JP2008182809A - Battery circuit, battery pack, and battery system - Google Patents

Battery circuit, battery pack, and battery system Download PDF

Info

Publication number
JP2008182809A
JP2008182809A JP2007013721A JP2007013721A JP2008182809A JP 2008182809 A JP2008182809 A JP 2008182809A JP 2007013721 A JP2007013721 A JP 2007013721A JP 2007013721 A JP2007013721 A JP 2007013721A JP 2008182809 A JP2008182809 A JP 2008182809A
Authority
JP
Japan
Prior art keywords
battery
voltage
secondary batteries
charging
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007013721A
Other languages
Japanese (ja)
Inventor
Toshiyuki Nakatsuji
俊之 仲辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007013721A priority Critical patent/JP2008182809A/en
Publication of JP2008182809A publication Critical patent/JP2008182809A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery circuit which can perform balance control during not only discharging but also charging, can always make adjustment with a small current before a certain voltage difference occurs to reduce imbalance between secondary batteries and can simplify the processing for the reduction of imbalance, and to provide a battery pack using the battery circuit. <P>SOLUTION: The battery circuit includes a cell unit 14 comprising a plurality of serially connected secondary batteries 141, 142, 143, and resistors R1, R2, R3 each connected in parallel with the plurality of secondary batteries 141, 142, 143. The resistors R1, R2, R3 each connected in parallel with the secondary batteries 141, 142, 143 are made to be substantially the same with each other in the resistance value. The resistance values of the resistors R1, R2, R3 are set so that the currents flowing into respective resistors R1, R2, R3 by, for example, the secondary batteries 141, 142, 143 are made not larger than 50 μA. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、直列接続された複数の二次電池を備える電池回路、及びこれを用いる電池パック、電池システムに関する。   The present invention relates to a battery circuit including a plurality of secondary batteries connected in series, and a battery pack and a battery system using the battery circuit.

図4は、背景技術に係る二次電池の充放電方法によって、複数の二次電池が直列接続された組電池を充放電させた場合の各二次電池、例えば三個の二次電池における各端子電圧α11,α12,α13の変化を示すグラフである。   FIG. 4 shows each secondary battery, for example, each of three secondary batteries, when an assembled battery in which a plurality of secondary batteries are connected in series is charged and discharged by the secondary battery charging and discharging method according to the background art. It is a graph which shows the change of terminal voltage (alpha) 11, (alpha) 12, (alpha) 13.

まず、タイミングT101において、各二次電池の端子電圧α11,α12,α13は、いずれも放電終止電圧Vt(例えば3.0V)で等しく、各二次電池はバランスがとれた状態になっている。ここで、組電池に充電電流を流して充電を行うと、端子電圧α11,α12,α13が徐々に増大する。   First, at timing T101, the terminal voltages α11, α12, and α13 of the secondary batteries are all equal to the discharge end voltage Vt (for example, 3.0 V), and the secondary batteries are in a balanced state. Here, when charging is performed by supplying a charging current to the assembled battery, the terminal voltages α11, α12, and α13 gradually increase.

また、二次電池は、端子電圧が所定の充電終止電圧Vfを超えるまで充電すると、劣化する。そのため、上述のような組電池を充電する場合には、組電池の両端電圧が、充電終止電圧Vf×二次電池の直列数になるように設定されている。充電終止電圧Vfは、二次電池が例えばリチウムイオン電池である場合、一般的には4.2Vであるため、三個の二次電池が直列接続された組電池の場合、組電池の両端電圧が、4.2V×3=12.6Vになるまで充電される。   Further, when the secondary battery is charged until the terminal voltage exceeds a predetermined charge end voltage Vf, the secondary battery deteriorates. Therefore, when charging an assembled battery as described above, the voltage across the assembled battery is set to be the end-of-charge voltage Vf × the number of secondary batteries in series. The end-of-charge voltage Vf is generally 4.2 V when the secondary battery is, for example, a lithium ion battery. Therefore, in the case of an assembled battery in which three secondary batteries are connected in series, the voltage across the assembled battery Is charged to 4.2V × 3 = 12.6V.

ところで、二次電池は、劣化すると内部抵抗が増大するため、複数の二次電池を直列接続してその直列回路の両端に充電電圧を印加すると、内部抵抗の大きい二次電池、すなわち劣化している二次電池の端子電圧が劣化していない他の電池より大きくなるため、充電電圧が各二次電池に均等に分圧されなくなる。例えば、最も劣化が進んでいる二次電池の端子電圧α11が最も高くなり、最も劣化が少ない二次電池の端子電圧α13が最も低くなる。   By the way, since the internal resistance increases when the secondary battery deteriorates, when a plurality of secondary batteries are connected in series and a charging voltage is applied to both ends of the series circuit, a secondary battery having a high internal resistance, that is, deteriorates. Since the terminal voltage of the secondary battery is larger than that of other batteries that are not deteriorated, the charging voltage is not divided equally among the secondary batteries. For example, the terminal voltage α11 of the secondary battery that is most degraded is the highest, and the terminal voltage α13 of the secondary battery that is least degraded is the lowest.

そうすると、図4において充電が終了したタイミングT102において、各二次電池の端子電圧α11,α12,α13は、異なる電圧になって二次電池間のアンバランスが生じてしまう。次に、このようなアンバランスが生じた状態で充電された組電池に負荷を接続して放電させると、劣化が進んでいる二次電池ほど、端子電圧の低下が早くなる。   Then, at the timing T102 when the charging is finished in FIG. 4, the terminal voltages α11, α12, α13 of the respective secondary batteries become different voltages, and an imbalance between the secondary batteries occurs. Next, when a load is connected to the assembled battery that has been charged in a state where such an imbalance has occurred and the battery is discharged, the terminal battery decreases more rapidly as the secondary battery is more deteriorated.

二次電池を放電させる場合、過放電すると二次電池が劣化してしまうため、二次電池を劣化させない程度の電圧が、放電を終了するべき電圧である放電終止電圧Vtとして設定されている。放電終止電圧Vtは、例えばリチウムイオン電池の場合には、一般に3.0V程度の電圧にされている。そして、端子電圧α11,α12,α13のうち、最小の電圧が放電終止電圧Vt=3.0Vまで低下すると、放電を終了するようになっている(タイミングT103)。   When the secondary battery is discharged, if the secondary battery is overdischarged, the secondary battery deteriorates. Therefore, a voltage that does not deteriorate the secondary battery is set as the discharge end voltage Vt that is a voltage at which the discharge should be terminated. For example, in the case of a lithium ion battery, the discharge end voltage Vt is generally set to a voltage of about 3.0V. When the minimum voltage among the terminal voltages α11, α12, and α13 decreases to the discharge end voltage Vt = 3.0 V, the discharge is finished (timing T103).

そうすると、タイミングT103では、最も劣化が進んでいる二次電池の端子電圧α11が最も低く、最も劣化の程度が少ない二次電池の端子電圧α13が最も高くなり、さらに端子電圧α11,α12,α13のアンバランスが拡大してしまう。また、劣化の少ない二次電池の端子電圧α12,α13が放電終止電圧Vtまで低下する前に、最も劣化が進んでいる二次電池の端子電圧α11が放電終止電圧Vtまで低下する結果、放電を終了して負荷への電流供給が停止されてしまうので、劣化の少ない二次電池の電池容量を有効に活用できず、組電池全体の電池容量が低下してしまうという不都合があった。そして、このような充放電動作を繰り返すと、タイミングT104,T105に示すように、他の二次電池よりも劣化が進んでいる二次電池の劣化がますます促進され、端子電圧α11,α12,α13の差が増大してしまうという不都合があった。   Then, at the timing T103, the terminal voltage α11 of the secondary battery that is most deteriorated is the lowest, the terminal voltage α13 of the secondary battery that is least degraded is the highest, and the terminal voltages α11, α12, and α13 are further increased. Unbalance will expand. Further, before the terminal voltages α12 and α13 of the secondary battery with little deterioration are reduced to the discharge end voltage Vt, the terminal voltage α11 of the secondary battery whose deterioration is most advanced is reduced to the discharge end voltage Vt. Since the current supply to the load is stopped after completion, there is a disadvantage that the battery capacity of the secondary battery with little deterioration cannot be effectively used, and the battery capacity of the entire assembled battery is reduced. When such charge and discharge operations are repeated, as shown at timings T104 and T105, the deterioration of the secondary battery, which is more advanced than the other secondary batteries, is further promoted, and the terminal voltages α11, α12, There is a disadvantage that the difference of α13 increases.

そこで、放電用のスイッチング素子と抵抗との直列回路を、各二次電池と並列接続しておき、充電が終了した際に、端子電圧が充電終止電圧Vfを超えている二次電池と並列接続されたスイッチング素子をオンさせて、当該二次電池を強制的に放電させる技術が知られている(例えば、特許文献1参照。)。この技術は、充電終止電圧Vfを超えている二次電池を放電させて端子電圧を低下させることで、複数の二次電池間における端子電圧の差を低減し、組電池を構成する二次電池間のアンバランスを低減するようにしている。   Therefore, a series circuit of a discharging switching element and a resistor is connected in parallel with each secondary battery, and when charging is finished, the terminal voltage is connected in parallel with the secondary battery whose charge exceeds the end-of-charge voltage Vf. A technique is known in which a secondary battery is forcibly discharged by turning on the switching element (for example, see Patent Document 1). This technology discharges a secondary battery that exceeds the end-of-charge voltage Vf to lower the terminal voltage, thereby reducing a difference in terminal voltage among a plurality of secondary batteries, and forming a secondary battery. The imbalance between them is reduced.

図5は、充電が終了した際に、端子電圧が充電終止電圧Vfを超えている二次電池と並列接続されたスイッチング素子をオンさせて、強制的に放電させて端子電圧を低下させることで、複数の二次電池間における端子電圧の差を低減するようにした場合の端子電圧α11,α12,α13の変化を示すグラフである。   FIG. 5 shows that when charging is completed, the switching element connected in parallel with the secondary battery whose terminal voltage exceeds the charging end voltage Vf is turned on to forcibly discharge and decrease the terminal voltage. FIG. 6 is a graph showing changes in terminal voltages α11, α12, and α13 when a difference in terminal voltages among a plurality of secondary batteries is reduced.

図5に示すように、充電が終了した際(タイミングT202)に、端子電圧が充電終止電圧Vfを超えている二次電池(端子電圧α11)と並列接続されたスイッチング素子をオンさせて、バランス調整のために強制的に放電させて端子電圧α11を低下させることで、各二次電池における端子電圧α11,α12,α13の差が低減される(タイミングT203)。
特開2005−176520号公報
As shown in FIG. 5, when charging is completed (timing T202), the switching element connected in parallel with the secondary battery (terminal voltage α11) whose terminal voltage exceeds the charging end voltage Vf is turned on and balanced. By forcibly discharging for adjustment and reducing the terminal voltage α11, the difference between the terminal voltages α11, α12, and α13 in each secondary battery is reduced (timing T203).
JP 2005-176520 A

しかしながら、特許文献1に記載の技術では、端子電圧が充電終止電圧Vfを超えている二次電池に並列接続されたスイッチング素子をオンさせて、当該二次電池を、抵抗を介して短絡させた状態で放電させるため、放電時に行うと駆動容量を実質的に減らすことになるという、不都合があった。また、二次電池間のアンバランスを低減するために、各二次電池の端子電圧を検出し、充電終止電圧Vfを超えている二次電池を選択的に放電させる必要があるので、アンバランス低減のための処理が複雑化するという不都合があった。   However, in the technique described in Patent Document 1, a switching element connected in parallel to a secondary battery whose terminal voltage exceeds the end-of-charge voltage Vf is turned on, and the secondary battery is short-circuited via a resistor. Since discharging is performed in a state, the driving capacity is substantially reduced if it is performed during discharging. Further, in order to reduce the unbalance between the secondary batteries, it is necessary to detect the terminal voltage of each secondary battery and selectively discharge the secondary battery exceeding the charge end voltage Vf. There is an inconvenience that processing for reduction becomes complicated.

本発明は、このような事情に鑑みて為された発明であり、充電中はもちろん放電中でもバランス制御が可能で、ある程度の電圧差が生じる前に常に小さな電流で調整することにより、各二次電池間のアンバランスを低減することができると共に、アンバランス低減のための処理を簡素化することができる電池回路、及びこれを用いる電池パックを提供することを目的とする。   The present invention was devised in view of such circumstances, and balance control is possible during charging as well as during charging, and each secondary is adjusted by always adjusting with a small current before a certain voltage difference occurs. An object of the present invention is to provide a battery circuit capable of reducing unbalance between batteries and simplifying processing for reducing unbalance, and a battery pack using the battery circuit.

本発明に係る電池回路は、複数の二次電池が直列接続された組電池と、前記組電池の両端の電圧を負荷駆動用の電圧として出力すると共に充電用の電圧を受電して前記組電池の両端に印加する導電部と、前記複数の二次電池の各々に並列接続された複数のアンバランス低減用抵抗とを備え、前記各アンバランス低減用抵抗の抵抗値は、互いに実質的に同一である。   The battery circuit according to the present invention includes an assembled battery in which a plurality of secondary batteries are connected in series, and outputs a voltage at both ends of the assembled battery as a load driving voltage and receives a charging voltage to receive the assembled battery. And a plurality of unbalance reduction resistors connected in parallel to each of the plurality of secondary batteries, and the resistance values of the unbalance reduction resistors are substantially the same as each other. It is.

この構成によれば、複数の二次電池が直列接続された組電池の両端の電圧が負荷駆動用の電圧として用いられることで組電池が放電し、充電用の電圧が組電池の両端に印加されることで組電池が充電されるので、そのままでは各二次電池間のアンバランスが生じ易い。しかし、複数の二次電池に抵抗値が実質的に同一の抵抗がそれぞれ並列接続されているので、各抵抗に流れる電流は、並列接続された二次電池の端子電圧が高いほど増大し、端子電圧が高いほど二次電池の放電電流が増大して端子電圧の低下速度が増大される結果、各二次電池の端子電圧の差が低減されて各二次電池間のアンバランスが低減される。この場合、背景技術に記載の技術のように、各二次電池の端子電圧を検出し、端子電圧の高い二次電池と並列接続されたスイッチング素子を選択的にオンさせて放電させるといったような処理を行う必要がないので、アンバランス低減のための処理を簡素化することができる。また、背景技術に記載の技術のように、直列接続された二次電池のうち一部を抵抗を介して短絡させた状態で放電させるために、組電池の出力電圧が低下して負荷に駆動電圧を供給できなくなる、ということがなく、充電中はもちろん放電中でもバランス制御が可能で、ある程度の電圧差が生じる前に常に小さな電流で調整することにより、各二次電池間のアンバランスを低減することができる。   According to this configuration, the assembled battery is discharged by using the voltage at both ends of the assembled battery in which a plurality of secondary batteries are connected in series as the voltage for driving the load, and the charging voltage is applied to both ends of the assembled battery. As a result, the assembled battery is charged, so that an unbalance between the secondary batteries tends to occur as it is. However, since resistors having substantially the same resistance value are connected in parallel to the plurality of secondary batteries, the current flowing through each resistor increases as the terminal voltage of the secondary batteries connected in parallel increases. As the voltage increases, the discharge current of the secondary battery increases and the terminal voltage decrease rate increases. As a result, the difference in the terminal voltage of each secondary battery is reduced and the unbalance between the secondary batteries is reduced. . In this case, as in the technique described in the background art, the terminal voltage of each secondary battery is detected, and the switching element connected in parallel with the secondary battery having a high terminal voltage is selectively turned on and discharged. Since there is no need to perform processing, processing for reducing imbalance can be simplified. In addition, as in the technology described in the background art, in order to discharge a part of the series-connected secondary batteries in a short-circuited state through a resistor, the output voltage of the assembled battery is lowered and driven to the load. The balance can be controlled during charging as well as during discharging, without being unable to supply voltage, and by always adjusting with a small current before a certain voltage difference occurs, the unbalance between each secondary battery is reduced. can do.

また、前記各アンバランス低減用抵抗の抵抗値は、前記二次電池によってそれぞれ流される電流が50μA以下となるように設定されていることが好ましい。   In addition, it is preferable that the resistance value of each of the unbalance reduction resistors is set so that the current flowing through the secondary battery is 50 μA or less.

この構成によれば、各抵抗によって放電される電流は、50μA以下とされ、電池搭載機器の待機状態における消費電流と同程度以下となるので、アンバランスを低減するための放電で、電池搭載機器の二次電池による駆動時間を過度に短縮するおそれが低減される。   According to this configuration, the current discharged by each resistor is 50 μA or less, which is about the same as the current consumption in the standby state of the battery-equipped device. The risk of excessively shortening the drive time of the secondary battery is reduced.

また、前記複数の二次電池には、それぞれキャパシタが並列接続されていることが好ましい。この構成によれば、負荷電流の変動がキャパシタによって吸収されるので、急峻な負荷変動に対する応答性を向上させつつ、アンバランス低減用の抵抗により各キャパシタの端子電圧をバランスさせることが容易となる。   Moreover, it is preferable that a capacitor is connected in parallel to each of the plurality of secondary batteries. According to this configuration, since the load current fluctuation is absorbed by the capacitor, it is easy to balance the terminal voltage of each capacitor by the resistance for unbalance reduction while improving the response to the steep load fluctuation. .

また、本発明に係る電池パックは、上述の電池回路を備えている。この構成によれば、電池パック内部で、各二次電池間のアンバランスを低減することができる。   The battery pack according to the present invention includes the battery circuit described above. According to this configuration, the imbalance between the secondary batteries can be reduced inside the battery pack.

また、本発明に係る電池システムは、上述の電池回路と、前記導電部へ前記充電用の電圧を供給することにより、前記組電池を充電する充電回路とを備えている。この構成によれば、充電回路により供給された充電用の電圧が、導電部によって組電池の両端に印加され、そのままでは各二次電池間のアンバランスが生じ易い。しかし、複数の二次電池に抵抗値が実質的に同一の抵抗がそれぞれ並列接続されているので、各抵抗に流れる電流は、並列接続された二次電池の端子電圧が高いほど増大し、端子電圧が高いほど二次電池の放電電流が増大して端子電圧の低下速度が増大される結果、各二次電池の端子電圧の差が低減されて各二次電池間のアンバランスが低減される。   The battery system according to the present invention includes the battery circuit described above and a charging circuit that charges the assembled battery by supplying the charging voltage to the conductive portion. According to this configuration, the charging voltage supplied by the charging circuit is applied to both ends of the assembled battery by the conductive portion, and an unbalance between the secondary batteries tends to occur as it is. However, since resistors having substantially the same resistance value are connected in parallel to the plurality of secondary batteries, the current flowing through each resistor increases as the terminal voltage of the secondary batteries connected in parallel increases. As the voltage increases, the discharge current of the secondary battery increases and the terminal voltage decrease rate increases. As a result, the difference in the terminal voltage of each secondary battery is reduced and the unbalance between the secondary batteries is reduced. .

このような構成の電池回路、電池パック、及び電池システムでは、各抵抗に流れる電流は、並列接続された二次電池の端子電圧が高いほど増大するので、端子電圧が高いほど二次電池の放電電流が増大して端子電圧の低下速度が増大される結果、各二次電池の端子電圧の差が低減されて各二次電池間のアンバランスが低減される。この場合、背景技術に記載の技術のように、各二次電池の端子電圧を検出し、端子電圧の高い二次電池と並列接続されたスイッチング素子をオンさせて放電させるといったような処理を行う必要がないので、アンバランス低減のための処理を簡素化することができる。また、背景技術に記載の技術のように、直列接続された二次電池のうち一部を抵抗を介して短絡させた状態で放電させるために、組電池の出力電圧が低下して負荷に駆動電圧を供給できなくなる、ということがなく、充電中はもちろん放電中でもバランス制御が可能で、ある程度の電圧差が生じる前に常に小さな電流で調整することにより、各二次電池間のアンバランスを低減することができる。   In the battery circuit, the battery pack, and the battery system having such a configuration, the current flowing through each resistor increases as the terminal voltage of the secondary battery connected in parallel increases, so that the discharge of the secondary battery increases as the terminal voltage increases. As a result of increasing the current and increasing the terminal voltage decrease rate, the difference in the terminal voltage of each secondary battery is reduced and the imbalance between the secondary batteries is reduced. In this case, as in the technique described in the background art, the terminal voltage of each secondary battery is detected, and the switching element connected in parallel with the secondary battery having a high terminal voltage is turned on and discharged. Since there is no need, it is possible to simplify the process for reducing imbalance. In addition, as in the technology described in the background art, in order to discharge a part of the series-connected secondary batteries in a short-circuited state through a resistor, the output voltage of the assembled battery is lowered and driven to the load. The balance can be controlled during charging as well as during discharging, without being unable to supply voltage, and by always adjusting with a small current before a certain voltage difference occurs, the unbalance between each secondary battery is reduced. can do.

以下、本発明に係る実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る電池回路5を用いる電池パック2を充電する電池システム1の構成の一例を示すブロック図である。この電池システム1は、電池パック2と、それを充電する充電装置3とを備えて構成される。なお、電池パック2と充電装置3とに分離されている必要はなく、図1に示す電池パック2と充電装置3とが一体の電池システムとして構成されていてもよい。また、電池パック2から給電が行われる負荷回路4をさらに含めて電池回路5を備えた電気機器システムとして電池システムが構成されてもよい。また、電池パック2は、図1では充電装置3から充電が行われるけれども、電池パック2が負荷回路4に装着されて、負荷回路4を通して充電が行われてもよい。電池パック2および充電装置3は、給電を行う直流ハイ側の端子T11,T21と、通信信号の端子T12,T22と、給電および通信信号のためのGND端子T13,T23とによって相互に接続される。電池パック2が負荷回路4に装着される場合も、同様の端子が設けられる。   Embodiments according to the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram illustrating an example of a configuration of a battery system 1 that charges a battery pack 2 that uses a battery circuit 5 according to an embodiment of the present invention. The battery system 1 includes a battery pack 2 and a charging device 3 that charges the battery pack 2. The battery pack 2 and the charging device 3 do not have to be separated, and the battery pack 2 and the charging device 3 shown in FIG. 1 may be configured as an integrated battery system. Further, the battery system may be configured as an electric equipment system including the battery circuit 5 including the load circuit 4 that is fed from the battery pack 2. Further, although the battery pack 2 is charged from the charging device 3 in FIG. 1, the battery pack 2 may be attached to the load circuit 4 and charged through the load circuit 4. The battery pack 2 and the charging device 3 are connected to each other by DC high-side terminals T11 and T21 that supply power, communication signal terminals T12 and T22, and GND terminals T13 and T23 for power supply and communication signals. . Similar terminals are also provided when the battery pack 2 is attached to the load circuit 4.

充電装置3の端子T21,T23は、負荷回路4に接続されており、組電池14から供給された電流が、スイッチング素子12、充電経路11、端子T11,T21を介して負荷回路4へ供給されるようになっている。負荷回路4は、電池パック2からの供給電力により駆動される電気機器の負荷回路であり、例えば図略の電気機器の電源スイッチがオンすることにより、電池パック2から負荷回路4へ、負荷回路4の駆動電流が供給されるようになっている。   The terminals T21 and T23 of the charging device 3 are connected to the load circuit 4, and the current supplied from the assembled battery 14 is supplied to the load circuit 4 via the switching element 12, the charging path 11, and the terminals T11 and T21. It has become so. The load circuit 4 is a load circuit of an electric device driven by power supplied from the battery pack 2. For example, when a power switch of an electric device (not shown) is turned on, the load circuit is transferred from the battery pack 2 to the load circuit 4. 4 drive current is supplied.

電池パック2は、スイッチング素子12と、電池回路5と、電流検出抵抗16と、温度センサ17と、制御IC(Integrated Circuit)18と、電圧検出回路20と、端子T11,T12,T13とを備えている。スイッチング素子12としては、FET(Field Effect Transistor)等の半導体スイッチング素子や、リレースイッチ等のスイッチング素子が用いられる。また、制御IC18は、アナログ/デジタル変換器19、制御部21、及び通信部22を備えている。   The battery pack 2 includes a switching element 12, a battery circuit 5, a current detection resistor 16, a temperature sensor 17, a control IC (Integrated Circuit) 18, a voltage detection circuit 20, and terminals T11, T12, and T13. ing. As the switching element 12, a semiconductor switching element such as an FET (Field Effect Transistor) or a switching element such as a relay switch is used. The control IC 18 includes an analog / digital converter 19, a control unit 21, and a communication unit 22.

そして、電池パック2内で、端子T11から延びる直流ハイ側の充電経路11(導電部)には、スイッチング素子12が介在されており、その充電経路11が、二次電池141,142,143からなる組電池14のハイ側端子に接続される。組電池14のロー側端子は、直流ロー側の充電経路15(導電部)を介してGND端子T13に接続され、この充電経路15には、充電電流および放電電流を電圧値に変換する電流検出抵抗16が介在されている。   In the battery pack 2, the switching element 12 is interposed in the DC high-side charging path 11 (conductive portion) extending from the terminal T <b> 11, and the charging path 11 is connected to the secondary batteries 141, 142, and 143. Connected to the high-side terminal of the assembled battery 14. The low-side terminal of the assembled battery 14 is connected to the GND terminal T13 via the DC low-side charging path 15 (conductive portion). The charging path 15 has a current detection for converting charging current and discharging current into voltage values. A resistor 16 is interposed.

電池回路5は、直列に接続された複数の二次電池141,142,143と、二次電池141,142,143にそれぞれ並列接続された抵抗R1,R2,R3とを備えている。また、抵抗R1,R2,R3の抵抗値は、互いに実質的に同一にされている。また、二次電池141,142,143は、例えばリチウムイオン電池であり、二次電池141,142,143の直列回路によって、組電池14が構成されている。   The battery circuit 5 includes a plurality of secondary batteries 141, 142, and 143 connected in series, and resistors R1, R2, and R3 connected in parallel to the secondary batteries 141, 142, and 143, respectively. The resistance values of the resistors R1, R2, and R3 are substantially the same. Moreover, the secondary batteries 141, 142, and 143 are, for example, lithium ion batteries, and the assembled battery 14 is configured by a series circuit of the secondary batteries 141, 142, and 143.

なお、実質的に同一、とは、同一の範囲に製造ばらつきや誤差の範囲を含む意味である。また、二次電池141,142,143は、必ずしも単体の二次電池に限られず、例えば複数の二次電池が並列接続されたものであってもよい。   Note that “substantially the same” means that the same range includes a range of manufacturing variations and errors. Further, the secondary batteries 141, 142, and 143 are not necessarily limited to a single secondary battery, and for example, a plurality of secondary batteries may be connected in parallel.

抵抗R1,R2,R3は、二次電池141,142,143によって、それぞれ流される電流が例えば50μA以下となるように、抵抗値が設定されており、例えば、100kΩ〜1MΩ程度の抵抗値が設定されている。抵抗R1,R2,R3の抵抗値が100kΩ〜1MΩの範囲内であれば、二次電池141,142,143の各出力電圧Vb1,Vb2,Vb3が例えば4.2Vであった場合、抵抗R1,R2,R3を流れる電流は、42μA〜4.2μAとなり、50μA以下となる。   The resistance values of the resistors R1, R2, and R3 are set so that the currents flowing by the secondary batteries 141, 142, and 143 are, for example, 50 μA or less, for example, resistance values of about 100 kΩ to 1 MΩ are set. Has been. If the resistance values of the resistors R1, R2, and R3 are in the range of 100 kΩ to 1 MΩ, when the output voltages Vb1, Vb2, and Vb3 of the secondary batteries 141, 142, and 143 are 4.2 V, for example, the resistors R1, The current flowing through R2 and R3 is 42 μA to 4.2 μA, and is 50 μA or less.

電池で駆動される電子機器の場合、ユーザが電子機器を使用していない場合であっても、時計を動作させたり、液晶表示を行ったりといった待機動作をさせるために、数十μA程度の消費電流が電池から放電していることが、少なくない。そうすると、抵抗R1,R2,R3を流れる電流が50μA以下であれば、電子機器の待機動作における消費電流と同程度であるため、二次電池141,142,143によって電子機器を駆動できる時間が短縮されるというような影響はほとんど無いと考えられる。   In the case of an electronic device driven by a battery, even when the user is not using the electronic device, a consumption of about several tens of μA is required to perform a standby operation such as operating a clock or performing a liquid crystal display. Often, current is discharged from the battery. Then, if the current flowing through the resistors R1, R2, and R3 is 50 μA or less, the current consumption is the same as the current consumption in the standby operation of the electronic device, so the time that the electronic device can be driven by the secondary batteries 141, 142, and 143 is shortened. It is thought that there is almost no influence such as being done.

二次電池141,142,143の温度は温度センサ17によって検出され、制御IC18内のアナログ/デジタル変換器19に入力される。また、二次電池141,142,143の各端子電圧Vb1,Vb2,Vb3は電圧検出回路20によってそれぞれ読取られ、制御IC18内のアナログ/デジタル変換器19に入力される。さらにまた、電流検出抵抗16によって検出された電流値も、制御IC18内のアナログ/デジタル変換器19に入力される。アナログ/デジタル変換器19は、各入力値をデジタル値に変換して、制御部21へ出力する。   The temperatures of the secondary batteries 141, 142, and 143 are detected by the temperature sensor 17 and input to the analog / digital converter 19 in the control IC 18. The terminal voltages Vb1, Vb2, and Vb3 of the secondary batteries 141, 142, and 143 are read by the voltage detection circuit 20 and input to the analog / digital converter 19 in the control IC 18. Furthermore, the current value detected by the current detection resistor 16 is also input to the analog / digital converter 19 in the control IC 18. The analog / digital converter 19 converts each input value into a digital value and outputs the digital value to the control unit 21.

制御部21は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、これらの周辺回路等とを備えて構成されている。   The control unit 21 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random Access Memory) that temporarily stores data. And these peripheral circuits and the like.

そして、制御部21は、ROMに記憶された制御プログラムを実行することにより、アナログ/デジタル変換器19からの各入力値に応答して、充電装置3に対して、出力を指示する充電電流の電圧値、電流値を演算し、その演算結果を通信部22から端子T12,T22;T13,T23を介して充電装置3へ送信することで、充電装置3によって、組電池14を充電させる。   Then, the control unit 21 executes the control program stored in the ROM, thereby responding to each input value from the analog / digital converter 19 to the charging current that instructs the charging device 3 to output. The voltage value and the current value are calculated, and the calculation results are transmitted from the communication unit 22 to the charging device 3 via the terminals T12 and T22; T13 and T23, whereby the assembled battery 14 is charged by the charging device 3.

また、制御部21は、アナログ/デジタル変換器19からの各入力値から、端子T11,T13間の短絡や充電装置3からの異常電流などの電池パック2の外部における異常や、組電池14の異常な温度上昇などを検出し、スイッチング素子12をオフするなどの保護動作を行う。   Further, the control unit 21 detects an abnormality outside the battery pack 2 such as a short circuit between the terminals T <b> 11 and T <b> 13 or an abnormal current from the charging device 3 based on each input value from the analog / digital converter 19, An abnormal temperature rise or the like is detected, and a protective operation such as turning off the switching element 12 is performed.

充電装置3では、前記の指示を、制御IC30において、通信手段である通信部32で受信し、充電制御部31が充電電流供給回路33(充電部)を制御して、前記の電圧値、電流値、およびパルス幅で、充電電流を供給させる。充電電流供給回路33は、AC−DCコンバータやDC−DCコンバータなどから成り、入力電圧を、充電制御部31から指示された電圧値、電流値、およびパルス幅に変換して、端子T21,T11;T23,T13を介して、充電経路11,15へ供給する。   In the charging device 3, the instruction is received by the communication unit 32 that is a communication unit in the control IC 30, and the charging control unit 31 controls the charging current supply circuit 33 (charging unit) so that the voltage value, current The charging current is supplied with the value and the pulse width. The charging current supply circuit 33 includes an AC-DC converter, a DC-DC converter, and the like, converts an input voltage into a voltage value, a current value, and a pulse width that are instructed from the charging control unit 31, and is connected to terminals T21 and T11. Supply to charging paths 11 and 15 via T23 and T13.

なお、制御部21を電池パック2に備える例に限られず、充電装置3に制御部21を備えるようにしてもよい。また、制御部21を電池パック2と充電装置3で分担して備えるようにしてもよい。   Note that the control unit 21 is not limited to the example provided in the battery pack 2, and the charging device 3 may include the control unit 21. Further, the control unit 21 may be shared by the battery pack 2 and the charging device 3.

次に、上述のように構成された電池回路5を用いる電池パック2、及びこれを充電する電池システム1の動作について説明する。図2は、図1に示す電池システム1の動作の一例を示す説明図である。まず、例えば充電装置3に電池パック2が接続された場合等、制御部21によってスイッチング素子12がオンされると共に、制御部21から所定の電流、電圧で充電を開始させる旨の指示が、通信部22、端子T12,T22、及び通信部32を介して充電制御部31へ送信され、充電が開始される(タイミングT1)。   Next, the operation of the battery pack 2 using the battery circuit 5 configured as described above and the battery system 1 for charging the battery pack 2 will be described. FIG. 2 is an explanatory diagram showing an example of the operation of the battery system 1 shown in FIG. First, for example, when the battery pack 2 is connected to the charging device 3, the switching unit 12 is turned on by the control unit 21, and an instruction to start charging with a predetermined current and voltage is received from the control unit 21. The data is transmitted to the charging control unit 31 via the unit 22, the terminals T12 and T22, and the communication unit 32, and charging is started (timing T1).

そうすると、充電制御部31からの制御信号に応じて、制御部21からの指示に応じた電流、電圧で、充電電流供給回路33から端子T21,T11、充電経路11、及びスイッチング素子12を介して組電池14へ充電電流が供給される。そして、二次電池141,142,143が充電されるにつれて、端子電圧Vb1,Vb2,Vb3が上昇する。   Then, according to the control signal from the charging control unit 31, the current and voltage according to the instruction from the control unit 21, from the charging current supply circuit 33 through the terminals T 21 and T 11, the charging path 11, and the switching element 12. A charging current is supplied to the assembled battery 14. As the secondary batteries 141, 142, and 143 are charged, the terminal voltages Vb1, Vb2, and Vb3 increase.

タイミングT1においては、端子電圧Vb1,Vb2,Vb3は、例えばいずれも放電終止電圧Vt(例えば3.0V)で等しい電圧になっており、二次電池141,142,143のバランスがとれた状態になっている。   At the timing T1, the terminal voltages Vb1, Vb2, and Vb3 are all equal to, for example, the discharge end voltage Vt (for example, 3.0 V), and the secondary batteries 141, 142, and 143 are in a balanced state. It has become.

ところで、二次電池141,142,143の劣化の程度が異なっていると、劣化が進んでいる二次電池ほど、内部抵抗が大きく、端子電圧の上昇が大きい。そのため、仮に抵抗R1,R2,R3が無かったとすれば、二次電池141,142,143が充電されるにつれて、二次電池141,142,143の劣化の程度に応じて端子電圧Vb1,Vb2,Vb3に差が生じ、例えば二次電池141,142,143の順に劣化が進んでいるとすると、最も劣化の進んでいる二次電池141の端子電圧Vb1が最も電圧が高くなり、最も劣化の少ない二次電池143の端子電圧Vb3が最も電圧が低くなる。   By the way, when the degree of deterioration of the secondary batteries 141, 142, and 143 is different, the secondary battery that is more deteriorated has a larger internal resistance and a higher terminal voltage. Therefore, if the resistors R1, R2, and R3 are not present, the terminal voltages Vb1, Vb2, and the secondary batteries 141, 142, and 143 depend on the degree of deterioration of the secondary batteries 141, 142, and 143 as the secondary batteries 141, 142, and 143 are charged. If there is a difference in Vb3 and, for example, the deterioration is progressing in the order of the secondary batteries 141, 142, and 143, the terminal voltage Vb1 of the secondary battery 141 that is most deteriorated has the highest voltage and the least deterioration. The terminal voltage Vb3 of the secondary battery 143 has the lowest voltage.

しかしながら、図1に示す電池回路5は、抵抗値が実質的に同一の抵抗R1,R2,R3が、二次電池141,142,143とそれぞれ並列に接続されている。そうすると、抵抗R1,R2,R3に流れる電流は、それぞれ並列接続された二次電池141,142,143の端子電圧Vb1,Vb2,Vb3が高いほど増大するので、端子電圧が高いほど二次電池の放電電流が増大して充電による端子電圧の上昇速度が低下される結果、端子電圧Vb1,Vb2,Vb3が略等しい状態が維持されたまま、すなわち二次電池141,142,143間のアンバランスが低減された状態のまま、充電が行われる。   However, in the battery circuit 5 shown in FIG. 1, resistors R1, R2, and R3 having substantially the same resistance value are connected in parallel with the secondary batteries 141, 142, and 143, respectively. As a result, the currents flowing through the resistors R1, R2, and R3 increase as the terminal voltages Vb1, Vb2, and Vb3 of the secondary batteries 141, 142, and 143 connected in parallel respectively increase. Therefore, as the terminal voltage increases, the current of the secondary battery increases. As a result of the increase in the discharge current and the decrease in the terminal voltage increase rate due to charging, the terminal voltages Vb1, Vb2, and Vb3 remain substantially equal, that is, there is an unbalance between the secondary batteries 141, 142, and 143. Charging is performed in a reduced state.

この場合、二次電池141,142,143間のアンバランスは、抵抗R1,R2,R3によって自動的に低減されるので、アンバランス低減のための処理を簡素化することができる。   In this case, since the unbalance between the secondary batteries 141, 142, and 143 is automatically reduced by the resistors R1, R2, and R3, the process for reducing the unbalance can be simplified.

なお、図2では、一定の電流を組電池14に供給する定電流(CC)充電の場合の端子電圧Vb1,Vb2,Vb3の変化を例に記載しているが、充電方法には限定されず、一定の電圧で充電を行う定電圧(CV)充電、定電流(CC)充電から定電圧(CV)充電に切り替える定電流定電圧(CCCV)充電、パルス状に充電電流を供給するパルス充電、微少電流により充電を行うトリクル充電等、種々の充電方式を用いることができる。また、負荷回路4へ負荷電流を供給しながら組電池14を充電する構成であってもよい。   In FIG. 2, the change in the terminal voltages Vb1, Vb2, and Vb3 in the case of constant current (CC) charging for supplying a constant current to the assembled battery 14 is described as an example, but the charging method is not limited. , Constant voltage (CV) charging for charging at a constant voltage, constant current constant voltage (CCCV) charging for switching from constant current (CC) charging to constant voltage (CV) charging, pulse charging for supplying charging current in pulses, Various charging methods such as trickle charging for charging with a minute current can be used. Alternatively, the battery pack 14 may be charged while supplying a load current to the load circuit 4.

そして、例えば電圧検出回路20によって検出され、アナログ/デジタル変換器19で得られた組電池14の端子電圧Vbが、充電終止電圧Vfに二次電池の直列数を乗じた電圧、例えば4.2V×3=12.6Vになると、制御部21によって、充電電流の供給を停止すべき旨の指示が通信部22、端子T12,T22、及び通信部32を介して充電制御部31へ送信され、充電制御部31によって充電電流供給回路33の出力電流がゼロにされて、充電が終了する(タイミングT2)。   For example, the terminal voltage Vb of the assembled battery 14 detected by the voltage detection circuit 20 and obtained by the analog / digital converter 19 is a voltage obtained by multiplying the end-of-charge voltage Vf by the series number of secondary batteries, for example, 4.2 V. When x3 = 12.6V, the control unit 21 transmits an instruction to stop supplying the charging current to the charging control unit 31 via the communication unit 22, the terminals T12 and T22, and the communication unit 32. The charging control unit 31 sets the output current of the charging current supply circuit 33 to zero, and charging ends (timing T2).

なお、組電池14の端子電圧Vbが、充電終止電圧Vfに二次電池の直列数を乗じた電圧(例えば4.2V×3=12.6V)に達した場合に充電を終了させる例に限られず、端子電圧Vb1,Vb2,Vb3のうちの最大電圧が充電終止電圧Vf(例えば4.2V)に達したときに充電を終了させることで、二次電池141,142,143の劣化を低減するようにしてもよい。   It should be noted that the charging is terminated only when the terminal voltage Vb of the assembled battery 14 reaches a voltage (for example, 4.2 V × 3 = 12.6 V) obtained by multiplying the charging end voltage Vf by the number of secondary batteries in series. Therefore, when the maximum voltage among the terminal voltages Vb1, Vb2, and Vb3 reaches the charge end voltage Vf (for example, 4.2V), the charging is terminated, thereby reducing the deterioration of the secondary batteries 141, 142, and 143. You may do it.

タイミングT2においては、二次電池141,142,143のアンバランスは、抵抗R1,R2,R3によって自動的に低減されているので、端子電圧Vb1,Vb2,Vb3の差はほとんど生じず、二次電池141,142,143のアンバランスが低減される。   At the timing T2, the unbalance of the secondary batteries 141, 142, and 143 is automatically reduced by the resistors R1, R2, and R3, so that there is almost no difference between the terminal voltages Vb1, Vb2, and Vb3. The unbalance of the batteries 141, 142, 143 is reduced.

次に、例えば負荷回路4の図略の電源スイッチがオンされると、組電池14から供給された電流が、スイッチング素子12、充電経路11、端子T11,T21を介して負荷回路4へ供給され、組電池14、すなわち二次電池141,142,143が放電する。そうすると、端子電圧Vb1,Vb2,Vb3は、二次電池141,142,143の放電に応じて徐々に低下する。   Next, for example, when a power switch (not shown) of the load circuit 4 is turned on, the current supplied from the assembled battery 14 is supplied to the load circuit 4 via the switching element 12, the charging path 11, and the terminals T11 and T21. The assembled battery 14, that is, the secondary batteries 141, 142, and 143 are discharged. Then, the terminal voltages Vb1, Vb2, and Vb3 are gradually decreased according to the discharge of the secondary batteries 141, 142, and 143.

二次電池141,142,143が放電する過程においては、劣化が進んでいる二次電池ほど、電圧の低下が早い。そのため、仮に抵抗R1,R2,R3が無かったとすれば、劣化が進んでいる二次電池ほど端子電圧が低くなり、二次電池141,142,143間にアンバランスが生じる。   In the process of discharging the secondary batteries 141, 142, and 143, the voltage of the secondary battery whose deterioration has progressed decreases more quickly. Therefore, if there is no resistance R1, R2, R3, the terminal voltage becomes lower as the secondary battery is more deteriorated, and an imbalance occurs between the secondary batteries 141, 142, and 143.

しかしながら、図1に示す電池回路5は、抵抗値が実質的に同一の抵抗R1,R2,R3が、二次電池141,142,143とそれぞれ並列に接続されている。そうすると、抵抗R1,R2,R3に流れる電流は、それぞれ並列接続された二次電池141,142,143の端子電圧Vb1,Vb2,Vb3が高いほど増大するので、端子電圧が高いほど二次電池の放電電流が増大して端子電圧の低下速度が増大する結果、端子電圧Vb1,Vb2,Vb3が略等しい状態が維持されたまま、すなわち二次電池141,142,143間のアンバランスが低減された状態のまま、放電、すなわち負荷回路4への駆動電圧の供給が行われる。この場合、二次電池141,142,143間のアンバランスは、抵抗R1,R2,R3によって自動的に低減されるので、アンバランス低減のための処理を簡素化することができる。   However, in the battery circuit 5 shown in FIG. 1, resistors R1, R2, and R3 having substantially the same resistance value are connected in parallel with the secondary batteries 141, 142, and 143, respectively. As a result, the currents flowing through the resistors R1, R2, and R3 increase as the terminal voltages Vb1, Vb2, and Vb3 of the secondary batteries 141, 142, and 143 connected in parallel respectively increase. Therefore, as the terminal voltage increases, the current of the secondary battery increases. As a result of the increase in the discharge current and the decrease in the terminal voltage, the terminal voltages Vb1, Vb2, and Vb3 remain substantially equal, that is, the unbalance between the secondary batteries 141, 142, and 143 is reduced. In the state, discharge, that is, supply of the drive voltage to the load circuit 4 is performed. In this case, since the unbalance between the secondary batteries 141, 142, and 143 is automatically reduced by the resistors R1, R2, and R3, the process for reducing the unbalance can be simplified.

また、抵抗R1,R2,R3は、常時二次電池141,142,143に接続されているので、負荷に駆動電圧を供給しながら二次電池141,142,143間のアンバランスを低減することができる。   Further, since the resistors R1, R2, and R3 are always connected to the secondary batteries 141, 142, and 143, the unbalance between the secondary batteries 141, 142, and 143 can be reduced while supplying the drive voltage to the load. Can do.

そして、アナログ/デジタル変換器19によって得られた端子電圧Vb1,Vb2,Vb3のうち、最も電圧が低い端子電圧が放電終止電圧Vtに達すると、制御部21によって、組電池14の過放電を防止するべくスイッチング素子12がオフされて放電が停止される(タイミングT3)。なお、端子電圧Vb1,Vb2,Vb3のうち、最も電圧が低い端子電圧が放電終止電圧Vtに達したときに放電を停止する例に限られず、例えば、組電池14の端子電圧Vbが、放電終止電圧Vtに二次電池の直列数を乗じた値以下になったときに、放電を停止するようにしてもよい。   When the lowest terminal voltage among the terminal voltages Vb1, Vb2, and Vb3 obtained by the analog / digital converter 19 reaches the discharge end voltage Vt, the controller 21 prevents overdischarge of the assembled battery 14. Accordingly, the switching element 12 is turned off and the discharge is stopped (timing T3). The terminal voltage Vb1, Vb2, Vb3 is not limited to the example in which the discharge is stopped when the lowest terminal voltage reaches the discharge end voltage Vt. For example, the terminal voltage Vb of the assembled battery 14 is not discharged. Discharging may be stopped when the voltage Vt is equal to or lower than the value obtained by multiplying the number of secondary batteries in series.

タイミングT3においては、二次電池141,142,143のアンバランスは、抵抗R1,R2,R3によって自動的に低減されているので、端子電圧Vb1,Vb2,Vb3の差はほとんど生じず、二次電池141,142,143のアンバランスが低減される。   At the timing T3, the unbalance of the secondary batteries 141, 142, and 143 is automatically reduced by the resistors R1, R2, and R3. Therefore, the difference between the terminal voltages Vb1, Vb2, and Vb3 hardly occurs, and the secondary battery The unbalance of the batteries 141, 142, 143 is reduced.

そして、タイミングT1〜T3と同様の充放電処理を繰り返した場合(タイミングT3〜T5)であっても、常時、二次電池141,142,143のアンバランスは、抵抗R1,R2,R3によって自動的に低減されるので、図4、図5に示す背景技術のように、組電池の充放電を繰り返すことで各二次電池の端子電圧の差が累積的に増大することが低減される。   And even when the same charging / discharging process as timing T1-T3 is repeated (timing T3-T5), the imbalance of the secondary batteries 141, 142, 143 is always automatically performed by the resistors R1, R2, R3. Therefore, as in the background art shown in FIGS. 4 and 5, it is possible to reduce the cumulative increase in the terminal voltage difference between the secondary batteries by repeatedly charging and discharging the assembled battery.

なお、近年、静電容量が大きい例えば電気二重層コンデンサ等のキャパシタを、組電池を構成する各二次電池と並列接続することにより、急峻な負荷変動に対する応答性を向上させたシステムが注目されている。そこで、例えば図3に示す電池回路5aのように、二次電池141,142,143に、それぞれキャパシタC1,C2,C3と、抵抗R1,R2,R3とを並列接続する構成としてもよい。図5に示す電池回路5aによれば、抵抗R1,R2,R3によって、二次電池141,142,143の各端子電圧の差を常時低減することができるので、二次電池141,142,143に並列接続されたキャパシタC1,C2,C3の端子電圧もまた、常時バランスさせることが容易となる。   In recent years, attention has been focused on a system that improves the response to sudden load fluctuations by connecting a capacitor such as an electric double layer capacitor having a large capacitance in parallel with each secondary battery constituting the assembled battery. ing. Therefore, for example, as in the battery circuit 5a shown in FIG. 3, the capacitors C1, C2, C3 and the resistors R1, R2, R3 may be connected in parallel to the secondary batteries 141, 142, 143, respectively. According to the battery circuit 5a shown in FIG. 5, the difference between the terminal voltages of the secondary batteries 141, 142, and 143 can be constantly reduced by the resistors R1, R2, and R3. The terminal voltages of the capacitors C1, C2, and C3 connected in parallel to each other can be easily balanced at all times.

本発明は、携帯型パーソナルコンピュータやデジタルカメラ、ビデオカメラ等の電子機器、電気自動車やハイブリッドカー等の車両、等の電池搭載装置に用いられる電池回路、及びこれを用いる電池パックとして好適に利用することができる。   INDUSTRIAL APPLICABILITY The present invention is suitably used as a battery circuit used in battery-mounted devices such as electronic devices such as portable personal computers, digital cameras, and video cameras, vehicles such as electric cars and hybrid cars, and battery packs using the battery circuits. be able to.

本発明の一実施形態に係る電池回路を用いる電池パック、及びこれを充電する電池システムの構成の一例を示すブロック図である。It is a block diagram which shows an example of a battery pack using the battery circuit which concerns on one Embodiment of this invention, and the structure of the battery system which charges this. 図1に示す電池システムの動作の一例を示す説明図である。It is explanatory drawing which shows an example of operation | movement of the battery system shown in FIG. 図1に示す電池回路の変形例を示す回路図である。It is a circuit diagram which shows the modification of the battery circuit shown in FIG. 背景技術に係る充電方法を説明するための説明図である。It is explanatory drawing for demonstrating the charging method which concerns on background art. 背景技術に係る充電方法を説明するための説明図である。It is explanatory drawing for demonstrating the charging method which concerns on background art.

符号の説明Explanation of symbols

1 電池システム
2 電池パック
3 充電装置
4 負荷回路
5,5a 電池回路
14 組電池
21 制御部
22 通信部
31 充電制御部
32 通信部
33 充電電流供給回路
141,142,143 二次電池
18,30 制御IC
R1,R2,R3 抵抗
Vb,Vb1,Vb2,Vb3 端子電圧
DESCRIPTION OF SYMBOLS 1 Battery system 2 Battery pack 3 Charging device 4 Load circuit 5, 5a Battery circuit 14 Battery assembly 21 Control part 22 Communication part 31 Charge control part 32 Communication part 33 Charging current supply circuit 141,142,143 Secondary battery 18,30 Control IC
R1, R2, R3 resistance Vb, Vb1, Vb2, Vb3 terminal voltage

Claims (5)

複数の二次電池が直列接続された組電池と、
前記組電池の両端の電圧を負荷駆動用の電圧として出力すると共に充電用の電圧を受電して前記組電池の両端に印加する導電部と、
前記複数の二次電池の各々に並列接続された複数のアンバランス低減用抵抗とを備え、
前記各アンバランス低減用抵抗の抵抗値は、互いに実質的に同一であること
を特徴とする電池回路。
An assembled battery in which a plurality of secondary batteries are connected in series;
A conductive portion that outputs a voltage at both ends of the assembled battery as a voltage for driving a load and receives a charging voltage to be applied to both ends of the assembled battery;
A plurality of unbalance reduction resistors connected in parallel to each of the plurality of secondary batteries,
The battery circuit characterized in that resistance values of the respective unbalance reducing resistors are substantially the same.
前記各アンバランス低減用抵抗の抵抗値は、前記二次電池によってそれぞれ流される電流が50μA以下となるように設定されていること
を特徴とする請求項1記載の電池回路。
2. The battery circuit according to claim 1, wherein a resistance value of each of the unbalance reducing resistors is set such that a current flowing through the secondary battery is 50 μA or less.
前記複数の二次電池には、それぞれキャパシタが並列接続されていること
を特徴とする請求項1又は2記載の電池回路。
The battery circuit according to claim 1, wherein a capacitor is connected in parallel to each of the plurality of secondary batteries.
請求項1〜3のいずれか1項に記載の電池回路を備えた電池パック。   The battery pack provided with the battery circuit of any one of Claims 1-3. 請求項1〜3のいずれか1項に記載の電池回路と、
前記導電部へ前記充電用の電圧を供給することにより、前記組電池を充電する充電回路と
を備えたことを特徴とする電池システム。
The battery circuit according to any one of claims 1 to 3,
A battery system comprising: a charging circuit that charges the assembled battery by supplying the charging voltage to the conductive portion.
JP2007013721A 2007-01-24 2007-01-24 Battery circuit, battery pack, and battery system Pending JP2008182809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013721A JP2008182809A (en) 2007-01-24 2007-01-24 Battery circuit, battery pack, and battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013721A JP2008182809A (en) 2007-01-24 2007-01-24 Battery circuit, battery pack, and battery system

Publications (1)

Publication Number Publication Date
JP2008182809A true JP2008182809A (en) 2008-08-07

Family

ID=39726280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013721A Pending JP2008182809A (en) 2007-01-24 2007-01-24 Battery circuit, battery pack, and battery system

Country Status (1)

Country Link
JP (1) JP2008182809A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8421412B2 (en) 2009-08-11 2013-04-16 Samsung Sdi Co., Ltd. Cell balancing circuit and secondary battery with cell balancing circuit
CN103847532A (en) * 2012-12-03 2014-06-11 凹凸电子(武汉)有限公司 Power management apparatus and method for electric vehicle
JP2014183652A (en) * 2013-03-19 2014-09-29 Toshiba Mitsubishi-Electric Industrial System Corp Charging method for capacitor bank, charging device using the same, discharging method for capacitor bank, and discharging device using the same
JP2015027243A (en) * 2013-06-21 2015-02-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Electronic apparatus and electronic apparatus system
US9006932B2 (en) 2009-01-23 2015-04-14 Sony Corporation Power supply system and electronic device
US9276431B2 (en) 2010-10-29 2016-03-01 O2Micro Inc. Power management for electric vehicles
CN106505175A (en) * 2016-12-15 2017-03-15 珠海华而美照明有限公司 Electric vehicle battery system
CN107632269A (en) * 2017-09-21 2018-01-26 孙亮 The online charging-discharge tester system of communication storage battery
JP2019537409A (en) * 2016-10-12 2019-12-19 オッポ広東移動通信有限公司 Battery management circuit and method, balance circuit and method, and device to be charged
CN110829116A (en) * 2018-08-07 2020-02-21 通用汽车环球科技运作有限责任公司 High voltage lockout function based on connector

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104014A (en) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd Power source circuit including battery
JP2000197277A (en) * 1998-12-25 2000-07-14 Asahi Glass Co Ltd Power supply unit with built-in electric double-layer capacitor
JP2002246071A (en) * 2001-02-20 2002-08-30 Osaka Gas Co Ltd Electricity storage device
WO2005025029A1 (en) * 2003-09-03 2005-03-17 Matsushita Electric Industrial Co., Ltd. Capacitor device and wiring pattern
JP2006320170A (en) * 2005-05-16 2006-11-24 Matsushita Electric Ind Co Ltd Power storage device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06104014A (en) * 1992-09-18 1994-04-15 Matsushita Electric Ind Co Ltd Power source circuit including battery
JP2000197277A (en) * 1998-12-25 2000-07-14 Asahi Glass Co Ltd Power supply unit with built-in electric double-layer capacitor
JP2002246071A (en) * 2001-02-20 2002-08-30 Osaka Gas Co Ltd Electricity storage device
WO2005025029A1 (en) * 2003-09-03 2005-03-17 Matsushita Electric Industrial Co., Ltd. Capacitor device and wiring pattern
JP2006320170A (en) * 2005-05-16 2006-11-24 Matsushita Electric Ind Co Ltd Power storage device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9006932B2 (en) 2009-01-23 2015-04-14 Sony Corporation Power supply system and electronic device
US8421412B2 (en) 2009-08-11 2013-04-16 Samsung Sdi Co., Ltd. Cell balancing circuit and secondary battery with cell balancing circuit
US9276431B2 (en) 2010-10-29 2016-03-01 O2Micro Inc. Power management for electric vehicles
CN103847532A (en) * 2012-12-03 2014-06-11 凹凸电子(武汉)有限公司 Power management apparatus and method for electric vehicle
JP2014183652A (en) * 2013-03-19 2014-09-29 Toshiba Mitsubishi-Electric Industrial System Corp Charging method for capacitor bank, charging device using the same, discharging method for capacitor bank, and discharging device using the same
JP2015027243A (en) * 2013-06-21 2015-02-05 パナソニック インテレクチュアル プロパティ コーポレーション オブアメリカPanasonic Intellectual Property Corporation of America Electronic apparatus and electronic apparatus system
JP2019537409A (en) * 2016-10-12 2019-12-19 オッポ広東移動通信有限公司 Battery management circuit and method, balance circuit and method, and device to be charged
JP2021153384A (en) * 2016-10-12 2021-09-30 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. Battery management circuit and method, balance circuit and method and charged device
CN106505175A (en) * 2016-12-15 2017-03-15 珠海华而美照明有限公司 Electric vehicle battery system
CN107632269A (en) * 2017-09-21 2018-01-26 孙亮 The online charging-discharge tester system of communication storage battery
CN110829116A (en) * 2018-08-07 2020-02-21 通用汽车环球科技运作有限责任公司 High voltage lockout function based on connector
CN110829116B (en) * 2018-08-07 2021-10-15 通用汽车环球科技运作有限责任公司 High-voltage locking electrical system based on connector

Similar Documents

Publication Publication Date Title
JP5091473B2 (en) Battery pack control method, battery pack control circuit, charging circuit including the battery pack, and battery pack
JP2008182809A (en) Battery circuit, battery pack, and battery system
US8111035B2 (en) Charging system, charging device and battery pack
JP2008154317A5 (en)
JP4858378B2 (en) Cell voltage monitoring device for multi-cell series batteries
US10559963B2 (en) Balance correction apparatus and electric storage system
JP5974500B2 (en) Charge control device with protection function and battery pack
JP6779317B2 (en) Electrical equipment
JP4398432B2 (en) Charge / discharge control circuit and rechargeable power supply
JP2008206259A (en) Charging system, charger, and battery pack
JP4499966B2 (en) Secondary battery charging circuit
JP2011004509A5 (en)
JP2009225632A (en) Charging control circuit, battery pack, and charging system
EP3719917A1 (en) Chargeable cell anomaly detection device and chargeable cell anomaly detection method
JP4966822B2 (en) Charging system and battery pack
WO2018138843A1 (en) Electrical device
JP4878573B2 (en) Battery protection circuit and battery pack
JP6641665B2 (en) Power storage state adjustment device, battery pack, load system, and power storage state adjustment method
JP2011038878A (en) Deterioration degree determination method for secondary battery and secondary battery
JP5165405B2 (en) Charge control circuit, battery pack, and charging system
JP2016040999A (en) Charged state equalization method of storage battery device
JP2016154423A (en) Voltage balance device
JP6559463B2 (en) Charge control device, charge control method, and battery pack
JP2014158345A (en) Voltage monitoring apparatus for battery pack
WO2015063968A1 (en) Battery pack, electronic device system, and electronic device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110426