JP2008183607A - Continuous casting method of steel - Google Patents

Continuous casting method of steel Download PDF

Info

Publication number
JP2008183607A
JP2008183607A JP2007021524A JP2007021524A JP2008183607A JP 2008183607 A JP2008183607 A JP 2008183607A JP 2007021524 A JP2007021524 A JP 2007021524A JP 2007021524 A JP2007021524 A JP 2007021524A JP 2008183607 A JP2008183607 A JP 2008183607A
Authority
JP
Japan
Prior art keywords
slab
temperature
continuous casting
cooling zone
machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007021524A
Other languages
Japanese (ja)
Other versions
JP4935383B2 (en
Inventor
Koji Okada
浩二 岡田
Takanori Tanaka
孝憲 田中
Tomonori Omoto
知則 大元
Takashi Takaoka
隆司 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2007021524A priority Critical patent/JP4935383B2/en
Publication of JP2008183607A publication Critical patent/JP2008183607A/en
Application granted granted Critical
Publication of JP4935383B2 publication Critical patent/JP4935383B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a continuous casting method of a steel where, when, after the drawing of a slab is temporarily stopped for exchange of a tundish or immersion nozzle and again, the drawing is started, and consecutive continuous casting is continued, the surface temperature of the slab in the part corresponding to the secondary cooling zone whose drawing is stopped in the machine is controlled to the prescribed one. <P>SOLUTION: The temperature of a slab 12 occurred by the stop in a continuous casting machine 1 is measured on and after the outlet side of a secondary cooling zone 6, the portion having a temperature lower than the previously set objective temperature is specified, the cooling zone 6a to 6i in the secondary cooling zone as the cause of the occurrence of the low temperature portion is specified, and the cooling water quantity in the specified cooling zone is set in such a manner that the difference between the surface temperature of the slab upon the stop in the machine on and after the following time and the previously set objective temperature reaches ≤50°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、鋼の連続鋳造方法に関し、詳しくはタンディッシュ交換或いは浸漬ノズル交換などのために、鋳造中に鋳片の引抜きを一旦停止し、その後、引抜きを再開させて連続鋳造を継続するときの二次冷却パターンを適正化して連続鋳造する方法に関するものである。   The present invention relates to a steel continuous casting method, and more specifically, when slab drawing is temporarily stopped during casting, and then continuous casting is resumed after tempering or dip nozzle replacement. The present invention relates to a method for performing continuous casting by optimizing the secondary cooling pattern.

鋼の連続鋳造では、取鍋内の溶鋼を一旦タンディッシュに注入し、タンディッシュ内に所定量の溶鋼が滞在した状態で、タンディッシュ内の溶鋼を、タンディッシュ底部に設置した浸漬ノズルを介して各鋳型に注入している。鋳型内に注入された溶鋼は冷却されて鋳型との接触面に凝固シェルを形成し、この凝固シェルを外殻とし、内部に未凝固溶鋼を有する鋳片は、鋳型下方に設けられた二次冷却帯において冷却水(「二次冷却水」という)によって冷却されながら鋳型下方に連続的に引抜かれ、やがて中心部までの凝固が完了する。中心部までの凝固の完了した鋳片を所定の長さに切断して、圧延用素材である鋳片が製造される。   In continuous casting of steel, the molten steel in the ladle is once poured into the tundish, and with a predetermined amount of molten steel staying in the tundish, the molten steel in the tundish is passed through an immersion nozzle installed at the bottom of the tundish. Are injected into each mold. The molten steel injected into the mold is cooled to form a solidified shell on the contact surface with the mold, and this slab with the solidified shell as the outer shell and the unsolidified molten steel inside is a secondary provided below the mold. While being cooled by cooling water (referred to as “secondary cooling water”) in the cooling zone, it is continuously pulled out below the mold, and eventually solidification to the center is completed. The slab that has been solidified to the center is cut into a predetermined length to produce a slab that is a rolling material.

この二次冷却帯における鋳片の冷却は、鋳片の品質を大きく左右する要因の1つとなっている。例えば、冷却強度が強過ぎる場合には、鋳片表面に縦割れや横割れなどの割れが発生し、一方、冷却強度が低過ぎる場合には、鋳片表面温度が高くなり過ぎて凝固シェルの強度が低下し、溶鋼静圧による凝固シェルのバルジング(鋳片が膨らむこと)が大きくなり、このバルジングに起因して内部割れが発生したり中心偏析が悪化したりする。   The cooling of the slab in the secondary cooling zone is one of the factors that greatly affects the quality of the slab. For example, if the cooling strength is too strong, cracks such as vertical cracks and transverse cracks occur on the slab surface, while if the cooling strength is too low, the slab surface temperature becomes too high and the solidified shell The strength decreases, and the bulging of the solidified shell due to the static pressure of the molten steel increases (the slab expands), resulting in internal cracking or deterioration of center segregation due to this bulging.

従って、鋳片の冷却を精度良く制御するために、鋳造方向に長く伸びる二次冷却帯を鋳造方向で複数の部位に分割し、分割した各冷却ゾーン別に冷却水量を決定するのが一般的である。そして、各冷却ゾーンの冷却水の流量(Q)は、鋳片の引抜き速度(V)をパラメータとして、Q=aV2 +bV+c(a、b、cは定数)のような関数を用いて調整することが一般的である(例えば、特許文献1参照)。ここで、鋳片の引抜き速度がゼロの場合、つまり連続鋳造機の機内停止時の鋳片にも冷却水を噴霧する理由は以下の通りである。即ち、内部に未凝固層を有する鋳片では凝固シェルは未凝固層からの熱を常に受けており、冷却水の噴霧を停止すると、凝固シェルの温度が上昇して凝固シェルのバルジングが大きくなり、再引抜きが困難になる、或いは、バルジングによって凝固シェルが破断してブレークアウトが発生するなどの操業トラブルが発生するからである。 Therefore, in order to accurately control the cooling of the slab, it is common to divide the secondary cooling zone that extends in the casting direction into a plurality of parts in the casting direction and determine the amount of cooling water for each divided cooling zone. is there. Then, the flow rate (Q) of the cooling water in each cooling zone is adjusted using a function such as Q = aV 2 + bV + c (a, b, and c are constants) with the slab drawing speed (V) as a parameter. It is common (see, for example, Patent Document 1). Here, when the drawing speed of the slab is zero, that is, the reason for spraying the cooling water on the slab when the continuous casting machine is stopped in the machine is as follows. That is, in a slab having an unsolidified layer inside, the solidified shell always receives heat from the unsolidified layer. When the cooling water spray is stopped, the temperature of the solidified shell rises and the bulging of the solidified shell increases. This is because operational troubles such as difficulty in redrawing or breakage of the solidified shell due to bulging and breakout occur.

ところで、通常、鋼の連続鋳造では鋳片を連続的に引抜いており、鋳片を機内で停止させる場合は、一般的には次の操業の場合である。   By the way, normally, in the continuous casting of steel, the slab is continuously drawn, and the case where the slab is stopped in the machine is generally the case of the next operation.

即ち、鋼の連続鋳造では、連続鋳造機の生産性を高めるために、数ヒートの連続連続鋳造(「連々鋳」という)を行うのみならず、数ヒートの連々鋳の後にタンディッシュを交換する或いはタンディッシュ底に配置した浸漬ノズルを交換して、更に数ヒートの連々鋳を実施することが一般的に行われている。このタンディッシュ交換時及び浸漬ノズル交換時には、鋳型への溶鋼の注入を中断するとともに鋳片の引抜きを一旦停止する。そして、鋳片を機内で停止させた状態で新しいタンディッシュ或いは新しい浸漬ノズルが設置されるのを待ち、新しいタンディッシュ或いは新しい浸漬ノズルが設置され次第、更に溶鋼を鋳型に注入し、それに応じて鋳片の引抜きを再開し、定常引抜き速度まで昇速させている。この場合、鋳片は1分間ないし数分間程度機内で停止したままとなる。   That is, in continuous casting of steel, in order to increase the productivity of a continuous casting machine, not only continuous casting of several heats (referred to as “continuous casting”) is performed, but the tundish is replaced after continuous casting of several heats. Alternatively, it is common practice to continuously cast several heats by replacing the immersion nozzle disposed on the bottom of the tundish. During the tundish exchange and the immersion nozzle exchange, the molten steel injection into the mold is interrupted and the slab drawing is temporarily stopped. Then, wait for a new tundish or new immersion nozzle to be installed with the slab stopped in the machine, and as soon as a new tundish or new immersion nozzle is installed, more molten steel is poured into the mold, and accordingly The slab drawing is resumed and the speed is increased to the steady drawing speed. In this case, the slab remains stopped in the machine for about 1 minute to several minutes.

鋳片が一旦停止した際にも、前述のように鋳片に対して二次冷却水が噴霧されるが、幅の狭い鋳片では、鋳片の短辺面が鋳片長辺面を冷却するための二次冷却水によって冷却されるので、鋳片コーナー部が特に過冷却になることが多かった。鋼の連続鋳造操業では、鋳片の曲げや曲げ戻しの矯正を鋼の脆性域よりも高温側で行うことが一般的であり、このようにして鋳片コーナー部が過冷却になると、コーナー部は脆性域に入り、鋳片の曲げ或いは曲げ戻しの際に鋳片コーナー部に、横割れの1種である、鋳片の長辺面から短辺面にわたるコーナー割れ(「コーナーカギ割れ」ともいう)が発生する。コーナー割れが発生すると、鋳片の表面手入れが必要となり、熱片直送圧延ができない、歩留りが低下する、製造工程が延長するなど、様々な問題が発生する。
特開昭61−238453号公報
Even when the slab stops, the secondary cooling water is sprayed on the slab as described above. However, in a narrow slab, the short side of the slab cools the long side of the slab. Therefore, the corner portion of the slab is often supercooled because it is cooled by the secondary cooling water. In the continuous casting operation of steel, it is common to correct the slab bending and unbending at a higher temperature side than the brittle region of the steel. Enters the brittle region, and when the slab is bent or unbent, it is a type of transverse crack at the slab corner, which is a corner crack from the long side to the short side of the slab. Say) occurs. When a corner crack occurs, the surface of the slab needs to be cleaned, and various problems such as inability to perform hot strip direct feed rolling, a decrease in yield, and an extension of the manufacturing process occur.
Japanese Patent Laid-Open No. 61-238453

本発明は上記事情に鑑みてなされたもので、その目的とするところは、タンディッシュ交換時や浸漬ノズル交換時のように、鋳片の引抜きを一旦停止した後に、再度、引抜きを開始して連々鋳を継続する際に、機内で引抜きを停止している、二次冷却帯に該当する部位の鋳片の表面温度を所定の温度に制御することのできる、鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances. The purpose of the present invention is to temporarily stop drawing of a slab and then start drawing again, such as when changing a tundish or changing an immersion nozzle. Provided is a steel continuous casting method capable of controlling the surface temperature of a slab at a portion corresponding to a secondary cooling zone, in which drawing is stopped in the machine when continuous casting is continued, to a predetermined temperature. That is.

上記課題を解決するための第1の発明に係る鋼の連続鋳造方法は、連続鋳造機での機内停止により生じた鋳片の温度を二次冷却帯の出側以降で測定し、予め設定した目標温度よりも低い温度部分を特定し、機内停止後の鋳片引抜き速度と経過時間とから、低い温度部分が生じた原因となった二次冷却帯の冷却ゾーンを特定し、特定した冷却ゾーンにおける冷却水量を、次回以降の機内停止時の鋳片の表面温度と予め設定した目標温度との差が50℃以下となるように設定することを特徴とするものである。   In the continuous casting method of steel according to the first invention for solving the above-mentioned problem, the temperature of the slab generated by the in-machine stop in the continuous casting machine is measured after the outlet side of the secondary cooling zone and set in advance. The temperature zone lower than the target temperature is identified, and the cooling zone of the secondary cooling zone that caused the low temperature zone is identified from the slab drawing speed and elapsed time after the machine stops, and the identified cooling zone The amount of cooling water in is set so that the difference between the surface temperature of the slab at the next and subsequent in-machine stops and a preset target temperature is 50 ° C. or less.

第2の発明に係る鋼の連続鋳造方法は、第1の発明において、前記冷却ゾーンにおける冷却水量を、鋳片の長辺方向に複数配列したスプレーノズルからの冷却水量を個別に調整することによって設定することを特徴とするものである。   In the continuous casting method of steel according to the second invention, in the first invention, the amount of cooling water in the cooling zone is individually adjusted by adjusting the amount of cooling water from a spray nozzle arranged in the long side direction of the slab. It is characterized by setting.

第3の発明に係る鋼の連続鋳造方法は、第1または第2の発明において、前記冷却ゾーンにおける冷却水量を、鋳片の長辺方向に複数配列したスプレーノズルの内、少なくとも鋳片のコーナー部に配置したスプレーノズルからの冷却水量を減少させることによって設定することを特徴とするものである。   According to a third aspect of the present invention, there is provided the continuous casting method of steel according to the first or second aspect, wherein at least a corner of the slab out of spray nozzles in which a plurality of cooling water amounts in the cooling zone are arranged in the long side direction of the slab. It sets by reducing the amount of cooling water from the spray nozzle arrange | positioned in the part.

本発明によれば、タンディッシュ交換などによって鋳片が連続鋳造機の機内で停止する毎に、鋳片の表面温度を測定し、測定される表面温度が予め設定した目標温度よりも低い場合には、その低い部位に該当する二次冷却ゾーンを特定し、特定した冷却ゾーンにおける冷却水量を、予め設定した目標温度との差が50℃以下となるように設定し直すので、次回の機内停止時の鋳片表面温度を目標温度の近くにすることができる。そして、コーナー部を含めて鋳片の表面温度が目標温度と同等になることで、鋳片コーナー部は脆性域を外れ、鋳片の曲げ部或いは曲げ戻し部において鋳片コーナー部に矯正応力が作用しても、コーナー割れの発生を防止することができ、歩留りの向上、鋳片の熱片直送圧延が可能となるなど、工業上有益な効果がもたらされる。   According to the present invention, every time the slab stops in the continuous casting machine due to tundish replacement or the like, the surface temperature of the slab is measured, and when the measured surface temperature is lower than a preset target temperature. Identifies the secondary cooling zone corresponding to the low part and resets the amount of cooling water in the identified cooling zone so that the difference from the preset target temperature is 50 ° C or less. The slab surface temperature at the time can be close to the target temperature. And, since the surface temperature of the slab including the corner part becomes equal to the target temperature, the slab corner part is out of the brittle region, and the slab corner part has a corrective stress at the bent part or the bent back part of the slab. Even if it acts, it is possible to prevent the occurrence of corner cracks, and industrially beneficial effects such as improvement in yield and direct hot rolling of the slab can be achieved.

以下、添付図面を参照して本発明を具体的に説明する。図1は、本発明を適用した垂直曲げ型連続鋳造機の側面概略図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic side view of a vertical bending type continuous casting machine to which the present invention is applied.

図1に示すように、垂直曲げ型連続鋳造機1は、鋳型4と、鋳型4の上方に配置されるタンディッシュ2と、鋳型4の直下に配置されるローラーエプロン5と、ローラーエプロン5の下方に設置される複数対のピンチロール7と、鋳造される鋳片12を円弧状に曲げるための曲げロール8と、円弧状に曲げられた鋳片12を平板状に曲げ戻すためのストレートナー9と、を備えている。タンディッシュ2の底部には浸漬ノズル3が設置されている。   As shown in FIG. 1, the vertical bending type continuous casting machine 1 includes a mold 4, a tundish 2 disposed above the mold 4, a roller apron 5 disposed immediately below the mold 4, and a roller apron 5. A plurality of pairs of pinch rolls 7 installed below, a bending roll 8 for bending the cast slab 12 into an arc shape, and a straightener for bending back the arc-shaped slab 12 into a flat plate shape 9. An immersion nozzle 3 is installed at the bottom of the tundish 2.

ローラーエプロン5には複数対のガイドロール(図示せず)が配置されており、ローラーエプロン5の領域が二次冷却帯6となっている。この二次冷却帯6は、鋳型4の直下側から順に、第1ゾーン6a、第2ゾーン6b、第3ゾーン6c、第4ゾーン6d、第5ゾーン6e、第6ゾーン6f、第7ゾーン6g、第8ゾーン6h、第9ゾーン6iの9つの冷却ゾーンに分かれており、これらの冷却ゾーンには、それぞれ、図2に示すように水スプレーノズルまたはエアーミストスプレーノズルからなるスプレーノズル13が、鋳造方向に隣り合うガイドロールの間隙に設置されている。尚、図2は、スプレーノズル13の配置を示す概略図で、図2(A)は鋳造方向に平行な方向から見た配置図で、図2(B)は鋳造方向に垂直な方向から見た配置図である。   A plurality of pairs of guide rolls (not shown) are arranged on the roller apron 5, and the region of the roller apron 5 is a secondary cooling zone 6. The secondary cooling zone 6 includes a first zone 6a, a second zone 6b, a third zone 6c, a fourth zone 6d, a fifth zone 6e, a sixth zone 6f, and a seventh zone 6g in order from the lower side of the mold 4. The cooling zone is divided into nine cooling zones, an eighth zone 6h and a ninth zone 6i. In each of these cooling zones, a spray nozzle 13 comprising a water spray nozzle or an air mist spray nozzle as shown in FIG. It is installed in a gap between guide rolls adjacent in the casting direction. 2 is a schematic view showing the arrangement of the spray nozzle 13, FIG. 2 (A) is an arrangement view seen from a direction parallel to the casting direction, and FIG. 2 (B) is seen from a direction perpendicular to the casting direction. FIG.

この場合、スプレーノズル13への冷却水供給配管14は、ルート1,2,3の3つの系統に分かれており、ルート1が鋳造可能な最大幅の鋳片に対してその中央部を冷却し、ルート3がその端部を冷却し、ルート2がルート1とルート3との間を冷却するように構成されている。第1ゾーン6aから第9ゾーン6iまでの各冷却ゾーンで、それぞれ独立して二次冷却水の供給量が調整可能となっているのみならず、各冷却ゾーンのルート1,2,3の3つの系統でも独立して二次冷却水の供給量が調整可能となっている。それぞれのスプレーノズル13は、鋳造方向に千鳥配置されており、これらのスプレーノズル13から噴霧される二次冷却水によって鋳片12は冷却されるようになっている。   In this case, the cooling water supply pipe 14 to the spray nozzle 13 is divided into three systems of routes 1, 2, and 3, and the central portion is cooled with respect to the slab of the maximum width that can be cast by the route 1. Route 3 is configured to cool its end and Route 2 is configured to cool between Route 1 and Route 3. In each of the cooling zones from the first zone 6a to the ninth zone 6i, the supply amount of the secondary cooling water can be adjusted independently, as well as the routes 1, 2, and 3 of each cooling zone. Even in the two systems, the amount of secondary cooling water supplied can be adjusted independently. The spray nozzles 13 are arranged in a staggered manner in the casting direction, and the slab 12 is cooled by the secondary cooling water sprayed from the spray nozzles 13.

溶鋼11を取鍋(図示せず)からタンディッシュ2に注入し、タンディッシュ2に所定量の溶鋼11が収容された状態を維持しつつ、浸漬ノズル3を介してタンディッシュ2に収容された溶鋼11を鋳型4に注入する。そして、溶鋼11が鋳型4と接触して形成される凝固シェル(図示せず)を外殻とし、内部を未凝固層(図示せず)とする鋳片12をピンチロール7によって連続的に鋳型4の下方に引抜く。鋳型4から引抜かれた、内部に未凝固層を有する鋳片12は、下方に引抜かれながらローラーエプロン5の領域に設けられた二次冷却帯6の二次冷却水によって冷却され、ピンチロール7に至る以前のローラーエプロン5の領域で鋳片中心部までの凝固を完了する。つまり、垂直曲げ型連続鋳造機1の垂直部で凝固を完了する。   The molten steel 11 was poured into the tundish 2 from a ladle (not shown), and the tundish 2 was accommodated in the tundish 2 via the immersion nozzle 3 while maintaining a state where a predetermined amount of molten steel 11 was accommodated. Molten steel 11 is poured into the mold 4. Then, the slab 12 having a solidified shell (not shown) formed by contact of the molten steel 11 with the mold 4 as an outer shell and an inside as an unsolidified layer (not shown) is continuously casted by a pinch roll 7. Pull out 4 below. The slab 12 having an unsolidified layer inside drawn out from the mold 4 is cooled by the secondary cooling water in the secondary cooling zone 6 provided in the region of the roller apron 5 while being drawn downward, and the pinch roll 7 Solidification to the center of the slab is completed in the region of the roller apron 5 before reaching. That is, solidification is completed at the vertical portion of the vertical bending type continuous casting machine 1.

凝固が完了し、ピンチロール7を通過した鋳片12は、曲げロール8によって円弧状に曲げられ、次いで、円弧状に曲げられた鋳片12は、ストレートナー9によって平板状に曲げ戻される。平板状に曲げ戻された鋳片12は、ストレートナー9の下流側に配置されたトーチ式切断機(図示せず)によって所定の長さに切断される。曲げロール8とストレートナー9との間(鋳型内溶鋼湯面から32.6mの位置)に、温度の低下しやすい、鋳片12のコーナー部の温度を測定するための温度計測センサー10が設置されている。温度計測センサー10による計測値は演算機(図示せず)に入力され、温度計測値が表示されるようになっている。尚、温度計測センサー10の設置位置は図1に示す位置である必要はなく、二次冷却帯6を通過した以降であるならば、どこであっても構わない。   The slab 12 that has been solidified and has passed through the pinch roll 7 is bent into an arc shape by the bending roll 8, and then the slab 12 bent into the arc shape is bent back into a flat plate shape by the straightener 9. The slab 12 bent back into a flat plate shape is cut into a predetermined length by a torch type cutting machine (not shown) disposed on the downstream side of the straightener 9. A temperature measurement sensor 10 is installed between the bending roll 8 and the straightener 9 (at a position 32.6 m from the molten steel surface in the mold) to measure the temperature of the corner of the slab 12 where the temperature tends to decrease. Has been. A measurement value obtained by the temperature measurement sensor 10 is input to a calculator (not shown), and the temperature measurement value is displayed. The installation position of the temperature measurement sensor 10 does not have to be the position shown in FIG. 1, and may be anywhere after passing through the secondary cooling zone 6.

尚、このような垂直曲げ型連続鋳造機1において、鋳片12の表面に引張応力が作用する位置は、主に、曲げロール8によって鋳片12を円弧状に曲げるときの鋳片下面側、及び、ストレートナー9によって円弧状の鋳片12を平板状に曲げ戻すときの鋳片上面側であり、引張応力が作用するときに鋳片12のコーナー表面温度が鋼の脆性域に入ると、鋳片12にコーナー割れが発生する。   In such a vertical bending type continuous casting machine 1, the position where the tensile stress acts on the surface of the slab 12 is mainly the lower surface side of the slab when the slab 12 is bent into an arc shape by the bending roll 8, And it is the slab upper surface side when the arc-shaped slab 12 is bent back into a flat plate shape by the straightener 9, and when the corner surface temperature of the slab 12 enters the brittle region of steel when the tensile stress acts, A corner crack occurs in the slab 12.

このようにして構成される垂直ベンディング型連続鋳造機1において、タンディッシュ2を交換するために鋳片12を機内で一旦停止させ、タンディッシュ2を交換し、次いで溶鋼11の鋳型4への注入を再開した後に、鋳片12の引抜きを再開したときの鋳片下面側コーナー部の表面温度の推移の例を図3に示す。鋳片表面温度は温度計測センサー10で測定したものである。   In the vertical bending type continuous casting machine 1 configured as described above, the slab 12 is temporarily stopped in the machine to replace the tundish 2, the tundish 2 is replaced, and then the molten steel 11 is injected into the mold 4. FIG. 3 shows an example of the transition of the surface temperature of the slab lower surface side corner when the slab 12 is resumed after being resumed. The slab surface temperature is measured by the temperature measurement sensor 10.

図3には、鋳片12の冷却が正常であった場合と冷却が異常であった場合とを比較して、鋳片コーナー温度を示している。図3の横軸は鋳片の引抜きを再開してからの経過時間であり、冷却異常時の例で説明すると、引抜き再開後およそ25分経過時点から鋳片コーナー温度が550℃未満になっていることを示し、25分経過時点の部位は、二次冷却帯6の第8ゾーン6hに該当することを示している。尚、図3に示す冷却異常時の場合には、第8ゾーン6hのみが過冷却になっているのではなく、第1ゾーン6aから第8ゾーン6hの範囲で冷却が強すぎることが分かる。これに対して冷却が正常な場合には、二次冷却帯6の範囲で停止していた部位の鋳片コーナー温度はほとんどが650℃程度であり、600℃未満となるのは鋳型直下の第1ゾーン6aのほんの一部分であり、550℃未満の部分はないことが分かる。   FIG. 3 shows the slab corner temperature by comparing the case where the cooling of the slab 12 is normal and the case where the cooling is abnormal. The horizontal axis in FIG. 3 is the elapsed time after resuming the drawing of the slab. In the example of the cooling abnormality, the slab corner temperature becomes less than 550 ° C. from about 25 minutes after the resumption of drawing. The part at the time when 25 minutes have elapsed indicates that it corresponds to the eighth zone 6 h of the secondary cooling zone 6. In the case of the cooling abnormality shown in FIG. 3, it can be seen that only the eighth zone 6h is not supercooled, but the cooling is too strong in the range from the first zone 6a to the eighth zone 6h. On the other hand, when the cooling is normal, the slab corner temperature of the portion stopped in the range of the secondary cooling zone 6 is almost 650 ° C., and it is less than 600 ° C. It can be seen that this is only a part of one zone 6a and there is no part below 550 ° C.

尚、図3には、鋳片12の停止時の位置を一点鎖線で表示している。例えば、鋳片12の引抜きを再開して25分経過した時点で温度計測センサー10の位置を通過した部位は、停止時の鋳型内湯面から鋳造方向下方の約17mの位置であったことを示している。   In addition, in FIG. 3, the position at the time of the stop of the slab 12 is displayed with the dashed-dotted line. For example, when the drawing of the slab 12 is resumed and 25 minutes have passed, the portion that has passed the position of the temperature measuring sensor 10 is about 17 m below the casting direction from the mold surface in the mold at the time of stoppage. ing.

図4は、温度計測センサー10の設置位置における鋳片コーナー温度の目標温度を600℃として定め、鋳片コーナー温度がこの目標値の600℃よりも低下した場合に、目標温度との差と、鋳片コーナー割れとの関係を示す図である。図4からも明らかなように、温度計測センサー10で測定した鋳片コーナー温度が、目標温度の600℃よりも50℃を越えて低下すると、鋳片コーナー割れが発生し、温度差が大きくなるほど鋳片コーナー割れが激しくなることが分かる。   FIG. 4 shows that the target temperature of the slab corner temperature at the installation position of the temperature measurement sensor 10 is set to 600 ° C., and when the slab corner temperature is lower than the target value of 600 ° C., the difference from the target temperature, It is a figure which shows the relationship with a slab corner crack. As apparent from FIG. 4, when the slab corner temperature measured by the temperature measuring sensor 10 falls below 50 ° C. from the target temperature of 600 ° C., slab corner cracking occurs, and the temperature difference increases. It can be seen that the slab corner cracks become severe.

これらの結果から、図3に示す「正常時」には鋳片コーナー割れが発生しないことが分かる。尚、鋳片12のコーナー温度は鋳造方向下流側になるほど放熱によって低下することから、目標温度の絶対値は、温度計測センサー10の設置位置に応じて、この温度降下を加味して設定することが好ましい。   From these results, it can be seen that the slab corner crack does not occur at the “normal time” shown in FIG. In addition, since the corner temperature of the slab 12 decreases due to heat radiation as it becomes downstream in the casting direction, the absolute value of the target temperature should be set in consideration of this temperature drop according to the installation position of the temperature measurement sensor 10. Is preferred.

そこで本発明では、タンディッシュ交換のために鋳片12を機内で停止する際に、タンディッシュ交換後の鋳片12の引抜きの再開後、二次冷却帯6の出口以降で鋳片コーナー部の温度を測定し、測定したコーナー温度を予め設定した目標温度と比較し、この目標温度よりも低い温度部分の鋳片コーナー部に該当する、機内停止時の二次冷却帯6の冷却ゾーンを、機内停止後の鋳片引抜き速度と経過時間とから特定する。そして、特定した冷却ゾーンにおける冷却水量を、次回以降の機内停止時の鋳片の表面温度と予め設定した目標温度との差が50℃以下となるように設定し直し、次回のタンディッシュ交換を実施する。タンディッシュ交換のつど冷却水量を設定し直すことで、より精度の高い二次冷却パターンを構築することが可能となる。   Therefore, in the present invention, when the slab 12 is stopped in the machine for the tundish replacement, after the slab 12 is resumed withdrawn after the tundish replacement, the slab corner portion at the outlet of the secondary cooling zone 6 is resumed. The temperature is measured, the measured corner temperature is compared with a preset target temperature, and the cooling zone of the secondary cooling zone 6 at the time of in-machine stop corresponding to the slab corner portion of the temperature portion lower than the target temperature is determined. It is determined from the slab drawing speed and the elapsed time after stopping in the machine. Then, the cooling water amount in the specified cooling zone is reset so that the difference between the surface temperature of the slab when the machine stops and the target temperature set in advance is 50 ° C or less, and the next tundish change is performed. carry out. By resetting the cooling water amount each time the tundish is replaced, a more accurate secondary cooling pattern can be constructed.

本発明は、鋳片12のコーナー部の過冷却に起因して発生するコーナー割れを防止すること目的としており、鋳片12のコーナー部の冷却強度を正確に調整できることから、冷却ゾーンの冷却水量を設定する場合に、図2に示すような鋳片12の幅方向で二次冷却水の供給流量を制御できる装置を用い、鋳片幅方向で個別に冷却水量を調整することが好ましい。具体的には、鋳片コーナー部に相当する位置のスプレーノズル13からの供給流量を減少させる、或いは停止するなどして、鋳片コーナー側の冷却強度を減少させることが好ましい。   The present invention aims to prevent corner cracking caused by overcooling of the corner portion of the slab 12, and since the cooling strength of the corner portion of the slab 12 can be adjusted accurately, the amount of cooling water in the cooling zone 2 is preferably adjusted using a device capable of controlling the flow rate of the secondary cooling water in the width direction of the slab 12 as shown in FIG. Specifically, it is preferable to reduce the cooling strength on the slab corner side by decreasing or stopping the supply flow rate from the spray nozzle 13 at the position corresponding to the slab corner.

このようにして鋼の連続鋳造操業を行うことで、仮に鋳片コーナー部の表面温度が目標温度よりも低くなったとしても、その都度、その温度の低い部位に該当する冷却ゾーンを特定し、特定した冷却ゾーンにおける冷却水量を設定し直すので、次回以降の機内停止時の鋳片表面温度を目標温度の近くすることができる。その結果、鋳片コーナー割れの発生が大幅に低減され、製造コストを大幅に削減することが可能となる。   By performing continuous casting operation of steel in this way, even if the surface temperature of the slab corner is lower than the target temperature, each time, specify the cooling zone corresponding to the low temperature part, Since the cooling water amount in the specified cooling zone is reset, the slab surface temperature at the next and subsequent in-machine stop can be brought close to the target temperature. As a result, the occurrence of slab corner cracks is greatly reduced, and the manufacturing cost can be greatly reduced.

尚、上記説明では、タンディッシュ交換のために鋳片12を機内で停止する場合について説明したが、タンディッシュ交換ではなく、浸漬ノズル3のみを交換する場合にも本発明を適用することができ、また、何らかの理由によって鋳片12を一旦機内で停止せざるを得ない場合にも本発明を適用することができる。   In the above description, the case where the slab 12 is stopped in the machine for the tundish replacement has been described. However, the present invention can be applied to a case where only the immersion nozzle 3 is replaced instead of the tundish replacement. The present invention can also be applied to cases where the slab 12 has to be stopped once in the machine for some reason.

また、連続鋳造機の型式も、図1に示す垂直曲げ型連続鋳造機1でなくとも、二次冷却帯6の以降に曲げ部や曲げ戻しの矯正部が設置された連続鋳造機であれば、本発明を適用することができる。但し、本発明の目的は過冷却による矯正時の鋳片コーナー割れを防止することであるので、従って、二次冷却帯6の範囲内に矯正部の設置された連続鋳造機では、上記方法をそのまま適用することはできない。これは、二次冷却帯6の範囲内に矯正部の設置された連続鋳造機では、鋳片12のコーナー温度を測定する場所を矯正部の上流側に配置する必要がある、或いは、矯正部を境として二次冷却の冷却強度を考える必要があるなど、上記の方法だけではそぐわないことがあるからである。   Further, the type of the continuous casting machine is not the vertical bending type continuous casting machine 1 shown in FIG. 1, but is a continuous casting machine in which a bending part and a bending correction part are installed after the secondary cooling zone 6. The present invention can be applied. However, since the object of the present invention is to prevent slab corner cracking during straightening due to overcooling, therefore, in a continuous casting machine in which a straightening section is installed within the secondary cooling zone 6, the above method is used. It cannot be applied as it is. This is because in a continuous casting machine in which a correction part is installed within the range of the secondary cooling zone 6, it is necessary to arrange a place for measuring the corner temperature of the slab 12 upstream of the correction part, or a correction part. This is because the above-described method alone may not be suitable, for example, because it is necessary to consider the cooling strength of secondary cooling.

図1に示す垂直曲げ型連続鋳造機において本発明を適用した例について説明する。   An example in which the present invention is applied to the vertical bending type continuous casting machine shown in FIG. 1 will be described.

厚みが310mm、幅が2450mmの中炭素鋼の鋳片を連々鋳する際に、タンディッシュ交換を実施した。鋳片を機内でおよそ1分間停止し、新たに設置されたタンディッシュから鋳型への溶鋼の注入開始と同時に、機内で停止していた鋳片の引抜きを開始した。そして、この鋳片のコーナー部を温度測定センサーによって測定した。   Tundish exchange was carried out when continuously casting slabs of medium carbon steel having a thickness of 310 mm and a width of 2450 mm. The slab was stopped for about 1 minute in the machine, and simultaneously with the start of injection of molten steel from the newly installed tundish into the mold, the slab that had been stopped in the machine was started to be drawn. And the corner part of this slab was measured with the temperature measurement sensor.

表1に、鋳片の機内停止時における二次冷却帯の第2ゾーン〜第9ゾーンの各二次冷却水量、及びコーナー部温度の目標温度(600℃)との差を示す。表1に示すように、第6ゾーンの位置に該当する鋳片のコーナー温度は目標温度よりも63℃低くなった。他の冷却ゾーンでは目標温度に対して50℃以内であった。   Table 1 shows the differences between the secondary cooling water amounts in the second to ninth zones of the secondary cooling zone and the target temperature (600 ° C.) of the corner temperature when the slab is stopped in the machine. As shown in Table 1, the corner temperature of the slab corresponding to the position of the sixth zone was 63 ° C. lower than the target temperature. In other cooling zones, it was within 50 ° C. with respect to the target temperature.

Figure 2008183607
Figure 2008183607

表1の結果に基づき、第6ゾーンの二次冷却水量を減少し、226L/minから199L/minに設定し直した。この場合、二次冷却水量は図2に示すルート3の水量を減少させた。そして、次回のタンディッシュ交換時に機内停止した部位の鋳片コーナー温度を温度測定センサーによって測定した。   Based on the results in Table 1, the amount of secondary cooling water in the sixth zone was reduced and reset from 226 L / min to 199 L / min. In this case, the amount of secondary cooling water decreased the amount of water in route 3 shown in FIG. And the slab corner temperature of the site | part which stopped in the machine at the time of the next tundish exchange was measured with the temperature measurement sensor.

表2に、鋳片の機内停止時における二次冷却帯の第2ゾーン〜第9ゾーンの各二次冷却水量、及びコーナー部温度の目標温度(600℃)との差を示す。表2に示すように、第6ゾーンの位置に該当する鋳片のコーナー温度は上昇し、目標温度との差は37℃であり、全ての冷却ゾーンで目標温度に対して50℃以内であった。   Table 2 shows the difference between the amount of secondary cooling water in each of the second to ninth zones of the secondary cooling zone and the corner temperature target temperature (600 ° C.) when the slab is stopped in the machine. As shown in Table 2, the corner temperature of the slab corresponding to the position of the sixth zone rises, the difference from the target temperature is 37 ° C, and within 50 ° C with respect to the target temperature in all the cooling zones. It was.

Figure 2008183607
Figure 2008183607

鋳造後鋳片を冷却し、浸透探傷法を用いて鋳片のコーナー割れの発生状況を調査した。図5は、本発明を適用した場合(本発明例)と、本発明を適用せずに表1に示す二次冷却水量で鋳造した場合(従来例)とで、鋳片コーナー割れの発生率を比較調査した結果である。図5からも明らかなように、本発明によって鋳片のコーナー割れは大幅に低減した。   After casting, the slab was cooled and the occurrence of corner cracks in the slab was investigated using the penetrant flaw detection method. FIG. 5 shows the occurrence rate of slab corner cracks when the present invention is applied (invention example) and when the present invention is not applied and cast with the secondary cooling water amount shown in Table 1 (conventional example). It is the result of comparative investigation. As is apparent from FIG. 5, the corner cracking of the slab was greatly reduced by the present invention.

本発明を適用した垂直曲げ型連続鋳造機の側面概略図である。1 is a schematic side view of a vertical bending type continuous casting machine to which the present invention is applied. スプレーノズルの配置を示す概略図である。It is the schematic which shows arrangement | positioning of a spray nozzle. タンディッシュ交換後に鋳片の引抜きを再開したときの鋳片下面側コーナー部の表面温度の推移の例を示す図である。It is a figure which shows the example of transition of the surface temperature of a slab lower surface side corner part when pulling out of a slab is restarted after tundish exchange. 目標温度との差と、鋳片コーナー割れとの関係を示す図である。It is a figure which shows the relationship between the difference with target temperature, and a slab corner crack. 本発明例と従来例とで、コーナー割れの発生率を比較調査した結果である。It is the result of having investigated the incidence rate of a corner crack in the example of the present invention and the conventional example.

符号の説明Explanation of symbols

1 垂直曲げ型連続鋳造機
2 タンディッシュ
3 浸漬ノズル
4 鋳型
5 ローラーエプロン
6 二次冷却帯
7 ピンチロール
8 曲げロール
9 ストレートナー
10 温度計測センサー
11 溶鋼
12 鋳片
13 スプレーノズル
14 冷却水供給配管
DESCRIPTION OF SYMBOLS 1 Vertical bending type continuous casting machine 2 Tundish 3 Immersion nozzle 4 Mold 5 Roller apron 6 Secondary cooling zone 7 Pinch roll 8 Bending roll 9 Straightener 10 Temperature measuring sensor 11 Molten steel 12 Cast slab 13 Spray nozzle 14 Cooling water supply piping

Claims (3)

連続鋳造機での機内停止により生じた鋳片の温度を二次冷却帯の出側以降で測定し、予め設定した目標温度よりも低い温度部分を特定し、機内停止後の鋳片引抜き速度と経過時間とから、低い温度部分が生じた原因となった二次冷却帯の冷却ゾーンを特定し、特定した冷却ゾーンにおける冷却水量を、次回以降の機内停止時の鋳片の表面温度と予め設定した目標温度との差が50℃以下となるように設定することを特徴とする、鋼の連続鋳造方法。   The temperature of the slab generated by the in-machine stop in the continuous casting machine is measured after the exit side of the secondary cooling zone, the temperature part lower than the preset target temperature is specified, the slab drawing speed after the in-machine stop and From the elapsed time, specify the cooling zone of the secondary cooling zone that caused the low temperature part, and set the cooling water amount in the specified cooling zone in advance with the surface temperature of the slab at the next in-machine stoppage A continuous casting method for steel, characterized in that the difference between the target temperature and the target temperature is set to 50 ° C. or less. 前記冷却ゾーンにおける冷却水量を、鋳片の長辺方向に複数配列したスプレーノズルからの冷却水量を個別に調整することによって設定することを特徴とする、請求項1に記載の鋼の連続鋳造方法。   2. The continuous casting method for steel according to claim 1, wherein the cooling water amount in the cooling zone is set by individually adjusting the cooling water amount from a plurality of spray nozzles arranged in the long side direction of the slab. . 前記冷却ゾーンにおける冷却水量を、鋳片の長辺方向に複数配列したスプレーノズルの内、少なくとも鋳片のコーナー部に配置したスプレーノズルからの冷却水量を減少させることによって設定することを特徴とする、請求項1または請求項2に記載の鋼の連続鋳造方法。   The amount of cooling water in the cooling zone is set by reducing the amount of cooling water from at least the spray nozzles arranged at the corners of the slab out of a plurality of spray nozzles arranged in the long side direction of the slab. The continuous casting method of steel according to claim 1 or claim 2.
JP2007021524A 2007-01-31 2007-01-31 Steel continuous casting method Expired - Fee Related JP4935383B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007021524A JP4935383B2 (en) 2007-01-31 2007-01-31 Steel continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007021524A JP4935383B2 (en) 2007-01-31 2007-01-31 Steel continuous casting method

Publications (2)

Publication Number Publication Date
JP2008183607A true JP2008183607A (en) 2008-08-14
JP4935383B2 JP4935383B2 (en) 2012-05-23

Family

ID=39726977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007021524A Expired - Fee Related JP4935383B2 (en) 2007-01-31 2007-01-31 Steel continuous casting method

Country Status (1)

Country Link
JP (1) JP4935383B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206159A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method for steel
CN105537542A (en) * 2016-01-22 2016-05-04 铜陵有色兴铜机电制造有限公司 Fog cooling ring suspension type continuous casting machine crystallizer
KR20160049298A (en) * 2014-10-27 2016-05-09 주식회사 포스코 Apparatus for continuous casting, Apparatus for cooling and Method for continuous casting
CN106001479A (en) * 2016-07-12 2016-10-12 中冶赛迪工程技术股份有限公司 Dynamic water quantity control method and system for cooling areas of continuous casting machine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233616A (en) * 1975-09-05 1977-03-14 Sumitomo Chem Co Ltd Process for preparation of methacrylic acid
JPS5633157A (en) * 1979-08-28 1981-04-03 Sumitomo Metal Ind Ltd Controlling method for secondary cooling water in continuous casting machine
JPS5736050A (en) * 1980-08-11 1982-02-26 Kawasaki Steel Corp Method for controlling secondary cooling water in continuous casting
JPS6049850A (en) * 1983-08-30 1985-03-19 Sumitomo Heavy Ind Ltd Method for controlling flow rate of secondary coolant in continuous casting plant
JPS61238453A (en) * 1985-04-12 1986-10-23 Nippon Kokan Kk <Nkk> Method for controlling secondary cooling water in continuous casting installation
JP2000237856A (en) * 1999-02-19 2000-09-05 Sanbo Copper Alloy Co Ltd Cooling device for continuous caster
JP2000246412A (en) * 1999-02-26 2000-09-12 Daido Steel Co Ltd Continuous casting method
JP2006315011A (en) * 2005-05-10 2006-11-24 Jfe Steel Kk Secondary cooling method for cast slab in slab continuous casting process

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5233616A (en) * 1975-09-05 1977-03-14 Sumitomo Chem Co Ltd Process for preparation of methacrylic acid
JPS5633157A (en) * 1979-08-28 1981-04-03 Sumitomo Metal Ind Ltd Controlling method for secondary cooling water in continuous casting machine
JPS5736050A (en) * 1980-08-11 1982-02-26 Kawasaki Steel Corp Method for controlling secondary cooling water in continuous casting
JPS6049850A (en) * 1983-08-30 1985-03-19 Sumitomo Heavy Ind Ltd Method for controlling flow rate of secondary coolant in continuous casting plant
JPS61238453A (en) * 1985-04-12 1986-10-23 Nippon Kokan Kk <Nkk> Method for controlling secondary cooling water in continuous casting installation
JP2000237856A (en) * 1999-02-19 2000-09-05 Sanbo Copper Alloy Co Ltd Cooling device for continuous caster
JP2000246412A (en) * 1999-02-26 2000-09-12 Daido Steel Co Ltd Continuous casting method
JP2006315011A (en) * 2005-05-10 2006-11-24 Jfe Steel Kk Secondary cooling method for cast slab in slab continuous casting process

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012206159A (en) * 2011-03-30 2012-10-25 Nippon Steel Corp Continuous casting method for steel
KR20160049298A (en) * 2014-10-27 2016-05-09 주식회사 포스코 Apparatus for continuous casting, Apparatus for cooling and Method for continuous casting
KR101697668B1 (en) 2014-10-27 2017-01-18 주식회사 포스코 Apparatus for continuous casting, Apparatus for cooling and Method for continuous casting
CN105537542A (en) * 2016-01-22 2016-05-04 铜陵有色兴铜机电制造有限公司 Fog cooling ring suspension type continuous casting machine crystallizer
CN106001479A (en) * 2016-07-12 2016-10-12 中冶赛迪工程技术股份有限公司 Dynamic water quantity control method and system for cooling areas of continuous casting machine
CN106001479B (en) * 2016-07-12 2018-01-30 中冶赛迪工程技术股份有限公司 The dynamic water quantity control method and system of a kind of conticaster cooling zone

Also Published As

Publication number Publication date
JP4935383B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5012056B2 (en) Steel continuous casting method
JP6358178B2 (en) Continuous casting method and mold cooling water control device
JP2010110813A (en) Secondary cooling method and apparatus for continuously cast slab
JP4935383B2 (en) Steel continuous casting method
JP6036659B2 (en) Roll opening control method in continuous casting machine
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP5790470B2 (en) Steel continuous casting method
JP5417892B2 (en) Continuous casting method for steel slabs
JP2010253481A (en) Surface crack preventing method for continuously cast slab
JP4042541B2 (en) Secondary cooling device and secondary cooling method for continuous cast slab
JP2007185675A (en) Method for predicting dangerous portion causing surface defect in continuously cast slab, and method for manufacturing continuously cast slab
JP2017159322A (en) Thin cast strip manufacturing facility and thin cast strip manufacturing method
JP5825087B2 (en) Continuous casting method
JP6620657B2 (en) Casting strip manufacturing equipment and casting strip manufacturing method
JP5560992B2 (en) Billet cutting method
KR101858864B1 (en) Method and apparatus for cooling of casting steel
JP5862603B2 (en) Method for detecting slab surface defects and equipment abnormalities in a continuous casting machine
JP3633539B2 (en) Steel plate cooling method
KR101320357B1 (en) Device for processing short side plate of slab and method therefor
JP6319179B2 (en) Method for adjusting roll interval of slab support roll
JP6160578B2 (en) Method for determining surface cracks in continuous cast pieces
KR102638366B1 (en) Secondary cooling method and device for continuous casting cast steel
CN114641356B (en) Secondary cooling method for continuous casting cast sheet
JP4417899B2 (en) Continuous casting method
JP6658252B2 (en) Cast strip manufacturing equipment and cast strip manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4935383

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees