JP2008181950A - Electrode material for electric double-layer capacitor, production process and electric double-layer capacitor therefor - Google Patents

Electrode material for electric double-layer capacitor, production process and electric double-layer capacitor therefor Download PDF

Info

Publication number
JP2008181950A
JP2008181950A JP2007012634A JP2007012634A JP2008181950A JP 2008181950 A JP2008181950 A JP 2008181950A JP 2007012634 A JP2007012634 A JP 2007012634A JP 2007012634 A JP2007012634 A JP 2007012634A JP 2008181950 A JP2008181950 A JP 2008181950A
Authority
JP
Japan
Prior art keywords
electric double
electrode material
layer capacitor
double layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007012634A
Other languages
Japanese (ja)
Other versions
JP4935374B2 (en
Inventor
Masayuki Kozu
将之 神頭
Eisuke Haba
英介 羽場
Koichi Takei
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007012634A priority Critical patent/JP4935374B2/en
Publication of JP2008181950A publication Critical patent/JP2008181950A/en
Application granted granted Critical
Publication of JP4935374B2 publication Critical patent/JP4935374B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material for an electric double-layer capacitor, exhibiting high output characteristics in a low-temperature region, and to provide its production process and the electric double-layer capacitor. <P>SOLUTION: In the process for producing the electrode material of an electric double-layer capacitor by performing alkali activation of a mixture of a carbonaceous material and an alkali compound, the temperature region in a system for performing alkali activation is 600°C-900°C, and the inside of the system for performing alkali activation is under inert atmosphere having a pressure of 0.11 MPa or higher. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気二重層キャパシタ用電極材、その製造方法及び電気二重層キャパシタに関する。   The present invention relates to an electrode material for an electric double layer capacitor, a manufacturing method thereof, and an electric double layer capacitor.

電気二重層キャパシタは、電解液中にセパレータを介して、2対の電極を対向することにより構成される。充放電はセルに電圧を印加することにより、電解液中のイオンが電極表面に電気的吸脱着をすることにより行われる。このように、電気二重層キャパシタは電極と電解液間で化学的な反応が伴わないため、リチウムイオン二次電池、ニッケル水素電池など他の二次電池と比較して、高い出力、高い寿命、さらには高い安全性を有することが特徴である。   The electric double layer capacitor is configured by facing two pairs of electrodes in a liquid electrolyte via a separator. Charging / discharging is performed by applying a voltage to the cell so that ions in the electrolytic solution are electrically adsorbed / desorbed on the electrode surface. In this way, since the electric double layer capacitor does not involve a chemical reaction between the electrode and the electrolyte, compared with other secondary batteries such as lithium ion secondary battery and nickel metal hydride battery, high output, high life, Furthermore, it is characterized by high safety.

電気二重層キャパシタは半導体メモリのバックアップ電源として実用化され、次いで、高容量化と共に太陽電池と組み合わせた道路標識、照明等に使用されるようになった。近年、注目されている電気二重層キャパシタの利用分野は車載用電源と瞬時停電用電源である。特に車載用途は、自動車の電子制御化、ハイブリッド化と共に、電源への信頼性、寿命、出力特性に対する要求が高まり、これらの特性に優れる電気二重層キャパシタが注目されている。   The electric double layer capacitor has been put to practical use as a backup power source for semiconductor memories, and then has been used for road signs, lighting, etc. combined with a solar cell with an increase in capacity. In recent years, electric double layer capacitors that are attracting attention are in-vehicle power supplies and instantaneous power outages. In particular, in automotive applications, demands for reliability, life, and output characteristics of power sources are increasing along with electronic control and hybridization of automobiles, and electric double layer capacitors that are excellent in these characteristics are attracting attention.

電気二重層キャパシタの電極材には、高い比表面積を有する活性炭が用いられている。活性炭はナノサイズの細孔から成る多孔質炭素である。この細孔内で電気二重層形成及びイオン移動などが起こるため、電気二重層キャパシタの特性向上を目的とし、予てより電極材としての活性炭の改良検討が盛んに行われてきた。   Activated carbon having a high specific surface area is used for the electrode material of the electric double layer capacitor. Activated carbon is porous carbon composed of nano-sized pores. Since electric double layer formation and ion migration occur in the pores, improvement of activated carbon as an electrode material has been actively studied for the purpose of improving the characteristics of the electric double layer capacitor.

車載用電源用電気二重層キャパシタには、高い出力特性、特に低温域での高出力化が要求されている。一般的に電気二重層キャパシタを電極材から高出力化するためには、(1)電極材固有の電気抵抗を低下させること、(2)電極材間の接触抵抗を低下させること、(3)活性炭細孔内の電解液の拡散抵抗を低下させることが挙げられる。特に、低温域では、(3)の細孔内のイオンの拡散抵抗が抵抗成分の主要因となっており、活性炭の細孔径をコントロールすることによる出力特性改善の試みが多数報告されている(例えば特許文献1、2参照)。   Electric double layer capacitors for on-vehicle power supplies are required to have high output characteristics, particularly high output at low temperatures. In general, in order to increase the output of an electric double layer capacitor from an electrode material, (1) reduce the electric resistance inherent to the electrode material, (2) reduce the contact resistance between the electrode materials, (3) For example, the diffusion resistance of the electrolytic solution in the activated carbon pores may be reduced. In particular, in the low temperature range, the diffusion resistance of ions in the pores of (3) is the main factor of the resistance component, and many attempts to improve output characteristics by controlling the pore diameter of activated carbon have been reported ( For example, see Patent Documents 1 and 2).

ところで、古来より活性炭を製造する方法として、水蒸気などを使用したガス賦活法が用いられてきた。しかし、近年では電気二重層キャパシタ用電極材として高い容量が得られるアルカリ賦活法が注目されており、例えば、メソフェーズピッチ系炭素繊維をアルカリ賦活し、高容量活性炭を製造するなどの報告がなされている(例えば特許文献3参照)。一方、高出力化に関するアルカリ賦活の報告例としては、水蒸気賦活後にアルカリ賦活を行うことでメソポアを発達させ、電極材の高出力化を試みているほか、賦活温度、賦活時間、アルカリ化合物添加量などの製造条件から電極材の細孔径をコントロールし、高出力化を試みている報告例が挙げられる(例えば特許文献2、4参照)。   By the way, as a method for producing activated carbon from ancient times, a gas activation method using steam or the like has been used. However, in recent years, an alkali activation method capable of obtaining a high capacity as an electrode material for an electric double layer capacitor has attracted attention. For example, reports have been made on the production of high-capacity activated carbon by alkali activation of mesophase pitch carbon fibers. (For example, refer to Patent Document 3). On the other hand, as a report example of alkali activation for higher output, in addition to developing mesopores by performing alkali activation after steam activation, trying to increase output of electrode material, activation temperature, activation time, alkali compound addition amount Examples of reports that attempt to increase the output by controlling the pore diameter of the electrode material from the manufacturing conditions such as the above (see, for example, Patent Documents 2 and 4).

特開2002−33249号公報JP 2002-33249 A 特開2001−118753号公報JP 2001-118753 A 特開平10−121336号公報JP-A-10-121336 特開平8−119614号公報JP-A-8-119614

電極材を高出力するためには、細孔径をコントロールすることが重要である。従来の報告では、水蒸気賦活後にアルカリ賦活を行う、あるいは製造条件として、前駆体種、賦活温度、賦活時間、アルカリ化合物種及びその混合量を制御するなどから検討されてきた。しかし、これらの製造方法はコストがかかるうえ、多くの製造条件を調整する必要があり、工程が複雑化する等の課題があった。   In order to output the electrode material at a high output, it is important to control the pore diameter. In the conventional report, alkali activation is performed after steam activation, or the production conditions are studied by controlling the precursor species, the activation temperature, the activation time, the alkali compound species, and the mixed amount thereof. However, these production methods are costly and require adjustment of a number of production conditions, resulting in problems such as complicated processes.

発明者らはアルカリ賦活時の圧力を制御することで容易に細孔径がコントロールでき、電極材の高出力化が図れることを見出した。本発明は、低温域において高い出力特性を有する電気二重層キャパシタ用電極材、その製造方法及び電気二重層キャパシタを提供する。   The inventors have found that the pore diameter can be easily controlled by controlling the pressure during alkali activation, and the output of the electrode material can be increased. The present invention provides an electrode material for an electric double layer capacitor having high output characteristics in a low temperature region, a method for producing the electrode material, and an electric double layer capacitor.

発明者らはアルカリ賦活による電気二重層キャパシタ用電極材の製造方法において、従来アルカリ賦活の製造条件として検討されてきた前駆体種、賦活温度、賦活時間、アルカリ化合物種及びその混合量以外に、アルカリ賦活の雰囲気圧を制御することで容易に電極材の細孔径がコントロールでき、0.11MPa以上でアルカリ賦活し得られる電極材は、電気二重層キャパシタ用電極材として高い出力特性を有することを見出した。
具体的には下記の[1]〜[3]に記載の事項を特徴とするものである。
[1]炭素質物質とアルカリ化合物を含む混合物をアルカリ賦活してなる電気二重層キャパシタ用電極材の製造方法において、アルカリ賦活を実施する系内の温度域が600℃から900℃であり、アルカリ賦活を実施する系内が圧力0.11MPa以上の不活性雰囲気下である電気二重層キャパシタ用電極材の製造方法。
[2][1]に記載の電気二重層キャパシタ用電極材の製造方法により作製してなる電気二重層キャパシタ用電極材。
[3][2]に記載の電気二重層キャパシタ用電極材を用いてなる電気二重層キャパシタ。
In addition to the precursor species, the activation temperature, the activation time, the alkali compound species, and the mixed amount thereof, which have been conventionally studied as production conditions for alkali activation in the method for producing an electrode material for an electric double layer capacitor by alkali activation, The pore diameter of the electrode material can be easily controlled by controlling the atmosphere pressure of alkali activation, and the electrode material that can be alkali activated at 0.11 MPa or more has high output characteristics as an electrode material for an electric double layer capacitor. I found it.
Specifically, the items described in [1] to [3] below are characterized.
[1] In the method for producing an electrode material for an electric double layer capacitor obtained by alkali-activating a mixture containing a carbonaceous substance and an alkali compound, the temperature range in the system for carrying out alkali activation is 600 ° C. to 900 ° C. A method for producing an electrode material for an electric double layer capacitor, wherein the system in which the activation is performed is in an inert atmosphere with a pressure of 0.11 MPa or more.
[2] An electrode material for an electric double layer capacitor produced by the method for producing an electrode material for an electric double layer capacitor according to [1].
[3] An electric double layer capacitor using the electrode material for an electric double layer capacitor according to [2].

本発明によれば、低温域において高い出力特性を有する電気二重層キャパシタ用電極材、その製造方法及び電気二重層キャパシタを得ることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to obtain the electrode material for electrical double layer capacitors which has a high output characteristic in a low temperature range, its manufacturing method, and an electrical double layer capacitor.

以下、本発明を詳細に説明する。
本発明の電気二重層キャパシタ用電極材の製造方法は、炭素質物質とアルカリ化合物を含む混合物を、600℃から900℃の温度域の系内において、圧力0.11MPa以上の不活性雰囲気下でアルカリ賦活を行うことを特徴とする。以下、賦活とはアルカリ賦活を表す。0.11MPa以上の不活性雰囲気下で賦活にすることにより、0.11MPa未満で賦活した電極材と比較して細孔径を拡大することが可能となる。系内の圧力としては0.11〜0.30MPaが好ましく、0.12〜0.25MPaがより好ましく、0.12〜0.20MPaがさらに好ましい。過度の加圧は反応性の高いアルカリ金属が炉内(系内)で生成されていることを考慮すると、危険性が高くなる懸念があるため好ましくない。
Hereinafter, the present invention will be described in detail.
In the method for producing an electrode material for an electric double layer capacitor of the present invention, a mixture containing a carbonaceous material and an alkali compound is subjected to an inert atmosphere at a pressure of 0.11 MPa or more in a system in a temperature range of 600 ° C. to 900 ° C. It is characterized by performing alkali activation. Hereinafter, activation represents alkali activation. By activating under an inert atmosphere of 0.11 MPa or more, the pore diameter can be expanded as compared with the electrode material activated at less than 0.11 MPa. The pressure in the system is preferably 0.11 to 0.30 MPa, more preferably 0.12 to 0.25 MPa, and even more preferably 0.12 to 0.20 MPa. Excessive pressurization is not preferable because there is a concern that the risk is increased in consideration of the fact that highly reactive alkali metals are generated in the furnace (in the system).

加圧を実施する温度は、炭素が賦活される温度域に近い方が好ましい。具体的には600〜900℃であり、650〜900℃が好ましく、700〜900℃がより好ましい。600℃未満で加圧を行うと、混合しているアルカリ化合物の脱水反応を阻害し、高温域での賦活反応に影響する。また、900℃を超える温度は、アルカリによる炉体及び容器の腐食が著しくなるため好ましくない。   The temperature at which the pressurization is performed is preferably close to the temperature range where carbon is activated. Specifically, it is 600-900 degreeC, 650-900 degreeC is preferable and 700-900 degreeC is more preferable. When pressurization is performed at a temperature lower than 600 ° C., the dehydration reaction of the mixed alkali compound is inhibited, and the activation reaction in a high temperature range is affected. Further, a temperature exceeding 900 ° C. is not preferable because corrosion of the furnace body and the container due to alkali becomes remarkable.

加圧する方法としては、賦活を実施する系内の圧力が0.11MPa以上になれば特に制限はされないが、炉の設計、構造により内圧をコントロールすることが、簡単かつ確実に制御できるため好ましい。例えば、耐圧設計した雰囲気炉に圧力センサーを入れ、排気バルブの開閉を制御することで内圧をコントロールすることが可能である。また、アルカリ賦活時には反応性の高い金属アルカリが生成し、炉内または配管内に飛散する。このため、炉内に外気が導入しないよう逆流防止弁を設けるなどの安全対策を十分に行う必要性がある。また、飛散するアルカリにより配管及びバルブが閉塞しないよう、充分考慮した炉設計が必要である。   The method of pressurization is not particularly limited as long as the pressure in the system for activation is 0.11 MPa or more, but it is preferable to control the internal pressure according to the design and structure of the furnace because it can be easily and reliably controlled. For example, it is possible to control the internal pressure by inserting a pressure sensor in an atmosphere furnace designed to withstand pressure and controlling the opening and closing of the exhaust valve. Further, during alkali activation, highly reactive metal alkali is generated and scattered in the furnace or piping. For this reason, it is necessary to take sufficient safety measures such as providing a backflow prevention valve to prevent outside air from being introduced into the furnace. In addition, it is necessary to design the furnace with sufficient consideration so that the piping and valves are not blocked by the scattered alkali.

本発明に用いる炭素質物質としては、例えば、ピッチ、コークス、ポリ塩化ビニル、フェノール樹脂、フラン樹脂、ポリ塩化ビニリデン等を不活性雰囲気下で熱処理を施し炭化した炭化物が挙げられる。   Examples of the carbonaceous material used in the present invention include carbides obtained by subjecting pitch, coke, polyvinyl chloride, phenol resin, furan resin, polyvinylidene chloride, etc. to a heat treatment in an inert atmosphere and carbonizing.

硬化し、粉砕処理を施した物質を炭化することが好ましい。炭化については、通常、窒素、アルゴン、ヘリウム、真空等の不活性雰囲気下500〜1000℃の範囲で行うのが好ましく、600〜900℃で行うのがより好ましく、700〜800℃で行うことがさらに好ましい。炭化温度が500℃未満であると、得られる電極材が低結晶性のため、出力特性が悪い傾向がある。炭化温度が1000℃を超えると、賦活時に多量のアルカリ化合物が必要になるほか、結晶性の向上が出力特性に大きく寄与しなくなる傾向がある。また、得られた炭化物はさらに目的粒子径まで粉砕することが好ましい。粉砕機はピンミル、ジェットミル、ボールミル、ビーズミル等挙げられる。これらは、単独で行ってもよく又は2種以上の方法を組み合わせて行ってもよい。   It is preferable to carbonize the cured and pulverized material. The carbonization is usually preferably performed in an inert atmosphere such as nitrogen, argon, helium, vacuum, etc. in the range of 500 to 1000 ° C., more preferably 600 to 900 ° C., and 700 to 800 ° C. Further preferred. When the carbonization temperature is less than 500 ° C., the obtained electrode material tends to have poor output characteristics because of low crystallinity. When the carbonization temperature exceeds 1000 ° C., a large amount of alkali compound is required at the time of activation, and the improvement in crystallinity tends not to greatly contribute to the output characteristics. The obtained carbide is preferably further pulverized to the target particle size. Examples of the pulverizer include a pin mill, a jet mill, a ball mill, and a bead mill. These may be performed alone or in combination of two or more methods.

また、本発明において用いられるアルカリ化合物については特に制限はないが、例えば、水酸化カリウム、水酸化ナトリウム、炭酸カリウム等が挙げられる。中でも水酸化カリウムを用いると、高い比表面積を有する電極材が得られるため好ましい。   Moreover, there is no restriction | limiting in particular about the alkali compound used in this invention, For example, potassium hydroxide, sodium hydroxide, potassium carbonate etc. are mentioned. Of these, potassium hydroxide is preferable because an electrode material having a high specific surface area can be obtained.

アルカリ賦活は以下のようにして行ってもよい。炭化物(炭素質物質)とアルカリ化合物をプラネタリミキサ等の混合機を用い混合する。この混合物をNi製容器に入れ、窒素、アルゴン、ヘリウム等の不活性雰囲気下で600〜900℃の範囲で、圧力0.11MPa以上で、0.5〜3時間処理を行う。   The alkali activation may be performed as follows. Carbide (carbonaceous material) and alkali compound are mixed using a mixer such as a planetary mixer. This mixture is put into a Ni container and treated in a range of 600 to 900 ° C. under an inert atmosphere such as nitrogen, argon or helium at a pressure of 0.11 MPa or more for 0.5 to 3 hours.

加圧賦活後は、アルカリ化合物またはNi容器から混入した金属不純物を、酸により溶解抽出することが好ましい。この方法については特に限定されるものではないが、金属不純物は電気二重層キャパシタの寿命特性、自己放電性に影響するため、電極材をできる限り高純度化することが好ましい。高純度化する方法例としては、例えば、賦活後の混合物を4重量%の塩酸中で80℃以上に加熱しながら攪拌し、金属不純物を溶解させる方法が挙げられる。その後酸溶液をろ過し、再度、同濃度塩酸を用いて前記工程を5回繰り返す。次いで純水を用いて前記同様の工程を5回以上行い、電極材に付着した塩酸を除去することにより、高純度な電極材が得られる。   After pressure activation, it is preferable to dissolve and extract the metal impurities mixed from the alkali compound or Ni container with an acid. Although this method is not particularly limited, it is preferable to purify the electrode material as much as possible because metal impurities affect the life characteristics and self-discharge properties of the electric double layer capacitor. As an example of a method for increasing the purity, for example, there is a method in which a metal mixture is dissolved by stirring the activated mixture in 4 wt% hydrochloric acid while heating to 80 ° C. or higher. Thereafter, the acid solution is filtered, and the above process is repeated again 5 times using the same concentration of hydrochloric acid. Subsequently, the same process as described above is performed 5 times or more using pure water, and hydrochloric acid adhering to the electrode material is removed, whereby a high-purity electrode material is obtained.

精製された電極材は、表面官能基を低減させるため、さらに不活性雰囲気下で熱処理を行うことが好ましい。該熱処理温度は500〜1000℃が好ましく、600〜900℃がより好ましく、700〜800℃がさらに好ましい。500℃未満の温度では表面官能基が充分低減できない傾向があり、寿命特性が低下する傾向がある。また、熱処理温度1000℃を超えると、比表面積や細孔容量などが低下する傾向があり、静電容量及び出力特性が低下する傾向がある。   The purified electrode material is preferably further heat-treated in an inert atmosphere in order to reduce surface functional groups. The heat treatment temperature is preferably 500 to 1000 ° C, more preferably 600 to 900 ° C, and further preferably 700 to 800 ° C. When the temperature is lower than 500 ° C., the surface functional groups tend not to be sufficiently reduced, and the life characteristics tend to be lowered. On the other hand, when the heat treatment temperature exceeds 1000 ° C., the specific surface area and pore volume tend to decrease, and the capacitance and output characteristics tend to decrease.

本発明により得られる電気二重層キャパシタ用電極材は、低温域で高い出力特性と静電容量を必要とする電気二重層キャパシタの電極材として好適である。本発明の電極材を使用する電気二重層キャパシタの構成、作製方法などについては特に制限はないが、例えば、以下のようにして電気二重層キャパシタを作製することができる。   The electrode material for electric double layer capacitors obtained by the present invention is suitable as an electrode material for electric double layer capacitors that require high output characteristics and capacitance at low temperatures. Although there is no restriction | limiting in particular about the structure of the electrical double layer capacitor which uses the electrode material of this invention, a manufacturing method, For example, an electrical double layer capacitor is producible as follows.

電極は、本発明の電気二重層キャパシタ用電極材、バインダー及び各種添加剤等を溶剤などと共に攪拌機、混練機などにより混合分散し、スラリーを作製する。これを集電体に塗布することにより電極を作製することができる。また、ペースト状の塗料をシート状、ペレット状などの形状に成形し、これを集電体と一体化することでも電極を作製することが可能である。   The electrode is prepared by mixing and dispersing the electrode material for an electric double layer capacitor of the present invention, a binder, various additives, and the like together with a solvent with a stirrer, a kneader, or the like. An electrode can be produced by applying this to a current collector. Further, it is possible to produce an electrode by forming a paste-like paint into a sheet shape, a pellet shape, or the like and integrating it with a current collector.

上記バインダーとしては特に限定はないが、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)などのフッ素系樹脂や、スチレンブタジエンゴム(SBR)など用いることが可能である。これらのバインダーは、通常、粉末状として溶媒中に溶解、あるいは分散した状態で使用されるが、溶媒を用いず、粉末状のまま使用することも可能である。また、上記電極には、導電助材を混合することが好ましい。導電助剤としては、黒鉛や、アセチレンブラック、ケッチェンブラック等のカーボンブラックなどを使用することが可能である。   Although there is no limitation in particular as said binder, fluorinated resin, such as polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), and styrene butadiene rubber (SBR) Or the like. These binders are usually used in the form of powder dissolved or dispersed in a solvent, but it is also possible to use the powder as it is without using a solvent. The electrode is preferably mixed with a conductive additive. As the conductive assistant, graphite, carbon black such as acetylene black, ketjen black, or the like can be used.

上記集電体については、例えば、アルミニウム、ニッケル、ステンレス鋼などを箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。また、多孔質材料、例えばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。   About the said electrical power collector, the strip | belt-shaped thing which made aluminum, nickel, stainless steel etc. into foil shape, perforated foil shape, mesh shape, etc. can be used, for example. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記電極スラリーを塗布する方法として特に限定はないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて、平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状との形状に成形された電極材と集電体との一体化は、ロールプレスなど公知の方法により行うことが可能である。   The method for applying the electrode slurry is not particularly limited. For example, a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating method, screen printing method, etc. A well-known method is mentioned. After the application, a rolling process using a flat plate press, a calendar roll, or the like is performed as necessary. Further, the integration of the electrode material formed into a sheet shape or a pellet shape and the current collector can be performed by a known method such as a roll press.

本発明の電気二重層キャパシタは、本発明の電極材を用いてなる電極を、通常、セパレータを介して対向配置し、電解液を注入することにより作製することができる。なお、キャパシタセル作製時は水分混入が起こらないように、グローブボックスなどを用いて不活性雰囲気下で行うことが好ましい。また、電極は吸着している水分を十分に除去した後、使用することが好ましい。   The electric double layer capacitor of the present invention can be manufactured by injecting an electrolytic solution by usually disposing electrodes using the electrode material of the present invention through a separator. In addition, it is preferable to carry out in an inert atmosphere using a glove box etc. so that moisture mixing may not occur at the time of capacitor cell production. The electrode is preferably used after sufficiently removing the adsorbed moisture.

上記電解液は、水系、有機系と大別できるが、高電圧で使用できる点から、有機系電解液を使用することが好ましい。電解液及び電解質の種類については特に制限はないが、例えば、(CNBF、(CCHNBF等の第4級アンモニウム塩、1−エチル−3−メチルイミダゾリウムBF等の常温溶融塩、LiBF等のリチウム含有塩などをプロピレンカーボネート等の有機溶剤に溶解して用いることが可能である。電解質のアニオン種としてはBFのほか、ClO 、PF 、AsF などが用いることができる。電解質を溶解させる有機溶剤としてはPC(プロピレンカーボネート)のほか、γ−ブチロラクトン、アセトニトリル、スルホランなど用いることができる。これら電解液の構成については、使用条件などから適宜選択することが好ましい。上記セパレータとしては、ポリエチレン、ポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムや紙などを用いることができる。 The electrolytic solution can be broadly classified into an aqueous type and an organic type, but it is preferable to use an organic electrolytic solution from the viewpoint that it can be used at a high voltage. No particular limitation is imposed on the type of electrolyte and the electrolyte, for example, (C 2 H 5) 4 NBF 4, (C 2 H 5) 3 CH 3 NBF 4 quaternary ammonium salts such as, 1-ethyl-3 It is possible to use a room temperature molten salt such as methylimidazolium BF 4 or a lithium-containing salt such as LiBF 4 dissolved in an organic solvent such as propylene carbonate. As the anion species of the electrolyte, in addition to BF 4 , ClO 4 , PF 4 , AsF 6 − and the like can be used. As the organic solvent for dissolving the electrolyte, γ-butyrolactone, acetonitrile, sulfolane and the like can be used in addition to PC (propylene carbonate). About the structure of these electrolyte solutions, it is preferable to select suitably from use conditions. As said separator, the nonwoven fabric, cloth, microporous film, paper, etc. which have polyolefins, such as polyethylene and a polypropylene, as a main component can be used.

本発明の電気二重層キャパシタの構造について特に限定はしないが、通常、正負極及びセパレータを扁平渦巻状に捲回して捲回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体内に封入した構造とするのが一般的である。本発明の電気二重層キャパシタは、通常、コイン型、積層型、円筒型セルなどとして使用される。また、本発明の電気二重層キャパシタ用電極材は、電気二重層キャパシタの他にも各種蓄電デバイス用電極材、電気化学素子等に適用可能である。   The structure of the electric double layer capacitor of the present invention is not particularly limited. Usually, the positive and negative electrodes and the separator are wound in a flat spiral shape to form a wound electrode plate group, or these are laminated in a flat plate shape to form a laminated electrode. In general, a plate group is used, and the electrode plate group is enclosed in an exterior body. The electric double layer capacitor of the present invention is usually used as a coin type, multilayer type, cylindrical cell or the like. In addition to the electric double layer capacitor, the electrode material for electric double layer capacitor of the present invention can be applied to electrode materials for various power storage devices, electrochemical elements and the like.

以下に実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(実施例1)
フェノールホルムアルデヒド樹脂500gを秤量しヘキサミン50gとともに粉砕・混合した。混合物をホットプレート上のPTFE(ポリテトラフルオロエチレン)をコーティングしたバットで溶融混合し、フェノール樹脂の半硬化物を得た。得られたフェノール樹脂半硬化物は熱風乾燥機で180℃、2時間アフターキュアを行い、樹脂硬化物を得た。得られた樹脂硬化物をカッターミルで100μm程度に粉砕し、雰囲気焼成炉にて窒素気流中、300ml/分の流量で室温(25℃)から700℃まで昇温し、2時間保持しフェノール樹脂炭化物(炭素質物質)を作製した。得られた炭化物(炭素質物質)は平均粒子径4μmまで粉砕し、これと炭化物重量に対し2.5倍量の水酸化カリウムと混合し、この混合物を加圧可能な雰囲気制御炉にて、窒素気流中、5L/分の流量で、室温(25℃)から450℃まで昇温し、5時間保持後、800℃まで昇温し2時間保持してアルカリ賦活を行った。この際、炉内圧力は室温(25℃)から600℃までは0.1MPaとし、600℃以上900℃以下の温度域では0.15MPaとなるように圧力制御を行った。また、800℃で2時間保持後、冷却時は0.1MPaとした。
The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.
(Example 1)
500 g of phenol formaldehyde resin was weighed and ground and mixed with 50 g of hexamine. The mixture was melt-mixed with a vat coated with PTFE (polytetrafluoroethylene) on a hot plate to obtain a semi-cured product of a phenol resin. The obtained phenol resin semi-cured product was after-cured at 180 ° C. for 2 hours with a hot air dryer to obtain a cured resin product. The obtained cured resin is pulverized to about 100 μm with a cutter mill, heated in a nitrogen stream in an atmosphere baking furnace at a flow rate of 300 ml / min from room temperature (25 ° C.) to 700 ° C. and held for 2 hours to hold a phenol resin. Carbide (carbonaceous material) was produced. The obtained carbide (carbonaceous material) is pulverized to an average particle size of 4 μm, mixed with 2.5 times the amount of potassium hydroxide relative to the weight of the carbide, and this mixture is pressurized in an atmosphere control furnace. In a nitrogen stream, the temperature was raised from room temperature (25 ° C.) to 450 ° C. at a flow rate of 5 L / min, held for 5 hours, then heated to 800 ° C. and held for 2 hours for alkali activation. At this time, the pressure in the furnace was controlled to 0.1 MPa from room temperature (25 ° C.) to 600 ° C., and 0.15 MPa in the temperature range from 600 ° C. to 900 ° C. Further, after holding at 800 ° C. for 2 hours, the pressure was 0.1 MPa during cooling.

温度が室温(25℃)に戻ったらサンプルを取り出し、前述記載の方法により金属不純物を除去し、これを120℃で40時間乾燥し、活性炭を得た。得られた活性炭は窒素雰囲気下で室温(25℃)から800℃まで昇温後、1時間熱処理を行うことにより電極材を得た。得られた電極材は以下の方法により、BET比表面積、細孔容量、平均細孔径、平均粒径、表面官能基量を測定した。また、静電容量及び出力特性についても、以下の方法により電極セルを作製し評価した。結果を表1に示した。   When the temperature returned to room temperature (25 ° C.), a sample was taken out, metal impurities were removed by the method described above, and this was dried at 120 ° C. for 40 hours to obtain activated carbon. The obtained activated carbon was heated from room temperature (25 ° C.) to 800 ° C. in a nitrogen atmosphere and then heat treated for 1 hour to obtain an electrode material. The obtained electrode material was measured for the BET specific surface area, pore volume, average pore size, average particle size, and surface functional group amount by the following methods. In addition, the capacitance and output characteristics were also evaluated by producing an electrode cell by the following method. The results are shown in Table 1.

(BET比表面積、細孔容量、平均細孔径)
本発明におけるBET比表面積、細孔容量、平均細孔径はNガス吸着測定によって測定することが可能である。平均細孔径についてはBET比表面積と細孔容量から次式を用いて評価することができる。また、本発明においてはNガス吸着測定装置として、株式会社島津製作所製ASAP−2010を使用した。
平均細孔径 D(nm)=4V/S (V:細孔容量、S:BET比表面積)
(BET specific surface area, pore volume, average pore diameter)
The BET specific surface area, pore volume, and average pore diameter in the present invention can be measured by N 2 gas adsorption measurement. The average pore diameter can be evaluated from the BET specific surface area and the pore volume using the following formula. In the present invention, ASAP-2010 manufactured by Shimadzu Corporation was used as the N 2 gas adsorption measuring apparatus.
Average pore diameter D (nm) = 4 V / S (V: pore volume, S: BET specific surface area)

(表面官能基量測定法)
電極材1gと0.1mol/L水酸化ナトリウム100mlをメスフラスコに入れ、25℃で20時間攪拌する。混合液をろ過後、ろ液50mlをホールピペットで正確量り、メスフラスコに入れる。指示薬としてメチルオレンジ3滴をろ液に適下し、この水溶液を0.1mol/Lの塩酸で逆滴定する。電極材の表面官能基量は次式より評価できる。
電極材表面官能基量(mmol/g)=(50−塩酸滴下量(ml))×0.1×2
(Surface functional group content measurement method)
1 g of electrode material and 100 ml of 0.1 mol / L sodium hydroxide are placed in a volumetric flask and stirred at 25 ° C. for 20 hours. After filtration of the mixture, 50 ml of the filtrate is accurately weighed with a whole pipette and placed in a volumetric flask. As an indicator, 3 drops of methyl orange are appropriately applied to the filtrate, and this aqueous solution is back titrated with 0.1 mol / L hydrochloric acid. The surface functional group amount of the electrode material can be evaluated from the following formula.
Electrode material surface functional group amount (mmol / g) = (50-hydrochloric acid dropping amount (ml)) × 0.1 × 2

(平均粒子径)
本発明における平均粒径は、レーザー回折粒度測定装置(株式会社島津製作所製SALD−3000J)を用いて測定することにより得られる。また、平均粒子径は、体積基準に基づいた累積粒度分布の50%値とする。
(Average particle size)
The average particle diameter in the present invention is obtained by measuring using a laser diffraction particle size measuring apparatus (SALD-3000J manufactured by Shimadzu Corporation). In addition, the average particle diameter is a 50% value of the cumulative particle size distribution based on the volume standard.

(電極セル作製方法)
電極材と導電助剤(電気化学工業株式会社製 HS100)及びカルボキシメチルセルロース(ダイセル化学工業株式会社製 DN−10L)2重量%水溶液、60重量%PTFE水分散液(ダイキン工業株式会社製 M−390)を100:10:200:5の割合で混合し、水を加えスラリーを作製した後、アルミエッチング箔(宝泉製 膜圧20μm)に電極厚70μmとなるように塗布した。塗布電極を乾燥機にて80℃5時間、120℃3時間で乾燥した後、電極を直径16mmの円形の大きさに打ち抜き、電極を作製した。この電極を正極用負極用に二枚用意し、紙セパレータ(日本高度紙工業株式会社製TF40)とSUS製コインセル上下蓋、アルミスペーサーとともに真空乾燥機を用い120℃3時間の条件で真空乾燥を行った。乾燥後はアルゴン置換グローブボックス内にて、コイン型キャパシタセルを作製した。セルは、セパレータを介して2枚の電極を対向させた後、セル内の空間を埋めるためアルミスペーサーを入れた。電解液を約0.03ml入れた後、サイドボックス内で10torr以下の減圧度で10分間減圧含浸処理を行ってからコインセルを密封した。作製したセルは充放電試験機(東陽システム株式会社製 TOSCAT)に接続し、充放電試験を行った。なお、電解液としてエチルメチルイミダゾリウムテトラフルオロボレートの1.5mol/Lプロピレンカーボネート溶液(広栄化学工業株式会社製)を用いたが、本発明の効果は、特に電解液の種類、濃度などに制限はされない。
(Electrode cell manufacturing method)
Electrode material and conductive additive (HS100 manufactured by Denki Kagaku Kogyo Co., Ltd.) and carboxymethylcellulose (DN-10L manufactured by Daicel Chemical Industries, Ltd.) 2 wt% aqueous solution, 60 wt% PTFE aqueous dispersion (Daikin Kogyo Co., Ltd. M-390) ) Was mixed at a ratio of 100: 10: 200: 5, and water was added to prepare a slurry, which was then applied to an aluminum etching foil (film pressure 20 μm manufactured by Hosen) so as to have an electrode thickness of 70 μm. The coated electrode was dried in a dryer at 80 ° C. for 5 hours and 120 ° C. for 3 hours, and then the electrode was punched into a circular shape having a diameter of 16 mm to produce an electrode. Prepare two of these electrodes for the negative electrode for the positive electrode and vacuum dry them at 120 ° C for 3 hours using a vacuum separator with a paper separator (TF40 manufactured by Nippon Kogyo Paper Industries Co., Ltd.), a SUS coin cell upper and lower lid, and an aluminum spacer. went. After drying, a coin-type capacitor cell was produced in an argon-substituted glove box. In the cell, two electrodes were opposed to each other through a separator, and then an aluminum spacer was inserted to fill the space in the cell. After adding about 0.03 ml of the electrolytic solution, the coin cell was sealed after performing a reduced pressure impregnation treatment in a side box at a reduced pressure of 10 torr or less for 10 minutes. The produced cell was connected to a charge / discharge tester (TOSCAT manufactured by Toyo System Co., Ltd.), and a charge / discharge test was performed. In addition, although 1.5 mol / L propylene carbonate solution (manufactured by Guangei Chemical Industry Co., Ltd.) of ethyl methyl imidazolium tetrafluoroborate was used as the electrolytic solution, the effect of the present invention is particularly limited to the type and concentration of the electrolytic solution. Not done.

(電極特性評価方法)
前記で作製したキャパシタセルは、恒温槽にて所定温度で3時間以上放置した後、以下の条件により充放電試験を行い、25℃(常温)及び−30℃(低温)での電極特性評価を行った。結果を表1に示した。
・充電条件:定電流/定電圧
・充電電流:2mA
・充電電圧:2V
・充電時間:2時間
・放電条件:定電圧
・放電電流:2mA
・放電電圧:0V
静電容量は、前記記載の充放電試験で得られた放電曲線の1.7V(電圧:V1、時間:T1(秒))から1.3V(電圧:V2、時間:T2(秒))の傾きから算出した(次式参照)。
静電容量(F/g)=(T2−T1)×0.002/(V1−V2)/G
(G:活物質量(g))
(Electrode property evaluation method)
The capacitor cell prepared above was left in a thermostatic chamber at a predetermined temperature for 3 hours or more, and then subjected to a charge / discharge test under the following conditions to evaluate electrode characteristics at 25 ° C. (room temperature) and −30 ° C. (low temperature). went. The results are shown in Table 1.
・ Charging conditions: constant current / constant voltage ・ Charging current: 2 mA
・ Charging voltage: 2V
・ Charging time: 2 hours ・ Discharging conditions: constant voltage ・ Discharging current: 2 mA
・ Discharge voltage: 0V
The capacitance is 1.7 V (voltage: V1, time: T1 (seconds)) to 1.3 V (voltage: V2, time: T2 (seconds)) of the discharge curve obtained in the charge / discharge test described above. Calculated from the slope (see the following formula).
Capacitance (F / g) = (T2-T1) × 0.002 / (V1-V2) / G
(G: active material amount (g))

また、出力特性は直流抵抗値を指標として評価した。直流抵抗値は放電曲線の10秒から40秒までの曲線について近似直線を引き、この切片値と満充電電圧値の差分を電圧低下ΔVとし、次式により抵抗値を求めた。
抵抗値(Ω)=ΔV/0.002
The output characteristics were evaluated using the DC resistance value as an index. For the DC resistance value, an approximate straight line was drawn for the curve from 10 seconds to 40 seconds of the discharge curve, and the difference between the intercept value and the full charge voltage value was defined as a voltage drop ΔV, and the resistance value was obtained by the following equation.
Resistance value (Ω) = ΔV / 0.002

(実施例2)
600℃以上900℃以下の温度域において0.12MPaでアルカリ賦活を実施した以外は、実施例1と同様に行った。
(Example 2)
It carried out similarly to Example 1 except having implemented alkali activation by 0.12 MPa in the temperature range of 600 degreeC or more and 900 degrees C or less.

(比較例1)
600℃以上900℃以下の温度域において0.10MPaでアルカリ賦活を実施した以外は、実施例1と同様に行った。
(Comparative Example 1)
It carried out similarly to Example 1 except having implemented alkali activation at 0.10 MPa in the temperature range of 600 degreeC or more and 900 degrees C or less.

(比較例2)
水酸化カリウムの混合量を炭化物重量に対し2.7倍量とした以外は、比較例1と同様に行った。
(Comparative Example 2)
The same procedure as in Comparative Example 1 was performed except that the amount of potassium hydroxide mixed was 2.7 times the carbide weight.

Figure 2008181950
Figure 2008181950

表1に示したように、混合物を600℃以上900℃以下の温度域で、圧力0.11MPa以上の不活性雰囲気下で、アルカリ賦活を行なった実施例1〜2は、−30℃(低温)での抵抗値が、比較例1〜2と比較して低いことがわかる。また、実施例1〜2では、電極材の平均細孔径が1.74nm以上であり、比較例1〜2の電極材の平均細孔径1.72nmより大きいなど、アルカリ賦活時の圧力を制御することで平均細孔径をコントロールできることがわかった。本発明によれば、低温域において高い出力特性を有する電気二重層キャパシタ用電極材、電気二重層キャパシタを得ることが可能となる。   As shown in Table 1, Examples 1-2 in which the mixture was alkali-activated in a temperature range of 600 ° C. or higher and 900 ° C. or lower in an inert atmosphere with a pressure of 0.11 MPa or higher were obtained at −30 ° C. (low temperature It can be seen that the resistance value at) is lower than those of Comparative Examples 1 and 2. Moreover, in Examples 1-2, the average pore diameter of an electrode material is 1.74 nm or more, and the pressure at the time of alkali activation is controlled, such as larger than the average pore diameter of the electrode material of Comparative Examples 1-2, 1.72 nm. Thus, it was found that the average pore diameter can be controlled. According to the present invention, an electrode material for an electric double layer capacitor and an electric double layer capacitor having high output characteristics in a low temperature range can be obtained.

Claims (3)

炭素質物質とアルカリ化合物を含む混合物をアルカリ賦活してなる電気二重層キャパシタ用電極材の製造方法において、アルカリ賦活を実施する系内の温度域が600℃から900℃であり、アルカリ賦活を実施する系内が圧力0.11MPa以上の不活性雰囲気下である電気二重層キャパシタ用電極材の製造方法。   In the method for producing an electrode material for an electric double layer capacitor obtained by activating a mixture containing a carbonaceous material and an alkali compound, the temperature range in the system for activating the alkali is 600 ° C. to 900 ° C., and the alkali activation is performed. The manufacturing method of the electrode material for electric double layer capacitors whose inside is the inert atmosphere of the pressure of 0.11 Mpa or more. 請求項1に記載の電気二重層キャパシタ用電極材の製造方法により作製してなる電気二重層キャパシタ用電極材。   The electrode material for electric double layer capacitors produced by the manufacturing method of the electrode material for electric double layer capacitors of Claim 1. 請求項2に記載の電気二重層キャパシタ用電極材を用いてなる電気二重層キャパシタ。   An electric double layer capacitor using the electrode material for an electric double layer capacitor according to claim 2.
JP2007012634A 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor Expired - Fee Related JP4935374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012634A JP4935374B2 (en) 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012634A JP4935374B2 (en) 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2008181950A true JP2008181950A (en) 2008-08-07
JP4935374B2 JP4935374B2 (en) 2012-05-23

Family

ID=39725640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012634A Expired - Fee Related JP4935374B2 (en) 2007-01-23 2007-01-23 Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4935374B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001093A (en) * 2012-06-15 2014-01-09 Toyo Tanso Kk Porous carbon material, manufacturing method thereof and electric double layer capacitor using porous carbon material
JP2015088632A (en) * 2013-10-31 2015-05-07 パナソニックIpマネジメント株式会社 Capacitor

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557540A (en) * 1978-07-01 1980-01-19 Toho Rayon Co Ltd Production of fibrous activated carbon
JPH05306109A (en) * 1992-05-01 1993-11-19 Kansai Coke & Chem Co Ltd Production device of activated carbon with high surface area
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JP2004182568A (en) * 2002-12-05 2004-07-02 Frontier Carbon Corp Porous material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS557540A (en) * 1978-07-01 1980-01-19 Toho Rayon Co Ltd Production of fibrous activated carbon
JPH05306109A (en) * 1992-05-01 1993-11-19 Kansai Coke & Chem Co Ltd Production device of activated carbon with high surface area
JPH10199767A (en) * 1997-01-07 1998-07-31 Kansai Coke & Chem Co Ltd Manufacture of carbon material for electric double layer capacitor
JP2004182568A (en) * 2002-12-05 2004-07-02 Frontier Carbon Corp Porous material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014001093A (en) * 2012-06-15 2014-01-09 Toyo Tanso Kk Porous carbon material, manufacturing method thereof and electric double layer capacitor using porous carbon material
JP2015088632A (en) * 2013-10-31 2015-05-07 パナソニックIpマネジメント株式会社 Capacitor

Also Published As

Publication number Publication date
JP4935374B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP5322435B2 (en) Negative electrode active material for electricity storage devices
CN107148692B (en) Conductive composition for electrode, electrode using same, and lithium ion secondary battery
TWI627648B (en) Positive precursor
JP6228712B1 (en) Non-aqueous lithium storage element
Schneider et al. Free-standing and binder-free highly N-doped carbon/sulfur cathodes with tailorable loading for high-areal-capacity lithium–sulfur batteries
JP6227839B1 (en) Non-aqueous lithium storage element
WO2010032407A1 (en) Carbon material for electric double layer capacitor and process for producing the carbon material
Long et al. The effects of carbon coating on the electrochemical performances of ZnO in Ni–Zn secondary batteries
WO2017126693A1 (en) Nonaqueous lithium storage element
JP2018056410A (en) Nonaqueous lithium power storage element
JP5320675B2 (en) Electrode material for electric double layer capacitor and electric double layer capacitor
Mao et al. Advanced Aqueous Zinc‐Ion Batteries Enabled by 3D Ternary MnO/Reduced Graphene Oxide/Multiwall Carbon Nanotube Hybrids
JP4935374B2 (en) Electrode material for electric double layer capacitor, method for producing the same, and electric double layer capacitor
Sevilla et al. Cellulose as a Precursor of High‐Performance Energy Storage Materials in Li–S Batteries and Supercapacitors
WO2022085694A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
WO2018030280A1 (en) Nonaqueous alkali metal ion capacitor
JP2006310412A (en) Lithium-ion capacitor
JP2006303330A (en) Lithium ion capacitor
JP7057085B2 (en) Non-aqueous alkali metal type power storage element
JP6829573B2 (en) Winding non-aqueous lithium storage element
JP6815148B2 (en) Non-aqueous lithium storage element
JP2018061019A (en) Nonaqueous lithium power storage element
JP2018056434A (en) Nonaqueous lithium power storage element
JP2008085358A (en) Carbon material for electrode of electric double-layer capacitor
JP2018056401A (en) Nonaqueous lithium power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111027

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4935374

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees