JP2008184362A - Method for producing single crystal - Google Patents

Method for producing single crystal Download PDF

Info

Publication number
JP2008184362A
JP2008184362A JP2007019041A JP2007019041A JP2008184362A JP 2008184362 A JP2008184362 A JP 2008184362A JP 2007019041 A JP2007019041 A JP 2007019041A JP 2007019041 A JP2007019041 A JP 2007019041A JP 2008184362 A JP2008184362 A JP 2008184362A
Authority
JP
Japan
Prior art keywords
single crystal
melt
radius
pulling
liquid surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007019041A
Other languages
Japanese (ja)
Other versions
JP4785762B2 (en
Inventor
Akihiko Kobayashi
昭彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Covalent Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Covalent Materials Corp filed Critical Covalent Materials Corp
Priority to JP2007019041A priority Critical patent/JP4785762B2/en
Publication of JP2008184362A publication Critical patent/JP2008184362A/en
Application granted granted Critical
Publication of JP4785762B2 publication Critical patent/JP4785762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a single crystal by conducting formation of a straight barrel part and a contracting diameter part by means of optimized control. <P>SOLUTION: This method for producing the single crystal is performed as follows: an average radius of liquid surface of a melt M within a predetermined time is measured; a variation in height of the liquid surface of the melt M within the predetermined time is measured; a variation in grown length of the single crystal C within the predetermined time is measured; a positional variation in height of a crucible 3a within the predetermined time is measured; weight reduction of the melt M is obtained based on the variation of the average radius of liquid surface, the variation in height of the liquid surface of the melt M and the positional variation in height of the crucible 3; weight increase of the grown single crystal C is obtained based on the variation in grown length of the single crystal C, the variation in height of the liquid surface of the melt M and a barrel radius parameter of the single crystal C; the barrel radius of the single crystal C is calculated provided that the obtained weight reduction of the melt M is equal to the weight increase of the grown single crystal C; and pulling up control of the single crystal C is conducted based on the calculated barrel radius of the single crystal. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、チョクラルスキー法(以下、「CZ法」という)によって単結晶を育成しながら引上げる単結晶の製造方法に関する。   The present invention relates to a method for producing a single crystal that is pulled up while growing the single crystal by the Czochralski method (hereinafter referred to as “CZ method”).

シリコン単結晶の育成に関し、CZ法が広く用いられている。この方法は、ルツボ内に収容されたシリコンの溶融液の表面に種結晶を接触させ、ルツボを回転させるとともに、この種結晶を反対方向に回転させながら上方へ引上げることによって、種結晶の下端に単結晶を形成していくものである。   The CZ method is widely used for the growth of silicon single crystals. In this method, the seed crystal is brought into contact with the surface of the silicon melt contained in the crucible, the crucible is rotated, and the seed crystal is pulled upward while rotating in the opposite direction. In this way, a single crystal is formed.

図13に示すように、CZ法を用いた引上げ法は、先ず、チャンバ51内に設けた石英ガラスルツボ52に原料シリコンを装填し、カーボンヒータ53により加熱してシリコン融液Mとする。しかる後、引上げ用のワイヤ54の先端に取り付けられた種結晶Pをシリコン融液Mに接触させてシリコン結晶を引上げる。
尚、ルツボ52とワイヤ54とは、夫々引上げ方向を軸として回転可能に設けられているが、引上げ工程においては、互いに逆方向に回転するよう制御がなされる。
As shown in FIG. 13, in the pulling method using the CZ method, first, raw silicon is loaded into a quartz glass crucible 52 provided in the chamber 51 and heated by a carbon heater 53 to obtain a silicon melt M. Thereafter, the seed crystal P attached to the tip of the pulling wire 54 is brought into contact with the silicon melt M to pull up the silicon crystal.
The crucible 52 and the wire 54 are provided so as to be rotatable about the pulling direction, respectively, but in the pulling process, the crucible 52 and the wire 54 are controlled to rotate in opposite directions.

一般に、引上げ開始に先立ち、シリコン融液Mの温度が安定した後、図13に示すように、種結晶Pをシリコン融液Mに接触させて種結晶Pの先端部を溶解するネッキングを行う。ネッキングとは、種結晶Pとシリコン融液Mとの接触で発生するサーマルショックによりシリコン単結晶に生じる転位を除去するための不可欠の工程である。このネッキングによりネック部P1(細径部)が形成される。また、このネック部P1は、一般的に、直径が3〜7mmで、その長さが30〜40mm以上必要とされている。   In general, prior to the start of pulling, after the temperature of the silicon melt M is stabilized, as shown in FIG. 13, necking is performed in which the seed crystal P is brought into contact with the silicon melt M to dissolve the tip of the seed crystal P. Necking is an indispensable process for removing dislocations generated in a silicon single crystal due to thermal shock generated by contact between the seed crystal P and the silicon melt M. By this necking, a neck portion P1 (small diameter portion) is formed. The neck portion P1 is generally required to have a diameter of 3 to 7 mm and a length of 30 to 40 mm or more.

ネッキングが終了すると、図14に示すように、直胴部直径にまで結晶径を広げる拡径工程に移行する。この工程により拡径部C1が形成される。
拡径部C1の形成後、図15に示すように、直胴部直径を維持したまま単結晶Cを引き上げる直胴工程が行われる。この工程により、製品部分となる直胴部C2(定径部)が形成される。
そして、直胴工程を終了する際、図16に示すように、単結晶Cの直径を徐々に小さくする縮径工程が行われる。この工程により縮径部C3が形成され、最後に単結晶Cが溶融液Mと切り離される。
When necking is completed, as shown in FIG. 14, the process proceeds to a diameter expanding process for expanding the crystal diameter to the straight body diameter. The enlarged diameter portion C1 is formed by this process.
After the formation of the enlarged diameter portion C1, as shown in FIG. 15, a straight body step of pulling up the single crystal C while maintaining the straight body portion diameter is performed. By this step, a straight body portion C2 (constant diameter portion) that is a product portion is formed.
Then, when ending the straight body process, as shown in FIG. 16, a diameter reducing process for gradually reducing the diameter of the single crystal C is performed. By this step, the reduced diameter portion C3 is formed, and finally the single crystal C is separated from the melt M.

このCZ法によるシリコン単結晶引上げにおいて、良質のシリコン単結晶を製造するには、引上げ工程中における単結晶の胴径形成制御、シリコン融液の液面高さ位置制御等が重要である。
即ち、単結晶の胴径については、例えば直胴部の胴径を一定に維持するために、常に胴径を測定し、これを単結晶の引上げ速度等の制御にフィードバックするようになされる。
従来、単結晶の胴径を測定する方法としては、固体である単結晶と液体であるシリコン融液との境界面(固液境界面と呼ぶ)をカメラ等の計測手段により光学的に計測し、これに基づき胴径を算出する光学的手法が多く利用されている。
In the pulling of the silicon single crystal by the CZ method, in order to manufacture a high-quality silicon single crystal, it is important to control the formation of the body diameter of the single crystal and the position of the liquid surface height of the silicon melt during the pulling process.
That is, with respect to the diameter of the single crystal, for example, in order to keep the diameter of the straight body portion constant, the diameter of the body is always measured, and this is fed back to the control of the pulling speed of the single crystal.
Conventionally, as a method of measuring the diameter of a single crystal, the interface between the solid single crystal and the liquid silicon melt (referred to as the solid-liquid interface) is optically measured by a measuring means such as a camera. Based on this, many optical methods for calculating the body diameter are used.

また、シリコン融液の液面高さ位置の制御については、シリコン単結晶の成長に伴ってルツボ内のシリコン融液の液面が降下していくため、ルツボ高さ位置を制御し、ヒータに対するシリコン融液液面の相対的な位置が一定となるようになされる。
従来、シリコン融液の液面高さ位置を制御するために必要な液面高さ測定については、様々な方法が提案されている。
例えば、特許文献1には、レーザにより液面の所定スポットを撮像し、撮像信号を用いて融液面高さを測定する装置が開示されている。
特開2002−80293号公報
As for the control of the silicon melt liquid surface height, the silicon melt liquid surface in the crucible descends as the silicon single crystal grows. The relative position of the silicon melt liquid surface is made constant.
Conventionally, various methods have been proposed for measuring the liquid level necessary for controlling the liquid level height position of the silicon melt.
For example, Patent Document 1 discloses an apparatus that images a predetermined spot on a liquid surface with a laser and measures the melt surface height using an imaging signal.
JP 2002-80293 A

ところで、直胴工程を終了した後の縮径工程において形成される縮径部C3は、製品部分に使用されないため、縮径工程は可能な限り短時間で終了することが望まれている。
これは、縮径工程に無駄に時間を掛けると、縮径部が引上げ方向に長くなり、余分にシリコン融液Mを使用することとなって、生産性が低下するためである。
By the way, since the reduced diameter part C3 formed in the diameter reduction process after finishing the straight body process is not used in the product portion, it is desired that the diameter reduction process is completed in as short a time as possible.
This is because, if time is wasted in the diameter reduction process, the diameter-reduced portion becomes longer in the pulling direction and extra silicon melt M is used, resulting in a decrease in productivity.

しかしながら、前記単結晶の胴径形成制御において、光学的手法により胴径を測定する方法にあっては、胴径を急激に縮径させると、縮径部の胴径変化に追従して測定するのが困難であるという技術的課題があった。このため、測定を維持するために縮径部を引上げ方向に長く形成する必要があった。
また、前記単結晶の胴径形成制御を行わずに、即ち、胴径の測定結果をフィードバックさせずに縮径部の形成を急速に行うと、縮径工程途中における意図せぬ融液からの単結晶切り離しが発生する危険が高くなり、この意図せぬ単結晶引き離しが生じると単結晶に転位が生じる、或いはクラックが発生するという課題があった。
However, in the method of measuring the barrel diameter of the single crystal, in the method of measuring the barrel diameter by an optical method, when the barrel diameter is rapidly reduced, measurement is performed following the change in the barrel diameter of the reduced diameter portion. There was a technical problem that it was difficult. For this reason, in order to maintain the measurement, it is necessary to form the reduced diameter portion long in the pulling direction.
Further, if the formation of the reduced diameter portion is performed rapidly without performing the diameter control of the single crystal, that is, without feeding back the measurement result of the diameter of the single crystal, the undesired melt from the unintended melt during the diameter reduction process. There is a high risk that the single crystal will be separated, and when this unintentional single crystal separation occurs, dislocation occurs in the single crystal or cracks occur.

本発明は、前記したような事情の下になされたものであり、チョクラルスキー法によってルツボからシリコン単結晶を引上げる単結晶の製造方法において、直胴部及び縮径部の形成を最適化された制御により実行することのできる単結晶の製造方法を提供することを目的とする。   The present invention has been made under the circumstances as described above, and optimizes the formation of the straight body portion and the reduced diameter portion in the method of manufacturing a single crystal in which the silicon single crystal is pulled from the crucible by the Czochralski method. It is an object of the present invention to provide a method for producing a single crystal that can be executed by controlled control.

前記した課題を解決するために、本発明に係る単結晶の製造方法は、炉体内のルツボに溶融された融液から、チョクラルスキー法によって単結晶を引上げる単結晶の製造方法であって、所定時間内における前記融液の平均液面半径を測定し、前記所定時間内における前記融液の液面高さ変化量を測定し、前記所定時間内における単結晶の成長長さ変化量を測定し、前記所定時間内における前記ルツボの高さ位置変化量を測定するステップと、前記融液の平均液面半径及び液面高さ変化量と、前記ルツボの高さ位置変化量とに基づき融液の減少重量を求め、前記単結晶の成長長さ変化量と、前記融液の液面高さ変化量と、単結晶の胴半径変数とに基づき単結晶の成長増加重量を求めるステップと、前記求められた融液の減少重量と単結晶の成長増加重量とが等しいことに基づき前記単結晶の胴半径を算出するステップと、前記算出された単結晶胴半径に基づき単結晶の引上げ制御を行うステップとを実行することに特徴を有する。   In order to solve the above-described problems, a method for producing a single crystal according to the present invention is a method for producing a single crystal by pulling a single crystal from a melt melted in a crucible in a furnace body by a Czochralski method. Measuring an average liquid surface radius of the melt within a predetermined time, measuring a change in the liquid surface height of the melt within the predetermined time, and determining a change in growth length of the single crystal within the predetermined time. Based on the step of measuring and measuring the height position change amount of the crucible within the predetermined time, the average liquid surface radius and the liquid surface height change amount of the melt, and the height position change amount of the crucible Determining a decrease weight of the melt, and determining a growth increase weight of the single crystal based on a growth length change amount of the single crystal, a liquid surface height change amount of the melt, and a body radius variable of the single crystal The reduced weight of the melt obtained and the growth of the single crystal Calculating a cylinder radius of the single crystal based on the fact pressurized weight and are equal, characterized in that the run and performing a pulling control of the single crystal based on the single-crystal cylinder radius the calculated.

尚、前記融液の平均液面半径をD、前記融液の液面高さ変化量をN、前記ルツボの高さ位置変化量をH、前記融液の密度をρL、円周率をπとすると、前記融液の減少重量を求めるステップにおいて、該融液の減少重量は、π・ρL・D2(H−N)により求められ、前記単結晶の成長長さ変化量をg、単結晶の胴半径変数をdpv、前記単結晶の密度をρSとすると、前記単結晶の成長増加重量を求めるステップにおいて、該単結晶の成長増加重量は、π・ρS・dpv 2(g−N)により求められ、前記単結晶の胴半径dpvを算出するステップにおいて、該胴半径dpvは、π・ρL・D2(H−N)=π・ρS・dpv 2(g−N)の関係式に基づき求められることが望ましい。
このような方法によれば、直胴部や縮径部の形成箇所に拘らず、単結晶Cの胴径を演算により測定することができ、測定した胴径の値を単結晶の引上げ制御にフィードバックすることができる。
The average liquid surface radius of the melt is D, the liquid surface height change amount of the melt is N, the crucible height position change amount is H, the melt density is ρL, and the circularity is π. Then, in the step of obtaining the reduced weight of the melt, the reduced weight of the melt is obtained by π · ρL · D 2 (HN), and the change amount of the growth length of the single crystal is g, cylinder radius variable d pv crystal, when the a .rho.s the density of single crystal, in the step of obtaining the growth weight gain of the single crystal, the growth increase the weight of the single crystal, π · ρS · d pv 2 (g- obtained by N), in the step of calculating the cylinder radius d pv of the single crystal, said cylinder radius d pv are, π · ρL · D 2 ( H-N) = π · ρS · d pv 2 (g-N ) Based on the relational expression
According to such a method, the diameter of the single crystal C can be measured by calculation regardless of the formation part of the straight body part or the reduced diameter part, and the value of the measured body diameter can be used for pulling control of the single crystal. You can give feedback.

また、前記単結晶の引上げ制御を行うステップにおいて、引上げ動作前に目標値とする単結晶の胴半径を設定するステップと、前記算出された単結晶の胴半径が前記目標値に沿うように単結晶の引上げ制御を行うステップとを実行することが望ましい。
或いは、前記単結晶の引上げ制御を行うステップにおいて、引上げ動作前に目標値とする単結晶の断面積を設定するステップと、前記算出された単結晶の胴半径に基づき求められた単結晶の断面積が前記目標値に沿うように単結晶の引上げ制御を行うステップとを実行することが望ましい。
このようにすれば、目標値に沿った最適な形状の直胴部及び縮径部を形成することができ、単結晶への転位やクラック等の発生を防止することができる。
また、縮径部の長さ寸法が冗長にならないため、融液を直胴部形成に多く用いることができ、生産性を向上することができる。
Further, in the step of performing the pulling control of the single crystal, a step of setting a barrel radius of the single crystal as a target value before the pulling operation, and a single crystal so that the calculated barrel radius of the single crystal follows the target value. It is desirable to execute the step of controlling the pulling of the crystal.
Alternatively, in the step of performing the pulling control of the single crystal, a step of setting a cross-sectional area of the single crystal as a target value before the pulling operation, and a cutting of the single crystal obtained based on the calculated single crystal body radius. It is desirable to execute a step of performing pulling control of the single crystal so that the area follows the target value.
In this way, it is possible to form a straight body portion and a diameter-reduced portion having an optimal shape along the target value, and it is possible to prevent the occurrence of dislocation to single crystals, cracks, and the like.
In addition, since the length of the reduced diameter portion does not become redundant, a large amount of melt can be used for forming the straight body portion, and productivity can be improved.

本発明によれば、チョクラルスキー法によってルツボから単結晶を引上げる単結晶の製造方法において、直胴部及び縮径部の形成を最適化された制御により実行することのできる単結晶の製造方法及び単結晶引上装置を得ることができる。   According to the present invention, in the method for producing a single crystal in which the single crystal is pulled from the crucible by the Czochralski method, the production of the single crystal that can execute the formation of the straight body portion and the reduced diameter portion by optimized control. A method and single crystal pulling apparatus can be obtained.

以下、本発明に係る単結晶の製造方法の実施の形態について図面に基づき説明する。図1は本発明に係る単結晶の製造方法が適用される単結晶引上装置1の全体構成を示すブロック図である。
この単結晶引上装置1は、円筒形状のメインチャンバ2aの上にプルチャンバ2bを重ねて形成された炉体2と、炉体2内に設けられたルツボ3と、ルツボ3に装填された半導体原料(原料シリコン)Mを溶融するカーボンヒータ4とを有している。尚、ルツボ3は二重構造であり、内側が石英ガラスルツボ3a、外側が黒鉛ルツボ3bで構成されている。
Embodiments of a method for producing a single crystal according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing an overall configuration of a single crystal pulling apparatus 1 to which a method for producing a single crystal according to the present invention is applied.
This single crystal pulling apparatus 1 includes a furnace body 2 formed by superposing a pull chamber 2b on a cylindrical main chamber 2a, a crucible 3 provided in the furnace body 2, and a semiconductor loaded in the crucible 3. And a carbon heater 4 for melting a raw material (raw material silicon) M. The crucible 3 has a double structure, and the inner side is constituted by a quartz glass crucible 3a and the outer side is constituted by a graphite crucible 3b.

また、炉体2の上方には、単結晶Cを引上げる引上げ機構5が設けられ、この引上げ機構5は、モータ駆動される巻取り機構5aと、この巻取り機構5aに巻き上げられる引上げワイヤ5bとにより構成される。そして、ワイヤ5bの先端に種結晶Pが取り付けられ、単結晶Cを育成しながら引上げるようになされている。   Further, a pulling mechanism 5 for pulling up the single crystal C is provided above the furnace body 2. The pulling mechanism 5 includes a winding mechanism 5a driven by a motor and a pulling wire 5b wound on the winding mechanism 5a. It consists of. A seed crystal P is attached to the tip of the wire 5b and pulled up while growing the single crystal C.

また、メインチャンバ2a内において、育成中の単結晶Cにカーボンヒータ4等からの余計な輻射熱を与えないようにするため、ルツボ3の上方且つ近傍には、単結晶Cの周囲を包囲するよう上部と下部が開口形成された輻射シールド6が設けられている。   Further, in the main chamber 2a, the surrounding of the single crystal C is surrounded above and in the vicinity of the crucible 3 in order not to give extra radiant heat from the carbon heater 4 or the like to the growing single crystal C. A radiation shield 6 having an opening at the top and bottom is provided.

また、図1に示すように単結晶引上装置1は、シリコン融液Mの温度制御を行うヒータ4への供給電力量を制御するヒータ制御部9と、石英ガラスルツボ3を回転させるモータ10と、モータ10の回転数を制御するモータ制御部10aとを備えている。さらには、石英ガラスルツボ3の高さを制御する昇降装置11と、昇降装置11を制御する昇降装置制御部11aと、成長結晶の引上げ速度と回転数を制御するワイヤリール回転装置制御部12とを備えている。これら各制御部9、10a、11a、12と前記バルブ14及び排気ポンプ19はコンピュータ8の演算制御装置8bに接続されている。   As shown in FIG. 1, the single crystal pulling apparatus 1 includes a heater controller 9 that controls the amount of power supplied to the heater 4 that controls the temperature of the silicon melt M, and a motor 10 that rotates the quartz glass crucible 3. And a motor control unit 10a for controlling the number of rotations of the motor 10. Furthermore, a lifting device 11 for controlling the height of the quartz glass crucible 3, a lifting device control unit 11a for controlling the lifting device 11, a wire reel rotating device control unit 12 for controlling the pulling speed and the number of rotations of the grown crystal, It has. These control units 9, 10a, 11a, 12 and the valve 14 and the exhaust pump 19 are connected to an arithmetic control device 8b of the computer 8.

続いて、このような単結晶引上装置1を用いた単結晶Cの製造方法について説明する。
原料シリコンの溶融工程においては、最初にルツボ3の石英ガラスルツボ3a内に原料シリコンが装填される。
次いで、コンピュータ8の記憶装置8aに記憶されたプログラムに基づき、先ず、演算制御装置8bの指令によりヒータ制御部9を作動させてヒータ4を加熱し、ルツボ3内の原料シリコンの溶融作業が開始される。
Then, the manufacturing method of the single crystal C using such a single crystal pulling apparatus 1 is demonstrated.
In the raw material silicon melting step, first, raw material silicon is loaded into the quartz glass crucible 3 a of the crucible 3.
Next, based on the program stored in the storage device 8a of the computer 8, first, the heater control unit 9 is operated by the command of the arithmetic control device 8b to heat the heater 4, and the melting operation of the raw silicon in the crucible 3 is started. Is done.

ルツボ3においてシリコン融液Mが生成されると、単結晶引上げ作業が開始される。
具体的には演算制御装置8bの指令によりモータ制御部10aと、昇降装置制御部11aと、ワイヤリール回転装置制御部12とが作動し、ルツボ3が回転すると共に、巻取り機構5aが作動してワイヤ5bが降ろされる。そして、ワイヤ5bに取付けられた種結晶Pがシリコン融液Mに接触され、種結晶Pの先端部を溶解するネッキングが行われてネック部P1が形成される。
When the silicon melt M is generated in the crucible 3, the single crystal pulling operation is started.
Specifically, the motor control unit 10a, the lifting / lowering device control unit 11a, and the wire reel rotation device control unit 12 are operated by the command of the arithmetic control device 8b, the crucible 3 is rotated, and the winding mechanism 5a is operated. Then the wire 5b is lowered. Then, the seed crystal P attached to the wire 5b is brought into contact with the silicon melt M, and necking for melting the tip of the seed crystal P is performed to form the neck portion P1.

しかる後、演算制御装置8bの指令によりヒータ4への供給電力や、単結晶引上げ速度(通常、毎分数ミリの速度)などをパラメータとして引上げ条件が調整され、先ず、拡径部C1を形成する拡径工程が行われる。
拡径工程の後、胴径を一定に形成する直胴工程が行われる。この直胴工程では、演算制御装置8bにおいて演算処理により胴径を求め、所定の胴径を維持するよう引上げ制御が行われる。
Thereafter, the pulling conditions are adjusted by the command of the arithmetic control device 8b using the power supplied to the heater 4, the single crystal pulling speed (usually, a speed of several millimeters per minute) and the like as parameters, and first, the diameter-enlarged portion C1 is formed. A diameter expansion process is performed.
After the diameter expansion process, a straight cylinder process for forming the cylinder diameter constant is performed. In this straight body process, the operation control device 8b obtains a body diameter by arithmetic processing, and pulling up control is performed so as to maintain a predetermined body diameter.

シリコン単結晶Cの胴径は、次のように算出される。図2乃至図6に示すように、微小単位時間ΔT(所定時間内)において、単結晶Cの胴半径(胴半径変数)をdpv、石英ガラスルツボ3a内のシリコン融液の平均液面半径をD、単結晶成長長さをg、ルツボ3aの高さ位置変化量をH、シリコン融液Mの液面高さ変化量をNとすると、微小単位時間ΔTあたりのシリコン融液Mの減少重量は、次式(1)により求められる。

Figure 2008184362
また、微小単位時間ΔTあたりの単結晶Cの成長増加重量は次式(2)により求められる。
Figure 2008184362
尚、ρLはシリコン融液Mの密度、ρSは単結晶Cの密度、πは円周率である。また、g、H、Nの各値については、上昇方向を正方向、下降方向を負方向と定義する。 The body diameter of the silicon single crystal C is calculated as follows. As shown in FIGS. 2 to 6, in a minute unit time ΔT (within a predetermined time), the cylinder radius (body radius variable) of the single crystal C is d pv , and the average liquid surface radius of the silicon melt in the quartz glass crucible 3a. Where D is the single crystal growth length, G is the height position change amount of the crucible 3a, and N is the liquid surface height change amount of the silicon melt M, the decrease of the silicon melt M per minute unit time ΔT. A weight is calculated | required by following Formula (1).
Figure 2008184362
Further, the growth increase weight of the single crystal C per minute unit time ΔT is obtained by the following equation (2).
Figure 2008184362
Here, ρL is the density of the silicon melt M, ρS is the density of the single crystal C, and π is the circumference. For each value of g, H, and N, the upward direction is defined as a positive direction and the downward direction is defined as a negative direction.

そして、微小単位時間ΔTあたりのシリコン融液Mの減少重量と単結晶Cの成長増加重量とが等しいことに基づき、次の関係式(3)が成立する。

Figure 2008184362
ここで、シリコン融液Mの平均液面半径Dは、予め引上げ工程前において、この引上げ工程で使用されるルツボ形状に基づき、シリコン融液Mの液面高さに対応する値をコンピュータ8に入力設定しておくことにより求められる。
また、単結晶成長長さg、ルツボ3aの高さ位置変化量H、シリコン融液Mの液面高さ変化量Nについては、公知の測定技術により求められる。 The following relational expression (3) is established based on the fact that the decrease weight of the silicon melt M per minute unit time ΔT and the growth increase weight of the single crystal C are equal.
Figure 2008184362
Here, the average liquid surface radius D of the silicon melt M is preliminarily set to the computer 8 based on the crucible shape used in the pulling process before the pulling process. It is obtained by setting the input.
Further, the single crystal growth length g, the height position change amount H of the crucible 3a, and the liquid level change amount N of the silicon melt M can be obtained by a known measurement technique.

したがって、単結晶Cの胴半径(胴半径変数)dpvは、式(3)から次式(4)により求められる。

Figure 2008184362
Therefore, the trunk radius (body radius variable) d pv of the single crystal C is obtained from the following formula (4) from the formula (3).
Figure 2008184362

尚、図2はH>0、N=0の場合、図3はH>0、N<0の場合、図4はH>0、N>0の場合、図5はH=0、N<0の場合、図6はH<0、N<0の場合であって、夫々微小単位時間ΔTの間の状態変化を示す図である。これらいずれの状態においても、式(4)に従い胴半径dpvが求められ、コンピュータ8による引上げ制御にフィードバックされる。 2 is H> 0 and N = 0, FIG. 3 is H> 0 and N <0, FIG. 4 is H> 0 and N> 0, and FIG. 5 is H = 0 and N <0. In the case of 0, FIG. 6 is a case where H <0 and N <0, and shows a state change during a minute unit time ΔT, respectively. In any of these states, the trunk radius d pv is obtained according to the equation (4) and fed back to the pulling up control by the computer 8.

また、直胴工程が進行すると、シリコン融液Mがルツボ3aから減少し、図7に示すように(H>0、N=0の場合)、微小単位時間ΔTの間に、ルツボ底部のR形状に沿ってシリコン融液Mの平均液面半径DがD´に縮小する。
この場合、融液Mの平均液面半径Dはシリコン融液Mの残量によって変化するため、融液残量、単結晶Cの成長量、ルツボ高さ位置のいずれかを変数xとし、この変数xの値の変化に対応する融液Mの平均液面半径Dを予めコンピュータ8に設定することにより、次式(5)により単結晶Cの胴半径dpvが求められる。

Figure 2008184362
Further, when the straight body process proceeds, the silicon melt M decreases from the crucible 3a, and as shown in FIG. 7 (when H> 0 and N = 0), during the minute unit time ΔT, the R at the bottom of the crucible. The average liquid surface radius D of the silicon melt M decreases to D ′ along the shape.
In this case, since the average liquid surface radius D of the melt M varies depending on the remaining amount of the silicon melt M, the remaining amount of the melt, the growth amount of the single crystal C, or the crucible height position is set as a variable x. By setting the average liquid surface radius D of the melt M corresponding to the change of the value of the variable x in the computer 8 in advance, the trunk radius d pv of the single crystal C is obtained by the following equation (5).
Figure 2008184362

また、直胴工程が終了すると、縮径部C3を形成する縮径工程に移行する。この場合、図8に示すように(H>0、N=0の場合)、微小単位時間ΔT、ΔT´の間に単結晶Cの胴半径dpvがdpv´、dpv″と縮小し、融液Mの平均液面半径DがD´、D″へと縮小する。
ここで、縮径部C3の高さ方向の長さ寸法をgtとすれば、次式(6)により単結晶Cの胴半径dpv(gt)が求められる。
When the straight body process is completed, the process proceeds to a diameter reducing process for forming the reduced diameter part C3. In this case, as shown in FIG. 8 (when H> 0 and N = 0), the body radius d pv of the single crystal C is reduced to d pv ′ and d pv ″ during the minute unit times ΔT and ΔT ′. The average liquid surface radius D of the melt M is reduced to D ′ and D ″.
Here, if the height direction of the length of the reduced diameter portion C3 and g t, cylinder radius d pv monocrystalline C (g t) is calculated by the following equation (6).

Figure 2008184362
Figure 2008184362

また、この縮径工程においては、特に次のような引上げ制御がなされる。
先ず、図9のグラフに示すように、縮径部C3の長さgtに対して目標値となる胴半径dsp(gt)が予め設定される。
次いで、図10のグラフに示すように、微小単位時間ΔT毎に算出した縮径部C3の胴径dpvが、目標値となる胴半径dsp(gt)に等しくなるよう単結晶引上げ制御がなされ、縮径部C3が形成される。
In the diameter reduction process, the following pulling control is performed.
First, as shown in the graph of FIG 9, the target value cylinder radius d sp (g t) is preset for the length g t of the reduced diameter portion C3.
Then, as shown in the graph of FIG. 10, body diameter d pv tapered segment C3 calculated for each minute unit time ΔT is, to be equal to the cylinder radius equal to the target value d sp (g t) single crystal pulling control The reduced diameter portion C3 is formed.

或いは、次のように引上げ制御がなされてもよい。
この引上げ制御では、先ず、図11に示すように目標値dsp(gt)及びdsp軸、gt軸によって形成される領域の面積Ssp(或いは回転体としての体積)が求められる。
また、図12に示すように縮径部C3の長さ寸法gtがGtの時点で、それまでの各微小単位時間ΔT毎に算出した縮径部半径dpvと微小単位時間ΔTにおける縮径部成長長さΔgtとを乗算して形成される四角形面積の総和Spv(或いは、回転体として形成される円柱体積の総和)とが求められる。
そして、総和面積Spvが前記目標値dsp(gt)から得られた面積Sspに等しくなるよう引上げ制御が行われる。
尚、これら図9乃至図12を用いて説明した制御方法は、縮径部C3だけでなく、直胴部C2の形成工程においても用いることが好ましい。
Alternatively, pulling up control may be performed as follows.
This pulling control, first, the target value d sp (g t) and d sp-axis as shown in FIG. 11, g t-axis area S sp of the region formed by (or volume as a rotary body) is determined.
Further, at the time of the length dimension g t is G t of the reduced diameter portion C3 as shown in FIG. 12, the reduced diameter portion radius d pv condensed in a micro unit time ΔT calculated for each small unit of time ΔT until then sum S pv square area formed by multiplying the diameter growth length Delta] g t (or, the sum of the cylinder volumes which are formed as a rotating body) and is determined.
The total area S pv is pulled controlled to become equal to the obtained area S sp from the target value d sp (g t) is performed.
The control method described with reference to FIGS. 9 to 12 is preferably used not only in the diameter-reduced portion C3 but also in the forming process of the straight body portion C2.

また、前記した引上げ制御においては、設定値dsp(gt)に加えて、縮径部C3形成時の理想的な単結晶育成速度Vspを設定しておくことが好ましい。
これは、次の理由による。即ち、シリコン融液Mが減少してくると、融液Mの熱容量が減少するため融液温度が低下し易い。その結果、ヒータによる融液Mへの加熱が不十分な状況に陥ると、単結晶Cの急激な凝固やルツボ内壁からの原料融液凝固等による有転位化を誘発する虞がある。
Further, in the above-described pulling control, in addition to the set value d sp (g t), it is preferable to set an ideal single crystal growth velocity V sp at reduced diameter portion C3 formed.
This is due to the following reason. That is, when the silicon melt M decreases, the heat capacity of the melt M decreases, so the melt temperature tends to decrease. As a result, when the heating to the melt M by the heater is insufficient, there is a risk of inducing dislocation due to rapid solidification of the single crystal C or solidification of the raw material melt from the crucible inner wall.

また、融液Mの減少と共に融液温度が低下しやすくなると、次第に単結晶育成速度が増加していく傾向がある。これは、シリコン融液Mの温度が低下していくことで融液Mの凝固が促進されるためである。
そこで、単結晶育成速度Vspを設定し、その値に沿ってヒータによる融液Mの加熱量を増加することにより、融液Mの急激な温度変化を防止し、最適な単結晶引上げ速度に制御でき、縮径部C3の形成を確実に行うことができる。
Moreover, when the melt temperature is likely to decrease as the melt M decreases, the single crystal growth rate tends to increase gradually. This is because the solidification of the melt M is promoted as the temperature of the silicon melt M decreases.
Therefore, by setting the single crystal growth rate V sp and increasing the heating amount of the melt M by the heater along the value, a rapid temperature change of the melt M is prevented, and the optimum single crystal pulling rate is achieved. It is possible to control, and the reduced diameter portion C3 can be reliably formed.

以上のように本発明に係る実施の形態によれば、シリコン融液Mの減少重量と単結晶の成長増加重量とを夫々演算処理により求め、それらシリコン融液の減少重量と単結晶の成長増加重量とが等しいことに基づき単結晶Cの胴径(胴半径)が算出される。
また、引上げ制御においては、算出される単結晶Cの胴径が目標値とする胴径に等しくなるように引上げ速度やヒータ等の制御がなされる。
したがって、この方法によれば、直胴部や縮径部の形成箇所に拘らず、単結晶Cの胴径を演算により測定することができ、従来のように、測定手段が縮径部の変化に追従できないといった不具合が生じることがない。
即ち、測定した胴径の値をフィードバックすることにより、目標値に沿った最適な形状の直胴部及び縮径部を形成することができ、単結晶への転位やクラック等の発生を防止することができる。
また、縮径部の長さ寸法が冗長にならないため、シリコン融液Mを直胴部形成に多く用いることができ、生産性を向上することができる。
尚、前記実施の形態では、縮径部形成における課題を解決する手段として本発明に係る製造方法を説明したが、本発明の単結晶の製造方法においては、前記したように縮径部だけでなく直胴部の形成にも適用することができる。
また、前記実施の形態においては、シリコン単結晶の製造を例に説明したが、本発明においては、チョクラルスキー法によって引上げられるシリコン以外の他の単結晶の製造方法にも適用することができる。
As described above, according to the embodiment of the present invention, the decrease weight of the silicon melt M and the growth increase weight of the single crystal are obtained by arithmetic processing, respectively, and the decrease weight of the silicon melt and the increase growth of the single crystal are obtained. Based on the equal weight, the body diameter (body radius) of the single crystal C is calculated.
In the pulling control, the pulling speed, the heater, and the like are controlled such that the calculated single crystal C has a barrel diameter equal to the target barrel diameter.
Therefore, according to this method, it is possible to measure the diameter of the single crystal C by calculation regardless of the location where the straight body portion or the reduced diameter portion is formed. There is no problem of not being able to follow.
That is, by feeding back the value of the measured body diameter, it is possible to form a straight body portion and a reduced diameter portion having an optimal shape according to the target value, and prevent the occurrence of dislocations, cracks, etc. to a single crystal. be able to.
Further, since the length of the reduced diameter portion does not become redundant, the silicon melt M can be used in a large amount for forming the straight body portion, and productivity can be improved.
In the above embodiment, the manufacturing method according to the present invention has been described as a means for solving the problems in the formation of the reduced diameter portion. However, in the method for manufacturing a single crystal of the present invention, as described above, only the reduced diameter portion is used. And can be applied to the formation of the straight body portion.
Moreover, in the said embodiment, although manufacture of the silicon single crystal was demonstrated to the example, in this invention, it can apply also to the manufacturing method of other single crystals other than the silicon | silicone pulled up by the Czochralski method. .

続いて、本発明に係る単結晶の製造方法について、実施例に基づきさらに説明する。本実施例では、前記実施の形態に示した構成の単結晶引上装置を用い、実際に実験を行うことにより、その効果を検証した。
〔実施例1〕
実施例1では、石英ガラスルツボに300kgの原料シリコンを充填し、直径310mmの単結晶の引上げを行ない、単結晶重量265kgで縮径部を形成する縮径工程を開始した。直胴部形成及び縮径部形成途中までは、本発明に係る製造方法に基づき単結晶径を制御した。
縮径工程の最終段階においては、光学的単結晶径計測によって得られた測定値に基づき縮径部形成を行った。これは、縮径によって単位時間あたりに育成される単結晶の体積及び重量変化(単位時間あたりに減少する融液原料の体積及び重量変化も同様)が微小となり、算出する単結晶径の相対的誤差が大きくなるためである。
この結果、形成された縮径部の長さ寸法は約370mm、重量約22kgであった。縮径工程は、約5時間30分であった。
〔実施例2〕
実施例2では、石英ガラスルツボに300kgの原料シリコンを充填し、直径310mmの単結晶の引上げを行ない、単結晶重量278kgで縮径部を形成する縮径工程を開始した。この実験では、実施例1と同様の方法により縮径部を形成すると共に、実施例1において単結晶を引上げた後にルツボ内に残った融液量に基づき、その分の融液量を直胴部形成に用いるよう引上制御を行った。
この実験の結果、実施例1と略同等に縮径部を形成することができた。さらに、縮径部減量に相当する量のシリコン融液が直胴部形成に寄与したため、直胴部長さが約74mm増加し、生産性の向上、コスト低減に繋がった。
〔比較例1〕
比較例1では、石英ガラスルツボに300kgの原料シリコンを充填し、直径310mmの単結晶の引上げを行ない、単結晶重量265kgで縮径部を形成する縮径工程を開始した。
この比較例1では、縮径部工程において、従来の固液境界面の観測による光学的単結晶径計測手法を用いた縮径部形成を行った。そして、縮径部形成の最初から最後まで計測手段であるカメラにより固液境界面を撮像し、縮径部形成を行った。
この実験の結果、縮径部の長さ寸法は約500mm、重量約30kgとなり、縮径部形成に要した時間は約7時間30分となった。
Then, the manufacturing method of the single crystal which concerns on this invention is further demonstrated based on an Example. In this example, the effect was verified by actually performing an experiment using the single crystal pulling apparatus having the configuration described in the above embodiment.
[Example 1]
In Example 1, a quartz glass crucible was filled with 300 kg of raw silicon, a single crystal having a diameter of 310 mm was pulled up, and a diameter reduction process was started to form a reduced diameter portion with a single crystal weight of 265 kg. Until the formation of the straight body part and the reduced diameter part, the single crystal diameter was controlled based on the production method according to the present invention.
In the final stage of the diameter reduction process, the diameter reduction part was formed based on the measurement value obtained by optical single crystal diameter measurement. This is because the change in the volume and weight of the single crystal grown per unit time due to the reduction in diameter (as well as the volume and weight changes in the melt raw material that decrease per unit time) is very small, and the calculated relative single crystal diameter This is because the error increases.
As a result, the length of the formed reduced diameter portion was about 370 mm and the weight was about 22 kg. The diameter reduction process was about 5 hours 30 minutes.
[Example 2]
In Example 2, a quartz glass crucible was filled with 300 kg of raw silicon, a single crystal having a diameter of 310 mm was pulled up, and a diameter reduction process was started to form a reduced diameter portion with a single crystal weight of 278 kg. In this experiment, the diameter-reduced portion was formed by the same method as in Example 1, and the amount of melt corresponding to the amount of melt remaining in the crucible after pulling up the single crystal in Example 1 Pulling up control was performed so that it might be used for part formation.
As a result of this experiment, it was possible to form a reduced diameter portion substantially the same as in Example 1. Furthermore, since the amount of silicon melt corresponding to the reduction of the reduced diameter portion contributed to the formation of the straight body portion, the length of the straight body portion increased by about 74 mm, which led to improvement in productivity and cost reduction.
[Comparative Example 1]
In Comparative Example 1, a quartz glass crucible was filled with 300 kg of raw silicon, a single crystal having a diameter of 310 mm was pulled up, and a diameter reduction process was started to form a reduced diameter portion with a single crystal weight of 265 kg.
In Comparative Example 1, a reduced diameter portion was formed in the reduced diameter portion process using a conventional optical single crystal diameter measurement method based on observation of a solid-liquid interface. And the solid-liquid interface was imaged with the camera which is a measurement means from the beginning of the diameter reduction part formation to the last, and diameter reduction part formation was performed.
As a result of this experiment, the length of the reduced diameter portion was about 500 mm and the weight was about 30 kg, and the time required for forming the reduced diameter portion was about 7 hours 30 minutes.

以上の実施例の実験結果から、本発明の単結晶の製造方法を用いることにより、製造工程が短縮されると共に、原料融液を効率的に単結晶製造に使用することができることを確認した。即ち、直胴部及び直胴部形成後の縮径部形成を最適化された制御により実行することができ、生産性を向上し、コスト低減が可能であることを確認した。   From the experimental results of the above examples, it was confirmed that by using the method for producing a single crystal of the present invention, the production process can be shortened and the raw material melt can be used efficiently for producing a single crystal. That is, it was confirmed that the straight body part and the reduced diameter part formation after the straight body part formation can be executed by optimized control, and the productivity can be improved and the cost can be reduced.

本発明は、チョクラルスキー法によって単結晶を引上げる単結晶の製造方法に関するものであり、半導体製造業界等において好適に用いられる。   The present invention relates to a method for producing a single crystal by pulling the single crystal by the Czochralski method, and is suitably used in the semiconductor manufacturing industry and the like.

図1は、本発明に係る単結晶の製造方法が適用される単結晶引上装置の全体構成を示すブロック図である。FIG. 1 is a block diagram showing the overall configuration of a single crystal pulling apparatus to which the method for producing a single crystal according to the present invention is applied. 図2は、直胴部胴径の算出に必要な微小単位時間における各寸法位置を示す図である。FIG. 2 is a diagram showing each dimensional position in a minute unit time necessary for calculating the straight body part diameter. 図3は、直胴部胴径の算出に必要な微小単位時間における各寸法位置を示す他の状態図である。FIG. 3 is another state diagram showing each dimensional position in a minute unit time necessary for calculating the straight body part diameter. 図4は、直胴部胴径の算出に必要な微小単位時間における各寸法位置を示す他の状態図である。FIG. 4 is another state diagram showing each dimensional position in a minute unit time necessary for calculating the straight body part diameter. 図5は、直胴部胴径の算出に必要な微小単位時間における各寸法位置を示す他の状態図である。FIG. 5 is another state diagram showing each dimensional position in a minute unit time necessary for calculating the straight body part diameter. 図6は、直胴部胴径の算出に必要な微小単位時間における各寸法位置を示す他の状態図である。FIG. 6 is another state diagram showing each dimensional position in a minute unit time required for calculating the straight body part diameter. 図7は、直胴部胴径の算出に必要な微小単位時間における各寸法位置を示す他の状態図である。FIG. 7 is another state diagram showing each dimensional position in a minute unit time necessary for calculating the straight body part diameter. 図8は、縮径部胴径の算出に必要な微小単位時間における各寸法位置を示す図である。FIG. 8 is a diagram showing each dimension position in a minute unit time necessary for calculating the diameter of the reduced diameter portion. 図9は、縮径部の目標値とする胴径を示すグラフである。FIG. 9 is a graph showing a trunk diameter as a target value of the reduced diameter portion. 図10は、縮径部の胴径測定値を目標値に沿うよう制御するイメージを示すグラフである。FIG. 10 is a graph illustrating an image for controlling the measured diameter value of the reduced diameter portion so as to follow the target value. 図11は、縮径部の目標値とする断面積を示すグラフである。FIG. 11 is a graph showing a cross-sectional area as a target value of the reduced diameter portion. 図12は、縮径部の測定に基づく断面積を目標値とする断面積に沿うよう制御するイメージを示すグラフである。FIG. 12 is a graph showing an image for controlling along the cross-sectional area with the cross-sectional area based on the measurement of the reduced diameter portion as a target value. 図13は、単結晶引上げ工程を説明するための図である。FIG. 13 is a diagram for explaining a single crystal pulling step. 図14は、単結晶引上げ工程を説明するための図である。FIG. 14 is a diagram for explaining a single crystal pulling step. 図15は、単結晶引上げ工程を説明するための図である。FIG. 15 is a diagram for explaining a single crystal pulling step. 図16は、単結晶引上げ工程を説明するための図である。FIG. 16 is a diagram for explaining a single crystal pulling step.

符号の説明Explanation of symbols

1 単結晶引上装置
2 炉体
2a メインチャンバ
2b プルチャンバ
3 ルツボ
3a 石英ガラスルツボ
4 ヒータ
5 引上げ機構
6 輻射シールド
8 コンピュータ
8a 記憶装置
8b 演算記憶装置
C 単結晶
M 原料シリコン、シリコン融液
P 種結晶
P1 ネック部
DESCRIPTION OF SYMBOLS 1 Single crystal pulling apparatus 2 Furnace body 2a Main chamber 2b Pull chamber 3 Crucible 3a Quartz glass crucible 4 Heater 5 Pulling mechanism 6 Radiation shield 8 Computer 8a Storage device 8b Arithmetic storage device C Single crystal M Raw material silicon, silicon melt P Seed crystal P1 neck

Claims (4)

炉体内のルツボに溶融された融液から、チョクラルスキー法によって単結晶を引上げる単結晶の製造方法であって、
所定時間内における前記融液の平均液面半径を測定し、前記所定時間内における前記融液の液面高さ変化量を測定し、前記所定時間内における単結晶の成長長さ変化量を測定し、前記所定時間内における前記ルツボの高さ位置変化量を測定するステップと、
前記融液の平均液面半径及び液面高さ変化量と、前記ルツボの高さ位置変化量とに基づき融液の減少重量を求め、前記単結晶の成長長さ変化量と、前記融液の液面高さ変化量と、単結晶の胴半径変数とに基づき単結晶の成長増加重量を求めるステップと、
前記求められた融液の減少重量と単結晶の成長増加重量とが等しいことに基づき前記単結晶の胴半径を算出するステップと、
前記算出された単結晶胴半径に基づき単結晶の引上げ制御を行うステップとを実行することを特徴とする単結晶の製造方法。
A method for producing a single crystal by pulling a single crystal by a Czochralski method from a melt melted in a crucible in a furnace body,
Measure the average liquid surface radius of the melt within a predetermined time, measure the change in the liquid surface height of the melt within the predetermined time, and measure the change in the growth length of the single crystal within the predetermined time And measuring a height position change amount of the crucible within the predetermined time;
Based on the average liquid surface radius and liquid surface height change amount of the melt and the height position change amount of the crucible, the decrease weight of the melt is obtained, the growth length change amount of the single crystal, and the melt Determining the growth weight of the single crystal based on the change in the liquid level height and the body radius variable of the single crystal;
Calculating the radius of the single crystal based on the calculated reduced weight of the melt and the growth weight of the single crystal being equal;
Performing a pulling control of the single crystal based on the calculated single crystal body radius.
前記融液の平均液面半径をD、前記融液の液面高さ変化量をN、前記ルツボの高さ位置変化量をH、前記融液の密度をρL、円周率をπとすると、前記融液の減少重量を求めるステップにおいて、該融液の減少重量は、
π・ρL・D2(H−N)により求められ、
前記単結晶の成長長さ変化量をg、単結晶の胴半径変数をdpv、前記単結晶の密度をρSとすると、前記単結晶の成長増加重量を求めるステップにおいて、該単結晶の成長増加重量は、
π・ρS・dpv 2(g−N)により求められ、
前記単結晶の胴半径dpvを算出するステップにおいて、該胴半径dpvは、
π・ρL・D2(H−N)=π・ρS・dpv 2(g−N)
の関係式に基づき求められることを特徴とする請求項1に記載された単結晶の製造方法。
When the average liquid surface radius of the melt is D, the liquid surface height change amount of the melt is N, the height position change amount of the crucible is H, the melt density is ρL, and the circumference is π. In the step of determining the reduced weight of the melt, the reduced weight of the melt is:
π · ρL · D 2 (H−N),
In the step of determining the growth weight of the single crystal, where g is the amount of change in the growth length of the single crystal, d pv is the body radius variable of the single crystal, and ρS is the density of the single crystal, Weight is
π · ρS · d pv 2 (g−N)
In the step of calculating the barrel radius d pv of the single crystal, the barrel radius d pv is:
π · ρL · D 2 (H−N) = π · ρS · d pv 2 (g−N)
The method for producing a single crystal according to claim 1, wherein the single crystal is obtained based on the relational expression:
前記単結晶の引上げ制御を行うステップにおいて、
引上げ動作前に目標値とする単結晶の胴半径を設定するステップと、
前記算出された単結晶の胴半径が前記目標値に沿うように単結晶の引上げ制御を行うステップとを実行することを特徴とする請求項1または請求項2に記載された単結晶の製造方法。
In the step of performing pulling control of the single crystal,
Setting a barrel radius of the single crystal as a target value before the pulling operation;
The method for producing a single crystal according to claim 1, further comprising a step of performing pulling control of the single crystal so that the calculated body radius of the single crystal follows the target value. .
前記単結晶の引上げ制御を行うステップにおいて、
引上げ動作前に目標値とする単結晶の断面積を設定するステップと、
前記算出された単結晶の胴半径に基づき求められた単結晶の断面積が前記目標値に沿うように単結晶の引上げ制御を行うステップとを実行することを特徴とする請求項1または請求項2に記載された単結晶の製造方法。
In the step of performing pulling control of the single crystal,
Setting a cross-sectional area of the single crystal as a target value before the pulling operation;
The step of performing pull-up control of the single crystal so that a cross-sectional area of the single crystal obtained based on the calculated single crystal body radius is along the target value is executed. 2. A method for producing a single crystal described in 2.
JP2007019041A 2007-01-30 2007-01-30 Single crystal manufacturing method Active JP4785762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007019041A JP4785762B2 (en) 2007-01-30 2007-01-30 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007019041A JP4785762B2 (en) 2007-01-30 2007-01-30 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JP2008184362A true JP2008184362A (en) 2008-08-14
JP4785762B2 JP4785762B2 (en) 2011-10-05

Family

ID=39727636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007019041A Active JP4785762B2 (en) 2007-01-30 2007-01-30 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP4785762B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105588B1 (en) * 2009-03-12 2012-01-17 주식회사 엘지실트론 Method and Apparatus for manufacturing high quality silicon single crystal
WO2017133930A1 (en) * 2016-02-05 2017-08-10 Siltronic Ag Method for determining and regulating a diameter of a single crystal during pulling of the single crystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206809A (en) * 1981-06-15 1982-12-18 Nippon Telegr & Teleph Corp <Ntt> Detecting method for diameter of single crystal and minute crystal
JP2000086385A (en) * 1998-09-16 2000-03-28 Komatsu Electronic Metals Co Ltd Detector for detecting melt depth and method therefor, detector for crystal growth length and method therefor and apparatus for producing crystal substance and method therefor
JP2000335996A (en) * 1999-03-19 2000-12-05 Komatsu Electronic Metals Co Ltd Apparatus for regulating crystal diameter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57206809A (en) * 1981-06-15 1982-12-18 Nippon Telegr & Teleph Corp <Ntt> Detecting method for diameter of single crystal and minute crystal
JP2000086385A (en) * 1998-09-16 2000-03-28 Komatsu Electronic Metals Co Ltd Detector for detecting melt depth and method therefor, detector for crystal growth length and method therefor and apparatus for producing crystal substance and method therefor
JP2000335996A (en) * 1999-03-19 2000-12-05 Komatsu Electronic Metals Co Ltd Apparatus for regulating crystal diameter

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105588B1 (en) * 2009-03-12 2012-01-17 주식회사 엘지실트론 Method and Apparatus for manufacturing high quality silicon single crystal
WO2017133930A1 (en) * 2016-02-05 2017-08-10 Siltronic Ag Method for determining and regulating a diameter of a single crystal during pulling of the single crystal
KR20180099853A (en) * 2016-02-05 2018-09-05 실트로닉 아게 Method for determining and controlling the diameter of a single crystal during pulling of a single crystal
CN108699723A (en) * 2016-02-05 2018-10-23 硅电子股份公司 The method for being determined during pulling single crystal and adjusting single crystal diameter
TWI650449B (en) * 2016-02-05 2019-02-11 德商世創電子材料公司 Method for determining and regulating a diameter of a single crystal during the pulling of the single crystal
KR102111873B1 (en) * 2016-02-05 2020-05-18 실트로닉 아게 Method for determining and adjusting the diameter of a single crystal during the pulling of the single crystal
US10738392B2 (en) 2016-02-05 2020-08-11 Siltronic Ag Method for determining and regulating a diameter of a single crystal during pulling of the single crystal
CN108699723B (en) * 2016-02-05 2021-03-16 硅电子股份公司 Method for determining and adjusting the diameter of a single crystal during the pulling of the single crystal

Also Published As

Publication number Publication date
JP4785762B2 (en) 2011-10-05

Similar Documents

Publication Publication Date Title
JP4919343B2 (en) Single crystal pulling device
JPWO2004018742A1 (en) Method for producing silicon single crystal
JP4785765B2 (en) Single crystal pulling method
JP2008162809A (en) Single crystal pulling apparatus and method for manufacturing single crystal
JP2015205793A (en) Method for drawing up single crystal
JP4785762B2 (en) Single crystal manufacturing method
JP4916471B2 (en) Single crystal pulling method
JP2009057270A (en) Method of raising silicon single crystal
JP2010018446A (en) Method for producing single crystal and single crystal pulling apparatus
KR101862157B1 (en) Method and apparatus for manufacturing silicon monocrystalline ingot
JP6395302B2 (en) Single crystal silicon pulling apparatus and single crystal silicon pulling method
JP2007254200A (en) Method for manufacturing single crystal
JP2007176761A (en) Manufacturing method and manufacturing device for silicon single crystal
JP2008189523A (en) Method for manufacturing single crystal
JP4907568B2 (en) Single crystal pulling apparatus and single crystal manufacturing method
JP4785764B2 (en) Single crystal manufacturing method
WO2022254885A1 (en) Method for producing silicon monocrystal
JP5805527B2 (en) Method for producing silicon single crystal
JP5819185B2 (en) Method for producing silicon single crystal
JP4341379B2 (en) Single crystal manufacturing method
KR101758983B1 (en) Ingot growing apparatus and growing method by it
JP5018670B2 (en) Single crystal growth method
JP4702266B2 (en) Single crystal pulling method
JP5053426B2 (en) Silicon single crystal manufacturing method
JP2023081004A (en) Single crystal pulling apparatus and method for manufacturing single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110712

R150 Certificate of patent or registration of utility model

Ref document number: 4785762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140722

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250