 in two directions, and one is sent as measurement light to the measurement object 7 (the optical path from the beam splitter 5 to the measurement object 7 is used as a measurement optical path). The other one is sent to the reference mirror 6 as reference light (the optical path from the beam splitter 5 to the reference mirror 6 is taken as the reference optical path). In this example, the distance between the beam splitter 5 and the reference mirror 6 is fixed, that is, the optical path length of the reference optical path is fixed.
Instead of the beam splitter 5, a half mirror may be used.

測定光路は、被測定物7の表面上の測定したい所望の照射範囲を同時に白色光で照射される構成にされている。   The measurement optical path is configured so that a desired irradiation range to be measured on the surface of the object to be measured 7 is simultaneously irradiated with white light.

[1.2 レーザー光(コヒーレント光)による干渉縞を生成する光学系の構成]
図1において、He−Neレーザー11は、ほぼ単一波長を有する光源である。つまり、「ほぼ単一波長」とは、ピエゾ8により変化させた光路長の範囲において、コヒーレンシーを確保できるほどの波長成分(スペクトル)であることを言う。このHe−Neレーザー11からのレーザー光は、ビームスプリッター12により、白色光と同一の光路へ導入される。そして白色光と同様に、参照光路及び測定光路へ入る。レーザー光は、被測定物7へ向けて集光される。図1では、レーザー光(粗い点線で示す。)は、被測定物7の測定範囲の中心からズレた位置にあるが、何処にあっても、固定した位置であれば校正できるので測定範囲の中心であっても良い。
[1.2 Configuration of optical system for generating interference fringes by laser light (coherent light)]
In FIG. 1, a He—Ne laser 11 is a light source having a substantially single wavelength. That is, “substantially single wavelength” means a wavelength component (spectrum) that can ensure coherency in the range of the optical path length changed by the piezo 8. The laser light from the He—Ne laser 11 is introduced into the same optical path as the white light by the beam splitter 12. Then, like the white light, the light enters the reference optical path and the measurement optical path. The laser beam is condensed toward the object 7 to be measured. In FIG. 1, the laser beam (indicated by a rough dotted line) is at a position shifted from the center of the measurement range of the object 7 to be measured. It may be the center.

[1.3 白色光及びレーザー光による干渉縞検出までの共通の光学系及び処理の構成]
以下の説明において、白色光とレーザー光との区別をすること無く、単に「戻り光」「干渉縞」等と言う表現をしたときは、白色光及びレーザー光に共通するものとする。
[1.3 Common optical system and processing configuration until interference fringe detection by white light and laser light]
In the following description, when the expressions “return light”, “interference fringes”, etc. are simply used without distinguishing between white light and laser light, they are common to white light and laser light.

被測定物7は、ピエゾ8の上に搭載されている。ピエゾ8は、圧電素子で構成され、光路長制御手段16からの指示により、連続的に、被測定物7をXY平面(図1の紙面に直交する面)に対してZ軸方向(図1の紙面の上下方向)へ変位(移動)させることにより測定光路の光路長を所定速度で可変制御する。   The DUT 7 is mounted on the piezo 8. The piezo 8 is composed of a piezoelectric element, and in accordance with an instruction from the optical path length control means 16, the object to be measured 7 is continuously moved in the Z-axis direction (FIG. 1) with respect to the XY plane (surface orthogonal to the paper surface of FIG. 1). The optical path length of the measurement optical path is variably controlled at a predetermined speed by being displaced (moved) in the vertical direction of the paper surface.

なお、ここでは、本発明における光路長を変化させる可変方法としては、連続的な可変であり、可変速度を一定として、説明するが、後記するように可変方法は、ステップ上に可変しても良いし、可変速度も、サイン関数等の所定関数状に変化しても良い。   Here, the variable method for changing the optical path length in the present invention is described as being continuously variable and having a constant variable speed. However, as will be described later, the variable method can be varied on a step basis. The variable speed may be changed to a predetermined function such as a sine function.

ピエゾ8は、光路長制御手段16の制御によって、ビームスプリッター5の固定位置に対して測定光路の光路長を変化させる手段(光路長可変手段)である。なお、ここでは、参照光路の光路長を固定、測定光路の光路長を変化させることで説明するが、干渉縞を生成するには、ピエゾ8を参照鏡6へ取り付け、測定光路を固定とし、参照光路の光路長を可変する構成にしても可能である。   The piezo 8 is means (optical path length variable means) that changes the optical path length of the measurement optical path with respect to the fixed position of the beam splitter 5 under the control of the optical path length control means 16. Here, the description will be given by fixing the optical path length of the reference optical path and changing the optical path length of the measurement optical path. However, in order to generate interference fringes, the piezo 8 is attached to the reference mirror 6, the measurement optical path is fixed, A configuration in which the optical path length of the reference optical path is variable is also possible.

参照鏡6及び被測定物7から反射されてきた各白色光及び各レーザー光(以下、区別する場合は「戻り白色光」「戻りレーザー光」と言い、区別無く纏めて「戻り光」と言うことがある。)は、ビームスプリッター5で合波(合成)され、さらに対物レンズ4で集光される。戻り白色光は、ビームスプリッター3を通過して結像レンズ9により平行光にされてカメラ10へ入力される。戻りレーザー光は、ビームスプリッター3を通過して結像レンズ9により集光にされてカメラ10へ入力される。   Each white light and each laser light reflected from the reference mirror 6 and the object 7 to be measured (hereinafter referred to as “return white light” and “return laser light” when distinguished, and collectively referred to as “return light”). Are combined (combined) by the beam splitter 5 and further condensed by the objective lens 4. The returned white light passes through the beam splitter 3, is converted into parallel light by the imaging lens 9, and is input to the camera 10. The return laser light passes through the beam splitter 3, is condensed by the imaging lens 9, and is input to the camera 10.

このとき、光路長制御手段16からの指示で、ピエゾ8が測定光路の光路長を変化させる距離(或いは変化させるときの時間間隔)に応じて、カメラ10が戻り光を撮像することにより、戻り光(戻り白色光、戻りレーザー光を含む)による干渉縞が撮像される(実際は、撮像は、戻り白色光及び戻りレーザー光を撮像しているだけであるが、後に撮像データを展開したときに現れる戻り白色光及び戻りレーザー光による干渉縞含むので、「干渉縞を撮像」と表現している。)。撮像された干渉縞は、メモリ13に記憶される。このとき、測定光路は、上記のように被測定物7の所望の照射範囲を白色光により同時に照射する構成にされているので、照射範囲の各照射位置、つまり測定したい位置(以下、「測定位置」と言う。)からの戻り白色光に対応する干渉縞が撮像される。   At this time, in response to an instruction from the optical path length control means 16, the camera 10 captures the return light according to the distance (or the time interval at which the piezo 8 changes the optical path length of the measurement optical path). Interference fringes due to light (including return white light and return laser light) are imaged (actually, the imaging is merely imaging the return white light and the return laser light, but when the image data is developed later (Including interference fringes due to return white light and return laser light appearing, and therefore, "interference fringes are imaged"). The captured interference fringes are stored in the memory 13. At this time, since the measurement optical path is configured to simultaneously irradiate the desired irradiation range of the DUT 7 with white light as described above, each irradiation position of the irradiation range, that is, a position to be measured (hereinafter referred to as “measurement”). An interference fringe corresponding to the returning white light from the “position” is imaged.

なお、図1の光学系の変形としては、対物レンズ4の代わりに測定光路と参照光路のそれぞれに対物レンズを配置する光学系を構成することもできるので、本発明は、図1の光学系に限らない。以下の説明は、図1に沿って説明する。   As a modification of the optical system of FIG. 1, an optical system in which an objective lens is arranged in each of the measurement optical path and the reference optical path instead of the objective lens 4 can be configured. Not limited to. The following description will be given with reference to FIG.

メモリ13は、光路長制御手段16が所定時間間隔のタイミング信号を生成してピエゾ8へ時間間隔に応じて光路長を可変指示するので、そのタイミング信号のタイミングで戻り光の撮像データ(戻り光の輝度を示す輝度データになる。)を取り込み、記憶する。例えば、光路長が時間的に直線的に連続して可変されるのであれば、タイミング信号の時間間隔をアドレスとして撮像データを記憶する。これらのタイミング進行方向(つまりアドレス方向)が、Z軸方向を表すことになる。そのとき、その撮像データを測定位置(Xm、Yp)と合わせて記憶する。測定位置(Xm、Yp)の情報は、カメラ10の撮像素子の位置に対応したXY方向の画素の位置である。このようにメモリ13に記憶されているので、例えば、後記するようにそのメモリ13から、このアドレス順に撮像データを取り出して再現すれば、図2(A)のような干渉縞のデータが得られる。   In the memory 13, since the optical path length control means 16 generates a timing signal at a predetermined time interval and instructs the piezo 8 to variably specify the optical path length according to the time interval, imaging data (return light) of the return light at the timing of the timing signal. Is acquired and stored. For example, if the optical path length is continuously variable linearly in time, the imaging data is stored using the time interval of the timing signal as an address. These timing advance directions (that is, address directions) represent the Z-axis direction. At that time, the imaging data is stored together with the measurement position (Xm, Yp). The information on the measurement position (Xm, Yp) is the position of the pixel in the XY direction corresponding to the position of the image sensor of the camera 10. Since the data is stored in the memory 13 as described above, for example, if the imaging data is extracted from the memory 13 in the order of the addresses and reproduced as described later, the interference fringe data as shown in FIG. 2A is obtained. .

信号処理手段20は、光路長検出手段14と変位演算手段15とを備えている。
光路長検出手段14は、図1のように、分波手段14a、レーザー光路長参照手段14b及び白色光干渉縞光路検出手段14cを備えている。分波手段14aは、メモリ13からの撮像データ、例えば、測定位置(Xm、Yp)のデータを受けて、レーザー光による干渉縞を分離して取り出す。白色光による干渉縞は分波して取り出しても良いし、この場合は、コヒーレント光による干渉縞と重なったままでも良い(理由は後記する。)。分波手段14cは、メモリ13からの所定時間間隔に対する撮像データを、フーリエ変換等により時間領域データを周波数(波長)領域のデータに変換して、周波数(波長)フィルタにより分離して取り出し、取り出したレーザー光のデータを再び時間領域のデータに再変換し、コヒーレント光路長参照手段14bへ入力される。その再変換された波形を図2(B)に示す。一方、白色光の干渉縞とレーザー光の干渉縞が分離されないで、又は分離されて白色光による白色光干渉縞光路長検出手段14cに送られる(分離された各色光による干渉縞が図2(A)である。)。
The signal processing means 20 includes an optical path length detection means 14 and a displacement calculation means 15.
As shown in FIG. 1, the optical path length detection means 14 includes a demultiplexing means 14a, a laser optical path length reference means 14b, and a white light interference fringe optical path detection means 14c. The demultiplexing unit 14a receives imaging data from the memory 13, for example, data of measurement positions (Xm, Yp), and separates and extracts interference fringes due to laser light. The interference fringes due to the white light may be separated and taken out. In this case, the interference fringes due to the coherent light may remain overlapped (the reason will be described later). The demultiplexing unit 14c converts the imaging data for a predetermined time interval from the memory 13 into data in the frequency (wavelength) domain by Fourier transform or the like, and separates and extracts it by a frequency (wavelength) filter. The converted laser beam data is converted again into time domain data and input to the coherent optical path length reference means 14b. The reconverted waveform is shown in FIG. On the other hand, the interference fringes of white light and the interference fringes of laser light are not separated or separated and sent to the white light interference fringe optical path length detection means 14c by white light (the interference fringes by the separated color lights are shown in FIG. A).).

図2(A)は、横軸が光路長が変化する時間で縦軸が輝度(振幅)を示す座標上に展開した白色光による干渉縞の波形である。この白色光による干渉縞のほぼ中央のピーク位置が、参照光路の光路長と測定光路の光路長が同一になった場合である。また、白色光による干渉縞の波長は、ほぼ白色光(広帯域光)の要素となる各波長の合成で作られ、それらの帯域のほぼ中央の波長λの1/2になる。また、図2(A)の白色光による干渉縞の光路長方向への広がりは、白色光のコヒーレンシーの程度による。コヒーレンシーが低いほど広がり幅は、狭くなる。   FIG. 2A shows a waveform of interference fringes due to white light developed on coordinates where the horizontal axis represents the time when the optical path length changes and the vertical axis represents the luminance (amplitude). The peak position at the approximate center of the interference fringes due to white light is when the optical path length of the reference optical path is the same as the optical path length of the measurement optical path. Further, the wavelength of the interference fringes due to the white light is made by synthesizing each wavelength which is an element of almost white light (broadband light), and becomes half of the wavelength λ at the center of those bands. Further, the spread of the interference fringes in the optical path length direction by the white light in FIG. 2A depends on the degree of coherency of the white light. The lower the coherency, the narrower the spread.

なお「ピーク位置」(或いは、「ピークの位置」)とは、白色光による干渉縞の輝度(振幅)が最大(以下、「ピーク」と言う。)となる横軸上の位置であって、横軸は、測定光路の光路長方向(Z軸方向:図1の紙面の上下方向)であり、また光路長可変するときの時間軸方向(カメラ10により所定時間間隔で撮像されるときの時間軸方向)である。   The “peak position” (or “peak position”) is a position on the horizontal axis where the luminance (amplitude) of interference fringes due to white light is maximum (hereinafter referred to as “peak”). The horizontal axis is the optical path length direction of the measurement optical path (Z-axis direction: the vertical direction of the paper in FIG. 1), and the time axis direction when the optical path length is variable (time when images are taken at predetermined time intervals by the camera 10) Axial direction).

図2(B)は、レーザー光による干渉縞の変化を、輝度(振幅)と位相とで、白色光の干渉縞と同じ時間軸上に表した図である。図2(B)の横軸は時間でもあるが、基準位置(光路長を可変する前の位置、例えば、これをゼロとする。)からの測定光路の光路長の変化量でもある。レーザー光による干渉縞の変化の繰り返しは、レーザー光の波長の1/2と同じ繰り返しになる。位相の変化(量)は、基準位置における位相に対する変化(量)である(相対的な変化量である。)。したがって、レーザー光による干渉縞の変化をレーザー光の波長で刻まれたスケールとして使用することができる。   FIG. 2B is a diagram showing changes in interference fringes due to laser light on the same time axis as the interference fringes of white light in terms of luminance (amplitude) and phase. The horizontal axis in FIG. 2B is also the time, but also the amount of change in the optical path length of the measurement optical path from the reference position (position before changing the optical path length, for example, this is zero). The repetition of the interference fringe change by the laser light is the same as the half of the wavelength of the laser light. The change (amount) of the phase is a change (amount) with respect to the phase at the reference position (a relative change amount). Therefore, the change of the interference fringes due to the laser beam can be used as a scale carved with the wavelength of the laser beam.

ここで、分波手段14aによる白色光による干渉縞とのレーザー光による干渉縞の分離について説明する。白色光干渉縞光路長検出手段14cは、白色光の干渉縞の位置を特定するためのピーク(特徴点)を求める。一方、図3(A)に白色光による干渉縞の波形、図3(B)にレーザー光による干渉縞の波形、及び図3(C)に白色光及びレーザー光による干渉縞の波形を示すが、図3(C)のように、レーザー光の干渉縞の大きさが適切な大きさであれば、分離されなくて重なっていても、白色光の干渉縞のピーク位置を抽出できる。レーザー光の干渉縞の大きさは、He−Neレーザー11からのレーザー光の強さを調整する事により適切にすることできる。大凡では、レーザー光の干渉縞の大きさは、白色光の干渉縞の大きさ以下が望ましい。   Here, separation of interference fringes by laser light from interference fringes by white light by the demultiplexing unit 14a will be described. The white light interference fringe optical path length detection means 14c obtains a peak (characteristic point) for specifying the position of the white light interference fringe. On the other hand, FIG. 3A shows a waveform of interference fringes caused by white light, FIG. 3B shows a waveform of interference fringes caused by laser light, and FIG. 3C shows a waveform of interference fringes caused by white light and laser light. As shown in FIG. 3C, if the size of the interference fringes of the laser beam is an appropriate size, the peak position of the interference fringes of white light can be extracted even if they are not separated and overlapped. The size of the interference fringes of the laser beam can be made appropriate by adjusting the intensity of the laser beam from the He—Ne laser 11. In general, it is desirable that the size of the interference fringes of the laser light be less than the size of the interference fringes of the white light.

また、メモリ13に記憶される撮像データは、上記時間間隔で記憶される(図2(A)は、それらを結んで連続的に表現したものである。)ので、撮像データとしては離散的になる。この時間間隔(タイミング)が、図2(A)の干渉縞の周期(縞の振幅間の間隔)に対して無視できる程度の細かさであれば、白色光干渉縞光路長検出手段14cは、それら撮像データ(輝度データ)の極大点のうち最大値を示す点をピーク位置として求めて求めても良いし、極大点を結んで得られる包絡線のピーク位置を演算で求めても良い。離散的なため、極大点と包絡線のピーク位置が一致しないため、包絡線を結べないことがあるが、滑らかな特性であるから前後の極大点から補間演算により求めても良い。また、撮像データの時間間隔と干渉縞の周期に関わらず、信号処理手段20は、特開平9−318329号公報に記載のように、離散的処理で求めてもよい。   In addition, since the imaging data stored in the memory 13 is stored at the above time interval (FIG. 2A is a continuous representation by connecting them), the imaging data is discretely obtained. Become. If this time interval (timing) is fine enough to be ignored with respect to the period of interference fringes (interval between fringe amplitudes) in FIG. 2A, the white light interference fringe optical path length detection means 14c The point indicating the maximum value among the maximum points of the imaging data (luminance data) may be obtained as a peak position, or the peak position of the envelope obtained by connecting the maximum points may be obtained by calculation. Since it is discrete, the maximum point and the peak position of the envelope do not match, and the envelope may not be connected. However, since it is a smooth characteristic, it may be obtained by interpolation calculation from the front and rear maximum points. Regardless of the time interval of the imaging data and the period of the interference fringes, the signal processing means 20 may be obtained by discrete processing as described in JP-A-9-318329.

さらに、離散的な撮像データから干渉縞のピークを求める方法としては、光路長を段階的に変化させ、その変化した所定の光路長毎に撮像したされた離散的な撮像データを基に次ぎの処理を行う技術がある。撮像データから得られる干渉縞のデーからデジタル・ハイパスフィルタにより直流成分を除外する。交流成分となったデータを二乗して整流する。整流された繰り返し成分に比べ低い繰り返し成分を通過させるデジタル・ローパスフィルタを通して積分し、干渉縞の包絡線データを算出する。このとき、ピーク位置の細かさの要求に応じて、整流された繰り返し成分の間を例えば二乗特性で補間し、補間された繰り返し成分を積分して包絡線データを求める。この包絡線データのピークとなる位置を求める。これらは撮像データが時間間隔で取得されているので、時間軸上でピーク位置が計算されるが、最終的には、光路長にスケーリングされる。上記算出は、白色光干渉縞光路長検出手段14cで行われ、コヒーレント路長参照手段14bでスケーリングすることができる。   Furthermore, as a method of obtaining the peak of interference fringes from discrete imaging data, the optical path length is changed stepwise, and the following is performed based on the discrete imaging data captured for each of the changed predetermined optical path lengths. There is a technology for processing. A direct current component is excluded from the interference fringe data obtained from the imaging data by a digital high-pass filter. The AC component is squared and rectified. Integration is performed through a digital low-pass filter that passes a repetitive component lower than the rectified repetitive component, and envelope data of interference fringes is calculated. At this time, according to a request for the fineness of the peak position, the rectified repetitive components are interpolated with, for example, a square characteristic, and the interpolated repetitive components are integrated to obtain envelope data. The position that becomes the peak of the envelope data is obtained. In these cases, since the imaging data is acquired at time intervals, the peak position is calculated on the time axis, but is finally scaled to the optical path length. The above calculation is performed by the white light interference fringe optical path length detection unit 14c, and can be scaled by the coherent path length reference unit 14b.

[1.4 スケーリング及び形状測定]
光路長検出手段14は、上記のように、メモリ13から、例えば測定位置(Xm、Yp)における撮像データをアドレス順に読み出して、図2(B)のレーザー光による干渉縞と図2(A)に示すような白色光の干渉縞を得る。白色光干渉縞光路検出手段14cがその白色光の干渉縞のピーク位置を検出する。そして、レーザー光路長参照手段14bが白色光の干渉縞の時間軸と同じ時間軸に展開されたレーザー光による干渉縞の変化をそのレーザー光の波長で刻んだスケールとして、そのピークが現れる位置を位置Z1sとして特定する。同様に、基準測定位置(Xs、Ys)の撮像データからも白色光の干渉縞のピークの位置Zss(光路長の変化量)を特定する。つまり、光路長(その変化量)に値付け、スケーリングをする。スケーリングされた光路長を基に画像としてユーザインターフェース18に表示させても良い。各数値と測定位置を対応付けて表示させても良い。
[1.4 Scaling and shape measurement]
As described above, the optical path length detection unit 14 reads out, for example, the imaging data at the measurement position (Xm, Yp) from the memory 13 in the order of addresses, and the interference fringes due to the laser light in FIG. 2B and FIG. To obtain white light interference fringes. The white light interference fringe optical path detection means 14c detects the peak position of the white light interference fringe. Then, the laser light path length reference means 14b sets the position where the peak appears as a scale in which the change of the interference fringe due to the laser light developed on the same time axis as that of the white light interference fringe is engraved with the wavelength of the laser light. The position is specified as Z1s. Similarly, the peak position Zss (amount of change in the optical path length) of the interference fringes of white light is also identified from the imaging data at the reference measurement position (Xs, Ys). That is, the optical path length (the amount of change) is valued and scaled. The image may be displayed on the user interface 18 as an image based on the scaled optical path length. Each numerical value and measurement position may be displayed in association with each other.

そして、変位演算手段15が、それらの差Zss−Z1sを求めることにより、測定位置(Xm、YP)の基準測定位置(Xs、Ys)に対する変位、つまり高さとなる。同様に、各測定位置について処理を行えば、被測定物7の全面について高さ(Z軸方向の距離)が測定できる。このように測定位置間での特定光路長間の差をとることによって、相対的な高さ方向の変位を得るので、カメラ10の応答遅れがあってもうち消すことができる。   And the displacement calculating means 15 calculates | requires those differences Zss-Z1s, and becomes the displacement with respect to the reference | standard measurement position (Xs, Ys) of a measurement position (Xm, YP), ie, height. Similarly, if processing is performed for each measurement position, the height (distance in the Z-axis direction) can be measured for the entire surface of the DUT 7. Since the relative displacement in the height direction is obtained by taking the difference between the specific optical path lengths between the measurement positions in this way, even if there is a response delay of the camera 10, it can be eliminated.

また、上記のように、光路長制御手段16による測定光路の光路長の変化及びカメラ10による撮影データの取得は、時間に対応しているが、上記スケーリングは、時間に関係ないのが特徴である。したがって、光路長制御手段16による測定光路の光路長の変化の速度が変化し一定でなくなったとしても、それに起因した白色光による干渉縞の歪みとスケール(つまり、レーザー光による干渉縞)の歪みとは同じになり、かつスケールの刻み(レーザー光による干渉縞の間隔)はレーザー光の波長で決定されるので、対応関係が明確であり、速度の変化の影響を防止して測定できる。   Further, as described above, the change in the optical path length of the measurement optical path by the optical path length control means 16 and the acquisition of the photographing data by the camera 10 correspond to time, but the scaling is not related to time. is there. Therefore, even if the speed of change of the optical path length of the measurement optical path by the optical path length control means 16 changes and becomes non-constant, the distortion of interference fringes due to white light and the distortion of scales (that is, interference fringes due to laser light) are caused. Since the step of the scale (interference fringe spacing by the laser beam) is determined by the wavelength of the laser beam, the correspondence is clear and measurement can be performed while preventing the influence of the speed change.

「1.5 光路長可変手段8の変形例」
図4は、ピエゾ8に代わる光路長可変手段である。ピエゾ8の代わりに測定光路中に一定の厚みを有し、光を透過する回転素子を入れて、回転素子への入射角を可変することにより、回転素子と被測定物間の往復の光路長を可変するものである。
"1.5 Modification of optical path length variable means 8"
FIG. 4 shows an optical path length variable means replacing the piezo 8. In place of the piezo 8, a reciprocating optical path length between the rotating element and the object to be measured is obtained by inserting a rotating element having a certain thickness in the measuring optical path and changing the incident angle to the rotating element. Is variable.

「1.6 He―Neレーザー11の変形例」
図1では、コヒーレント光源としてHe―Neレーザー11を用いてきたが、白色光源、或いは複数の波長成分を有する光源から狭帯域な光フィルタによりほぼ単一な波長成分を選択してそれを、ビームスプリッター12へ入射させる構成にしても良い。
"Modification of 1.6 He-Ne laser 11"
In FIG. 1, the He-Ne laser 11 has been used as a coherent light source. However, a substantially single wavelength component is selected by a narrow band optical filter from a white light source or a light source having a plurality of wavelength components, and the beam is converted into a beam. You may make it the structure which injects into the splitter 12. FIG.

[2.第2の実施形態]
図5を基に説明する。図5は、図1がHe−Neレーザー光源11を持っているのに対して、これが無い点で相違する。図5では、He−Neレーザー光源11からのレーザー光の光路は形成されないが、他は、全く図1と同じであり、動作も同じである。この場合、分波手段14aは、メモリ13の撮像データから白色光の帯域のうちHe−Neレーザー光源11からのレーザー光と同じ波長の狭帯域のレーザー光の干渉縞を抽出する。コヒーレント光路長参照手段14bは、このレーザー光による干渉縞をスケールとして使う。He−Neレーザー光源11のレーザー光による干渉縞に比べ,S/Nが悪化する恐れがあるが、要求される精度によって使用できる。また、S/N改善策を施す手法もある。
[2. Second Embodiment]
This will be described with reference to FIG. FIG. 5 differs from FIG. 1 in that it has a He—Ne laser light source 11 but does not have it. In FIG. 5, the optical path of the laser light from the He—Ne laser light source 11 is not formed, but the other is exactly the same as FIG. 1, and the operation is also the same. In this case, the demultiplexing unit 14a extracts interference fringes of a narrow band laser beam having the same wavelength as the laser beam from the He-Ne laser light source 11 from the imaging data of the memory 13 in the white light band. The coherent optical path length reference means 14b uses the interference fringes due to the laser light as a scale. Although the S / N may be deteriorated as compared with the interference fringes due to the laser beam of the He-Ne laser light source 11, it can be used depending on the required accuracy. There is also a technique for applying an S / N improvement measure.

[3.第3の実施形態]
図6を基に説明する。第3の実施形態は、図5の構成の信号処理手段20を図6(A)の信号処理手段20aに置き代え、さらに図5のカメラ10をカラーカメラにしたものである。したがって、この場合のメモリ13は、カラー領域のデータを含み構成される。その他の構成動作は、図5と同じである。
[3. Third Embodiment]
This will be described with reference to FIG. In the third embodiment, the signal processing means 20 having the configuration shown in FIG. 5 is replaced with the signal processing means 20a shown in FIG. 6A, and the camera 10 shown in FIG. 5 is replaced with a color camera. Therefore, the memory 13 in this case is configured to include color area data. Other constituent operations are the same as those in FIG.

図6(A)で分波手段14dは、メモリ13の撮像データから、例えば、B成分(ブルー色の帯域成分)、G成分(グリーン色の帯域成分)及びR成分(レッド色の帯域成分)に分波して、それぞれ白色光干渉縞光路長検出手段14fへ送る。B位相算出部14f1、G位相算出部14f2、及びR位相算出部14f3は、それぞれ、B成分による干渉縞、G成分による干渉縞、及びR成分によるによる干渉縞の位相の変化を算出する。それらの位相の変化は、光路長制御手段16の制御にしたがってピエゾ8が変化させる測定光路の光路長の変化に対応するものであって、いずれも例えば、光路長を変化させる前の位相を基準として、それに対する位相変化である。   In FIG. 6A, the demultiplexing means 14d uses, for example, B component (blue band component), G component (green band component) and R component (red band component) from the image data stored in the memory 13. Are respectively transmitted to the white light interference fringe optical path length detecting means 14f. The B phase calculation unit 14f1, the G phase calculation unit 14f2, and the R phase calculation unit 14f3 respectively calculate the interference fringes due to the B component, the interference fringes due to the G component, and the interference fringes due to the R component. These changes in phase correspond to changes in the optical path length of the measurement optical path that is changed by the piezo 8 according to the control of the optical path length control means 16, and both of them are based on the phase before the optical path length is changed, for example. As a change in phase.

光路長決定手段14f4は、それらの位相変化を基に、位相の一致点(干渉縞の特徴点)を白色光による干渉縞のピーク位置とする。なお、上記のように3つの位相算出部(14f1、14f2、14f3)を備える代わりに、互いの位相差ゼロを検出し、光路長決定手段14f4は、この位相差がゼロの点をピーク位置とする構成であっても良い。   Based on these phase changes, the optical path length determination unit 14f4 sets the phase coincidence point (interference fringe feature point) as the peak position of the interference fringe due to white light. Instead of providing the three phase calculation units (14f1, 14f2, 14f3) as described above, the phase difference zero is detected, and the optical path length determination unit 14f4 uses the point where the phase difference is zero as the peak position. It may be configured to do so.

一方、コヒーレント光路長参照手段14eは、B成分、G成分又はR成分のいずれか一つ、例えば、R成分の干渉縞を生成して、それをスケールとして用いて、光路長決定手段14fが決定したピーク位置における測定光路の光路長(光路長の変化量)を特定する。その他、変位測定は、第1の実施形態と同様に行うことができる。   On the other hand, the coherent optical path length reference unit 14e generates an interference fringe of any one of the B component, the G component, or the R component, for example, the R component, and uses it as a scale, and the optical path length determination unit 14f determines it. The optical path length (change amount of the optical path length) of the measurement optical path at the peak position is specified. In addition, the displacement measurement can be performed similarly to the first embodiment.

なお、B成分、G成分又はR成分として説明したが、必ずしも、これに限る必要はなく、波長の識別可能な3つの波長帯の成分を使ってもよい。また、3つの波長帯に限らず、少なくとも2つの波長帯であれば、十分である。   In addition, although demonstrated as B component, G component, or R component, it is not necessarily restricted to this, You may use the component of three wavelength bands which can identify a wavelength. In addition to the three wavelength bands, at least two wavelength bands are sufficient.

上記説明は、図6を図5に適用して説明したが、図1に適用しても良い。この場合、図6のコヒーレント光路長算出手段14eは、He−Neレーザー光源11からのレーザー光による干渉縞を基にスケーリングすることになる。   Although the above description has been made by applying FIG. 6 to FIG. 5, it may be applied to FIG. In this case, the coherent optical path length calculation unit 14e in FIG. 6 performs scaling based on the interference fringes caused by the laser light from the He-Ne laser light source 11.

上記構成のうち、信号処理手段20,20a及び光路長制御手段16は,CPU及びメモリで構成することができる。   Among the above configurations, the signal processing means 20 and 20a and the optical path length control means 16 can be constituted by a CPU and a memory.

第1の実施形態の機能構成を示す図である。It is a figure which shows the function structure of 1st Embodiment. 図1の光路長検出手段14を説明するための図である。It is a figure for demonstrating the optical path length detection means 14 of FIG. 図1の分波手段14aを説明するための図である。It is a figure for demonstrating the demultiplexing means 14a of FIG. ピエゾ8に代わる光路長可変手段の例である。This is an example of a variable optical path length means in place of the piezo 8. 第2の実施形態の機能構成を示す図である。It is a figure which shows the function structure of 2nd Embodiment. 第3の実施形態の機能構成を示す図である。It is a figure which shows the function structure of 3rd Embodiment.

符号の説明Explanation of symbols

1 光源
2 コリメータレンズ
3 ビームスプリッター
4 対物レンズ
5 ビームスプリッター
6 参照鏡
7 被測定物
8 ピエゾ
9 結像レンズ
10 カメラ
11 He−Neレーザー
12 ビームスプリッター
13 メモリ
14 光路長検出手段
14a、14d 分波手段
14b、14e コヒーレント光路長参照手段
14c、14f 白色光干渉縞光路長検出手段
15 変位演算手段
16 光路長制御手段
18 ユーザインタフェース
20、20a 信号処理手段
DESCRIPTION OF SYMBOLS 1 Light source 2 Collimator lens 3 Beam splitter 4 Objective lens 5 Beam splitter 6 Reference mirror 7 Measured object 8 Piezo 9 Imaging lens 10 Camera 11 He-Ne laser 12 Beam splitter 13 Memory 14 Optical path length detection means 14a, 14d Demultiplexing means 14b, 14e Coherent optical path length reference means 14c, 14f White light interference fringe optical path length detection means 15 Displacement calculation means 16 Optical path length control means 18 User interface 20, 20a Signal processing means

Claims (9)

複数スペクトラムを有する広帯域光を出力する広帯域光源(1)と、
ほぼ単波長成分のコヒーレント光を出力するコヒーレント光源(11)と、
該広帯域光及びコヒーレント光を合波して参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させ、前記参照鏡からの反射光と照射された前記被測定物の照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、
前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、
該光路長可変手段による該光路長の変化に対応して、前記光路形成部からの出力を撮像することによって干渉縞のデータを取得する撮像手段(10)と、
該撮像手段が出力するデータにより、前記広帯域光による干渉縞が生ずる前記参照光路又は前記測定光路のいずれか一方の光路長を、該光路長の変化に対する前記コヒーレント光による干渉縞の変化を基に求める光路長検出手段(14)と、を備えた三次元形状測定装置。
A broadband light source (1) that outputs broadband light having multiple spectra;
A coherent light source (11) that outputs coherent light having a substantially single wavelength component;
The broadband light and the coherent light are combined and branched into a reference optical path having a reference mirror and a measurement optical path in which the object to be measured is arranged, and the reflected light from the reference mirror and the irradiated object to be measured An optical path forming unit (5) for combining and outputting each reflected light from the irradiation position of the irradiation range;
Optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path;
In response to the change in the optical path length by the optical path length varying means, the imaging means (10) for acquiring interference fringe data by imaging the output from the optical path forming unit;
Based on the data output from the imaging means, the optical path length of either the reference optical path or the measurement optical path in which the interference fringe due to the broadband light is generated is based on the change in the interference fringe due to the coherent light with respect to the change in the optical path length. A three-dimensional shape measuring apparatus comprising: an optical path length detecting means (14) to be obtained.
前記撮像手段は、前記光路長可変手段が変化させる前記光路長の変化に対する時間変化に応じて撮像し、
前記光路長検出手段は、該撮像手段が出力するデータを基に、前記時間変化に対する前記広帯域光による干渉縞の特徴点と前記時間変化に対する前記コヒーレント光による干渉縞の変化とを対比して、前記広帯域光による干渉縞の特徴点を該コヒーレント光の波長を基に光路長に換算して求めることを特徴とする請求項1に記載の三次元形状測定装置。
The image pickup means picks up an image according to a time change with respect to the change of the optical path length changed by the optical path length variable means,
The optical path length detection means, based on the data output by the imaging means, contrasts the characteristic points of the interference fringes due to the broadband light with respect to the time change and the changes in interference fringes due to the coherent light with respect to the time change, The three-dimensional shape measuring apparatus according to claim 1, wherein a feature point of the interference fringes due to the broadband light is obtained by converting into an optical path length based on a wavelength of the coherent light.
前記光路長検出手段は、撮像手段が出力するデータから少なくとも前記コヒーレント光の成分を分波する分波手段(14a)と、該撮像手段が出力するデータを基に前記時間変化に対する前記広帯域光による干渉縞の特徴点を求める白色光干渉縞光路長検出手段(14c)と、分波された前記コヒーレント光の成分により前記時間変化に対する前記コヒーレント光による干渉縞の変化を求めるとともに、前記特徴点と前記コヒーレント光による干渉縞の変化とを対比して、前記コヒーレント光の波長を基に光路長に換算して求めるコヒーレント光路長参照手段(14b)とを備えたことを特徴とする請求項2に記載の三次元形状測定装置。   The optical path length detection means includes a demultiplexing means (14a) for demultiplexing at least the coherent light component from the data output from the imaging means, and the broadband light with respect to the time change based on the data output from the imaging means. A white light interference fringe optical path length detecting means (14c) for obtaining a feature point of the interference fringe, a change of the interference fringe due to the coherent light with respect to the time change by a component of the decohered coherent light, and the feature point; 3. A coherent optical path length reference means (14 b) that is obtained by converting the interference fringe due to the coherent light and converting it to an optical path length based on the wavelength of the coherent light. The three-dimensional shape measuring apparatus described. 前記コヒーレント光による干渉縞の変化は、該干渉縞の振幅又は位相の周期的変化であることを特徴とする請求項1、2又は3に記載の三次元形状測定装置。   4. The three-dimensional shape measuring apparatus according to claim 1, wherein the change in interference fringes due to the coherent light is a periodic change in amplitude or phase of the interference fringes. 前記光路長検出手段が、照射された前記被測定物の照射範囲の各照射位置における前記参照光路又は前記測定光路のいずれか一方の光路長を求めた結果に基づいて、一照射位置の光路長と他の照射位置の光路長との差を基に、各照射位置の相対的変位を求める変位演算手段(15)と、を備えた請求項1,2、3又は4に記載の三次元形状測定装置。   Based on the result of the optical path length detection means obtaining the optical path length of either the reference optical path or the measurement optical path at each irradiation position in the irradiation range of the irradiated object to be measured, the optical path length of one irradiation position The displacement calculation means (15) which calculates | requires the relative displacement of each irradiation position based on the difference with the optical path length of other irradiation positions, and the three-dimensional shape of Claim 1, 2, 3 or 4 provided. measuring device. 前記広帯域光による干渉縞の特徴点は、該干渉縞の振幅のピーク点又は該広帯域光に含まれる少なくとも2つ以上のスペクトル成分の位相の交点であることを特徴とする請求項1、2、3、4又は5に記載の三次元形状測定装置。   The characteristic point of the interference fringes due to the broadband light is a peak point of the amplitude of the interference fringes or an intersection of the phases of at least two or more spectral components included in the broadband light. The three-dimensional shape measuring apparatus according to 3, 4, or 5. 複数スペクトルを有する広帯域光を出力する広帯域光源(1)と、
該広帯域光を参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させ、前記参照鏡からの反射光と前記被測定物の照射された照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、
前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、
該光路長可変手段による該光路長の変化に応じて、前記光路形成部からの出力を撮像することによって干渉縞のデータを取得する撮像手段(10)と、
前記撮像手段が出力するデータから、ほぼ単一スペクトル成分のコヒーレント光を抽出し、前記広帯域光による干渉縞が生ずる前記参照光路又は前記測定光路のいずれか一方の光路長を、該光路長の変化に対する前記コヒーレント光による干渉縞の変化を基に求める光路長検出手段(14)と、を備えた三次元形状測定装置。
A broadband light source (1) that outputs broadband light having multiple spectra;
The broadband light is branched and incident on a reference optical path having a reference mirror and a measurement optical path on which the object to be measured is placed, and the reflected light from the reference mirror and the irradiation position of the irradiation range irradiated by the object to be measured are incident. An optical path forming section (5) for combining and outputting each reflected light;
Optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path;
An imaging means (10) for acquiring interference fringe data by imaging an output from the optical path forming unit in accordance with a change in the optical path length by the optical path length varying means;
From the data output by the imaging means, coherent light of almost a single spectral component is extracted, and the optical path length of either the reference optical path or the measurement optical path in which interference fringes due to the broadband light are generated is changed in the optical path length. A three-dimensional shape measuring apparatus comprising: an optical path length detection means (14) obtained based on a change in interference fringes due to the coherent light.
複数波長成分を有する広帯域光を出力する広帯域光源(1)と、
該広帯域光を参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させて照射し、前記参照鏡からの反射光と前記被測定物の照射された照射範囲の照射位置からの各反射光とを合波して出力する光路形成部(5)と、
前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、
該光路長可変手段による該光路長の変化に応じて、前記光路形成部からの出力を撮像することによって干渉縞のデータを取得する撮像手段(10)と、
前記撮像手段が出力するデータより、少なくとも2つ以上のスペクトル成分を抽出する分波手段(14d)と、前記2つ以上のスペクトル成分の各干渉縞の位相変化の交点を求める干渉縞光路長検出手段(14f)と、前記位相変化の交点における前記参照光路又は前記測定光路のいずれか一方の光路長を、前記2つ以上のスペクトル成分のうちいずれか一つによる干渉縞の変化を参照して求めるコヒーレント光路長参照手段(14e)とを備えた三次元形状測定装置。
A broadband light source (1) for outputting broadband light having a plurality of wavelength components;
The broadband light is branched and incident on a reference optical path having a reference mirror and a measurement optical path on which the object to be measured is placed, and the reflected light from the reference mirror and the irradiation range irradiated by the object to be measured are irradiated. An optical path forming section (5) for combining and outputting each reflected light from the position;
Optical path length varying means (8) for changing the optical path length of either the reference optical path or the measurement optical path;
An imaging means (10) for acquiring interference fringe data by imaging an output from the optical path forming unit in accordance with a change in the optical path length by the optical path length varying means;
Demultiplexing means (14d) for extracting at least two or more spectral components from the data output by the imaging means, and interference fringe optical path length detection for obtaining the intersection of the phase changes of each interference fringe of the two or more spectral components. The optical path length of either the reference optical path or the measurement optical path at the intersection of the means (14f) and the phase change is referred to the interference fringe change due to any one of the two or more spectral components. A three-dimensional shape measuring apparatus comprising coherent optical path length reference means (14e) to be obtained.
複数スペクトル成分を有する広帯域光を出力する広帯域光源(1)と、該広帯域光を、参照鏡を有する参照光路と被測定物を配置した測定光路とに分岐して入射させて、前記参照鏡からの反射光と照射された前記被測定物の照射範囲の各照射位置からの反射光を合波して出力する光路形成部(5)と、前記参照光路又は前記測定光路のいずれか一方の光路長を変化させる光路長可変手段(8)と、該光路長が変化するときの時間軸上の所定時間間隔で、前記光路形成部からの出力を撮像することによって前記広帯域光による干渉縞のデータを取得する撮像手段(10)と、該撮像手段が出力するデータを基に、前記広帯域光による干渉縞の特徴点が生ずる前記所定時間間隔に対する時間位置を基に前記各照射位置の光路長を求める光路長検出手段(14)と、を備えた三次元形状測定装置において、
ほぼ単波長成分の参照光を出力するコヒーレント光源(11)と、
該コヒーレント光を前記広帯域光に合波して前記光路形成部に入射させる合成部(12)と、を備え、
前記光路長検出手段は、前記広帯域光による干渉縞の特徴点が生ずる前記所定時間間隔に対する時間位置を、前記撮像手段が出力する前記コヒーレント光による干渉縞の前記時間間隔に対する振幅変化又はその位相変化を基準として表すことを特徴とする三次元形状測定装置。
A broadband light source (1) that outputs broadband light having a plurality of spectral components, and the broadband light is branched and incident on a reference optical path having a reference mirror and a measurement optical path on which an object to be measured is placed, and from the reference mirror An optical path forming unit (5) for combining and outputting the reflected light from each irradiation position of the irradiation range of the object to be measured, and the optical path of either the reference optical path or the measurement optical path Interference fringe data by the broadband light by imaging the output from the optical path forming unit at a predetermined time interval on the time axis when the optical path length changes, and the optical path length varying means (8) for changing the length The optical path length of each irradiation position is determined based on the time position with respect to the predetermined time interval at which the characteristic point of the interference fringe due to the broadband light is generated based on the imaging means (10) that acquires the image and the data output by the imaging means. Optical path length detection A stage (14), in the three-dimensional shape measurement device equipped with,
A coherent light source (11) for outputting a reference light having a substantially single wavelength component;
A combining unit (12) that combines the coherent light with the broadband light and enters the optical path forming unit;
The optical path length detecting means indicates a time position with respect to the predetermined time interval at which a characteristic point of the interference fringe due to the broadband light occurs, and an amplitude change or a phase change with respect to the time interval of the interference fringe due to the coherent light output from the imaging means. A three-dimensional shape measuring apparatus, characterized in that it is expressed with reference to.
JP2006006729A 2006-01-13 2006-01-13 3D shape measuring device Active JP4218809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006006729A JP4218809B2 (en) 2006-01-13 2006-01-13 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006006729A JP4218809B2 (en) 2006-01-13 2006-01-13 3D shape measuring device

Publications (2)

Publication Number Publication Date
JP2007187585A true JP2007187585A (en) 2007-07-26
JP4218809B2 JP4218809B2 (en) 2009-02-04

Family

ID=38342846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006006729A Active JP4218809B2 (en) 2006-01-13 2006-01-13 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP4218809B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121828A (en) * 2007-11-12 2009-06-04 Anritsu Corp Three-dimensional shape measuring device
JP2011027547A (en) * 2009-07-24 2011-02-10 Olympus Corp Device and method for measuring shape

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7055628B2 (en) 2017-12-11 2022-04-18 株式会社東芝 Plant inspection equipment, methods and programs
KR102357925B1 (en) * 2019-03-29 2022-02-04 에이치비솔루션㈜ Device for measuring height of sample surface using interferogram of wlsi

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009121828A (en) * 2007-11-12 2009-06-04 Anritsu Corp Three-dimensional shape measuring device
JP2011027547A (en) * 2009-07-24 2011-02-10 Olympus Corp Device and method for measuring shape

Also Published As

Publication number Publication date
JP4218809B2 (en) 2009-02-04

Similar Documents

Publication Publication Date Title
US10612913B2 (en) Apparatus and methods for performing tomography and/or topography measurements on an object
JP5214883B2 (en) Method and apparatus for three-dimensional spectrally encoded imaging
JP4411441B2 (en) 3D shape measuring device
EP1266187B1 (en) System for simultaneous projections of multiple phase-shifted patterns for the three-dimensional inspection of an object
US6268923B1 (en) Optical method and system for measuring three-dimensional surface topography of an object having a surface contour
EP0722558A4 (en) Interferometric method and apparatus to measure surface topography
KR101011925B1 (en) An apparatus for measuring three-dimensional shape
JP5663758B2 (en) Shape measuring method and shape measuring apparatus
JP4197339B2 (en) 3D shape measuring device
JP4756024B2 (en) 3D shape measuring device
JP4218809B2 (en) 3D shape measuring device
JP2022165355A (en) Imaging apparatus
JP4180084B2 (en) Three-dimensional shape measuring apparatus and measuring method
TWI500963B (en) An image capturing device and method
JP2007278849A (en) Optical measuring device and optical measuring method
JP2006250853A (en) Object surface shape measuring method and its system
KR20110041175A (en) Wavelength detector and optical coherence topography having the same
JP5454769B2 (en) Spectroscopic solid shape measuring apparatus and spectral solid shape measuring method
JP2007071817A (en) Two-light flux interferometer and method for measuring shape of object to be measured using interferometer
JP2017026494A (en) Device for measuring shape using white interferometer
JP6779662B2 (en) Imaging device, control method of imaging device, and program
JP2006208632A (en) Optical measuring instrument
JP4858842B2 (en) Shape measuring device
KR20120016419A (en) Method for measuring width of sample using 3d shape measuring unit
JP2022176530A (en) Laser raster scan type image acquisition device and image display apparatus using the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081104

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121121

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131121

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350