WO2015063968A1 - Battery pack, electronic device system, and electronic device - Google Patents

Battery pack, electronic device system, and electronic device Download PDF

Info

Publication number
WO2015063968A1
WO2015063968A1 PCT/JP2014/002937 JP2014002937W WO2015063968A1 WO 2015063968 A1 WO2015063968 A1 WO 2015063968A1 JP 2014002937 W JP2014002937 W JP 2014002937W WO 2015063968 A1 WO2015063968 A1 WO 2015063968A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
output
output terminal
terminal
electronic device
Prior art date
Application number
PCT/JP2014/002937
Other languages
French (fr)
Japanese (ja)
Inventor
新平 幸田
亮介 山本
篤史 川角
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2015063968A1 publication Critical patent/WO2015063968A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection

Definitions

  • the present invention relates to a battery pack technology that supplies power to both a system circuit of an electronic device and a clock circuit that generates a calendar time, and further maintains the function of the clock circuit for as long as possible when the remaining capacity decreases. It is about technology.
  • RTC Real Time Clock
  • the clock circuit needs to operate even when power cannot be supplied from the battery pack in order to generate calendar time.
  • the battery pack may be removed from the portable electronic device for charging or the like. The battery pack may be used until the remaining capacity becomes zero. Therefore, as shown in FIG. 5, power is supplied to the timing circuit from a dedicated backup battery different from the battery pack.
  • a primary battery such as a coin battery mounted on a circuit board is generally used.
  • the backup battery also supplies power to the clock circuit memory.
  • the memory of the timer circuit stores the calendar time used by the system, the setting of the wake-up time, the BIOS setup data, and the like.
  • the time measuring circuit performs a time measuring operation for ticking time and periodically updates the calendar time stored in the memory of the time measuring circuit.
  • the calendar time in the timer circuit memory is set and updated by synchronization with the user or the Internet clock in the network.
  • the memory of the clock circuit needs to erase the stored contents only by stopping the power, it is usually composed of a volatile memory such as SRAM. Therefore, when the computer cannot be started due to BIOS setup, the data stored in the timer circuit memory can be erased by removing the battery pack and the coin battery.
  • Patent Document 1 discloses that a portable electronic device having an RTC circuit as shown in FIG. 6 supplies a voltage to a memory and an RTC circuit via a regulator and a diode when a battery pack is mounted, and lithium via a regulator and a switch. Charge the battery. When the battery pack is not attached, voltage is supplied from the lithium battery to the memory and the RTC circuit via the switch. Thus, a technique is described that can continue power supply from a lithium battery as a backup battery to the RTC circuit for a long time.
  • the conventional configuration requires a backup battery such as a coin battery for supplying power to the timing circuit and continuing the operation of the RTC for a long time. Therefore, the portable electronic device is reduced in size, weight and cost. It had the problem of preventing Further, when the backup battery is removed, there is a problem that the operation of the timing circuit cannot be maintained for a long time.
  • the present invention solves the above-mentioned conventional problems, and by removing the backup battery for the clock circuit of the portable electronic device, the portable electronic device can be reduced in size, weight and cost, and the remaining battery pack can be realized. It is an object of the present invention to provide a battery pack that can maintain the function of a clock circuit for a long time even when the capacity is reduced.
  • a battery pack of the present invention includes a secondary battery, a first output terminal that outputs power from the secondary battery to a system circuit of an electronic device, and the electronic battery from the secondary battery.
  • a second output terminal for outputting electric power to the timing circuit of the device, a branch point from the secondary battery to the first output terminal and the second output terminal, and between the branch point and the first output terminal,
  • a first switch unit configured to turn on / off the output from the first output terminal; and a control unit configured to control the first switch unit to be turned on / off, wherein the voltage of the secondary battery is the first.
  • the first switch unit When the voltage value becomes equal to or less than the voltage value, the first switch unit is turned OFF, and the output from the second output terminal is continued.
  • This configuration makes it possible to continuously output the power of the timing circuit of the portable electronic device from the battery pack for a long time.
  • the backup battery for the timing circuit of the portable electronic device can be removed, and the electronic device can be reduced in size, weight and cost, and the time can be counted even when the remaining capacity of the battery pack is reduced.
  • the function of the circuit can be maintained for a long time.
  • the battery pack of the present invention outputs a secondary battery, a first output terminal that outputs power from the secondary battery to a system circuit of an electronic device, and outputs power from the secondary battery to a timing circuit of the electronic device.
  • a second output terminal, a branch point from the secondary battery to the first output terminal and the second output terminal, and an output from the first output terminal between the branch point and the first output terminal A first switch unit that turns on / off the first switch unit, and a control unit that controls ON / OFF of the first switch unit, wherein the control unit has a remaining capacity of the secondary battery equal to or less than a predetermined remaining capacity value At this time, the first switch unit is turned OFF, and the output from the second output terminal is continued.
  • An electronic device system includes an electronic device including the battery pack, a system circuit that operates with power from the first output terminal, and a timing circuit that operates with power from the second output terminal. It is equipped with.
  • the electronic device of the present invention inputs a system circuit, a timing circuit, a first input terminal for inputting power from the secondary battery to the system circuit, and inputs power from the secondary battery to the timing circuit.
  • the input voltage of the second input terminal and the secondary battery is equal to or lower than a predetermined voltage value, the input from the first input terminal is stopped, and after the input from the first input terminal is stopped, The input from the second input terminal is continued.
  • FIG. 1 is a block diagram of a battery pack and a portable electronic device having an output terminal for a timing circuit in an embodiment of the present invention.
  • FIG. 2A is a relationship diagram between the discharge amount of the battery pack and the terminal voltage in the embodiment of the present invention, and FIG. 2B is the vicinity of the end of discharge in FIG. 2A (discharge amount is 90 (%) or more).
  • FIG. 3A is a relationship diagram between the discharge amount of the battery pack and power in the embodiment of the present invention, and FIG. 3B is the vicinity of the discharge end in FIG. 3A (discharge amount is 90% or more). It is an enlarged view.
  • FIG. 2A is a relationship diagram between the discharge amount of the battery pack and the terminal voltage in the embodiment of the present invention
  • FIG. 2B is the vicinity of the end of discharge in FIG. 2A (discharge amount is 90 (%) or more).
  • FIG. 3A is a relationship diagram between the discharge amount of the battery pack and power in the embodiment of the present invention
  • FIG. 4 is a block diagram of another battery pack and a portable electronic device having an output terminal for a timing circuit in an embodiment of the present invention.
  • FIG. 5 is a block diagram of a conventional battery pack and portable electronic device.
  • FIG. 6 is a block diagram of another conventional battery pack and portable electronic device.
  • FIG. 1 is a block diagram of a battery pack 200 provided with an output terminal for a timer circuit and a portable electronic device 300 according to an embodiment of the present invention. And the battery pack 200 shown in FIG. 1 and the portable electronic device 300 are combined, and the electronic device system 100 is comprised.
  • the portable electronic device 300 various electronic devices such as a personal computer, a digital camera, and a PDA in which a clock circuit called an RTC (Real Time Clock) that provides a calendar time to the system is incorporated.
  • a small electronic device such as a laptop computer, a smartphone, or a tablet is employed.
  • the battery pack 200 includes a positive terminal 210, a time measuring terminal 220, information terminals 230 and 240, a temperature terminal 250, and a negative terminal 260 as connection terminals with the portable electronic device 300. Further, the battery pack 200 includes a secondary battery 201, a control unit 202, a double protection circuit 203, a current detection resistor 204 (current detection unit), a temperature sensor 205 (temperature detection unit), a fuse 206, a heater 207, two A branch point 208 is provided that divides the secondary battery 201 into a positive electrode terminal 210 and a time measuring terminal 220.
  • switching elements 211 and 212 are provided between the branch point 208 and the positive terminal 210.
  • a regulator 221 is provided between the branch point 208 and the time measuring terminal 220, and a reset circuit 222 is connected to the regulator 221.
  • a grounded capacitor 223, a diode 224, and a grounded Zener diode 225 are disposed between the regulator 221 and the time measuring terminal 220.
  • the portable electronic device 300 includes a positive terminal 310, a time measuring terminal 320, information terminals 330 and 340, a temperature terminal 350, and a negative terminal 360.
  • the battery pack 200 and the portable electronic device 300 include DC high-side positive terminals 210 and 310 that supply power to the system circuit, clock terminals 220 and 320 that supply power to the clock circuit, and an information terminal 230 for communication signals. , 240, 330, 340, temperature terminals 250, 350 for battery pack temperature, and negative terminals 260, 360 for power supply and communication signals.
  • the positive electrode terminal 210 is connected to the positive electrode of the secondary battery 201 via a switching element 211 for discharging and a switching element 212 for charging.
  • a switching element 211 for discharging for charging the positive electrode of the secondary battery 201
  • a switching element 212 for charging for example, n-channel FETs (Field Effect Transistors) are used.
  • the negative electrode terminal 260 is connected to the negative electrode of the secondary battery 201 via the current detection resistor 204, and is connected to the negative electrode from the positive electrode terminal 210 via the switching elements 211 and 212, the secondary battery 201, and the current detection resistor 204.
  • a current path to the terminal 260 is configured.
  • the current detection resistor 204 converts the charging current and discharging current of the secondary battery 201 into voltage values.
  • a plurality of secondary batteries 201 for example, two secondary batteries 201 are connected in series as shown in FIG.
  • the secondary battery 201 is a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery.
  • the secondary battery 201 may be, for example, one, for example, a plurality of secondary batteries may be connected in parallel, or may be in a state where a combination of series and parallel is connected.
  • the temperature sensor 205 is a temperature sensor that detects the temperature of the secondary battery 201.
  • the temperature of the secondary battery 201 is detected by a temperature sensor 205 and input to an analog / digital converter (not shown) in the control unit 202.
  • the terminal voltages V1 and V2 of the secondary battery 201 are read by a voltage detection circuit (not shown), respectively, and input to an analog / digital converter in the control unit 202.
  • the current value of the current detected by the current detection resistor 204 is also input to the analog-digital converter in the control unit 202.
  • the analog-digital converter converts each input value into a digital value and outputs the digital value to the control unit 202.
  • the analog-digital converter represents the current value of the current detected by the current detection resistor 204, plus the current in the direction in which the secondary battery 201 is charged, and minus the current in the direction in which the secondary battery 201 is discharged. Shall.
  • the control unit 202 is, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing. ), A ROM (Read Only Memory) in which a predetermined control program is stored, a RAM (Random Access Memory) in which data is temporarily stored, peripheral circuits thereof, and the like. And the control part 202 performs charging / discharging control, remaining capacity detection, remaining time calculation, etc. by running the control program memorize
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the charge / discharge control of the control unit 202 will be described.
  • the control unit 202 charges the secondary battery 201 using various charging methods such as constant current-constant voltage charging, trickle charging, and pulse charging. Then, for example, when the charging current flowing through the secondary battery 201 becomes equal to or less than the charge termination current value, the control unit 202 determines that the secondary battery 201 is fully charged and ends the charging.
  • control unit 202 detects an abnormality outside the battery pack 200 such as a short circuit between the positive terminal 210 and the negative terminal 260 and an abnormal current from the portable electronic device 300 based on each input value from the analog-digital converter, An abnormality such as an abnormal temperature rise of the secondary battery 201 is detected.
  • control unit 202 detects such an abnormality, the control unit 202 turns off the switching elements 211 and 212 and performs a protection operation for protecting the secondary battery 201 from an abnormality such as overcurrent or overheating.
  • the remaining capacity detection of the control unit 202 will be described.
  • RC ′ represents the remaining capacity after update
  • t represents a certain time interval.
  • the control unit 202 sets the predetermined full charge capacity value FCC of the secondary battery 201 as the current remaining capacity RC.
  • the control unit 202 may calculate the remaining capacity RC using a technique such as a voltage measurement method other than the current integration method.
  • the double protection circuit 203 inputs the terminal voltages V1 and V2 of the secondary battery 201 read by the voltage detection circuit, and heats the heater 207 when any of the terminal voltages V1 and V2 is an abnormal voltage. Then, the fuse 206 is blown. Thereby, the protection operation for protecting the secondary battery 201 from an abnormality such as overcurrent or overheating is performed.
  • the regulator 221 converts the outputs 8.4 to 4.0 (V) of the two secondary batteries 201 connected in series to the power 3.3 V for the RTC, which is a time measuring circuit, and supplies it to the time measuring terminal 220. Output. Since the regulator 221 is arranged between the branch point 208 and the time measuring terminal 220, even if the switching elements 211 and 212 are turned off by the control of the control unit 202, the regulator 221 does not affect the RTC power. It can output continuously.
  • the positive terminal 210 has a constant power output [40 (W): 8.4 to 6.0 (V), 4.8 to 6.7 (A)], whereas the timing terminal 220 has a constant voltage output [3 .3 (V): 4 to 6 ( ⁇ A), 13 to 20 ( ⁇ W)].
  • the diode 224 is disposed between wires connecting the regulator 221 and the time measuring terminal 220.
  • a Schottky diode having a small forward drop voltage Vf is used.
  • the Zener diode 225 is connected to a wiring connecting the diode 224 and the time measuring terminal 220 and is grounded.
  • the resistor 226 is disposed between the wirings connecting the diode 224 and the time measuring terminal 220.
  • the Zener diode 225 is a very general one such as a spec 5.6 (V) product.
  • the portable electronic device 300 includes a control unit 301, a DC-DC converter 311, a timing circuit 321 called RTC, an information processing unit 331 that is a system circuit, and a charger IC 351.
  • the portable electronic device 300 inputs the power of the battery pack 200 input from the positive electrode terminal 310 to the DC-DC converter 311 and supplies it to the control unit 301. In addition, the portable electronic device 300 supplies the clock circuit 321 with the power for the clock circuit input from the clock terminal 320.
  • the portable electronic device 300 inputs the information signal of the battery pack 200 input from the information terminals 330 and 340 to the information processing unit 331. In addition, the portable electronic device 300 inputs temperature information of the battery pack 200 input from the temperature terminal 350 to the charger IC 351. And the portable electronic device 300 inputs an information signal and temperature information into the control part 301, and uses it as control information at the time of control of a system.
  • FIG. 2 is a relationship diagram between the discharge amount of the battery pack 200 and the terminal voltage in the embodiment of the present invention.
  • the horizontal axis indicates the discharge amount (%) from the full charge of the battery pack 200 to the end of discharge
  • the vertical axis indicates the terminal voltage (V) of the positive terminal 210 and the time measuring terminal 220.
  • FIG.2 (b) is an enlarged view of the discharge end vicinity (discharge amount 90% or more) of Fig.2 (a).
  • the discharge amount and voltage discharge characteristics of the battery pack 200 are indicated by a dotted line
  • the terminal voltage of the positive terminal 210 is indicated by a solid line
  • the terminal voltage of the time measuring terminal 220 is indicated by a broken line.
  • the terminal voltage of the timing terminal 220 is that the output from the two secondary batteries 201 connected in series is stepped down to a predetermined voltage by the regulator 221 and output at a predetermined voltage, for example, 3.3 (V). It becomes. Then, when the reset circuit 222 turns off the regulator 221, the terminal voltage of the time measuring terminal 220 becomes 0 (V).
  • the output of the positive terminal 210 and the timing terminal 220 will be described with reference to FIG. In particular, the vicinity of the end of discharge, that is, the discharge amount of 90% or more will be described with reference to FIG.
  • the positive terminal 210 outputs a voltage of 8.4 (V) to 6.0 (V) in accordance with the discharge characteristics of the battery pack 200.
  • the terminal 220 outputs 3.3 (V).
  • the control unit 202 determines that the voltage of the secondary battery 201 is 3.0 (V) or less, or the voltages of the two secondary batteries 201 connected in series are When it is detected that the voltage reaches 6.0 (V), the control unit 202 determines that the remaining capacity of the battery pack 200 has decreased to a predetermined value or less, turns off the switching elements 211 and 212, and connects the terminals of the positive electrode terminal 210. The voltage is set to 0 (V).
  • the output from the positive electrode terminal 210 can be resumed if charging is performed.
  • the timer circuit 321 of the portable electronic device 300 must continue to operate even when the output from the positive terminal 210 is stopped. Therefore, the time measuring terminal 220 continues to output terminal voltages of 3.3 (V) and 4 to 6 ( ⁇ A).
  • the secondary battery 201 when the secondary battery 201 is overdischarged to an overdischarge prohibition voltage value (for example, 1.3 V) or less, the secondary battery 201 is deteriorated. Therefore, when the time measuring terminal 220 continues to output the terminal voltages 3.3 (V) and 4 to 6 ( ⁇ A), the discharge characteristic of the battery pack 200 has a predetermined voltage, for example, FIG. When the voltage becomes 4.0 (V) or less as shown, the reset circuit 222 turns off the output from the regulator 221. As a result, the secondary battery 201 stops discharging, and the secondary battery 201 can be prevented from being overdischarged.
  • an overdischarge prohibition voltage value for example, 1.3 V
  • the timing circuit 321 Since the operation of the timing circuit 321 has a low power of 13 to 20 ( ⁇ W), the discharge characteristic of the secondary battery 201 is over two months from 6.0 (V) to 4.0 (V). Even after the electronic device 300 cannot be used, the timer circuit 321 can be operated for a long time.
  • the battery pack 200 not only the power to the system circuit of the portable electronic device 300 is stopped near the end of discharging, but also the power of the double protection circuit 203 is reduced to reduce the power of the portable electronic device
  • the operating time of the 300 clock circuits 321 is extended.
  • FIG. 3 is a relational diagram between the discharge amount of the battery pack 200 and the power in the embodiment of the present invention.
  • the horizontal axis indicates the dischargeable amount (%) where the full charge of the battery pack 200 is 100 (%)
  • the vertical axis indicates the output power (W from the positive terminal 210 and the time measuring terminal 220).
  • ⁇ W the output power
  • ⁇ W the driving power
  • FIG. 3B is an enlarged view of the vicinity of the end of discharge in FIG. 3A (discharge amount is 90% or more).
  • the output power from the positive terminal 210 is indicated by a solid line
  • the output power from the time measuring terminal 220 is indicated by a broken line
  • the drive power of the double protection circuit 203 is indicated by a one-dot chain line.
  • the output from the positive terminal 210 is a constant power output [40 (W): 8.4 to 6.0 (V), 4.8 to drive the system circuit of the portable electronic device 300 from the time of full charge to the end of discharge. To 6.7 (A)].
  • the output from the timing terminal 220 is a constant voltage output [3.3 (V): 4 to 6 ( ⁇ A), 13 to 20 (in order to drive the timing circuit 321 of the portable electronic device 300 from the time of full charge to the end of discharge. ⁇ W)].
  • the double protection circuit 203 always measures the terminal voltage of the secondary battery 201 of the battery pack 200. Further, the double protection circuit 203 monitors overcharge so that the secondary battery 201 is not overcharged. Monitoring of overcharging of the double protection circuit 203 is necessary near full charge, but not necessary near the end of discharge. Therefore, the double protection circuit 203 stops overcharge monitoring when the voltage is lower than a predetermined voltage that is not near full charge, and reduces drive power.
  • the voltage at which the double protection circuit 203 stops monitoring overcharge is equal to or higher than the battery voltage of the secondary battery 201 that stops the output from the positive terminal 210, and the amount of discharge from the fully charged secondary battery 201 is 40. (%) Or more (remaining capacity is 60% or less).
  • the driving power of the double protection circuit 203 near full charge Is a constant current drive [10 ( ⁇ A): 8.4 to 7.0 (V), 84 to 70 ( ⁇ W) for measuring the terminal voltage of the secondary battery 201 of the overcharged battery pack 200 and monitoring overcharge. ]. Then, the driving power of the double protection circuit 203 near the end of discharging reduces the power of overcharge monitoring, and the constant current driving [5 ( ⁇ A) only for measuring the terminal voltage of the secondary battery 201 of the overcharged battery pack 200. ): 7.0 to 4.0 (V), 35 to 20 ( ⁇ W)].
  • the driving power of the double protection circuit 203 is about 1/500 of the output power from the positive terminal 210, but is more than four times the output power from the time measuring terminal 220. For this reason, by reducing the driving power of the double protection circuit 203 near the end of the discharge, it is possible to output from the time measuring terminal 220 for a long time more than twice with the reduced power, and to operate the time measuring circuit 321 for a longer time. It becomes possible.
  • the backup battery for the timing circuit of the portable electronic device can be removed, and the portable electronic device can be reduced in size, weight and cost, and the timing circuit can be used even when the remaining capacity of the battery pack is reduced.
  • the function of can be maintained for a long time.
  • the regulator 221 and the reset circuit 222 output the power for the timing circuit.
  • the dual protection circuit may have a function of the regulator and the reset circuit.
  • the double protection circuit 503 of the battery pack 500 of the electronic device system 400 includes an output to which the time measuring terminal 220 is connected.
  • the double protection circuit 503 steps down the output of the two secondary batteries 201 connected in series like a regulator and outputs the voltage. Then, when any voltage of the secondary battery 201 becomes 2.5 (V) or less, the output to the time measuring terminal 220 is stopped.
  • control unit 202 sets the voltage of the secondary battery 201 to 3.0 (V) or lower, or the voltage of the two secondary batteries 201 connected in series to 6.0 (V).
  • the control unit 202 determines that the switching elements 211 and 212 are turned off.
  • the switching elements 211 and 212 may be turned off when becomes below a predetermined value.
  • the electronic device system 100 is a combination of the battery pack 200 and the portable electronic device 300, but may be a combination of a battery pack and an electronic device that is not carried. In this case as well as the portable electronic device, even if the backup battery of the electronic device that is not carried is removed, the function of the timing circuit can be maintained for a long time even when the remaining capacity of the battery pack is reduced.
  • the time measuring terminal 220 corresponds to the constant power output [40 (W): 8.4 to 6.0 (V), 4.8 to 6.7 (A)] from the positive terminal 210.
  • Constant voltage output [3.3 (V): 4 to 6 ( ⁇ A), 13 to 20 ( ⁇ W)] is a low-power output, but the system circuit of the portable electronic device 300 is a timing circuit 321. If the power is equal to or smaller than the output from the positive terminal 210, the output from the positive terminal 210 may be equal to or smaller than the output from the timing terminal 220.
  • the output of the secondary battery 201 is stepped down by the regulator 221 and output from the timing terminal 220.
  • the driving voltage of the timing circuit 321 of the portable electronic device 300 is the same as the output of the secondary battery 201.
  • the output of the secondary battery 201 may be directly output without using the regulator 221.
  • the battery pack according to the present invention removes the backup battery for the timing circuit of the portable electronic device, reduces the size and weight of the portable electronic device, reduces the cost, and reduces the remaining capacity of the battery pack. Since the function can be maintained for a long time, it is useful as a battery pack or the like that supplies both power to the system circuit of the portable electronic device and the clock circuit that generates the calendar time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

This battery pack is provided with a first output terminal which outputs power from a secondary battery to a system circuit of an electronic device, a second output terminal which outputs power from the secondary battery to a clock circuit of the electronic device, a branch point which divides from the secondary battery into the first output terminal and the second output terminal, a first switch unit which is disposed between the branch point and the first output terminal and switches output from the first output terminal on and off, and a control unit which controls switching the first switch unit on and off. When the voltage of the secondary battery falls below a first voltage value, the control unit switches the first switch unit off and continues allowing output from the second output terminal, making it possible to continue outputting the power of the clock circuit of the electronic device from the battery pack for a long period of time, and thereby making it possible to eliminate a backup battery for the clock circuit and so make the electronic device smaller and lighter and to maintain the function of the clock circuit for a long period of time even when the remaining capacity of the battery pack has been reduced.

Description

電池パック、電子機器システム、および、電子機器Battery pack, electronic device system, and electronic device
 本発明は、電子機器のシステム回路とカレンダ時刻を生成する計時回路への電力の両方を供給する電池パックの技術に関し、さらには残容量が低下したときに計時回路の機能をできるだけ長い時間維持する技術に関するものである。 The present invention relates to a battery pack technology that supplies power to both a system circuit of an electronic device and a clock circuit that generates a calendar time, and further maintains the function of the clock circuit for as long as possible when the remaining capacity decreases. It is about technology.
 従来のノートパソコン、デジタルカメラ、PDAなどの携帯式電子機器にはシステムにカレンダ時刻を提供するRTC(Real Time Clock)といわれる計時回路が組込まれている。通常は計時回路にシステムの電力源となる電池パックから電力が供給されるが、計時回路はカレンダ時刻を生成するため電池パックから電力を供給することができないときにも動作する必要がある。特に、電池パックは充電などのために携帯式電子機器から取り外されることがある。また、電池パックは残容量がゼロになるまで使用されることもある。したがって、図5のように、計時回路には、電池パックとは異なる専用のバックアップ電池から電力を供給するようにしている。 Conventional portable electronic devices such as notebook computers, digital cameras, and PDAs have a built-in clock circuit called RTC (Real Time Clock) that provides calendar time to the system. Normally, power is supplied from the battery pack serving as the system power source to the clock circuit, but the clock circuit needs to operate even when power cannot be supplied from the battery pack in order to generate calendar time. In particular, the battery pack may be removed from the portable electronic device for charging or the like. The battery pack may be used until the remaining capacity becomes zero. Therefore, as shown in FIG. 5, power is supplied to the timing circuit from a dedicated backup battery different from the battery pack.
 バックアップ電池としては一般的に回路基板に実装されたコイン電池のような一次電池が使用される。バックアップ電池はさらに計時回路のメモリにも電力を供給する。計時回路のメモリは、システムが使用するカレンダ時刻、ウェイクアップ時刻の設定およびBIOSのセット・アップ・データなどを記憶する。計時回路は、時間を刻む計時動作をして定期的に計時回路のメモリが記憶するカレンダ時刻を更新する。計時回路のメモリのカレンダ時刻は、ユーザまたはネットワークにあるインターネット時計との同期により設定及び更新される。 As the backup battery, a primary battery such as a coin battery mounted on a circuit board is generally used. The backup battery also supplies power to the clock circuit memory. The memory of the timer circuit stores the calendar time used by the system, the setting of the wake-up time, the BIOS setup data, and the like. The time measuring circuit performs a time measuring operation for ticking time and periodically updates the calendar time stored in the memory of the time measuring circuit. The calendar time in the timer circuit memory is set and updated by synchronization with the user or the Internet clock in the network.
 計時回路のメモリは電力を停止するだけで記憶内容を消去する必要があるため、通常はSRAMのような揮発性のメモリで構成されている。したがって、BIOSのセット・アップに原因があってコンピュータが起動できないような場合には、電池パックとコイン電池を取り外すことで計時回路のメモリが記憶するデータを消去することができる。 Since the memory of the clock circuit needs to erase the stored contents only by stopping the power, it is usually composed of a volatile memory such as SRAM. Therefore, when the computer cannot be started due to BIOS setup, the data stored in the timer circuit memory can be erased by removing the battery pack and the coin battery.
 コイン電池は、筐体を開放しない限り取り外すことができないようになっているので、ユーザが誤って時刻情報やセット・アップ・データを消去してしまうようなことはない。 Since the coin battery cannot be removed unless the housing is opened, the user will not accidentally erase the time information or set-up data.
 特許文献1は、図6のようにRTC回路を備える携帯式電子機器において、電池パックの装着があるとき、レギュレータ、ダイオードを介しメモリとRTC回路へ電圧を供給し、かつレギュレータ、スイッチを介しリチウム電池を充電する。電池パックの装着がないとき、リチウム電池からスイッチを介しメモリとRTC回路へ電圧を供給する。これによりバックアップ電池であるリチウム電池からRTC回路への電力供給を長時間継続することができる技術が記載されている。 Patent Document 1 discloses that a portable electronic device having an RTC circuit as shown in FIG. 6 supplies a voltage to a memory and an RTC circuit via a regulator and a diode when a battery pack is mounted, and lithium via a regulator and a switch. Charge the battery. When the battery pack is not attached, voltage is supplied from the lithium battery to the memory and the RTC circuit via the switch. Thus, a technique is described that can continue power supply from a lithium battery as a backup battery to the RTC circuit for a long time.
特開2004-180426号公報JP 2004-180426 A
 ところで、近年の携帯式電子機器において、計時回路の長時間継続化の他に、小型・軽量化および低コスト化は重要な課題である。この課題解決のためには、その機器を構成する部品点数の削減および各部品の小型化が不可欠である。 By the way, in recent portable electronic devices, in addition to keeping the clock circuit for a long time, miniaturization, weight reduction, and cost reduction are important issues. In order to solve this problem, it is indispensable to reduce the number of parts constituting the device and to reduce the size of each part.
 しかしながら、前記従来の構成では、計時回路に電力を供給してRTCの動作を長時間継続するためのコイン電池などのバックアップ電池が必須であるため、携帯式電子機器の小型・軽量化と低コスト化を妨げるという課題を有していた。また、バックアップ電池を取り除くと、計時回路の稼働を長時間維持できないという課題を有していた。 However, the conventional configuration requires a backup battery such as a coin battery for supplying power to the timing circuit and continuing the operation of the RTC for a long time. Therefore, the portable electronic device is reduced in size, weight and cost. It had the problem of preventing Further, when the backup battery is removed, there is a problem that the operation of the timing circuit cannot be maintained for a long time.
 本発明は、前記従来の課題を解決するもので、携帯式電子機器の計時回路用バックアップ電池を取り除いて、携帯式電子機器の小型・軽量化と低コスト化を実現できると共に、電池パックの残容量が低下した時も計時回路の機能を長時間維持することができる電池パックを提供することを目的とする。 The present invention solves the above-mentioned conventional problems, and by removing the backup battery for the clock circuit of the portable electronic device, the portable electronic device can be reduced in size, weight and cost, and the remaining battery pack can be realized. It is an object of the present invention to provide a battery pack that can maintain the function of a clock circuit for a long time even when the capacity is reduced.
 前記従来の課題を解決するために、本発明の電池パックは、二次電池と、前記二次電池から電子機器のシステム回路に電力を出力する第1出力端子と、前記二次電池から前記電子機器の計時回路に電力を出力する第2出力端子と、前記二次電池から前記第1出力端子と前記第2出力端子に分かれる分岐点と、前記分岐点と前記第1出力端子の間に、前記第1出力端子からの出力をON/OFFする第1スイッチ部と、前記第1スイッチ部をON/OFF制御する制御部とを備え、前記制御部は、前記二次電池の電圧が第1の電圧値以下になったとき、前記第1スイッチ部をOFFにし、前記第2出力端子からの出力を継続させる。 In order to solve the conventional problems, a battery pack of the present invention includes a secondary battery, a first output terminal that outputs power from the secondary battery to a system circuit of an electronic device, and the electronic battery from the secondary battery. A second output terminal for outputting electric power to the timing circuit of the device, a branch point from the secondary battery to the first output terminal and the second output terminal, and between the branch point and the first output terminal, A first switch unit configured to turn on / off the output from the first output terminal; and a control unit configured to control the first switch unit to be turned on / off, wherein the voltage of the secondary battery is the first. When the voltage value becomes equal to or less than the voltage value, the first switch unit is turned OFF, and the output from the second output terminal is continued.
 本構成によって、電池パックから携帯式電子機器の計時回路の電力を長時間継続して出力することが可能となる。 This configuration makes it possible to continuously output the power of the timing circuit of the portable electronic device from the battery pack for a long time.
 本発明の電池パックによれば、携帯式電子機器の計時回路用バックアップ電池を取り除いて、電子機器の小型・軽量化と低コスト化を実現できると共に、電池パックの残容量が低下した時も計時回路の機能を長時間維持することができる。 According to the battery pack of the present invention, the backup battery for the timing circuit of the portable electronic device can be removed, and the electronic device can be reduced in size, weight and cost, and the time can be counted even when the remaining capacity of the battery pack is reduced. The function of the circuit can be maintained for a long time.
 また、本発明の電池パックは、二次電池と、前記二次電池から電子機器のシステム回路に電力を出力する第1出力端子と、前記二次電池から前記電子機器の計時回路に電力を出力する第2出力端子と、前記二次電池から前記第1出力端子と前記第2出力端子に分かれる分岐点と、前記分岐点と前記第1出力端子の間に、前記第1出力端子からの出力をON/OFFする第1スイッチ部と、前記第1スイッチ部をON/OFF制御する制御部とを備え、前記制御部は、前記二次電池の残容量が所定の残容量値以下になったとき、前記第1スイッチ部をOFFにし、前記第2出力端子からの出力を継続させるとしたものである。 The battery pack of the present invention outputs a secondary battery, a first output terminal that outputs power from the secondary battery to a system circuit of an electronic device, and outputs power from the secondary battery to a timing circuit of the electronic device. A second output terminal, a branch point from the secondary battery to the first output terminal and the second output terminal, and an output from the first output terminal between the branch point and the first output terminal A first switch unit that turns on / off the first switch unit, and a control unit that controls ON / OFF of the first switch unit, wherein the control unit has a remaining capacity of the secondary battery equal to or less than a predetermined remaining capacity value At this time, the first switch unit is turned OFF, and the output from the second output terminal is continued.
 また、本発明の電子機器システムは、上記の電池パックと、前記第1出力端子からの電力で稼動するシステム回路と、前記第2出力端子からの電力で稼動する計時回路とを有する電子機器とを備えたものである。 An electronic device system according to the present invention includes an electronic device including the battery pack, a system circuit that operates with power from the first output terminal, and a timing circuit that operates with power from the second output terminal. It is equipped with.
 また、本発明の電子機器は、システム回路と、計時回路と、二次電池からの電力を前記システム回路に入力する第1入力端子と、前記二次電池からの電力を前記計時回路に入力する第2入力端子と、前記二次電池の入力電圧が所定の電圧値以下になったとき、前記第1入力端子からの入力が停止し、前記第1入力端子からの入力を停止した後も、前記第2入力端子からの入力を継続することを特徴とするとしたものである。 In addition, the electronic device of the present invention inputs a system circuit, a timing circuit, a first input terminal for inputting power from the secondary battery to the system circuit, and inputs power from the secondary battery to the timing circuit. When the input voltage of the second input terminal and the secondary battery is equal to or lower than a predetermined voltage value, the input from the first input terminal is stopped, and after the input from the first input terminal is stopped, The input from the second input terminal is continued.
図1は本発明の実施例における計時回路用の出力端子を備えた電池パックと携帯式電子機器のブロック図である。FIG. 1 is a block diagram of a battery pack and a portable electronic device having an output terminal for a timing circuit in an embodiment of the present invention. 図2(a)は本発明の実施例における電池パックの放電量と端子電圧の関係図で、図2(b)は図2(a)の放電終了付近(放電量が90(%)以上)の拡大図である。FIG. 2A is a relationship diagram between the discharge amount of the battery pack and the terminal voltage in the embodiment of the present invention, and FIG. 2B is the vicinity of the end of discharge in FIG. 2A (discharge amount is 90 (%) or more). FIG. 図3(a)は本発明の実施例における電池パックの放電量と電力の関係図で、図3(b)は図3(a)の放電終了付近(放電量が90(%)以上)の拡大図である。FIG. 3A is a relationship diagram between the discharge amount of the battery pack and power in the embodiment of the present invention, and FIG. 3B is the vicinity of the discharge end in FIG. 3A (discharge amount is 90% or more). It is an enlarged view. 図4は本発明の実施例における計時回路用の出力端子を備えた他の電池パックと携帯式電子機器のブロック図である。FIG. 4 is a block diagram of another battery pack and a portable electronic device having an output terminal for a timing circuit in an embodiment of the present invention. 図5は従来の電池パックと携帯式電子機器のブロック図である。FIG. 5 is a block diagram of a conventional battery pack and portable electronic device. 図6は従来の他の電池パックと携帯式電子機器のブロック図である。FIG. 6 is a block diagram of another conventional battery pack and portable electronic device.
 以下、本発明に係る実施の形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted.
 図1は、本発明の一実施の形態に係る計時回路用の出力端子を備えた電池パック200と携帯式電子機器300のブロック図である。そして、図1に示す電池パック200と携帯式電子機器300とが組み合わされて、電子機器システム100が構成されている。 FIG. 1 is a block diagram of a battery pack 200 provided with an output terminal for a timer circuit and a portable electronic device 300 according to an embodiment of the present invention. And the battery pack 200 shown in FIG. 1 and the portable electronic device 300 are combined, and the electronic device system 100 is comprised.
 ここで、携帯式電子機器300としては、システムにカレンダ時刻を提供するRTC(Real Time Clock)といわれる計時回路が組込まれているパソコン、デジタルカメラ、PDA等の種々の電子機器を採用することができ、特に、本実施の形態では、ノートパソコン、スマートフォンやタブレット等の携帯する小型の電子機器を採用する。 Here, as the portable electronic device 300, various electronic devices such as a personal computer, a digital camera, and a PDA in which a clock circuit called an RTC (Real Time Clock) that provides a calendar time to the system is incorporated. In particular, in this embodiment, a small electronic device such as a laptop computer, a smartphone, or a tablet is employed.
 電池パック200は、携帯式電子機器300との接続端子として、正極端子210、計時端子220、情報端子230、240,温度端子250、負極端子260を有している。また、電池パック200は、二次電池201、制御部202、二重保護回路203、電流検出抵抗204(電流検出部)、温度センサ205(温度検出部)、ヒューズ206と、ヒータ207と、二次電池201から正極端子210及び計時端子220に分かれる分岐点208を備えている。 The battery pack 200 includes a positive terminal 210, a time measuring terminal 220, information terminals 230 and 240, a temperature terminal 250, and a negative terminal 260 as connection terminals with the portable electronic device 300. Further, the battery pack 200 includes a secondary battery 201, a control unit 202, a double protection circuit 203, a current detection resistor 204 (current detection unit), a temperature sensor 205 (temperature detection unit), a fuse 206, a heater 207, two A branch point 208 is provided that divides the secondary battery 201 into a positive electrode terminal 210 and a time measuring terminal 220.
 分岐点208と正極端子210との間には、スイッチング素子211、212を備えている。また、分岐点208と計時端子220との間には、レギュレータ221を備えており、レギュレータ221には、リセット回路222が接続されている。また、レギュレータ221と計時端子220との間には、接地されたコンデンサ223と、ダイオード224と、接地されたツェナーダイオード225が配置されている。 Between the branch point 208 and the positive terminal 210, switching elements 211 and 212 are provided. In addition, a regulator 221 is provided between the branch point 208 and the time measuring terminal 220, and a reset circuit 222 is connected to the regulator 221. A grounded capacitor 223, a diode 224, and a grounded Zener diode 225 are disposed between the regulator 221 and the time measuring terminal 220.
 携帯式電子機器300は、正極端子310、計時端子320、情報端子330、340、温度端子350、負極端子360を有している。電池パック200と携帯式電子機器300は、システム回路に電力供給を行う直流ハイ側の正極端子210、310と、計時回路に電力供給を行う計時端子220、320と、通信信号用の情報端子230、240、330、340と、電池パックの温度用の温度端子250、350と、電力供給および通信信号のための負極端子260、360とによって相互に接続される。 The portable electronic device 300 includes a positive terminal 310, a time measuring terminal 320, information terminals 330 and 340, a temperature terminal 350, and a negative terminal 360. The battery pack 200 and the portable electronic device 300 include DC high-side positive terminals 210 and 310 that supply power to the system circuit, clock terminals 220 and 320 that supply power to the clock circuit, and an information terminal 230 for communication signals. , 240, 330, 340, temperature terminals 250, 350 for battery pack temperature, and negative terminals 260, 360 for power supply and communication signals.
 電池パック200では、正極端子210は、放電用のスイッチング素子211と充電用のスイッチング素子212とを介して二次電池201の正極に接続されている。スイッチング素子211、212としては、例えばnチャネルのFET(Field Effect Transistor)が用いられる。 In the battery pack 200, the positive electrode terminal 210 is connected to the positive electrode of the secondary battery 201 via a switching element 211 for discharging and a switching element 212 for charging. As the switching elements 211 and 212, for example, n-channel FETs (Field Effect Transistors) are used.
 また、負極端子260は、電流検出抵抗204を介して二次電池201の負極に接続されており、正極端子210からスイッチング素子211、212、二次電池201、及び電流検出抵抗204を介して負極端子260に至る電流経路が構成されている。 The negative electrode terminal 260 is connected to the negative electrode of the secondary battery 201 via the current detection resistor 204, and is connected to the negative electrode from the positive electrode terminal 210 via the switching elements 211 and 212, the secondary battery 201, and the current detection resistor 204. A current path to the terminal 260 is configured.
 電流検出抵抗204は、二次電池201の充電電流及び放電電流を電圧値に変換する。二次電池201は、複数、例えば図1のように2個の二次電池201が直列に接続されている。二次電池201は、例えばリチウムイオン二次電池やニッケル水素二次電池等の二次電池である。なお、二次電池201は、例えば1個であってもよく、例えば複数の二次電池が並列接続されてもよく、直列と並列とが組み合わされて接続された状態であってもよい。 The current detection resistor 204 converts the charging current and discharging current of the secondary battery 201 into voltage values. A plurality of secondary batteries 201, for example, two secondary batteries 201 are connected in series as shown in FIG. The secondary battery 201 is a secondary battery such as a lithium ion secondary battery or a nickel hydride secondary battery. Note that the secondary battery 201 may be, for example, one, for example, a plurality of secondary batteries may be connected in parallel, or may be in a state where a combination of series and parallel is connected.
 温度センサ205は、二次電池201の温度を検出する温度センサである。そして、二次電池201の温度は温度センサ205によって検出され、制御部202内のアナログデジタル変換器(図示せず)に入力される。また、二次電池201の各端子電圧V1、V2は電圧検出回路(図示せず)によってそれぞれ読取られ、制御部202内のアナログデジタル変換器に入力される。さらにまた、電流検出抵抗204によって検出された電流の電流値も、制御部202内のアナログデジタル変換器に入力される。アナログデジタル変換器は、各入力値をデジタル値に変換して、制御部202へ出力する。 The temperature sensor 205 is a temperature sensor that detects the temperature of the secondary battery 201. The temperature of the secondary battery 201 is detected by a temperature sensor 205 and input to an analog / digital converter (not shown) in the control unit 202. Further, the terminal voltages V1 and V2 of the secondary battery 201 are read by a voltage detection circuit (not shown), respectively, and input to an analog / digital converter in the control unit 202. Furthermore, the current value of the current detected by the current detection resistor 204 is also input to the analog-digital converter in the control unit 202. The analog-digital converter converts each input value into a digital value and outputs the digital value to the control unit 202.
 アナログデジタル変換器は、例えば、電流検出抵抗204により検出された電流の電流値を、二次電池201を充電する方向の電流をプラス、二次電池201から放電される方向の電流をマイナスで表すものとする。 For example, the analog-digital converter represents the current value of the current detected by the current detection resistor 204, plus the current in the direction in which the secondary battery 201 is charged, and minus the current in the direction in which the secondary battery 201 is discharged. Shall.
 制御部202は、例えば所定の演算処理を実行するCPU(Central Processing Unit
)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、これらの周辺回路等とを備えて構成されている。そして、制御部202は、ROMに記憶された制御プログラムを実行することにより、充放電制御、残容量検出、及び残時間算出などを行う。
The control unit 202 is, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing.
), A ROM (Read Only Memory) in which a predetermined control program is stored, a RAM (Random Access Memory) in which data is temporarily stored, peripheral circuits thereof, and the like. And the control part 202 performs charging / discharging control, remaining capacity detection, remaining time calculation, etc. by running the control program memorize | stored in ROM.
 制御部202の充放電制御について説明する。制御部202は、電池パック200に充電装置が接続されている場合、例えば定電流-定電圧充電、トリクル充電、パルス充電等の種々の充電方式を用いて、二次電池201を充電する。そして、制御部202は、例えば二次電池201に流れる充電電流が充電終止電流値以下になると、二次電池201が満充電になったものと判定して充電を終了する。 The charge / discharge control of the control unit 202 will be described. When the charging device is connected to the battery pack 200, the control unit 202 charges the secondary battery 201 using various charging methods such as constant current-constant voltage charging, trickle charging, and pulse charging. Then, for example, when the charging current flowing through the secondary battery 201 becomes equal to or less than the charge termination current value, the control unit 202 determines that the secondary battery 201 is fully charged and ends the charging.
 また、制御部202は、アナログデジタル変換器からの各入力値から、正極端子210、負極端子260間の短絡や携帯式電子機器300からの異常電流などの電池パック200の外部における異常や、二次電池201の異常な温度上昇等の異常を検出する。そして、制御部202は、このような異常を検出した場合、スイッチング素子211、212をオフさせて、過電流や過熱等の異常から、二次電池201を保護する保護動作を行う。 In addition, the control unit 202 detects an abnormality outside the battery pack 200 such as a short circuit between the positive terminal 210 and the negative terminal 260 and an abnormal current from the portable electronic device 300 based on each input value from the analog-digital converter, An abnormality such as an abnormal temperature rise of the secondary battery 201 is detected. When the control unit 202 detects such an abnormality, the control unit 202 turns off the switching elements 211 and 212 and performs a protection operation for protecting the secondary battery 201 from an abnormality such as overcurrent or overheating.
 制御部202の残容量検出について説明する。制御部202は、例えば、電流積算法により二次電池201の残容量RCを検出する。具体的には、制御部202は、電流検出抵抗204によって検出された電流Icを一定の時間間隔(例えば1秒)で積算することによって、二次電池201に充電されている残容量RCを算出する。この場合、二次電池201を充電する方向の電流がプラス、二次電池201から放電される方向の電流がマイナスで表されているので、RC’=RC+Ic×tによりRCを更新することで、二次電池201の残容量RCが更新される。但し、RC’は更新後の残容量を示し、tは一定の時間間隔を示す。 The remaining capacity detection of the control unit 202 will be described. The control unit 202 detects the remaining capacity RC of the secondary battery 201 by, for example, a current integration method. Specifically, the control unit 202 calculates the remaining capacity RC charged in the secondary battery 201 by integrating the current Ic detected by the current detection resistor 204 at a constant time interval (for example, 1 second). To do. In this case, since the current in the direction in which the secondary battery 201 is charged is positive and the current in the direction in which the secondary battery 201 is discharged is negative, by updating RC with RC ′ = RC + Ic × t, The remaining capacity RC of the secondary battery 201 is updated. Here, RC ′ represents the remaining capacity after update, and t represents a certain time interval.
 なお、制御部202は、充放電制御により二次電池201の満充電が検出された場合、予め定められた二次電池201の満充電容量値FCCを、現時点での残容量RCとして設定する。ここで、制御部202は、電流積算法以外の電圧測定法等の手法を用いて残容量RCを算出してもよい。 In addition, when the full charge of the secondary battery 201 is detected by the charge / discharge control, the control unit 202 sets the predetermined full charge capacity value FCC of the secondary battery 201 as the current remaining capacity RC. Here, the control unit 202 may calculate the remaining capacity RC using a technique such as a voltage measurement method other than the current integration method.
 二重保護回路203は、電圧検出回路で読取られた二次電池201の各端子電圧V1、V2を入力し、各端子電圧V1、V2のいずれかが異常電圧である時、ヒータ207を加熱してヒューズ206を溶断させる。これにより、過電流や過熱等の異常から、二次電池201を保護する保護動作を行う。 The double protection circuit 203 inputs the terminal voltages V1 and V2 of the secondary battery 201 read by the voltage detection circuit, and heats the heater 207 when any of the terminal voltages V1 and V2 is an abnormal voltage. Then, the fuse 206 is blown. Thereby, the protection operation for protecting the secondary battery 201 from an abnormality such as overcurrent or overheating is performed.
 レギュレータ221は、直列接続された2個の二次電池201の出力8.4~4.0(V)を計時回路であるRTC用の電力3.3(V)に変換し、計時端子220に出力する。レギュレータ221は、分岐点208と計時端子220の間に配置にされているため、スイッチング素子211、212が制御部202の制御によりオフになったとしても影響を受けずに、RTC用の電力を継続して出力することができる。 The regulator 221 converts the outputs 8.4 to 4.0 (V) of the two secondary batteries 201 connected in series to the power 3.3 V for the RTC, which is a time measuring circuit, and supplies it to the time measuring terminal 220. Output. Since the regulator 221 is arranged between the branch point 208 and the time measuring terminal 220, even if the switching elements 211 and 212 are turned off by the control of the control unit 202, the regulator 221 does not affect the RTC power. It can output continuously.
 正極端子210は定電力出力[40(W):8.4~6.0(V)、4.8~6.7(A)]であるのに対し、計時端子220は定電圧出力[3.3(V):4~6(μA)、13~20(μW)]となっている。 The positive terminal 210 has a constant power output [40 (W): 8.4 to 6.0 (V), 4.8 to 6.7 (A)], whereas the timing terminal 220 has a constant voltage output [3 .3 (V): 4 to 6 (μA), 13 to 20 (μW)].
 リセット回路222は、二次電池201と分岐点208との間に接続されており、二次電池201の出力が所定の電圧、例えば、4.0(V)(=2.0V×2個)以下になったとき、二次電池201の残容量が所定値、例えば、50(mAh)以下(1.3Vを0mAhとした場合)で放電不可であると判断し、レギュレータ221をオフする。 The reset circuit 222 is connected between the secondary battery 201 and the branch point 208, and the output of the secondary battery 201 is a predetermined voltage, for example, 4.0 (V) (= 2.0 V × 2). When it becomes below, it determines that discharge is impossible when the remaining capacity of the secondary battery 201 is a predetermined value, for example, 50 (mAh) or less (when 1.3 V is set to 0 mAh), and the regulator 221 is turned off.
 ダイオード224は、レギュレータ221と計時端子220とをつなぐ配線の間に配置
されている。ダイオード224は、順方向降下電圧Vfの小さなショットキーダイオードを使用する。そして、電池パック200が充電器(図示せず)に接続されたときに、計時端子220が正極端子210と短絡したとしても、充電電流がレギュレータ221へ流れ込むことを防止し、充電電流は正極端子210から二次電池201へのみ流れることとなる。
The diode 224 is disposed between wires connecting the regulator 221 and the time measuring terminal 220. As the diode 224, a Schottky diode having a small forward drop voltage Vf is used. When the battery pack 200 is connected to a charger (not shown), even if the timing terminal 220 is short-circuited with the positive terminal 210, the charging current is prevented from flowing into the regulator 221, and the charging current is positive. It flows only from 210 to the secondary battery 201.
 また、ツェナーダイオード225は、ダイオード224と計時端子220とをつなぐ配線に接続され、接地されている。抵抗226は、ダイオード224と計時端子220とをつなぐ配線の間に配置されている。ツェナーダイオード225は、スペック5.6(V)品等、ごく一般的なものである。ツェナーダイオード225と抵抗226をこのように配置することにより、計時端子220が正極端子210と短絡したとしても、レギュレータ221を保護することができる。 Further, the Zener diode 225 is connected to a wiring connecting the diode 224 and the time measuring terminal 220 and is grounded. The resistor 226 is disposed between the wirings connecting the diode 224 and the time measuring terminal 220. The Zener diode 225 is a very general one such as a spec 5.6 (V) product. By arranging the Zener diode 225 and the resistor 226 in this way, the regulator 221 can be protected even if the time measuring terminal 220 is short-circuited with the positive terminal 210.
 携帯式電子機器300は、制御部301と、DC-DCコンバータ311、RTCといわれる計時回路321と、システム回路である情報処理部331とチャージャーIC351とを備えている。 The portable electronic device 300 includes a control unit 301, a DC-DC converter 311, a timing circuit 321 called RTC, an information processing unit 331 that is a system circuit, and a charger IC 351.
 携帯式電子機器300は、正極端子310から入力した電池パック200の電力をDC-DCコンバータ311に入力し、制御部301に供給する。また、携帯式電子機器300は、計時端子320から入力した計時回路用の電力を計時回路321に供給する。 The portable electronic device 300 inputs the power of the battery pack 200 input from the positive electrode terminal 310 to the DC-DC converter 311 and supplies it to the control unit 301. In addition, the portable electronic device 300 supplies the clock circuit 321 with the power for the clock circuit input from the clock terminal 320.
 また、携帯式電子機器300は、情報端子330、340から入力した電池パック200の情報信号を情報処理部331に入力する。また、携帯式電子機器300は、温度端子350から入力した電池パック200の温度情報をチャージャーIC351に入力する。そして、携帯式電子機器300は、情報信号、温度情報を制御部301に入力して、システムの制御時に制御情報として使用する。 In addition, the portable electronic device 300 inputs the information signal of the battery pack 200 input from the information terminals 330 and 340 to the information processing unit 331. In addition, the portable electronic device 300 inputs temperature information of the battery pack 200 input from the temperature terminal 350 to the charger IC 351. And the portable electronic device 300 inputs an information signal and temperature information into the control part 301, and uses it as control information at the time of control of a system.
 図2は、本発明の実施例における電池パック200の放電量と端子電圧の関係図である。図2(a)において、横軸は電池パック200の満充電から放電終了までの放電量(%)を示し、縦軸は正極端子210及び計時端子220の端子電圧(V)を示している。また、図2(b)は、図2(a)の放電終了付近(放電量が90(%)以上)の拡大図である。図2に、電池パック200の放電量と電圧の放電特性を点線で、正極端子210の端子電圧を実線で、計時端子220の端子電圧を破線で示している。 FIG. 2 is a relationship diagram between the discharge amount of the battery pack 200 and the terminal voltage in the embodiment of the present invention. 2A, the horizontal axis indicates the discharge amount (%) from the full charge of the battery pack 200 to the end of discharge, and the vertical axis indicates the terminal voltage (V) of the positive terminal 210 and the time measuring terminal 220. Moreover, FIG.2 (b) is an enlarged view of the discharge end vicinity (discharge amount 90% or more) of Fig.2 (a). In FIG. 2, the discharge amount and voltage discharge characteristics of the battery pack 200 are indicated by a dotted line, the terminal voltage of the positive terminal 210 is indicated by a solid line, and the terminal voltage of the time measuring terminal 220 is indicated by a broken line.
 図1のように電池パック200はリチウムイオン二次電池である二次電池201が、2個直列接続されている。そのため、電池パック200は満充電時には8.4(V)(=4.2V×2個)の電圧となり、さらに放電が進むにつれ電圧は低減することとなる。 As shown in FIG. 1, the battery pack 200 includes two secondary batteries 201, which are lithium ion secondary batteries, connected in series. Therefore, when the battery pack 200 is fully charged, the voltage becomes 8.4 (V) (= 4.2 V × 2), and the voltage decreases as the discharge further proceeds.
 正極端子210の端子電圧は、制御部202がスイッチング素子211、212をオン状態にしている間は、電池パック200の放電特性に沿った電圧となる。そして、電池パック200の残容量が低減して二次電池201の電圧が6.0(V)(=3.0V×2個)以下になると、制御部202がスイッチング素子211、212をオフ状態にし、正極端子210の端子電圧は0(V)となる。 The terminal voltage of the positive electrode terminal 210 is a voltage in accordance with the discharge characteristics of the battery pack 200 while the control unit 202 is turning on the switching elements 211 and 212. Then, when the remaining capacity of the battery pack 200 is reduced and the voltage of the secondary battery 201 becomes 6.0 (V) (= 3.0 V × 2) or less, the control unit 202 turns off the switching elements 211 and 212. Thus, the terminal voltage of the positive terminal 210 is 0 (V).
 本明細書において、二次電池201の電圧が正極端子210の最低出力電圧である6.0(V)(=3.0V×2個)以下になり、制御部202が正極端子210からの出力を止めたときを「放電終了」と定義している。また、二次電池201の電圧が6.0(V)(=3.0V×2個)よりも高い電圧で、制御部202が正極端子210からの出力を止めたときを「放電停止」と定義する。例えば、二次電池201の電圧が7.0(V)の時に、携帯式電子機器300からの情報で制御部202が放電を止めたときは「放電停止」という。 In the present specification, the voltage of the secondary battery 201 becomes 6.0 (V) (= 3.0 V × 2) which is the minimum output voltage of the positive electrode terminal 210 or less, and the control unit 202 outputs from the positive electrode terminal 210. It is defined as “End of discharge” when the power is stopped. Further, when the voltage of the secondary battery 201 is higher than 6.0 (V) (= 3.0 V × 2) and the control unit 202 stops the output from the positive terminal 210, it is referred to as “discharge stop”. Define. For example, when the voltage of the secondary battery 201 is 7.0 (V) and the control unit 202 stops discharging based on information from the portable electronic device 300, it is referred to as “discharging stop”.
 計時端子220の端子電圧は、直列接続された2個の二次電池201からの出力をレギュレータ221により所定の電圧に降圧し、所定の電圧、例えば、3.3(V)で出力されることとなる。そして、リセット回路222がレギュレータ221をオフ状態にすることで、計時端子220の端子電圧は、0(V)となる。 The terminal voltage of the timing terminal 220 is that the output from the two secondary batteries 201 connected in series is stepped down to a predetermined voltage by the regulator 221 and output at a predetermined voltage, for example, 3.3 (V). It becomes. Then, when the reset circuit 222 turns off the regulator 221, the terminal voltage of the time measuring terminal 220 becomes 0 (V).
 図2で、正極端子210と計時端子220の出力について説明する。特に、放電終了付近、つまり、放電量が90(%)以上については図2(b)で説明する。 The output of the positive terminal 210 and the timing terminal 220 will be described with reference to FIG. In particular, the vicinity of the end of discharge, that is, the discharge amount of 90% or more will be described with reference to FIG.
 図2(a)のように満充電から放電終了付近までは、正極端子210は電池パック200の放電特性に沿って8.4(V)~6.0(V)の電圧を出力し、計時端子220は、3.3(V)を出力する。 As shown in FIG. 2 (a), from the full charge to the end of discharge, the positive terminal 210 outputs a voltage of 8.4 (V) to 6.0 (V) in accordance with the discharge characteristics of the battery pack 200. The terminal 220 outputs 3.3 (V).
 そして、図2(b)のように放電終了付近では、制御部202が二次電池201の電圧が3.0(V)以下、或いは、直列接続された2個の二次電池201の電圧が6.0(V)になったことを検知すると、制御部202は電池パック200の残容量が所定値以下に低下したと判断し、スイッチング素子211、212をオフにして、正極端子210の端子電圧を0(V)にする。 As shown in FIG. 2B, near the end of the discharge, the control unit 202 determines that the voltage of the secondary battery 201 is 3.0 (V) or less, or the voltages of the two secondary batteries 201 connected in series are When it is detected that the voltage reaches 6.0 (V), the control unit 202 determines that the remaining capacity of the battery pack 200 has decreased to a predetermined value or less, turns off the switching elements 211 and 212, and connects the terminals of the positive electrode terminal 210. The voltage is set to 0 (V).
 正極端子210からの出力がなくなったことで、携帯式電子機器300が使用できないことに使用者が気付いて、充電を行えば正極端子210からの出力を再開することができる。しかし、充電が行われない場合、正極端子210からの出力を停止しても、携帯式電子機器300の計時回路321は稼働させ続けなければならない。そのため、計時端子220は、端子電圧3.3(V)、4~6(μA)の出力を継続する。 When the user notices that the portable electronic device 300 cannot be used because the output from the positive electrode terminal 210 is lost, the output from the positive electrode terminal 210 can be resumed if charging is performed. However, in the case where charging is not performed, the timer circuit 321 of the portable electronic device 300 must continue to operate even when the output from the positive terminal 210 is stopped. Therefore, the time measuring terminal 220 continues to output terminal voltages of 3.3 (V) and 4 to 6 (μA).
 また、二次電池201は過放電禁止電圧値(例えば、1.3V)以下にまで過放電をすると劣化を招くこととなる。そのため、計時端子220は、端子電圧3.3(V)、4~6(μA)の出力を継続していたときに、電池パック200の放電特性が所定の電圧、例えば、図2(b)のように4.0(V)以下になったとき、リセット回路222がレギュレータ221からの出力をオフにする。これにより、二次電池201は放電が止まり、二次電池201の過放電を防止することができる。 Further, when the secondary battery 201 is overdischarged to an overdischarge prohibition voltage value (for example, 1.3 V) or less, the secondary battery 201 is deteriorated. Therefore, when the time measuring terminal 220 continues to output the terminal voltages 3.3 (V) and 4 to 6 (μA), the discharge characteristic of the battery pack 200 has a predetermined voltage, for example, FIG. When the voltage becomes 4.0 (V) or less as shown, the reset circuit 222 turns off the output from the regulator 221. As a result, the secondary battery 201 stops discharging, and the secondary battery 201 can be prevented from being overdischarged.
 計時回路321の稼働は13~20(μW)と低電力であるため、二次電池201の放電特性が6.0(V)から4.0(V)になるまで2ヶ月以上あるので、携帯式電子機器300が使用できなくなった後も、計時回路321を長時間稼働させることができる。 Since the operation of the timing circuit 321 has a low power of 13 to 20 (μW), the discharge characteristic of the secondary battery 201 is over two months from 6.0 (V) to 4.0 (V). Even after the electronic device 300 cannot be used, the timer circuit 321 can be operated for a long time.
 さらに、本発明の実施例における電池パック200では、放電終了付近で携帯式電子機器300のシステム回路への電力を停止するだけでなく、二重保護回路203の電力を低減して携帯式電子機器300の計時回路321の稼働時間を長時間化している。 Furthermore, in the battery pack 200 according to the embodiment of the present invention, not only the power to the system circuit of the portable electronic device 300 is stopped near the end of discharging, but also the power of the double protection circuit 203 is reduced to reduce the power of the portable electronic device The operating time of the 300 clock circuits 321 is extended.
 図3は、本発明の実施例における電池パック200の放電量と電力の関係図である。図3(a)において、横軸は電池パック200の満充電を100(%)とした放電可能な放電量(%)を示し、縦軸は正極端子210、計時端子220からの出力電力(W、μW)及び二重保護回路203の駆動電力(μW)を示している。また、図3(b)は、図3(a)の放電終了付近(放電量が90(%)以上)の拡大図である。図3に、正極端子210からの出力電力を実線で、計時端子220からの出力電力を破線で、二重保護回路203の駆動電力を一点鎖線で示している。 FIG. 3 is a relational diagram between the discharge amount of the battery pack 200 and the power in the embodiment of the present invention. In FIG. 3A, the horizontal axis indicates the dischargeable amount (%) where the full charge of the battery pack 200 is 100 (%), and the vertical axis indicates the output power (W from the positive terminal 210 and the time measuring terminal 220). , ΜW) and the driving power (μW) of the double protection circuit 203. FIG. 3B is an enlarged view of the vicinity of the end of discharge in FIG. 3A (discharge amount is 90% or more). In FIG. 3, the output power from the positive terminal 210 is indicated by a solid line, the output power from the time measuring terminal 220 is indicated by a broken line, and the drive power of the double protection circuit 203 is indicated by a one-dot chain line.
 正極端子210からの出力は、満充電時から放電終了まで携帯式電子機器300のシステム回路を駆動させるため定電力出力[40(W):8.4~6.0(V)、4.8~6.7(A)]である。計時端子220からの出力は、満充電時から放電終了まで携帯式電子機器300の計時回路321を駆動させるため定電圧出力[3.3(V):4~6(μA)、13~20(μW)]である。 The output from the positive terminal 210 is a constant power output [40 (W): 8.4 to 6.0 (V), 4.8 to drive the system circuit of the portable electronic device 300 from the time of full charge to the end of discharge. To 6.7 (A)]. The output from the timing terminal 220 is a constant voltage output [3.3 (V): 4 to 6 (μA), 13 to 20 (in order to drive the timing circuit 321 of the portable electronic device 300 from the time of full charge to the end of discharge. μW)].
 二重保護回路203は、電池パック200の二次電池201の端子電圧の測定などを常に行っている。また、二重保護回路203は、二次電池201が過充電にならないように過充電の監視を行っている。二重保護回路203の過充電の監視は、満充電付近では必要であるが、放電終了付近では必要でない。そのため、二重保護回路203は、満充電付近でない所定の電圧以下になると過充電の監視を停止し、駆動電力を低減する。二重保護回路203が過充電の監視を停止する電圧は、正極端子210からの出力を停止する二次電池201の電池電圧以上で、かつ、二次電池201の満充電からの放電量が40(%)以上(残容量が60%以下)の電池電圧である。 The double protection circuit 203 always measures the terminal voltage of the secondary battery 201 of the battery pack 200. Further, the double protection circuit 203 monitors overcharge so that the secondary battery 201 is not overcharged. Monitoring of overcharging of the double protection circuit 203 is necessary near full charge, but not necessary near the end of discharge. Therefore, the double protection circuit 203 stops overcharge monitoring when the voltage is lower than a predetermined voltage that is not near full charge, and reduces drive power. The voltage at which the double protection circuit 203 stops monitoring overcharge is equal to or higher than the battery voltage of the secondary battery 201 that stops the output from the positive terminal 210, and the amount of discharge from the fully charged secondary battery 201 is 40. (%) Or more (remaining capacity is 60% or less).
 例えば、二重保護回路203が過充電の監視を停止する電圧を、例えば7.0(V)(=3.5V×2個)とした場合、満充電付近の二重保護回路203の駆動電力は、過充電電池パック200の二次電池201の端子電圧の測定や過充電を監視するため定電流駆動[10(μA):8.4~7.0(V)、84~70(μW)]である。そして、放電終了付近の二重保護回路203の駆動電力は、過充電監視の電力を削減して、過充電電池パック200の二次電池201の端子電圧の測定のみの定電流駆動[5(μA):7.0~4.0(V)、35~20(μW)]に低減される。 For example, when the voltage at which the double protection circuit 203 stops monitoring overcharge is 7.0 (V) (= 3.5 V × 2), for example, the driving power of the double protection circuit 203 near full charge Is a constant current drive [10 (μA): 8.4 to 7.0 (V), 84 to 70 (μW) for measuring the terminal voltage of the secondary battery 201 of the overcharged battery pack 200 and monitoring overcharge. ]. Then, the driving power of the double protection circuit 203 near the end of discharging reduces the power of overcharge monitoring, and the constant current driving [5 (μA) only for measuring the terminal voltage of the secondary battery 201 of the overcharged battery pack 200. ): 7.0 to 4.0 (V), 35 to 20 (μW)].
 二重保護回路203の駆動電力は、正極端子210からの出力電力に比べれば500分の1程度であるが、計時端子220からの出力電力の4倍以上の電力である。そのため、放電終了付近で二重保護回路203の駆動電力を低減することで、低減させた電力で計時端子220から2倍以上の長時間の出力を可能とし、計時回路321をより長時間稼働させることが可能となる。 The driving power of the double protection circuit 203 is about 1/500 of the output power from the positive terminal 210, but is more than four times the output power from the time measuring terminal 220. For this reason, by reducing the driving power of the double protection circuit 203 near the end of the discharge, it is possible to output from the time measuring terminal 220 for a long time more than twice with the reduced power, and to operate the time measuring circuit 321 for a longer time. It becomes possible.
 かかる構成によれば、携帯式電子機器の計時回路用バックアップ電池を取り除いて、携帯式電子機器の小型・軽量化と低コスト化を実現できると共に、電池パックの残容量が低下した時も計時回路の機能を長時間維持することができる。 According to such a configuration, the backup battery for the timing circuit of the portable electronic device can be removed, and the portable electronic device can be reduced in size, weight and cost, and the timing circuit can be used even when the remaining capacity of the battery pack is reduced. The function of can be maintained for a long time.
 なお、本実の形態において、レギュレータ221とリセット回路222で計時回路用の電力を出力するとしたが、二重保護回路にレギュレータとリセット回路の機能をもたせた構成としてもよい。図4のように、電子機器システム400の電池パック500の二重保護回路503は、計時端子220の接続される出力を備える。そして、二重保護回路503は直列接続された2個の二次電池201の出力をレギュレータのように降圧して出力する。そして、二次電池201のいずれかの電圧が2.5(V)以下になったとき、計時端子220への出力を停止する。 In this embodiment, the regulator 221 and the reset circuit 222 output the power for the timing circuit. However, the dual protection circuit may have a function of the regulator and the reset circuit. As shown in FIG. 4, the double protection circuit 503 of the battery pack 500 of the electronic device system 400 includes an output to which the time measuring terminal 220 is connected. The double protection circuit 503 steps down the output of the two secondary batteries 201 connected in series like a regulator and outputs the voltage. Then, when any voltage of the secondary battery 201 becomes 2.5 (V) or less, the output to the time measuring terminal 220 is stopped.
 なお、本実施の形態において、制御部202が二次電池201の電圧が3.0(V)以下、或いは、直列接続された2個の二次電池201の電圧が6.0(V)になったことを検知すると、制御部202は電池パック200の残容量が所定値以下に低下したと判断し、スイッチング素子211、212をオフにするとしたが、制御部202の残容量検出による残容量が所定値以下になったときにスイッチング素子211、212をオフにするとしてもよい。 In this embodiment, the control unit 202 sets the voltage of the secondary battery 201 to 3.0 (V) or lower, or the voltage of the two secondary batteries 201 connected in series to 6.0 (V). When it is detected that the remaining capacity of the battery pack 200 has decreased to a predetermined value or less, the control unit 202 determines that the switching elements 211 and 212 are turned off. The switching elements 211 and 212 may be turned off when becomes below a predetermined value.
 なお、本実の形態において、電子機器システム100は電池パック200と携帯式電子機器300との組合せとしたが、電池パックと携帯しない電子機器との組合せとしてもよい。その場合も携帯式電子機器と同様に、携帯しない電子機器のバックアップ電池を取り除いても、電池パックの残容量が低下した時も計時回路の機能を長時間維持することができる。 In the present embodiment, the electronic device system 100 is a combination of the battery pack 200 and the portable electronic device 300, but may be a combination of a battery pack and an electronic device that is not carried. In this case as well as the portable electronic device, even if the backup battery of the electronic device that is not carried is removed, the function of the timing circuit can be maintained for a long time even when the remaining capacity of the battery pack is reduced.
 なお、本実の形態において、正極端子210からの定電力出力[40(W):8.4~6.0(V)、4.8~6.7(A)]に対し、計時端子220からの定電圧出力[3.3(V):4~6(μA)、13~20(μW)]を低電力の出力であるとしたが、携帯式電子機器300のシステム回路が計時回路321と同等、或いは、より小さい電力であれば、正極端子210からの出力を計時端子220の出力と同等、或いは、より小さい電力としてもよい。 In the present embodiment, the time measuring terminal 220 corresponds to the constant power output [40 (W): 8.4 to 6.0 (V), 4.8 to 6.7 (A)] from the positive terminal 210. Constant voltage output [3.3 (V): 4 to 6 (μA), 13 to 20 (μW)] is a low-power output, but the system circuit of the portable electronic device 300 is a timing circuit 321. If the power is equal to or smaller than the output from the positive terminal 210, the output from the positive terminal 210 may be equal to or smaller than the output from the timing terminal 220.
 なお、本実施の形態において、リセット回路222がレギュレータ221からの出力をオフにする電池パック200の電圧を4.0(V)としたが、例えば、4.5(V)でも、5.0(V)でもよい。正極端子210の定電力出力の最低の電圧値6.0(V)より低く、かつ、過放電禁止電圧値2.6(V)(=1.3V×2個)以上であればよい。 In the present embodiment, the voltage of the battery pack 200 at which the reset circuit 222 turns off the output from the regulator 221 is set to 4.0 (V). (V) may be used. What is necessary is just to be lower than the minimum voltage value 6.0 (V) of the constant power output of the positive electrode terminal 210 and over discharge prohibition voltage value 2.6 (V) (= 1.3 V × 2).
 なお、本実施の形態において、レギュレータ221で二次電池201の出力を降圧して計時端子220から出力するとしたが、携帯式電子機器300の計時回路321の駆動電圧が二次電池201の出力と同電圧である場合、レギュレータ221を使用せず、二次電池201の出力を直接出力するとしてもよい。 In this embodiment, the output of the secondary battery 201 is stepped down by the regulator 221 and output from the timing terminal 220. However, the driving voltage of the timing circuit 321 of the portable electronic device 300 is the same as the output of the secondary battery 201. When the voltages are the same, the output of the secondary battery 201 may be directly output without using the regulator 221.
 本発明にかかる電池パックは、携帯式電子機器の計時回路用バックアップ電池を取り除いて、携帯式電子機器の小型・軽量化と低コスト化と、電池パックの残容量が低下した時も計時回路の機能を長時間維持することが可能になるので、携帯式電子機器のシステム回路とカレンダ時刻を生成する計時回路への電力の両方を供給する電池パック等として有用である。 The battery pack according to the present invention removes the backup battery for the timing circuit of the portable electronic device, reduces the size and weight of the portable electronic device, reduces the cost, and reduces the remaining capacity of the battery pack. Since the function can be maintained for a long time, it is useful as a battery pack or the like that supplies both power to the system circuit of the portable electronic device and the clock circuit that generates the calendar time.
100、400 電子機器システム
200、500 電池パック
201 二次電池
202 制御部
203、503 二重保護回路
204 電流検出抵抗
205 温度センサ
206 ヒューズ
207 ヒータ
208 分岐点
210 正極端子
211、212 スイッチング素子
220 計時端子
221 レギュレータ
222 リセット回路
223 コンデンサ
224 ダイオード
225 ツェナーダイオード
226 抵抗
230、240 情報端子
250 温度端子
260 負極端子
300 携帯式電子機器
301 制御部
310 正極端子
311 DC-DCコンバータ
320 計時端子
321 計時回路
330、340 情報端子
331 情報処理部
350 温度端子
351 チャージャーIC
360 負極端子
100, 400 Electronic device system 200, 500 Battery pack 201 Secondary battery 202 Control unit 203, 503 Double protection circuit 204 Current detection resistor 205 Temperature sensor 206 Fuse 207 Heater 208 Branch point 210 Positive electrode terminal 211, 212 Switching element 220 Timekeeping terminal 221 Regulator 222 Reset circuit 223 Capacitor 224 Diode 225 Zener diode 226 Resistor 230, 240 Information terminal 250 Temperature terminal 260 Negative electrode terminal 300 Portable electronic device 301 Control unit 310 Positive electrode terminal 311 DC-DC converter 320 Clock terminal 321 Clock circuit 330, 340 Information terminal 331 Information processing unit 350 Temperature terminal 351 Charger IC
360 Negative terminal

Claims (12)

  1.  二次電池と、
     前記二次電池から電子機器のシステム回路に電力を出力する第1出力端子と、
     前記二次電池から前記電子機器の計時回路に電力を出力する第2出力端子と、
     前記二次電池から前記第1出力端子と前記第2出力端子に分かれる分岐点と、
     前記分岐点と前記第1出力端子の間に、前記第1出力端子からの出力をON/OFFする第1スイッチ部と、
     前記第1スイッチ部をON/OFF制御する制御部とを備え、
     前記制御部は、前記二次電池の電圧が第1の電圧値以下になったとき、前記第1スイッチ部をOFFにし、前記第2出力端子からの出力を継続させることを特徴とする電池パック。
    A secondary battery,
    A first output terminal for outputting power from the secondary battery to a system circuit of an electronic device;
    A second output terminal for outputting electric power from the secondary battery to the timing circuit of the electronic device;
    A branch point from the secondary battery to the first output terminal and the second output terminal;
    A first switch unit for turning ON / OFF the output from the first output terminal between the branch point and the first output terminal;
    A control unit that controls ON / OFF of the first switch unit,
    The control unit turns off the first switch unit and continues output from the second output terminal when the voltage of the secondary battery becomes equal to or lower than a first voltage value. .
  2.  前記分岐点と前記第2出力端子の間に、前記二次電池の出力を前記計時回路用に低出力に変換するレギュレータとを備えることを特徴とする請求項1記載の電池パック。 The battery pack according to claim 1, further comprising a regulator between the branch point and the second output terminal for converting the output of the secondary battery into a low output for the timing circuit.
  3.  前記レギュレータの出力をOFFする第2スイッチ部とを備え、
     前記制御部は、前記二次電池の電圧が前記第1の電圧値よりも低い第2の電圧値以下になったとき、前記第2スイッチ部により、前記レギュレータの出力をOFFにすることを特徴とする請求項2記載の電池パック。
    A second switch unit for turning off the output of the regulator;
    The control unit turns off the output of the regulator by the second switch unit when the voltage of the secondary battery becomes equal to or lower than a second voltage value lower than the first voltage value. The battery pack according to claim 2.
  4.  前記第1の電圧値は、前記第1出力端子が定電力出力する最低の電圧値であり、
     前記第2の電圧値は、過放電禁止電圧値より高い電圧値であることを特徴とする請求項3記載の電池パック。
    The first voltage value is a lowest voltage value at which the first output terminal outputs constant power,
    The battery pack according to claim 3, wherein the second voltage value is a voltage value higher than an overdischarge inhibition voltage value.
  5.  前記二次電池の残容量が60%以下の電圧値以下、かつ、前記第1の電圧値以上の第3の電圧値で、二重保護回路が過充電の監視を停止することを特徴とする請求項1乃至4のいずれかに記載の電池パック。 The double protection circuit stops monitoring overcharge when the remaining capacity of the secondary battery is a voltage value of 60% or less and a third voltage value of the first voltage value or more. The battery pack according to claim 1.
  6.  二次電池と、
     前記二次電池から電子機器のシステム回路に電力を出力する第1出力端子と、
     前記二次電池から前記電子機器の計時回路に電力を出力する第2出力端子と、
     前記二次電池から前記第1出力端子と前記第2出力端子に分かれる分岐点と、
     前記分岐点と前記第1出力端子の間に、前記第1出力端子からの出力をON/OFFする第1スイッチ部と、
     前記第1スイッチ部をON/OFF制御する制御部とを備え、
     前記制御部は、前記二次電池の残容量が所定の残容量値以下になったとき、前記第1スイッチ部をOFFにし、前記第2出力端子からの出力を継続させることを特徴とする電池パック。
    A secondary battery,
    A first output terminal for outputting power from the secondary battery to a system circuit of an electronic device;
    A second output terminal for outputting electric power from the secondary battery to the timing circuit of the electronic device;
    A branch point from the secondary battery to the first output terminal and the second output terminal;
    A first switch unit for turning ON / OFF the output from the first output terminal between the branch point and the first output terminal;
    A control unit that controls ON / OFF of the first switch unit,
    The control unit is configured to turn off the first switch unit and continue output from the second output terminal when the remaining capacity of the secondary battery becomes a predetermined remaining capacity value or less. pack.
  7.  前記分岐点と前記第2出力端子の間に、前記二次電池の出力を前記計時回路用に低出力に変換するレギュレータとを備えることを特徴とする請求項6記載の電池パック。 The battery pack according to claim 6, further comprising a regulator for converting the output of the secondary battery to a low output for the timekeeping circuit between the branch point and the second output terminal.
  8.  前記レギュレータの出力をOFFする第2スイッチ部とを備え、
     前記制御部は、前記二次電池の残容量が前記所定の残容量値以下で、かつ、前記二次電池の電圧が所定の電圧値以下になったとき、前記第2スイッチ部により、前記レギュレータの出力をOFFにすることを特徴とする請求項7記載の電池パック。
    A second switch unit for turning off the output of the regulator;
    When the remaining capacity of the secondary battery is equal to or less than the predetermined remaining capacity value and the voltage of the secondary battery is equal to or less than the predetermined voltage value, the control unit causes the regulator to control the regulator. The battery pack according to claim 7, wherein the output of is turned off.
  9.  前記所定の残容量値は、前記第1出力端子が定電力出力する最低の残容量値であり、
     前記所定の電圧値は、過放電禁止電圧値より高い電圧値であることを特徴とする請求項8記載の電池パック。
    The predetermined remaining capacity value is a minimum remaining capacity value at which the first output terminal outputs constant power,
    The battery pack according to claim 8, wherein the predetermined voltage value is a voltage value higher than an overdischarge inhibition voltage value.
  10.  前記二次電池の残容量が60%以下、かつ、前記所定の残容量以上で、二重保護回路が過充電の監視を停止することを特徴とする請求項6乃至9のいずれかに記載の電池パック。 The double protection circuit stops monitoring overcharge when the remaining capacity of the secondary battery is 60% or less and more than the predetermined remaining capacity. Battery pack.
  11.  請求項1乃至10のいずれかに記載の電池パックと、
     前記第1出力端子からの電力で稼動するシステム回路と、前記第2出力端子からの電力で稼動する計時回路とを有する電子機器とを備えた電子機器システム。
    The battery pack according to any one of claims 1 to 10,
    An electronic device system comprising: an electronic device having a system circuit that operates with power from the first output terminal; and a timer circuit that operates with power from the second output terminal.
  12.  システム回路と、
     計時回路と、
     二次電池からの電力を前記システム回路に入力する第1入力端子と、
     前記二次電池からの電力を前記計時回路に入力する第2入力端子と、
     前記二次電池の入力電圧が所定の電圧値以下になったとき、前記第1入力端子からの入力が停止し、
     前記第1入力端子からの入力を停止した後も、前記第2入力端子からの入力を継続することを特徴とする電子機器。
    System circuit,
    A clock circuit,
    A first input terminal for inputting power from a secondary battery to the system circuit;
    A second input terminal for inputting power from the secondary battery to the timing circuit;
    When the input voltage of the secondary battery becomes a predetermined voltage value or less, the input from the first input terminal is stopped,
    An electronic apparatus characterized in that the input from the second input terminal is continued even after the input from the first input terminal is stopped.
PCT/JP2014/002937 2013-10-31 2014-06-03 Battery pack, electronic device system, and electronic device WO2015063968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-226202 2013-10-31
JP2013226202 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015063968A1 true WO2015063968A1 (en) 2015-05-07

Family

ID=53003606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/002937 WO2015063968A1 (en) 2013-10-31 2014-06-03 Battery pack, electronic device system, and electronic device

Country Status (1)

Country Link
WO (1) WO2015063968A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526361A (en) * 2020-10-26 2021-03-19 华帝股份有限公司 Method for monitoring available electric quantity of battery and stove igniter applying same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135854A (en) * 2003-10-31 2005-05-26 Sony Corp Battery pack
JP2009165308A (en) * 2008-01-09 2009-07-23 Hioki Ee Corp Power supply circuit and electronic equipment
JP2011176940A (en) * 2010-02-24 2011-09-08 Seiko Epson Corp Protection circuit and electronic apparatus
JP2011182592A (en) * 2010-03-02 2011-09-15 Sanyo Electric Co Ltd Battery pack

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005135854A (en) * 2003-10-31 2005-05-26 Sony Corp Battery pack
JP2009165308A (en) * 2008-01-09 2009-07-23 Hioki Ee Corp Power supply circuit and electronic equipment
JP2011176940A (en) * 2010-02-24 2011-09-08 Seiko Epson Corp Protection circuit and electronic apparatus
JP2011182592A (en) * 2010-03-02 2011-09-15 Sanyo Electric Co Ltd Battery pack

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112526361A (en) * 2020-10-26 2021-03-19 华帝股份有限公司 Method for monitoring available electric quantity of battery and stove igniter applying same

Similar Documents

Publication Publication Date Title
US8111035B2 (en) Charging system, charging device and battery pack
JP4668957B2 (en) Charge control method and electronic device
KR101201139B1 (en) Protection circuit device of battery pack
JP5803446B2 (en) Semiconductor integrated circuit, protection circuit and battery pack
JP4398432B2 (en) Charge / discharge control circuit and rechargeable power supply
US8854007B2 (en) Protection circuit for battery pack
JP5119307B2 (en) Battery pack charge control method
CN111987772B (en) On-chip system, battery pack and electronic device
JP2009153238A (en) Portable device and battery pack used for the same
TW200531397A (en) Battery pack, battery protection processing apparatus, and control method of the battery protection processing apparatus
US8665572B2 (en) Battery charge/discharge protection circuit
JP2008182809A (en) Battery circuit, battery pack, and battery system
JPH10215524A (en) Power supply monitoring ic and battery pack
US6920341B2 (en) Secondary battery control circuit
JP2009052975A (en) Circuit for calculating residual battery capacity, and battery pack using the same
JP5437770B2 (en) Battery state monitoring circuit and battery device
JP4846755B2 (en) Portable electronic devices
JP2007042396A (en) Battery pack, and electric apparatus equipped with it
WO2015063968A1 (en) Battery pack, electronic device system, and electronic device
US11476696B2 (en) Charge and discharge control apparatus and electronic device
JP2005168160A (en) Overcurrent protection circuit and charging type battery pack
JP2020524476A (en) Battery pack with communication terminal insulation function
JP2000152510A (en) Charge and discharge control circuit and charge system of power unit
KR20070109084A (en) Battery pack
US20230420969A1 (en) Current consumption control device and battery management device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14858444

Country of ref document: EP

Kind code of ref document: A1