JP2008181727A - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
JP2008181727A
JP2008181727A JP2007013403A JP2007013403A JP2008181727A JP 2008181727 A JP2008181727 A JP 2008181727A JP 2007013403 A JP2007013403 A JP 2007013403A JP 2007013403 A JP2007013403 A JP 2007013403A JP 2008181727 A JP2008181727 A JP 2008181727A
Authority
JP
Japan
Prior art keywords
hydrogen
cylinder
pressure
storage alloy
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007013403A
Other languages
Japanese (ja)
Inventor
Shigeki Yamamuro
成樹 山室
Ryuichi Kimura
隆一 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurimoto Ltd
Original Assignee
Kurimoto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurimoto Ltd filed Critical Kurimoto Ltd
Priority to JP2007013403A priority Critical patent/JP2008181727A/en
Publication of JP2008181727A publication Critical patent/JP2008181727A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a supply system of raw material hydrogen for a fuel cell in a small electric vehicle capable of utilizing a high pressure hydrogen infrastructure such as a hydrogen gas station. <P>SOLUTION: A hydrogen storage alloy cylinder 14 and a high pressure hydrogen cylinder 15 are used as a hydrogen supply source of a fuel cell in a fuel cell housing part 12. As a method of use of this hydrogen storage alloy cylinder 14 and the high pressure hydrogen cylinder 15, there is a method in which any one of the hydrogen storage alloy cylinder 14 and the high pressure hydrogen cylinder 15 is used firstly, and then the other cylinder is used, or a method in which hydrogen of the hydrogen storage alloy cylinder 14 is used for the fuel of the fuel cell and hydrogen of the high pressure hydrogen cylinder 15 is used for filling the hydrogen storage alloy cylinder 14. By doing like it, the high pressure hydrogen infrastructure such as a hydrogen gas station or the like can be utilized. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、燃料電池システム、特に、燃料電池に原料用水素を供給するシステムに関する。   The present invention relates to a fuel cell system, and more particularly to a system for supplying raw material hydrogen to a fuel cell.

動力として燃料電池を用いる装置として、燃料電池自動車が現在、検討されている。この燃料電池自動車は、特許文献1,2等に記載されているように、燃料電池の供給燃料として、高圧水素が検討されている。そして、35MPaや70MPaの高圧水素容器の開発や、高圧水素を供給する水素ガスステーション等の高圧水素インフラの開発が、現在、進められている。   Currently, a fuel cell vehicle is being studied as a device using a fuel cell as power. In this fuel cell vehicle, as described in Patent Documents 1 and 2, etc., high-pressure hydrogen has been studied as a fuel supplied to the fuel cell. Development of a high-pressure hydrogen container of 35 MPa or 70 MPa and development of a high-pressure hydrogen infrastructure such as a hydrogen gas station for supplying high-pressure hydrogen are now underway.

ところで、電動車いすや電動カート等の小型電動移動体においても、動力として燃料電池を用いることが検討されている。この場合、高圧水素を用いると、上記の高圧水素インフラを利用することができ、移動範囲が広まり、利便性が高まる。   By the way, it has been studied to use a fuel cell as power for small electric vehicles such as electric wheelchairs and electric carts. In this case, when high-pressure hydrogen is used, the above-described high-pressure hydrogen infrastructure can be used, the movement range is widened, and convenience is enhanced.

特開2005−102470号公報JP 2005-102470 A 特開2005−158567号公報JP 2005-158567 A

しかし、上記高圧水素を封入した高圧水素ボンベは、高圧ガス容器としての制限、管理を受ける。これに対し、水素吸蔵合金を用いた水素吸蔵合金ボンベは、その水素貯蔵圧力が1MPa未満であり、高圧ガスとしての扱いを受けない。しかし、この水素吸蔵合金ボンベを用いる場合、水素ガスの充填は、圧力を1MPa以下の低圧で行うように設計されている。このため、高圧の状態での充填は、ボンベ自体の耐圧性や、内部の水素吸蔵合金の耐久性等の問題が生じ、好ましくない。したがって、水素吸蔵合金ボンベを用いた小型電動移動体には、この高圧水素インフラを利用できないという問題点を有する。   However, the high-pressure hydrogen cylinder filled with the high-pressure hydrogen is restricted and managed as a high-pressure gas container. In contrast, a hydrogen storage alloy cylinder using a hydrogen storage alloy has a hydrogen storage pressure of less than 1 MPa and is not treated as a high-pressure gas. However, when this hydrogen storage alloy cylinder is used, the filling of hydrogen gas is designed to be performed at a low pressure of 1 MPa or less. For this reason, filling in a high pressure state is not preferable because of problems such as pressure resistance of the cylinder itself and durability of the internal hydrogen storage alloy. Therefore, there is a problem that this high-pressure hydrogen infrastructure cannot be used for a small electric vehicle using a hydrogen storage alloy cylinder.

さらに、水素吸蔵合金は、低温だと、水素の貯蔵・放出が困難となるため、燃料電池に水素を供給することが困難となる場合がある。このため、燃料電池を用いた動力の起動時や、寒冷地、冬期等の低温状態の場合に、燃料電池に水素を供給することが困難となる場合がある。   Furthermore, since hydrogen storage alloys have difficulty in storing and releasing hydrogen at low temperatures, it may be difficult to supply hydrogen to the fuel cell. For this reason, it may be difficult to supply hydrogen to the fuel cell at the time of power activation using the fuel cell, or in a low temperature state such as in a cold region or winter.

そこで、この発明は、低温状態でも水素を燃料電池に供給することができ、かつ、水素ガスステーション等の高圧水素インフラを利用できる小型電動移動体における燃料電池用の原料水素の供給システムを得ることを目的とする。   Therefore, the present invention provides a hydrogen supply system for a fuel cell in a small electric vehicle that can supply hydrogen to a fuel cell even in a low temperature state and can use a high-pressure hydrogen infrastructure such as a hydrogen gas station. With the goal.

この発明は、燃料電池、並びにこの燃料電池への水素供給源を有し、この水素供給源として、水素吸蔵合金ボンベ及び高圧水素ボンベを用いることにより、上記課題を解決することができる。   The present invention has a fuel cell and a hydrogen supply source for the fuel cell, and the above problem can be solved by using a hydrogen storage alloy cylinder and a high-pressure hydrogen cylinder as the hydrogen supply source.

上記水素吸蔵合金ボンベ及び高圧水素ボンベの用い方としては、水素吸蔵合金ボンベ及び高圧水素ボンベのいずれか一方を先に用い、その後、他方のボンベを用いる方法や、水素吸蔵合金ボンベの水素を燃料電池の燃料用として用い、高圧水素ボンベの水素を、水素吸蔵合金ボンベの充填用に用いる方法があげられる。   As a method of using the hydrogen storage alloy cylinder and the high pressure hydrogen cylinder, one of the hydrogen storage alloy cylinder and the high pressure hydrogen cylinder is used first, and then the other cylinder is used, or the hydrogen of the hydrogen storage alloy cylinder is used as fuel. A method of using hydrogen in a high-pressure hydrogen cylinder for filling a hydrogen storage alloy cylinder is used.

また、高圧水素ボンベの出口に圧力調整装置が設けられる。   A pressure adjusting device is provided at the outlet of the high-pressure hydrogen cylinder.

本願発明によると、燃料電池を用いた小型電動移動体の水素供給源として、水素吸蔵合金ボンベ以外に高圧水素ボンベを用いるので、水素ガスステーション等の高圧水素インフラを利用することができる。   According to the present invention, since a high-pressure hydrogen cylinder is used in addition to a hydrogen storage alloy cylinder as a hydrogen supply source for a small electric vehicle using a fuel cell, a high-pressure hydrogen infrastructure such as a hydrogen gas station can be used.

また、高圧水素ボンベの水素を、水素吸蔵合金ボンベの充填用に用いる場合、高圧水素ボンベから水素吸蔵合金ボンベへのラインの途中に上記圧力調整装置を設けることにより、高圧水素ボンベからの水素圧を下げることができ、水素吸蔵合金ボンベへの充填が可能となる。   In addition, when hydrogen in a high pressure hydrogen cylinder is used for filling a hydrogen storage alloy cylinder, the hydrogen pressure from the high pressure hydrogen cylinder is provided by providing the pressure adjusting device in the middle of the line from the high pressure hydrogen cylinder to the hydrogen storage alloy cylinder. The hydrogen storage alloy cylinder can be filled.

さらに、低温においても、高圧水素ボンベの水素を燃料電池に送ることができるので、動力起動時や寒冷地、冬期等の低温状態であっても、水素供給が可能となる。   Furthermore, since the hydrogen in the high-pressure hydrogen cylinder can be sent to the fuel cell even at a low temperature, it is possible to supply hydrogen even in a low temperature state such as when the power is started, in a cold region, or in winter.

以下、この発明の実施形態を、図面を参照して説明する。この発明にかかる燃料電池システムは、燃料電池、及びこの燃料電池への水素供給源を有するシステムをいう。   Embodiments of the present invention will be described below with reference to the drawings. The fuel cell system according to the present invention refers to a system having a fuel cell and a hydrogen supply source to the fuel cell.

この発明にかかる燃料電池システムは、電動車椅子や電動カート等の小型電動移動体の動力の動力源として用いられる。このような小型電動移動体11(11a,11b)は、図1(a)、図2(a)に示すように、小型電動移動体本体部11’に燃料電池を収納した燃料電池収納部12を設け、かつ、この小型電動移動体本体部11’の後部にボンベ収納部13を配置した移動体である。   The fuel cell system according to the present invention is used as a power source for the power of a small electric vehicle such as an electric wheelchair or an electric cart. Such a small electric vehicle 11 (11a, 11b) is, as shown in FIGS. 1 (a) and 2 (a), a fuel cell storage unit 12 in which a fuel cell is stored in a small electric vehicle main body 11 '. And the cylinder housing part 13 is arranged at the rear part of the small electric mobile body part 11 ′.

上記水素供給源としては、水素吸蔵合金ボンベ及び高圧水素ボンベの両方を用いたボンベシステムが用いられる。このボンベシステムにおける水素吸蔵合金ボンベ14及び高圧水素ボンベ15は、図1(a)(b)に示すように、全てをボンベ収納部13に収納する場合や、図2(a)(b)に示すように、水素吸蔵合金ボンベ14又は高圧水素ボンベ15の1本又は複数本を、高圧水素ボンベ15を燃料電池収納部12内に配置し(図2(a)(b)では、高圧水素ボンベ15の1本を燃料電池収納部12内に配置。)、残りをボンベ収納部13に収納する場合があげられる。   As the hydrogen supply source, a cylinder system using both a hydrogen storage alloy cylinder and a high-pressure hydrogen cylinder is used. As shown in FIGS. 1A and 1B, the hydrogen storage alloy cylinder 14 and the high-pressure hydrogen cylinder 15 in this cylinder system are all stored in the cylinder storage unit 13, or in FIGS. 2A and 2B. As shown, one or a plurality of hydrogen storage alloy cylinders 14 or high-pressure hydrogen cylinders 15 are arranged in the fuel cell housing 12 with the high-pressure hydrogen cylinder 15 (in FIGS. 2 (a) and 2 (b), a high-pressure hydrogen cylinder). 15 is disposed in the fuel cell storage unit 12), and the rest is stored in the cylinder storage unit 13.

このボンベシステムとしては、水素吸蔵合金ボンベ14と高圧水素ボンベ15とを並列に連結し、かつ、水素吸蔵合金ボンベ14又は高圧水素ボンベ15を複数本使用するときは、それらの複数のボンベを並列に連結したシステムがあげられる。これは、図1(a)(b)のときはもちろんのこと、図2(a)(b)のように、ボンベの収納場所が燃料電池収納部12及びボンベ収納部13に分かれる場合であっても、配管を工夫することによって、並列に連結することができる。   In this cylinder system, the hydrogen storage alloy cylinder 14 and the high-pressure hydrogen cylinder 15 are connected in parallel, and when a plurality of hydrogen storage alloy cylinders 14 or a plurality of high-pressure hydrogen cylinders 15 are used, the plurality of cylinders are connected in parallel. The system connected to. This is a case where the storage location of the cylinder is divided into the fuel cell storage section 12 and the cylinder storage section 13 as shown in FIGS. 2A and 2B as well as in FIGS. However, it can be connected in parallel by devising the piping.

このボンベシステムの具体例として、複数本の水素吸蔵合金ボンベ14、及び1本の高圧水素ボンベ15を用いた、図3に示す場合を用いて説明する。
まず、複数の水素吸蔵合金ボンベ14の出口にバルブ16aをそれぞれ設けると共に、高圧水素ボンベ15の出口に圧力調整装置17a及びバルブ16bをこの順に設ける。次いで、必要に応じて、各水素吸蔵合金ボンベ14が並列になるように、バルブ16aからでた配管を1本にまとめる。そして、これとバルブ16bからでた配管とを並列になるように1本にまとめる。そのまとめられた配管に圧力調整装置17bを設けて、燃料電池収納部12内の燃料電池12’と接続する。なお、圧力調整装置17bと燃料電池12’との間には、必要に応じて、バルブ16cが設けられる。
A specific example of this cylinder system will be described with reference to the case shown in FIG. 3 using a plurality of hydrogen storage alloy cylinders 14 and one high-pressure hydrogen cylinder 15.
First, a valve 16 a is provided at the outlet of the plurality of hydrogen storage alloy cylinders 14, and a pressure adjusting device 17 a and a valve 16 b are provided in this order at the outlet of the high-pressure hydrogen cylinder 15. Next, if necessary, the pipes extending from the valve 16a are combined into one so that the hydrogen storage alloy cylinders 14 are arranged in parallel. Then, this and the piping from the valve 16b are combined into one so as to be in parallel. A pressure adjusting device 17b is provided in the combined pipe and connected to the fuel cell 12 ′ in the fuel cell storage unit 12. A valve 16c is provided between the pressure adjusting device 17b and the fuel cell 12 ′ as necessary.

上記圧力調整装置17a,17bは、水素のガスの圧力を、低下させる装置である。この装置の前後で圧力の低下具合が分かるように、その装置の前後にケージ19a,19bを設けることが好ましい。この圧力調整装置17a,17bとしては、減圧弁等があげられる。   The pressure adjusting devices 17a and 17b are devices that reduce the pressure of hydrogen gas. It is preferable to provide cages 19a and 19b before and after the device so that the pressure drop can be seen before and after the device. Examples of the pressure adjusting devices 17a and 17b include pressure reducing valves.

なお、図3においては、複数本の水素吸蔵合金ボンベ14、及び1本の高圧水素ボンベ15の場合を説明したが、複数本の水素吸蔵合金ボンベ14、及び複数本の高圧水素ボンベ15の場合や、1本の水素吸蔵合金ボンベ14、及び1本の高圧水素ボンベ15の場合であっても同様である。   In FIG. 3, the case of a plurality of hydrogen storage alloy cylinders 14 and one high-pressure hydrogen cylinder 15 has been described, but the case of a plurality of hydrogen storage alloy cylinders 14 and a plurality of high-pressure hydrogen cylinders 15 is described. The same applies to the case of one hydrogen storage alloy cylinder 14 and one high-pressure hydrogen cylinder 15.

次に、このボンベシステムの使用法について、図3を用いて説明する。このボンベシステムの1つめの使用法としては、水素吸蔵合金ボンベ14及び高圧水素ボンベ15のいずれか一方を先に用い、その後、他方のボンベを用いる方法があげられる。すなわち、バルブ16a又はバルブ16bを先ず、開放して使用し、使用後、残りのバルブを開放して使用する方法である。その後、圧力調整装置17bで、燃料電池12’に供給する水素圧に調整し、燃料電池12’に送られる。   Next, the usage method of this cylinder system is demonstrated using FIG. As a first method of using this cylinder system, there is a method in which one of the hydrogen storage alloy cylinder 14 and the high-pressure hydrogen cylinder 15 is used first, and then the other cylinder is used. That is, the valve 16a or the valve 16b is first opened and used, and after use, the remaining valves are opened and used. Thereafter, the pressure is adjusted to the hydrogen pressure supplied to the fuel cell 12 ′ by the pressure adjusting device 17 b and sent to the fuel cell 12 ′.

この場合、高圧水素ボンベ15の出口に取り付けられた圧力調整装置17aによって、高圧水素ボンベ15からの水素の圧力を、水素吸蔵合金ボンベ14と同等の圧力とするのが好ましい。このようにすると、圧力調整装置17bに送られる水素の圧力をほぼ均一に保持することができ、圧力調整装置17bの再度の調整を省くことができる。また、バルブ16aが開放されている場合、高圧水素ボンベ15の高圧水素が、直接、水素吸蔵合金ボンベ14に入り、水素吸蔵合金ボンベ14の許容圧力を超えるおそれが生じるのを防止できる。   In this case, it is preferable that the pressure of the hydrogen from the high pressure hydrogen cylinder 15 is set to a pressure equivalent to that of the hydrogen storage alloy cylinder 14 by the pressure adjusting device 17 a attached to the outlet of the high pressure hydrogen cylinder 15. In this way, the pressure of hydrogen sent to the pressure adjusting device 17b can be kept substantially uniform, and the second adjustment of the pressure adjusting device 17b can be omitted. Further, when the valve 16a is opened, it is possible to prevent the high-pressure hydrogen in the high-pressure hydrogen cylinder 15 from directly entering the hydrogen storage alloy cylinder 14 and exceeding the allowable pressure of the hydrogen storage alloy cylinder 14.

水素吸蔵合金ボンベ14を複数本使用する場合、又は高圧水素ボンベ15を複数本使用する場合は、その複数本にかかるボンベにかかるバルブを一度に開放してもよく、1本のボンベのバルブを開放し、使用後に次のバルブを開放してもよい。   When a plurality of hydrogen storage alloy cylinders 14 are used or when a plurality of high-pressure hydrogen cylinders 15 are used, the valves for the cylinders may be opened at one time. The next valve may be opened after use.

ところで、水素吸蔵合金ボンベ14を使用すると、ボンベ自体が冷却していき、水素が残存しているのにもかかわらず、途中で、水素吸蔵合金ボンベ14からの水素の放出が止まることがある。この場合、この水素吸蔵合金ボンベ14を開放した状態で、次のボンベのバルブを開放するとよい。すると、冷却した水素吸蔵合金ボンベ14が外気で徐々に暖められると共に、次に使用するボンベの水素が、上記水素放出の停止したボンベへ圧入され、結果、水素が充填されることとなり、この水素充填により温度が上昇する。これにより、上記水素放出の停止したボンベから水素の放出が再開されることがあるからである。このため、ボンベを順番に使用する場合であって、水素吸蔵合金ボンベ14が複数本ある場合は、まず、水素吸蔵合金ボンベ14を順番に用い、その後に高圧水素ボンベ15を用いるのが好ましい。このようにすると、最後の高圧水素ボンベ15を使用している最中に、それまで使用した水素吸蔵合金ボンベ14からの水素の放出の再開が行われるので、効率よく、ボンベから水素を放出させることができるからである。   By the way, when the hydrogen storage alloy cylinder 14 is used, the cylinder itself is cooled, and the release of hydrogen from the hydrogen storage alloy cylinder 14 may stop in the middle even though hydrogen remains. In this case, the valve of the next cylinder may be opened with the hydrogen storage alloy cylinder 14 opened. Then, the cooled hydrogen storage alloy cylinder 14 is gradually warmed with the outside air, and the hydrogen of the cylinder to be used next is injected into the cylinder where the hydrogen release is stopped, and as a result, the hydrogen is filled. The temperature rises due to filling. This is because the hydrogen release may be resumed from the cylinder in which the hydrogen release has stopped. Therefore, when the cylinders are used in order, and there are a plurality of hydrogen storage alloy cylinders 14, it is preferable to use the hydrogen storage alloy cylinders 14 in order and then use the high-pressure hydrogen cylinder 15 after that. In this way, while the last high-pressure hydrogen cylinder 15 is being used, the release of hydrogen from the hydrogen storage alloy cylinder 14 used so far is restarted, so that hydrogen is efficiently released from the cylinder. Because it can.

上記ボンベシステムの2つめの使用法としては、水素吸蔵合金ボンベ14及び高圧水素ボンベ15を同時に用いる方法があげられる。すなわち、まず、高圧水素ボンベ15の出口に取り付けられた圧力調整装置17aによって、高圧水素ボンベ15からの水素の圧力を、水素吸蔵合金ボンベ14と同等の圧力とする。次いで、バルブ16aとバルブ16bとの両方を開放する。その後、圧力調整装置17bで、燃料電池12’に供給する水素圧に調整し、燃料電池12’に送る。   As a second method of using the cylinder system, there is a method in which the hydrogen storage alloy cylinder 14 and the high-pressure hydrogen cylinder 15 are used simultaneously. That is, first, the pressure of the hydrogen from the high pressure hydrogen cylinder 15 is set to a pressure equivalent to that of the hydrogen storage alloy cylinder 14 by the pressure adjusting device 17 a attached to the outlet of the high pressure hydrogen cylinder 15. Next, both the valve 16a and the valve 16b are opened. Thereafter, the pressure adjusting device 17b adjusts the hydrogen pressure supplied to the fuel cell 12 'and sends it to the fuel cell 12'.

この場合、水素吸蔵合金ボンベ14及び高圧水素ボンベ15は同時に使用されるが、実際には、ボンベ圧のより高い高圧水素ボンベ15が先に消費されることとなる。そして、高圧水素ボンベ15のボンベ圧が水素吸蔵合金ボンベ14のボンベ圧と同等になってから、各ボンベが同等に使用される。この場合、水素吸蔵合金ボンベ14が冷却して、水素放出が止まった場合、上記したように、高圧水素ボンベ15から水素吸蔵合金ボンベ14に、水素が圧入され、水素充填がされる状態が生じるので、その結果、温度が上昇し、水素放出が再開される。   In this case, the hydrogen storage alloy cylinder 14 and the high-pressure hydrogen cylinder 15 are used at the same time, but actually, the high-pressure hydrogen cylinder 15 having a higher cylinder pressure is consumed first. And after the cylinder pressure of the high pressure hydrogen cylinder 15 becomes equivalent to the cylinder pressure of the hydrogen storage alloy cylinder 14, each cylinder is used equally. In this case, when the hydrogen storage alloy cylinder 14 is cooled and hydrogen release is stopped, as described above, hydrogen is injected from the high-pressure hydrogen cylinder 15 into the hydrogen storage alloy cylinder 14 and the hydrogen is filled. As a result, the temperature rises and hydrogen release is resumed.

上記ボンベシステムの3つめの使用法としては、水素吸蔵合金ボンベ14の水素を燃料電池12’の燃料用として用い、高圧水素ボンベ15の水素を、水素吸蔵合金ボンベ14の充填用に用いる方法があげられる。すなわち、まず、バルブ16bを閉鎖し、かつ、バルブ16a、16cを開放することにより、水素吸蔵合金ボンベ14から燃料電池12’へ水素を供給する。この場合、圧力調整装置17bで、燃料電池12’に供給する水素圧を調整する。一方、バルブ16cを閉鎖し、バルブ16a,16bを開放することにより、高圧水素ボンベ15の水素を水素吸蔵合金ボンベ14へ圧入し、充填することができる。この場合、圧力調整装置17aによって、高圧水素ボンベ15からの水素の圧力を、水素吸蔵合金ボンベ14と同等の圧力とする。これを行うことにより、水素吸蔵合金ボンベ14に供給される水素圧が、水素吸蔵合金ボンベ14の許容圧力を超えるおそれが生じるのを防止できる。   The third method of using the cylinder system is to use the hydrogen in the hydrogen storage alloy cylinder 14 for the fuel of the fuel cell 12 ′ and use the hydrogen in the high pressure hydrogen cylinder 15 for filling the hydrogen storage alloy cylinder 14. can give. That is, first, the valve 16b is closed and the valves 16a and 16c are opened to supply hydrogen from the hydrogen storage alloy cylinder 14 to the fuel cell 12 '. In this case, the pressure adjusting device 17b adjusts the hydrogen pressure supplied to the fuel cell 12 '. On the other hand, by closing the valve 16c and opening the valves 16a and 16b, the hydrogen in the high-pressure hydrogen cylinder 15 can be pressed into the hydrogen storage alloy cylinder 14 and filled. In this case, the pressure of the hydrogen from the high-pressure hydrogen cylinder 15 is set to a pressure equivalent to that of the hydrogen storage alloy cylinder 14 by the pressure adjusting device 17a. By doing this, it can be prevented that the hydrogen pressure supplied to the hydrogen storage alloy cylinder 14 exceeds the allowable pressure of the hydrogen storage alloy cylinder 14.

水素吸蔵合金ボンベ14から燃料電池12’への水素供給と、水素吸蔵合金ボンベ14の充填との切替時期は、水素吸蔵合金ボンベ14が冷却されて、水素の放出が止まった段階で行うのがよい。水素の圧入・充填により、水素吸蔵合金ボンベ14の温度が上昇し、水素放出の再開が可能となるからである。   The timing of switching between hydrogen supply from the hydrogen storage alloy cylinder 14 to the fuel cell 12 'and filling of the hydrogen storage alloy cylinder 14 is performed when the hydrogen storage alloy cylinder 14 is cooled and the release of hydrogen stops. Good. This is because the temperature of the hydrogen storage alloy cylinder 14 rises due to the press-fitting and filling of hydrogen, and the hydrogen release can be resumed.

なお、水素吸蔵合金ボンベ14を複数本使用する場合、それらをまとめて同時に使用してもよく、上記のボンベシステムの1つめの使用法に記載した方法で使用してもよい。   In addition, when using two or more hydrogen storage alloy cylinders 14, you may use them collectively, and you may use it by the method described in the 1st usage of said cylinder system.

上記の電動車椅子や電動カート等の小型電動移動体11(11a,11b)は、燃料電池への水素供給源として、水素吸蔵合金ボンベ14以外に高圧水素ボンベ15を用いるので、水素吸蔵合金ボンベ14のみを用いる場合に比べ、動力起動時や寒冷地、冬期等の低温状態で、水素吸蔵合金ボンベ14からの水素供給が困難となる場合でも、高圧水素ボンベ15から燃料電池への水素供給が可能となる。   Since the small electric vehicle 11 (11a, 11b) such as the electric wheelchair or the electric cart uses a high-pressure hydrogen cylinder 15 in addition to the hydrogen storage alloy cylinder 14 as a hydrogen supply source to the fuel cell, the hydrogen storage alloy cylinder 14 Compared to the case where only hydrogen is used, hydrogen supply from the high-pressure hydrogen cylinder 15 to the fuel cell is possible even when it is difficult to supply hydrogen from the hydrogen storage alloy cylinder 14 at low temperatures such as when the power is started, in cold regions, and in winter. It becomes.

また、高圧水素ボンベを用いるので、水素の充填法として、水素ガスステーション等の高圧水素インフラを利用することができる。さらにまた、水素吸蔵合金ボンベへの水素の充填による補充は、特願2006−3338号に記載の方法等を用いて行うことができる。   Further, since a high-pressure hydrogen cylinder is used, a high-pressure hydrogen infrastructure such as a hydrogen gas station can be used as a hydrogen filling method. Furthermore, replenishment by filling hydrogen into the hydrogen storage alloy cylinder can be performed by using a method described in Japanese Patent Application No. 2006-3338.

さらに、高圧水素ボンベから水素吸蔵合金ボンベへのラインの途中に圧力調整装置を設けることにより、高圧水素ボンベからの水素圧を下げることができ、上記の特願2006−3338号に記載の方法等を用いなくても、水素吸蔵合金ボンベへの充填が可能となる。したがって、この場合は、水素ガスステーション等の高圧水素インフラのみの利用で、水素ガスの補充が可能となる。   Furthermore, by providing a pressure adjusting device in the middle of the line from the high pressure hydrogen cylinder to the hydrogen storage alloy cylinder, the hydrogen pressure from the high pressure hydrogen cylinder can be lowered, and the method described in the above Japanese Patent Application No. 2006-3338, etc. Even without using, it is possible to fill the hydrogen storage alloy cylinder. Therefore, in this case, hydrogen gas can be replenished by using only a high-pressure hydrogen infrastructure such as a hydrogen gas station.

(a)この発明にかかる小型電動移動体の例を示す正面図、(b)(a)のボンベ収納部を示す正面図(A) The front view which shows the example of the small electric vehicle concerning this invention, The front view which shows the cylinder storage part of (b) (a) (a)この発明にかかる小型電動移動体の他の例を示す正面図、(b)(a)のボンベ収納部を示す正面図(A) The front view which shows the other example of the small electrically-driven moving body concerning this invention, (b) The front view which shows the cylinder storage part of (a) 図1(b)又は図2(b)の場合の各ボンベと燃料電池との連結状態を示す模式図FIG. 1B is a schematic diagram showing a connection state between each cylinder and the fuel cell in the case of FIG.

符号の説明Explanation of symbols

11,11a,11b 小型電動移動体
11’ 小型電動移動体本体部
12 燃料電池収納部
12’ 燃料電池
13 ボンベ収納部
14 水素吸蔵合金ボンベ
15 高圧水素ボンベ
16a,16b,16c バルブ
17a,17b 圧力調整装置
19a,19b ゲージ
11, 11a, 11b Small electric vehicle 11 'Small electric vehicle body 12 Fuel cell storage 12' Fuel cell 13 Cylinder storage 14 Hydrogen storage alloy cylinder 15 High pressure hydrogen cylinders 16a, 16b, 16c Valves 17a, 17b Pressure adjustment Equipment 19a, 19b gauge

Claims (6)

燃料電池、並びにこの燃料電池への水素供給源を有し、この水素供給源として、水素吸蔵合金ボンベ及び高圧水素ボンベを用いる燃料電池システム。   A fuel cell system having a fuel cell and a hydrogen supply source for the fuel cell, and using a hydrogen storage alloy cylinder and a high-pressure hydrogen cylinder as the hydrogen supply source. 上記の水素吸蔵合金ボンベ及び高圧水素ボンベのいずれか一方を先に用い、その後、他方のボンベを用いる請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein one of the hydrogen storage alloy cylinder and the high-pressure hydrogen cylinder is used first, and then the other cylinder is used. 上記の水素吸蔵合金ボンベ及び高圧水素ボンベを同時に用いる請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein the hydrogen storage alloy cylinder and the high-pressure hydrogen cylinder are used simultaneously. 上記水素吸蔵合金ボンベの水素を上記燃料電池の燃料用として用い、上記高圧水素ボンベの水素を、上記水素吸蔵合金ボンベの充填用に用いる請求項1に記載の燃料電池システム。   The fuel cell system according to claim 1, wherein hydrogen of the hydrogen storage alloy cylinder is used for fuel of the fuel cell, and hydrogen of the high pressure hydrogen cylinder is used for filling of the hydrogen storage alloy cylinder. 上記の高圧水素ボンベの出口に圧力調整装置を設ける請求項1乃至4のいずれかに記載の燃料電池システム。   The fuel cell system according to any one of claims 1 to 4, wherein a pressure adjusting device is provided at an outlet of the high-pressure hydrogen cylinder. 電動車椅子又は電動カートの動力源として用いられる請求項1乃至5のいずれかに記載の燃料電池システム。   6. The fuel cell system according to claim 1, which is used as a power source for an electric wheelchair or an electric cart.
JP2007013403A 2007-01-24 2007-01-24 Fuel cell system Pending JP2008181727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007013403A JP2008181727A (en) 2007-01-24 2007-01-24 Fuel cell system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007013403A JP2008181727A (en) 2007-01-24 2007-01-24 Fuel cell system

Publications (1)

Publication Number Publication Date
JP2008181727A true JP2008181727A (en) 2008-08-07

Family

ID=39725460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007013403A Pending JP2008181727A (en) 2007-01-24 2007-01-24 Fuel cell system

Country Status (1)

Country Link
JP (1) JP2008181727A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254485A (en) * 2009-04-21 2010-11-11 Kurimoto Ltd Device for producing and charging hydrogen to hydrogen cylinder of electric wheelchair and electric cart
WO2013080429A1 (en) * 2011-11-30 2013-06-06 三洋電機株式会社 Fuel cell system
CN113707903A (en) * 2021-07-09 2021-11-26 广东电网有限责任公司广州供电局 Fuel cell system using solid-state hydrogen storage as hydrogen source and starting method
CN114347864A (en) * 2022-01-17 2022-04-15 北京格睿能源科技有限公司 Intelligent universal electric chassis energy storage system and control method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252009A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2002252010A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2003142127A (en) * 2001-10-31 2003-05-16 Hitachi Ltd Electrode for solid high polymer type fuel cell, its separator, solid high polymer type fuel cell using them, and power generating system
JP2004022365A (en) * 2002-06-17 2004-01-22 Toyota Motor Corp Fuel cell system and fuel cell vehicle
JP2004288496A (en) * 2003-03-24 2004-10-14 Equos Research Co Ltd Fuel cell system for vehicle
JP2005102470A (en) * 2003-08-27 2005-04-14 Tatsuno Corp Fuel-cell-powered vehicle
JP2005183012A (en) * 2003-12-16 2005-07-07 Honda Motor Co Ltd Fuel cell system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002252009A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2002252010A (en) * 2001-02-23 2002-09-06 Honda Motor Co Ltd Hydrogen supply equipment for fuel cell
JP2003142127A (en) * 2001-10-31 2003-05-16 Hitachi Ltd Electrode for solid high polymer type fuel cell, its separator, solid high polymer type fuel cell using them, and power generating system
JP2004022365A (en) * 2002-06-17 2004-01-22 Toyota Motor Corp Fuel cell system and fuel cell vehicle
JP2004288496A (en) * 2003-03-24 2004-10-14 Equos Research Co Ltd Fuel cell system for vehicle
JP2005102470A (en) * 2003-08-27 2005-04-14 Tatsuno Corp Fuel-cell-powered vehicle
JP2005183012A (en) * 2003-12-16 2005-07-07 Honda Motor Co Ltd Fuel cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010254485A (en) * 2009-04-21 2010-11-11 Kurimoto Ltd Device for producing and charging hydrogen to hydrogen cylinder of electric wheelchair and electric cart
WO2013080429A1 (en) * 2011-11-30 2013-06-06 三洋電機株式会社 Fuel cell system
CN113707903A (en) * 2021-07-09 2021-11-26 广东电网有限责任公司广州供电局 Fuel cell system using solid-state hydrogen storage as hydrogen source and starting method
CN114347864A (en) * 2022-01-17 2022-04-15 北京格睿能源科技有限公司 Intelligent universal electric chassis energy storage system and control method
CN114347864B (en) * 2022-01-17 2024-02-20 北京格睿能源科技有限公司 Intelligent universal electric chassis energy storage system and control method

Similar Documents

Publication Publication Date Title
US9640808B2 (en) Operating method for a fuel cell system
US9784410B2 (en) Operating method for a cryopressure tank
JP2006142924A (en) Hydrogen tank cooling device of hydrogen fuel automobile
JP2007139145A (en) Hydrogen filling station and hydrogen filling method
JP2009264575A (en) Hydrogen feeding device for fuel cell and control method thereof
JP2002221298A (en) Hydrogen storage apparatus
JP2008181727A (en) Fuel cell system
JP5270076B2 (en) In-vehicle hydrogen storage system
JP2012237437A (en) Hydrogen station
US11079072B2 (en) Gas supply system, vehicle, and hydrogen supply facility
CN109792065B (en) Method for supplying at least one fuel cell with fuel and motor vehicle
JP4554966B2 (en) Hydrogen gas filling method and hydrogen gas filling device
US8375999B2 (en) Offboard heat management during compressed gas filling of vehicular hydrogen storage tanks
JP2004203651A (en) Hydrogen feeding method
JP2005155869A (en) Gas fuel filling method
US7484540B2 (en) Liquid hydrogen storage tank with reduced tanking losses
WO2010106612A1 (en) Vehicle
JP2006322345A (en) Pressure fluctuation suppressing device and pressure fluctuation suppressing method
JP7077657B2 (en) Fuel cell system
WO2010134472A1 (en) Hydrogen gas supply device
JP4121899B2 (en) Hydrogen filling method and hydrogen filling apparatus for pressure hydrogen tank
JP6136021B2 (en) Fuel gas filling system and fuel gas filling method
JP2006318810A (en) Fuel gas storage apparatus and method
JP2010125889A (en) Fuel cell vehicle equipped with pipe for hydrogen and method of removing pipe for hydrogen
JP2008240983A (en) Compressed hydrogen gas filling device and compressed hydrogen gas filling method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508