WO2013080429A1 - Fuel cell system - Google Patents

Fuel cell system Download PDF

Info

Publication number
WO2013080429A1
WO2013080429A1 PCT/JP2012/006838 JP2012006838W WO2013080429A1 WO 2013080429 A1 WO2013080429 A1 WO 2013080429A1 JP 2012006838 W JP2012006838 W JP 2012006838W WO 2013080429 A1 WO2013080429 A1 WO 2013080429A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel cell
cartridge
fuel cartridge
hydrogen
Prior art date
Application number
PCT/JP2012/006838
Other languages
French (fr)
Japanese (ja)
Inventor
武史 南浦
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2013080429A1 publication Critical patent/WO2013080429A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1097Fuel cells applied on a support, e.g. miniature fuel cells deposited on silica supports
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2418Grouping by arranging unit cells in a plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/005Use of gas-solvents or gas-sorbents in vessels for hydrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/40Application of hydrogen technology to transportation, e.g. using fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • a fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency.
  • the main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good.
  • fuel cells can be used effectively for the chemical energy of fuel and have environmentally friendly characteristics, so they are expected as energy supply systems for the 21st century, and are widely used in space, automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used for various applications from scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
  • Patent Document 1 an apparatus for supplying hydrogen as a fuel to a fuel cell using a hydrogen storage alloy capable of storing and releasing hydrogen is known (see Patent Document 1).
  • the hydrogen storage and supply device disclosed in Patent Document 1 includes a plurality of hydrogen storage tanks in which hydrogen storage alloys are accommodated, and sequentially supplies hydrogen to the fuel cell by sequentially switching the hydrogen supply tanks. In addition, the remaining amount of hydrogen in the hydrogen storage tank is displayed to urge the filling of hydrogen.
  • the fuel cartridge system In a fuel cell system in which hydrogen is supplied from a plurality of fuel cartridges to the fuel cell and the user fills hydrogen into the fuel cartridge with a reduced amount of hydrogen remaining, the fuel cartridge system is improved to improve user convenience. There is a desire to reduce the frequency of hydrogen filling or the replacement frequency of the fuel cartridge as much as possible. On the other hand, in a situation where the fuel cell system is used, it may frequently occur that the user performs a hydrogen filling operation or a replacement operation before the remaining amount of hydrogen in the fuel cartridge becomes zero. If the hydrogen filling operation or the replacement operation is performed before the hydrogen in the fuel cartridge is used up, and further repeated, the frequency of the hydrogen filling or the replacement operation to the fuel cartridge is increased as a result.
  • the present invention has been made in view of these problems, and an object of the present invention is to improve user convenience in a fuel cell system that includes a plurality of fuel cartridges and in which hydrogen filling into the fuel cartridge is performed by the user. It is to provide a technology that can.
  • An aspect of the present invention is a fuel cell system.
  • the fuel cell system includes an electrolyte membrane, a fuel cell having at least one membrane electrode assembly including a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
  • a plurality of fuel cartridges that are detachably provided and contain a hydrogen storage alloy for storing hydrogen as a fuel, a fuel control unit that controls the supply of fuel from each fuel cartridge to the fuel cell, and a user that controls each fuel
  • An instruction unit for instructing removal of the cartridge.
  • Each fuel cartridge can supply hydrogen to the fuel cell independently of each other.
  • the fuel control unit releases hydrogen after releasing hydrogen from the fuel cartridge to be removed with priority over other fuel cartridges. The removal of the target fuel cartridge is allowed.
  • the present invention it is possible to improve the convenience of the user in the fuel cell system that has a plurality of fuel cartridges and in which the fuel cartridge is filled with hydrogen.
  • FIG. 1A is a perspective view showing an external appearance of a fuel cell system according to Embodiments 1 to 3.
  • FIG. 1B is a perspective view showing a state in which the housing side wall of the fuel cell system according to Embodiments 1 to 3 is slid. It is a perspective view which shows the state which decomposed
  • FIG. 3A is a schematic cross-sectional view along the line AA in FIG.
  • FIG. 3B is an enlarged view of a region B surrounded by a broken line in FIG. 1 is a diagram illustrating a circuit configuration of a fuel cell system according to Embodiment 1.
  • FIG. 1 is a schematic diagram of a fuel cell system according to Embodiment 1.
  • FIG. 1 is a schematic diagram of a fuel cell system according to Embodiment 1.
  • FIG. 9A is a side view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 2.
  • FIG. 9B is a schematic cross-sectional view along the line BB in FIG. 9A.
  • FIG. 9C is a side view schematically showing the fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 2.
  • FIG. 9D is a schematic cross-sectional view along the line CC in FIG. 9C.
  • FIG. 10A is a schematic cross-sectional view showing a state in which the rod body protrudes from the rod body housing portion
  • FIG. 10B is a schematic cross-sectional view showing a state in which the rod body is housed in the rod body housing portion.
  • FIG. 11A is a plan view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 3.
  • FIG. 11B is a schematic cross-sectional view along the line DD in FIG.
  • FIG. 11C is a plan view schematically showing a fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 3.
  • FIG. 11D is a schematic cross-sectional view along the line EE in FIG.
  • FIG. 12A is a schematic cross-sectional view showing a state in which the removal restricting portion has entered the opening
  • FIG. 12B is a schematic cross-sectional view showing a state in which the removal restricting portion has exited from the opening. It is a perspective view which shows the external appearance of the fuel cell system which concerns on a modification.
  • FIG. 1A is a perspective view showing the appearance of the fuel cell system according to Embodiment 1.
  • FIG. 1B is a perspective view showing a state in which the housing side wall of the fuel cell system according to Embodiment 1 is slid.
  • FIG. 2 is a perspective view showing a state in which the fuel cell system according to Embodiment 1 is disassembled.
  • the fuel cell system 1 is a system for mobile use, for example, and includes a housing 2, a fuel cell module 100, and a plurality of fuel cartridges 200a and 200b (hereinafter, appropriately, the fuel cartridge 200a and the fuel cartridge 200b).
  • a fuel cartridge 200 a fuel cell module 100
  • a pressure adjustment unit 300 a pressure adjustment unit 300
  • an instruction unit 400 a control unit (control circuit) 500
  • a secondary battery 600 a secondary battery 600.
  • the housing 2 has a substantially rectangular parallelepiped shape, and a substantially U-shaped main body 2a in which two opposing side walls 2a1 and a bottom 2a2 are integrally formed, and 2 provided separately from the main body 2a. It has two side walls 2b and a frame-like lid portion 2c having an opening 2c1.
  • the two side walls 2b are disposed so as to face each other and substantially orthogonal to the two side walls 2a1, and are slidably connected to the main body 2a in a direction substantially orthogonal to the main surface of the bottom 2a2.
  • Each side wall 2b is provided with a through hole 2b1.
  • the lid 2c is disposed so as to face the bottom 2a2, and is fitted to the end of the side wall 2a1.
  • the fuel cell module 100 includes a plurality of fuel cells 101a, 101b, 101c, and 101d arranged in a plane (hereinafter, the fuel cells 101a to 101d are collectively referred to as the fuel cell 101 as appropriate) and one main surface side of the fuel cell 101.
  • the fuel distribution plate 112 disposed on the other side, the air diffusion layer 114 disposed on the other main surface side of the fuel cell 101, and the cathode protection disposed on the main surface side of the air diffusion layer 114 opposite to the fuel cell 101.
  • the fuel cell module 100 of the present embodiment includes four fuel cells 101a to 101d, but the number is not limited.
  • the fuel cells 101 are arranged in two rows and two columns on the main surface of the fuel distribution plate 112, and an air diffusion layer 114 and a cathode protective layer 116 are laminated thereon in this order.
  • the cathode protective layer 116 has a plurality of openings 116a and is exposed to the outside through the openings 2c1 of the lid portion 2c and constitutes a part of the casing of the fuel cell system 1.
  • the fuel cartridge 200 On the main surface side of the fuel distribution plate 112 opposite to the fuel cell 101, the fuel cartridge 200, the pressure adjusting unit 300, and the indicating unit 400 are arranged.
  • the fuel cell system 1 of this embodiment has two fuel cartridges 200a and 200b, the number is not limited.
  • the fuel cartridge 200 has a flat rectangular parallelepiped shape and has a hydrogen discharge filling port 202 on a side surface. Each fuel cartridge 200 is disposed such that one main surface faces the fuel distribution plate 112 and the hydrogen discharge filling port 202 faces the pressure adjusting unit 300 side. Further, the fuel cartridge 200 is disposed such that the side surface facing the side surface provided with the hydrogen discharge filling port 202 faces the side wall 2b.
  • the fuel cell 101 and the fuel cartridge 200 are close to each other with the fuel distribution plate 112 interposed therebetween, heat exchange is possible between them.
  • the two fuel cells 101a and 101b arranged in parallel with the side wall 2b on the side close to one side wall 2b can exchange heat with the fuel cartridge 200a disposed on the side wall 2b side, and the other side wall.
  • Two fuel cells 101c and 101d arranged in parallel to the side wall 2b on the side close to 2b can exchange heat with the fuel cartridge 200b arranged on the side wall 2b side.
  • a cylindrical fuel cartridge insertion reinforcing portion 4 is provided on the main surface side of the fuel distribution plate 112 opposite to the fuel cell 101.
  • the fuel cartridge 200 inserted from the outside is inserted into the fuel cartridge insertion reinforcing portion 4 and connected to the pressure adjusting portion 300.
  • the strength of the housing 2 is reinforced by the fuel cartridge insertion reinforcing portion 4.
  • the pressure adjusting unit 300 is disposed so as to be sandwiched between two attached fuel cartridges 200a and 200b.
  • the pressure adjustment unit 300 includes a cartridge connection unit 302 (see FIG. 3A) to which the hydrogen discharge filling port 202 of the fuel cartridge 200 is connected, and a fuel flow path 304 (see FIG. 3) that connects the fuel cartridge 200 and the fuel cell module 100. 3 (A) and FIG. 5) and a valve mechanism (see FIG. 5) for adjusting the flow of hydrogen in the fuel flow path.
  • the internal structure of the pressure adjusting unit 300 will be described in detail later.
  • the fuel cartridge 200 is detachably provided to the housing 2, more specifically, to the pressure adjustment unit 300. As will be described later, the fuel cartridge 200 can be inserted and removed by operating the instruction unit 400 and sliding the side wall 2b. When the fuel cartridge 200 is inserted from the outside, the hydrogen discharge filling port 202 is connected to the cartridge connecting portion 302, and the inside of the fuel cartridge 200 and the fuel flow path of the pressure adjusting portion 300 are communicated.
  • the instruction unit 400 is provided for each fuel cartridge 200 and includes a switch 402 that is pressed by a user.
  • the switch 402 is inserted through a through hole 2b1 provided in the side wall 2b and can be pushed in from the outside.
  • instruction unit 400 transmits a signal instructing removal of fuel cartridge 200 to control unit 500.
  • the user can instruct removal of the fuel cartridge 200 by pressing the switch 402 corresponding to the fuel cartridge 200 to be removed.
  • the switch 402 extends into the through hole 2b1 before being pushed. Therefore, the sliding of the side wall 2b is prevented.
  • the switch 402 is pushed in, the engagement between the switch 402 and the side wall 2b is released, and the side wall 2b can be slid downward, that is, in a direction away from the lid portion 2c.
  • the fuel cartridge 200 is exposed by the slide of the side wall 2b, and the fuel cartridge 200 can be taken out.
  • the instruction unit 400 of the present embodiment prohibits the removal of the fuel cartridge 200 from the fuel cartridge 200 to be removed until a priority hydrogen discharge process to be described later is completed, and allows the removal after the priority hydrogen discharge process is completed.
  • a restriction unit 900 is provided.
  • the removal restricting unit 900 according to this embodiment includes LEDs that can emit blue and red light. The LED emits blue light when the removal of the fuel cartridge 200 is allowed, and the LED is red when removal is prohibited. Make it emit light. As a result, switching between prohibiting and permitting removal of the fuel cartridge 200 is switched.
  • the removal restricting unit 900 prohibits the removal of the fuel cartridge 200 when the fuel cartridge 200 is equal to or higher than the predetermined third temperature, and allows the removal of the fuel cartridge 200 when the temperature is lower than the predetermined third temperature. Thereby, the safety
  • the “predetermined third temperature” can be appropriately set based on an experiment or simulation by a designer.
  • a holding plate 6 having heat insulation is arranged below the fuel cartridge 200, that is, on the main surface side opposite to the fuel distribution plate 112 of the fuel cartridge 200. Therefore, the fuel cartridge 200, the pressure adjustment unit 300, the instruction unit 400, and the fuel cartridge insertion reinforcement unit 4 are arranged in a region sandwiched between the fuel distribution plate 112 and the holding plate 6. Below the holding plate 6, the controller 500 and the secondary battery 600 are arranged. The holding plate 6 suppresses heat transfer from the fuel cartridge 200 to the control unit 500 and the secondary battery 600.
  • the control unit 500 controls the valve mechanism of the pressure adjustment unit 300 to control the supply of hydrogen from the fuel cartridge 200 to the fuel cell 101.
  • the control unit 500 controls on / off switching of each of the fuel cells 101a to 101d. Further, the control unit 500 controls the removal restricting unit 900.
  • the control executed by the control unit 500 will be described in detail later.
  • the secondary battery 600 functions as an auxiliary power source when the power load applied to the fuel cell system 1 suddenly increases or when power cannot be supplied from the fuel cell 101. Note that the fuel cell system 1 may not include the secondary battery 600.
  • FIG. 3A is a schematic cross-sectional view along the line AA in FIG.
  • FIG. 3B is an enlarged view of a region B surrounded by a broken line in FIG.
  • the fuel cell 101 has a membrane electrode assembly (cell) 104 as a main configuration.
  • the membrane electrode assembly 104 may be singular or plural.
  • an electrical connection member such as an interconnector, a current collector, or a wiring.
  • a structure, a stacked stack structure, or the like can be employed.
  • the membrane electrode assembly 104 includes an electrolyte membrane 106, a cathode 108 provided on one surface of the electrolyte membrane 106, and an anode 110 provided on the other surface of the electrolyte membrane 106. That is, the electrolyte membrane 106 is sandwiched between the pair of cathodes 108 and the anode 110 to constitute a cell. The cell generates electricity by an electrochemical reaction between hydrogen and oxygen in the air.
  • the electrolyte membrane 106 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode 108 and the anode 110.
  • the electrolyte membrane 106 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer. Etc. can be used.
  • examples of the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112.
  • non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone.
  • the thickness of the electrolyte membrane 106 is, for example, 10 to 200 ⁇ m.
  • the cathode 108 and the anode 110 have ion exchange resin and catalyst particles, and possibly carbon particles, respectively.
  • the ion exchange resin that the cathode 108 and the anode 110 have has a role of connecting the catalyst particles and the electrolyte membrane 106 and transmitting protons therebetween.
  • This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 106.
  • catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned.
  • acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles.
  • the thicknesses of the cathode 108 and the anode 110 are each 10 to 40 ⁇ m, for example.
  • the air diffusion layer 114 and the cathode protective layer 116 are laminated in this order on the cathode 108 side of the membrane electrode assembly 104. Air as an oxidant is supplied from the outside into the housing 2 through the opening 116 a, diffused in the surface direction of the membrane electrode assembly 104 by the air diffusion layer 114, and supplied to the cathode 108.
  • a fuel distribution plate 112 is laminated on the anode 110 side of the membrane electrode assembly 104.
  • the fuel distribution plate 112 is connected to the outlet of the fuel flow path 304 of the pressure adjustment unit 300.
  • a cartridge connecting portion 302 is provided on the inlet side of the fuel flow path 304.
  • the fuel cartridge 200 accommodates a hydrogen storage alloy 204 for storing hydrogen as fuel.
  • the hydrogen storage alloy 204 is capable of storing hydrogen and releasing the stored hydrogen, and generates heat when storing hydrogen and absorbs heat when releasing hydrogen.
  • the hydrogen storage alloy 204 is, for example, a rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 (Mm is Misch metal).
  • the hydrogen storage alloy 204 is not limited to this, but other rare earth alloys such as La—Ni alloys, Ti—Mn alloys, Ti—Fe alloys, Ti—Zr alloys, Mg—Ni alloys. An alloy or a Zr—Mn alloy may be used.
  • the hydrogen storage alloy 204 can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the hydrogen storage alloy powder described above and compression-molding it with a press. . If necessary, a sintering process may be performed after the compression molding. Further, the hydrogen storage alloy 204 may not be in the form of a pellet, but may be one in which the hydrogen storage alloy powder is filled in the fuel cartridge 200. The shape of the hydrogen storage alloy 204 is not particularly limited.
  • the hydrogen discharge filling port 202 of the fuel cartridge 200 is provided with a sealing mechanism (not shown). This sealing mechanism cuts off the hydrogen flow only when the fuel cartridge 200 is inserted into the housing 2 and the hydrogen discharge filling port 202 of the fuel cartridge 200 and the fuel flow path 304 of the pressure adjusting unit 300 are connected. Configured to release.
  • Hydrogen released from the hydrogen storage alloy 204 is sent to the fuel flow path 304 of the pressure adjusting unit 300 through the hydrogen discharge filling port 202, and supplied to the anode 110 through the fuel flow path 304 and the fuel distribution plate 112. .
  • Temperature sensors 700a and 700b are provided on the outer surfaces of the fuel cartridges 200a and 200b, respectively (hereinafter, the temperature sensor 700a and the temperature sensor 700b are collectively referred to as the temperature sensor 700 as appropriate).
  • the surface temperature of the fuel cartridge 200a is measured by the temperature sensor 700a
  • the surface temperature of the fuel cartridge 200b is measured by the temperature sensor 700b.
  • the temperature sensor 700 transmits a signal indicating the measured temperature information of the fuel cartridge 200 to the control unit 500.
  • FIG. 4 is a diagram showing a circuit configuration of the fuel cell system according to the first embodiment.
  • the fuel cell system 1 of this embodiment includes DC / DC converters 800a and 800b, a secondary battery charging circuit 602, and the like.
  • Terminal d of DC / DC converter 800a is connected to an external load (not shown).
  • fuel cells 101a to 101d are connected to the DC / DC converter 800a.
  • a first switch circuit SW1 to a fourth switch circuit SW4 are provided on paths connecting the fuel cells 101a to 101d and the DC / DC converter 800a, respectively.
  • the first switch circuit SW1 to the fourth switch circuit SW4 each have three contacts a, b, and c.
  • the fuel cell 101a is connected to the contact b of the first switch circuit SW1.
  • the fuel cell 101b is connected to the contact b of the second switch circuit SW2.
  • the fuel cell 101c is connected to the contact b of the third switch circuit SW3.
  • the fuel cell 101d is connected to the contact b of the fourth switch circuit SW4.
  • the controller 500 is connected to the contact a of each switch circuit.
  • the DC / DC converter 800a is connected to the contact c of each switch circuit.
  • a diode D1 having a forward direction from the first switch circuit SW1 toward the DC / DC converter 800a is provided in a path connecting the contact c of the first switch circuit SW1 and the DC / DC converter 800a.
  • a diode D2 having a forward direction from the second switch circuit SW2 toward the DC / DC converter 800a is provided in a path connecting the contact c of the second switch circuit SW2 and the DC / DC converter 800a.
  • a diode D3 having a forward direction from the third switch circuit SW3 to the DC / DC converter 800a is provided in a path connecting the contact c of the third switch circuit SW3 and the DC / DC converter 800a.
  • a diode D4 having a forward direction from the fourth switch circuit SW4 to the DC / DC converter 800a is provided in a path connecting the contact c of the fourth switch circuit SW4 and the DC / DC converter 800a.
  • Secondary battery 600 is connected to DC / DC converter 800b.
  • the DC / DC converter 800b is connected to the DC / DC converter 800a.
  • a diode D5 having a forward direction from the DC / DC converter 800b to the DC / DC converter 800a is provided in a path connecting the DC / DC converter 800a and the DC / DC converter 800b.
  • Secondary battery 600 is connected to secondary battery charging circuit 602.
  • the secondary battery charging circuit 602 is connected to the DC / DC converter 800a.
  • the controller 500 can independently switch on / off the plurality of fuel cells 101a to 101d by switching the first switch circuit SW1 to the fourth switch circuit SW4.
  • the control unit 500 is connected to the temperature sensors 700a and 700b and receives signals from the temperature sensors 700a and 700b. Further, the control unit 500 controls the conversion of the DC voltage by the DC / DC converters 800a and 800b. In addition, the control unit 500 controls the secondary battery charging circuit 602 to charge the secondary battery 600 with, for example, power supplied from the outside.
  • FIG. 5 is a schematic diagram of the fuel cell system according to the first embodiment.
  • the fuel flow path 304 of the pressure adjustment unit 300 includes a first fuel flow path 306 and a plurality of second fuel flow paths 308a and 308b (hereinafter, the second fuel flow path 308a and the second fuel flow path 308b are appropriately combined. Second fuel flow path 308).
  • the first fuel channel 306 and the second fuel channel 308 are connected in parallel to the fuel cell 101 and the fuel cartridge 200.
  • the first fuel flow path 306 includes a plurality of branch portions 310a and 310b connected to the fuel cartridges 200a and 200b (hereinafter, the branch portion 310a and the branch portion 310b are collectively referred to as a branch portion 310) and a plurality of branches.
  • the parts 310 a and 310 b are assembled to have a joining part 312 connected to the fuel cell 101.
  • the branch portion 310 a has one end connected to the fuel cartridge 200 a via the cartridge connection portion 302 and the other end connected to one end of the junction portion 312.
  • One end of the branching portion 310 b is connected to the fuel cartridge 200 b via the cartridge connecting portion 302, and the other end is connected to one end of the merging portion 312.
  • the other end of the junction 312 is connected to each of the fuel cells 101a to 101d via the fuel distribution plate 112.
  • Each branch part 310a, 310b is provided with check valves 314a, 314b, thereby suppressing the backflow of hydrogen from the junction part 312 side to the cartridge connection part 302 side.
  • the junction part 312 is provided with a check valve 316, which suppresses the backflow of hydrogen from the fuel cell 101 side to the branch part 310 side.
  • a first flow rate adjusting unit 318 is provided in the merging unit 312 between the end on the branching unit 310 side and the check valve 316.
  • the first flow rate adjustment unit 318 has a first pressure reducing valve 320.
  • the first pressure reducing valve 320 adjusts the hydrogen pressure in the first flow rate adjusting unit 318. The pressure of hydrogen supplied from the fuel cartridge 200 is reduced by the first pressure reducing valve 320, and the anode 110 of the fuel cell 101 is protected.
  • the second fuel flow path 308a is connected between the cartridge connecting portion 302 and the check valve 314a in the branch portion 310a, and the other end is an end portion on the fuel distribution plate 112 side of the check valve 316 in the junction portion 312. Connected between. Therefore, the fuel cartridge 200a and the fuel cell 101 are connected by two flow paths, the first fuel flow path 306 and the second fuel flow path 308a.
  • the second fuel flow path 308a is provided with a check valve 322a, which suppresses the back flow of hydrogen from the fuel cell 101 side to the fuel cartridge 200a side.
  • the second fuel flow path 308a is provided with a second flow rate adjustment unit 324a between the end on the branching unit 310a side and the check valve 322a.
  • the second flow rate adjustment unit 324a includes a second pressure reducing valve 326a. The second pressure reducing valve 326a adjusts the hydrogen pressure in the second fuel flow path 308a.
  • One end of the second fuel flow path 308b is connected between the cartridge connecting portion 302 and the check valve 314b in the branching portion 310b, and the other end is an end portion on the side of the check valve 316 and the fuel distribution plate 112 in the merging portion 312. Connected between. Therefore, the fuel cartridge 200b and the fuel cell 101 are connected by two flow paths, the first fuel flow path 306 and the second fuel flow path 308b.
  • the second fuel flow path 308b is provided with a check valve 322b, thereby suppressing the back flow of hydrogen from the fuel cell 101 side to the fuel cartridge 200b side.
  • the second fuel flow path 308b is provided with a second flow rate adjusting unit 324b between the end on the branching unit 310b side and the check valve 322b.
  • the second flow rate adjustment unit 324b has a second pressure reducing valve 326b. The second pressure reducing valve 326b adjusts the hydrogen pressure in the second fuel flow path 308b.
  • the second flow rate adjustment unit 324a and the second flow rate adjustment unit 324b are collectively referred to as a second flow rate adjustment unit 324
  • the second pressure reduction valve 326a and the second pressure reduction valve 326b are collectively referred to as a second pressure reduction valve 326, as appropriate.
  • FIG. 6 is a schematic cross-sectional view of the first pressure reducing valve and the second pressure reducing valve. Since the first pressure reducing valve 320 and the second pressure reducing valve 326 have the same structure, the structure of the first pressure reducing valve 320 will be described below, and the description of the second pressure reducing valve 326 will be omitted.
  • the first pressure reducing valve 320 mainly includes a valve rod 3202, a diaphragm 3204, a valve spring 3206, a pressure regulating spring 3208, a pressure regulating spring adjustment screw 3210, an external pressure input portion 3212, and a valve rod housing portion 3214.
  • the valve stem housing portion 3214 is fitted into the flow path of the merging portion 312.
  • the valve rod housing portion 3214 includes a primary side S1 of the first pressure reducing valve 320, that is, a primary side opening 3214a disposed on the upstream side of the hydrogen flow, and a secondary side S2 of the first pressure reducing valve 320, that is, And a secondary opening 3214b disposed downstream of the hydrogen flow.
  • the valve stem 3202 has a flange portion 3202a, one end side including the flange portion 3202a is accommodated in the valve rod accommodating portion 3214, and the other end side is disposed outside the valve stem accommodating portion 3214 via the secondary side opening 3214b. Is done.
  • a packing 3216 is provided on the peripheral edge of the secondary side opening 3214b on the inner wall of the valve stem housing 3214.
  • a valve spring 3206 is provided on one end side of the valve rod 3202. The valve spring 3206 is disposed between the inner wall of the valve rod housing portion 3214 and the flange portion 3202a, and the valve rod 3202 is attached in the direction in which the valve rod 3202 retreats from the valve rod housing portion 3214 (upward direction in FIG. 6). To force. Further, the diameter of the flange portion 3202a is larger than the opening diameter of the secondary side opening portion 3214b, and is set so that the flange portion 3202a contacts the packing 3216 when the valve stem 3202 is displaced upward.
  • the other end of the valve rod 3202 contacts one main surface of the diaphragm 3204.
  • One main surface of the diaphragm 3204 is in contact with the space on the secondary side S2 side of the first pressure reducing valve 320.
  • a pressure regulating spring 3208 abuts the other main surface of the diaphragm 3204, and the valve rod 3202 enters the valve rod housing portion 3214 via the diaphragm 3204 by the pressure regulating spring 3208 (downward direction in FIG. 6). Be energized.
  • a pressure adjusting spring adjusting screw 3210 is disposed at the end of the pressure adjusting spring 3208 opposite to the diaphragm 3204, and the repulsive force of the pressure adjusting spring 3208 is adjusted by the pressure adjusting spring adjusting screw 3210.
  • an external pressure input portion 3212 is disposed at the end of the pressure regulating spring 3208 opposite to the diaphragm 3204.
  • the external pressure input unit 3212 inputs a force F to the pressure adjustment spring 3208 and compresses the pressure adjustment spring 3208. Thereby, the repulsive force of the pressure regulation spring 3208 is increased.
  • a fuel control unit 502 described later controls the external pressure input unit 3212 to adjust the magnitude of the force F.
  • the hydrogen flowing through the merging portion 312 flows from the primary side S1 of the first pressure reducing valve 320 to the primary side opening. It flows to the secondary side S2 of the first pressure reducing valve 320 via 3214a, the valve rod housing portion 3214, the gap D, and the secondary side opening 3214b.
  • the pressure on the secondary side S ⁇ b> 2 increases, and the diaphragm 3204 is pushed up by the pressure in a direction in which the pressure regulating spring 3208 is compressed.
  • valve rod 3202 is pushed up in conjunction with the diaphragm 3204, the flange portion 3202 a approaches the packing 3216, and the gap D is closed. As a result, the movement of hydrogen from the primary side S1 to the secondary side S2 of the first pressure reducing valve 320 stops.
  • the fuel cartridges 200 a and 200 b are connected in parallel to the fuel cell 101. Accordingly, the fuel cartridges 200 a and 200 b can supply hydrogen to the fuel cell 101 independently of each other. Therefore, during operation of the fuel cell 101, the remaining fuel cartridges 200 can be removed while any part of the fuel cartridges 200 is connected to the fuel cell 101. That is, the fuel cell system 1 according to the present embodiment is compatible with hot swapping of the fuel cartridge 200.
  • the control unit 500 includes a fuel control unit 502 that controls the supply of fuel from the fuel cartridges 200a and 200b to the fuel cell 101, and a switching control unit 504 that switches on and off the fuel cells 101a to 101d.
  • the control unit 500 is realized by elements and circuits such as a CPU and a memory of a computer as a hardware configuration, and realized by a computer program or the like as a software configuration, but in FIG. It is drawn as a functional block. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
  • the fuel control unit 502 gives priority to the first fuel flow path 306 over the second fuel flow path 308 in each fuel cartridge 200a, 200b when an instruction to remove any fuel cartridge 200 is not given during operation of the fuel cell 101.
  • the first flow rate adjustment unit 318 and the second flow rate adjustment unit 324 are controlled so that hydrogen flows through the first flow rate adjustment unit 324. That is, during normal operation of the fuel cell system 1, hydrogen is supplied from the fuel cartridge 200 to the fuel cell 101 mainly via the first fuel flow path 306. For example, the hydrogen in the fuel cartridge 200 is supplied to the fuel cell 101 only through the first fuel channel 306.
  • the fuel control unit 502 is instructed to remove an arbitrary fuel cartridge 200 by the instruction unit 400 during the operation of the fuel cell 101, and when the removal instruction of the hydrogen flow rate of the first fuel channel 306 is not issued.
  • the first flow rate adjusting unit 318 and the second flow rate so that the hydrogen flow rate of the second fuel flow path 308 connected to the fuel cartridge 200 to be removed becomes larger than when the removal instruction is not given.
  • the adjustment unit 324 is controlled.
  • the hydrogen flow rate of the second fuel flow path 308 connected to the other fuel cartridge 200 is maintained at the flow rate when the removal instruction is not given, or is lower than the flow rate.
  • the supply of hydrogen from the fuel cartridge 200 to the fuel cell 101 via the first fuel flow path 306 is suppressed, so that the fuel cartridge 200 from the fuel cartridge 200 that is not the object of removal is prevented.
  • Supply of hydrogen to 101 is suppressed.
  • the hydrogen of the fuel cartridge 200 to be removed is preferentially supplied to the fuel cell 101 via the second fuel flow path 308 connecting the fuel cartridge 200 and the fuel cell 101. For example, only the hydrogen of the fuel cartridge 200 to be removed is supplied to the fuel cell 101 via the second fuel flow path 308.
  • the fuel control unit 502 allows the fuel cartridge 200 to be removed after preferentially releasing hydrogen from the fuel cartridge 200 to be removed.
  • the removal restricting portions 900a and 900b are provided in the instruction portions 400a and 400b corresponding to the fuel cartridges 200a and 200b, respectively.
  • the fuel control unit 502 switches the LED of the removal restricting unit 900 corresponding to the fuel cartridge 200 to be removed from red to blue after completion of the priority hydrogen discharge process from the fuel cartridge 200 to be removed, thereby changing the fuel.
  • the cartridge 200 is allowed to be removed.
  • the “end of preferential hydrogen release from the fuel cartridge 200 to be taken out” is, for example, until a predetermined time elapses after an instruction to take out the fuel cartridge 200 is issued. This predetermined time can be appropriately set based on experiments and simulations by the designer.
  • the first flow rate adjusting unit 318 has the first pressure reducing valve 320
  • the second flow rate adjusting units 324a and 324b have the second pressure reducing valves 326a and 326b. Accordingly, the fuel control unit 502 performs the first control so that the pressure on the secondary side S2 of the first pressure reducing valve 320 is higher than the pressure on the secondary side S2 of each second pressure reducing valve 326 when no removal instruction is given.
  • the pressure reducing valve 320 and the second pressure reducing valve 326 are controlled.
  • the fuel control unit 502 determines that the pressure on the secondary side S2 of the second pressure reducing valve 326 provided in the second fuel flow path 308 connected to the fuel cartridge 200 to be removed is increased. , The pressure on the secondary side S2 of the first pressure reducing valve 320, and the secondary pressure of the second pressure reducing valve 326 provided in the second fuel flow path 308 connected to the fuel cartridge 200 other than the fuel cartridge 200 to be removed. The first pressure reducing valve 320 and the second pressure reducing valve 326 are controlled to be higher than the pressure on the side S2.
  • the fuel control unit 502 when the fuel control unit 502 is instructed to remove any fuel cartridge 200 during the operation of the fuel cell 101, the fuel control unit 502 starts from the fuel cartridge 200 to be removed. After releasing hydrogen preferentially over the other fuel cartridges 200, the removal of the fuel cartridge 200 to be removed is allowed. Thereby, even if hydrogen remains in the fuel cartridge 200 to be removed when the removal instruction is given, the remaining amount of hydrogen in the fuel cartridge 200 can be reduced. Therefore, it is possible to suppress the frequency of hydrogen filling and replacement work for the fuel cartridge 200 from increasing.
  • the fuel cells 101a and 101b can exchange heat with the fuel cartridge 200a, and the fuel cells 101c and 101d can exchange heat with the fuel cartridge 200b.
  • the temperature of the fuel cartridge 200 can be raised by the heat generated by the electrochemical reaction in the fuel cell 101, and the hydrogen release of the hydrogen storage alloy 204 can be promoted.
  • the fuel cell 101 can dissipate heat by an endothermic reaction when the hydrogen storage alloy 204 releases hydrogen.
  • the surface temperature of the fuel cartridge 200 is reduced by preferentially releasing hydrogen from the fuel cartridge 200 to be removed before allowing the fuel cartridge 200 to be removed. can do. Thereby, when the fuel cartridge 200 is removed, the surface of the fuel cartridge 200 is further cooled, so that the user's workability and safety during work can be improved.
  • the switching control unit 504 turns off at least one of the fuel cells 101 that exchanges heat with the fuel cartridge 200 to be removed. To do. For example, when removal of the fuel cartridge 200a is instructed, at least one of the fuel cell 101a and the fuel cell 101b that exchange heat with the fuel cartridge 200a is turned off. Thereby, the fuel cartridge 200 to be removed can be further cooled.
  • the switching control unit 504 When an instruction to remove any fuel cartridge 200 is given during power generation of the fuel cell 101, the switching control unit 504 at least one of the fuel cells 101 that exchanges heat with a fuel cartridge 200 other than the fuel cartridge 200 to be removed. May be turned off. For example, when removal of the fuel cartridge 200a is instructed, at least one of the fuel cell 101c and the fuel cell 101d that exchange heat with the fuel cartridge 200b is turned off. When a part of the fuel cell 101 is turned off, it is necessary to increase the power generation amount of the other fuel cells 101 in order to maintain the power generation amount of the entire fuel cell system 1.
  • FIG. 7 is a graph showing the relationship between the remaining amount of hydrogen in the fuel cartridge and the hydrogen release pressure when the surface temperature of the fuel cartridge is 20 ° C., 40 ° C., and 60 ° C. From FIG. 7, it can be seen that the higher the surface temperature of the fuel cartridge 200, the higher the hydrogen release pressure can be maintained. In particular, when the remaining amount of hydrogen is in the range of 10% to 95%, the higher the surface temperature of the fuel cartridge 200, the higher the hydrogen release pressure is maintained. Therefore, the remaining amount of hydrogen in the fuel cartridge 200 can be further reduced by increasing the power generation amount of the fuel cell 101 that exchanges heat with the fuel cartridge 200 to be removed and further heating the fuel cartridge 200.
  • the switching control unit 504 at least of the fuel cell 101 that exchanges heat with a fuel cartridge 200 other than the fuel cartridge 200 to be removed. Turn one off.
  • the “predetermined first temperature” can be appropriately set based on an experiment or simulation by a designer.
  • the switching control unit 504 switches at least one of the fuel cells 101 to exchange heat with the fuel cartridge 200 to be removed when the fuel cartridge 200 to be removed has a predetermined second temperature or higher. Turn off. Thereby, while improving workability
  • the “predetermined second temperature” can be appropriately set based on an experiment or simulation by a designer.
  • the predetermined first to third temperatures are, for example, higher temperatures in the order of the first temperature, the second temperature, and the third temperature.
  • the first temperature is 35 ° C.
  • the second temperature is 40 ° C.
  • the third temperature is 45 ° C.
  • the first temperature can be set in the range of 25 to 40 ° C.
  • the second temperature can be set in the range of 40 to 50 ° C.
  • the third temperature can be set in the range of 40 ° C. to 60 ° C. Can be set by range.
  • the switching control unit 504 turns off the fuel cell 101 to be turned off when the power load applied to the fuel cell system 1 is lower than the maximum power generation amount of the fuel cell system 1. Thereby, since it can avoid more reliably that the electric energy which the fuel cell system 1 supplies with respect to an external electric power load is insufficient, the reliability of the fuel cell system 1 can be improved.
  • FIG. 8 is a control flowchart of the fuel cell system according to the first embodiment.
  • the processing procedure of each part is displayed by a combination of S (acronym for Step) meaning a step and a number.
  • This flow is repeatedly executed at a predetermined timing by the control unit 500 including the fuel control unit 502 and the switching control unit 504 after the power of the fuel cell system 1 is turned on.
  • the control unit 500 determines whether the fuel cell 101 is in operation (power generation) (S101). When the fuel cell 101 is not in operation (N in S101), the control unit 500 ends this routine. When the fuel cell 101 is in operation (Y in S101), the control unit 500 determines whether there is an instruction to remove the fuel cartridge 200 (S102). When there is no instruction to remove the fuel cartridge 200 (N in S102), the control unit 500 increases the pressure on the secondary side S2 of the first pressure reducing valve 320 higher than the pressure on the secondary side S2 of each second flow rate adjustment unit 324. (S103), this routine is terminated.
  • control unit 500 sets the pressure on the secondary side S2 of the second pressure reducing valve 326 connected to the fuel cartridge 200 to be removed to the value of the first pressure reducing valve 320. It raises more than the pressure of secondary side S2 (S104).
  • the control unit 500 determines whether the power load applied to the fuel cell system 1 is less than the maximum power generation amount of the fuel cell system 1 (S105). When the power load is lower than the maximum power generation amount of the fuel cell system 1 (Y in S105), the control unit 500 determines whether the surface temperature of the fuel cartridge 200 to be removed is lower than the first temperature (S106). When the surface temperature is lower than the first temperature (Y in S106), the control unit 500 turns off at least one of the fuel cells 101 that exchange heat with the fuel cartridge 200 that is not a removal target (S107). Thereafter, the control unit 500 controls the removal regulating unit 900 to allow the removal of the fuel cartridge 200 (S108), and ends this routine.
  • the control unit 500 determines whether the surface temperature is equal to or higher than the second temperature (S109). When the surface temperature is lower than the second temperature (N in S109), the control unit 500 controls the removal regulating unit 900 to permit the removal of the fuel cartridge 200 (S108), and ends this routine. When the surface temperature of the fuel cartridge 200 to be removed is equal to or higher than the second temperature (Y in S109), the control unit 500 turns off at least one of the fuel cells 101 that exchange heat with the fuel cartridge 200 to be removed (S109). S110).
  • the controller 500 determines whether the surface temperature of the removal target fuel cartridge 200 is equal to or higher than the third temperature (S111). Similarly, when the power load applied to the fuel cell system 1 is equal to or greater than the maximum power generation amount of the fuel cell system 1 (N in S105), the controller 500 similarly determines that the surface temperature of the fuel cartridge 200 to be removed is the third temperature. It is determined whether this is the case (S111). When the surface temperature of the fuel cartridge 200 is lower than the third temperature (N in S111), the control unit 500 controls the removal restricting unit 900 to permit the removal of the fuel cartridge 200 (S108), and ends this routine. To do. When the surface temperature is equal to or higher than the third temperature (Y in S111), the control unit 500 controls the removal restricting unit 900 to prohibit the removal of the fuel cartridge 200 (S1112), and ends this routine.
  • the fuel cell system 1 has a plurality of fuel cartridges 200 that are detachably provided. Then, when an instruction to remove an arbitrary fuel cartridge 200 is given during operation of the fuel cell 101, the fuel control unit 502 gives priority to hydrogen from the fuel cartridge 200 to be removed over other fuel cartridges 200. After the fuel is released, the removal of the fuel cartridge 200 to be removed is allowed. Thereby, the remaining amount of hydrogen of the fuel cartridge 200 to be removed can be reduced. Therefore, the frequency of the removal work of the fuel cartridge 200 can be reduced, and the convenience of the user can be improved.
  • FIG. 9A is a side view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 2.
  • FIG. 9B is a schematic cross-sectional view along the line BB in FIG. 9A.
  • FIG. 9C is a side view schematically showing the fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 2.
  • FIG. 9D is a schematic cross-sectional view along the line CC in FIG. 9C.
  • the fuel cartridge 200 of the fuel cell system 1 according to Embodiment 2 is provided with a recess 206 at a predetermined position on the side wall.
  • An opening 4 a is provided in the side wall of the fuel cartridge insertion reinforcing portion 4.
  • a removal restricting portion 900 is provided outside the side wall so as to close the opening 4a.
  • the recess 206 and the opening 4a are positioned relative to each other so that the fuel cartridge 200 overlaps with the fuel cartridge 200 inserted into the fuel cartridge insertion reinforcement 4 when viewed from the direction intersecting the side surface of the fuel cartridge insertion reinforcement 4.
  • the removal restricting unit 900 includes a housing 902, a rod body accommodating portion 904 provided in the housing 902, and a rod body 906 accommodated in the rod body accommodating portion 904.
  • the removal restricting unit 900 according to the present embodiment is an electric lock mechanism configured with, for example, an actuator or the like.
  • the rod body 906 is accommodated in the rod body accommodating portion 904 so as to protrude from the rod body accommodating portion 904. When the rod 906 protrudes from the rod housing portion 904, the rod 906 enters the recess 206 through the opening 4a.
  • the removal restricting unit 900 receives the control signal from the control unit 500 and displaces the rod body 906.
  • FIG. 10A is a schematic cross-sectional view showing a state in which the rod body protrudes from the rod body housing portion
  • FIG. 10B is a schematic cross-sectional view showing a state in which the rod body is housed in the rod body housing portion.
  • the removal restricting unit 900 has both conditions that the preferential hydrogen release process from the fuel cartridge 200 to be taken out ends and that the surface temperature of the fuel cartridge 200 is lower than the third temperature. Until the rods are aligned, the rod body 906 is protruded from the rod body accommodating portion 904 and enters the recess 206. Thereby, the removal of the fuel cartridge 200 is prohibited.
  • the removal restricting portion 900 accommodates the rod body 906 in the rod body accommodating portion 904 as shown in FIG. Thereby, removal of the fuel cartridge 200 is permitted.
  • the removal restricting unit 900 is completed until the priority hydrogen release process from the fuel cartridge 200 to be removed is completed and the surface temperature of the fuel cartridge 200 becomes lower than the third temperature. Physically prohibits removal of the fuel cartridge 200. Therefore, according to the fuel cell system 1 according to the present embodiment, in addition to the effects obtained in the first embodiment, the priority hydrogen release process from the fuel cartridge 200 to be removed can be more reliably performed, The effect that the safety of the user can be further enhanced can be obtained.
  • FIG. 11A is a plan view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 3.
  • FIG. 11B is a schematic cross-sectional view along the line DD in FIG.
  • FIG. 11C is a plan view schematically showing a fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 3.
  • FIG. 11D is a schematic cross-sectional view along the line EE in FIG.
  • the fuel cartridge 200 of the fuel cell system 1 according to Embodiment 3 is provided with a recess 208 on one main surface.
  • An opening 4 b is provided on one main surface of the fuel cartridge insertion reinforcing portion 4.
  • a removal restricting portion 900 is provided on one main surface of the fuel cartridge insertion reinforcing portion 4.
  • the recess 208 and the opening 4b are positioned relative to each other so that the fuel cartridge 200 overlaps with the fuel cartridge insertion reinforcement 4 inserted into the fuel cartridge insertion reinforcement 4 when viewed from the direction intersecting the main surface of the fuel cartridge insertion reinforcement 4. .
  • the removal restricting portion 900 of this embodiment is composed of a bimetal formed by laminating two types of metal plates having different thermal expansion coefficients.
  • the removal restricting portion 900 has a flat plate shape, and is arranged so that one end of the removal restricting portion 900 is connected to one main surface of the fuel cartridge insertion reinforcing portion 4 and the other end side covers a part of the opening 4b. .
  • the removal restricting portion 900 is curved and has a state in which the other end side enters the recess 208 through the opening 4b, and a state in which the other end side exits from the recess 208 in a planar shape, i.e., a straight line in a sectional view, Switching is possible according to the temperature change of the fuel cartridge 200. Therefore, in this embodiment, the removal restricting unit 900 switches between a state in which removal of the fuel cartridge 200 is prohibited and a state in which the removal is permitted without being controlled by the control unit 500.
  • FIG. 12 (A) is a schematic cross-sectional view showing a state where the removal restricting portion has entered the opening
  • FIG. 12 (B) is a schematic cross-sectional view showing a state where the removal restricting portion has exited from the opening.
  • the removal restricting portion 900 is curved and enters the recess 208 when the surface temperature of the fuel cartridge 200 is, for example, the third temperature or higher. Thereby, the removal of the fuel cartridge 200 is prohibited.
  • the surface temperature of the fuel cartridge 200 becomes lower than the third temperature
  • the removal restricting portion 900 becomes flat and retracts from the recess 208 as shown in FIG. Thereby, removal of the fuel cartridge 200 is permitted.
  • the removal restricting unit 900 physically prohibits removal of the fuel cartridge 200 until the surface temperature of the fuel cartridge 200 to be removed becomes lower than the third temperature. Therefore, according to the fuel cell system 1 according to the present embodiment, in addition to the effect obtained in the first embodiment, an effect that the safety of the user can be further improved can be obtained. Further, in the present embodiment, since the removal restricting unit 900 is formed of bimetal, no electric power is required for switching between prohibition and allowance of removal of the fuel cartridge 200. Therefore, power saving of the fuel cell system 1 can be achieved.
  • FIG. 13 is a perspective view showing an appearance of a fuel cell system according to a modification.
  • the fuel cell system 1 according to this modification includes four fuel cartridges 200.
  • the housing 2 has four side walls 2b extending in a direction substantially orthogonal to the side walls 2a1. That is, the housing 2 of the present embodiment corresponds to a structure in which each side wall 2b of the housing 2 of the first embodiment is divided into two. Each of the four side walls 2b functions as a lid portion of any one of the fuel cartridges 200, and can slide independently of each other.
  • the four fuel cartridges 200 are provided with an instruction unit 400 and a removal restricting unit 900, respectively.
  • the present invention can be used for a fuel cell system.

Abstract

This fuel cell system (1) is provided with: fuel cells (101a-101d); a plurality of fuel cartridges (200a, 200b); a fuel controller (502) for controlling the supply of fuel from the fuel cartridges to the fuel cells (101a-101d); and instruction units (400a, 400b), using which the user instructs that the fuel cartridges be detached. Each of the fuel cartridges (200a, 200b) is capable of supplying hydrogen to the fuel cells (101a-101d) in a mutually independent manner. When an instruction for a discretionary fuel cartridge to be detached is issued while the fuel cells (101a-101d) are in operation, the fuel controller (502) prioritizes the fuel cartridge to be detached, in terms of releasing hydrogen, over other fuel cartridges, and then allows the fuel cartridge to be detached.

Description

燃料電池システムFuel cell system
 本発明は、燃料電池システムに関する。 The present invention relates to a fuel cell system.
 燃料電池は、水素と酸素とから電気エネルギーを発生させる装置であり、高い発電効率を得ることができる。燃料電池の主な特徴としては、従来の発電方式のように熱エネルギーや運動エネルギーの過程を経ることがない直接発電であるので、小規模でも高い発電効率が期待できること、窒素化合物等の排出が少なく、騒音や振動も小さいので環境性が良いことなどが挙げられる。このように、燃料電池は燃料のもつ化学エネルギーを有効に利用でき、環境にやさしい特性を備えるため、21世紀を担うエネルギー供給システムとして期待され、宇宙用から自動車用、携帯機器用まで、また大規模発電から小規模発電まで、種々の用途に使用できる将来有望な新しい発電システムとして注目され、実用化に向けて技術開発が本格化している。 A fuel cell is a device that generates electrical energy from hydrogen and oxygen, and can achieve high power generation efficiency. The main features of the fuel cell are direct power generation that does not go through the process of thermal energy or kinetic energy as in the conventional power generation method, so high power generation efficiency can be expected even on a small scale, and emissions of nitrogen compounds, etc. There are few, and noise and vibration are also small, and environmental properties are good. In this way, fuel cells can be used effectively for the chemical energy of fuel and have environmentally friendly characteristics, so they are expected as energy supply systems for the 21st century, and are widely used in space, automobiles and portable devices. It is attracting attention as a promising new power generation system that can be used for various applications from scale power generation to small-scale power generation, and technological development is in full swing toward practical use.
 また、従来、水素を吸蔵・放出可能な水素吸蔵合金を用いて、燃料としての水素を燃料電池に供給する装置が知られている(特許文献1参照)。特許文献1に開示された水素貯蔵供給装置は、水素吸蔵合金が収容された水素貯蔵タンクを複数備え、水素を供給するタンクを順次切り替えて、燃料電池に連続的に水素を供給している。また、水素貯蔵タンク内の水素残量を表示して水素の充填を喚起している。 Also, conventionally, an apparatus for supplying hydrogen as a fuel to a fuel cell using a hydrogen storage alloy capable of storing and releasing hydrogen is known (see Patent Document 1). The hydrogen storage and supply device disclosed in Patent Document 1 includes a plurality of hydrogen storage tanks in which hydrogen storage alloys are accommodated, and sequentially supplies hydrogen to the fuel cell by sequentially switching the hydrogen supply tanks. In addition, the remaining amount of hydrogen in the hydrogen storage tank is displayed to urge the filling of hydrogen.
特開2001-295996号公報JP 2001-295996 A
 複数の燃料カートリッジから燃料電池に水素を供給するとともに、水素残量が減った燃料カートリッジに対してユーザによる水素充填が行われる燃料電池システムでは、ユーザの利便性を向上すべく、燃料カートリッジへの水素充填の頻度、もしくは燃料カートリッジの交換頻度を極力減らしたいという要望がある。一方で、燃料電池システムが使用される状況では、燃料カートリッジの水素残量が0になる前にユーザが水素充填作業や交換作業を実行することは頻繁に起こり得る。燃料カートリッジ内の水素を使い切る前に水素充填作業や交換作業が実施され、さらにそれが度重なると、結果的に燃料カートリッジへの水素充填や交換作業の頻度が高くなってしまう。 In a fuel cell system in which hydrogen is supplied from a plurality of fuel cartridges to the fuel cell and the user fills hydrogen into the fuel cartridge with a reduced amount of hydrogen remaining, the fuel cartridge system is improved to improve user convenience. There is a desire to reduce the frequency of hydrogen filling or the replacement frequency of the fuel cartridge as much as possible. On the other hand, in a situation where the fuel cell system is used, it may frequently occur that the user performs a hydrogen filling operation or a replacement operation before the remaining amount of hydrogen in the fuel cartridge becomes zero. If the hydrogen filling operation or the replacement operation is performed before the hydrogen in the fuel cartridge is used up, and further repeated, the frequency of the hydrogen filling or the replacement operation to the fuel cartridge is increased as a result.
 本発明はこうした課題に鑑みてなされたものであり、その目的は、複数の燃料カートリッジを有し、燃料カートリッジへの水素充填がユーザにより実行される燃料電池システムにおけるユーザの利便性の向上を図ることができる技術を提供することにある。 The present invention has been made in view of these problems, and an object of the present invention is to improve user convenience in a fuel cell system that includes a plurality of fuel cartridges and in which hydrogen filling into the fuel cartridge is performed by the user. It is to provide a technology that can.
 本発明のある態様は、燃料電池システムである。当該燃料電池システムは、電解質膜、電解質膜の一方の面に設けられたカソード、及び電解質膜の他方の面に設けられたアノードで構成される膜電極接合体を1つ以上有する燃料電池と、着脱可能に設けられ、燃料である水素を貯蔵するための水素吸蔵合金を収容する複数の燃料カートリッジと、各燃料カートリッジから燃料電池への燃料の供給を制御する燃料制御部と、ユーザが各燃料カートリッジの取り外しを指示する指示部とを備える。各燃料カートリッジは、燃料電池に対して互いに独立に水素を供給可能である。燃料制御部は、燃料電池の運転中に任意の燃料カートリッジの取り外し指示がなされた場合、取り外しの対象となる燃料カートリッジから、それ以外の燃料カートリッジよりも優先的に水素を放出させた後に、取り外しの対象となる燃料カートリッジの取り外しを許容する。 An aspect of the present invention is a fuel cell system. The fuel cell system includes an electrolyte membrane, a fuel cell having at least one membrane electrode assembly including a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane; A plurality of fuel cartridges that are detachably provided and contain a hydrogen storage alloy for storing hydrogen as a fuel, a fuel control unit that controls the supply of fuel from each fuel cartridge to the fuel cell, and a user that controls each fuel An instruction unit for instructing removal of the cartridge. Each fuel cartridge can supply hydrogen to the fuel cell independently of each other. When an instruction to remove an arbitrary fuel cartridge is given during operation of the fuel cell, the fuel control unit releases hydrogen after releasing hydrogen from the fuel cartridge to be removed with priority over other fuel cartridges. The removal of the target fuel cartridge is allowed.
 本発明によれば、複数の燃料カートリッジを有し、燃料カートリッジへの水素充填がユーザにより実行される燃料電池システムにおけるユーザの利便性の向上を図ることができる。 According to the present invention, it is possible to improve the convenience of the user in the fuel cell system that has a plurality of fuel cartridges and in which the fuel cartridge is filled with hydrogen.
図1(A)は、実施形態1乃至実施形態3に係る燃料電池システムの外観を示す斜視図である。図1(B)は、実施形態1乃至実施形態3に係る燃料電池システムの筐体側壁をスライドさせた状態を示す斜視図である。FIG. 1A is a perspective view showing an external appearance of a fuel cell system according to Embodiments 1 to 3. FIG. FIG. 1B is a perspective view showing a state in which the housing side wall of the fuel cell system according to Embodiments 1 to 3 is slid. 実施形態1に係る燃料電池システムを分解した状態を示す斜視図である。It is a perspective view which shows the state which decomposed | disassembled the fuel cell system which concerns on Embodiment 1. FIG. 図3(A)は、図1のA-A線に沿った概略断面図である。図3(B)は、図3(A)の破線で囲まれた領域Bの拡大図である。FIG. 3A is a schematic cross-sectional view along the line AA in FIG. FIG. 3B is an enlarged view of a region B surrounded by a broken line in FIG. 実施形態1に係る燃料電池システムの回路構成を示す図である。1 is a diagram illustrating a circuit configuration of a fuel cell system according to Embodiment 1. FIG. 実施形態1に係る燃料電池システムの模式図である。1 is a schematic diagram of a fuel cell system according to Embodiment 1. FIG. 第1減圧弁及び第2減圧弁の概略断面図である。It is a schematic sectional drawing of a 1st pressure reducing valve and a 2nd pressure reducing valve. 燃料カートリッジの表面温度が20℃、40℃、60℃であるときの燃料カートリッジ中の水素残量と水素放出圧力との関係を示す図である。It is a figure which shows the relationship between the hydrogen residual amount in a fuel cartridge, and hydrogen discharge pressure when the surface temperature of a fuel cartridge is 20 degreeC, 40 degreeC, and 60 degreeC. 実施形態1に係る燃料電池システムの制御フローチャートである。4 is a control flowchart of the fuel cell system according to Embodiment 1. 図9(A)は、実施形態2に係る燃料電池システムの燃料カートリッジを模式的に示す側面図である。図9(B)は、図9(A)のB-B線に沿った概略断面図である。図9(C)は、実施形態2に係る燃料電池システムの燃料カートリッジ挿入補強部を模式的に示す側面図である。図9(D)は、図9(C)のC-C線に沿った概略断面図である。FIG. 9A is a side view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 2. FIG. FIG. 9B is a schematic cross-sectional view along the line BB in FIG. 9A. FIG. 9C is a side view schematically showing the fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 2. FIG. 9D is a schematic cross-sectional view along the line CC in FIG. 9C. 図10(A)は、棒体が棒体収容部から突出した状態を示す概略断面図であり、図10(B)は、棒体が棒体収容部に収容された状態を示す概略断面図である。FIG. 10A is a schematic cross-sectional view showing a state in which the rod body protrudes from the rod body housing portion, and FIG. 10B is a schematic cross-sectional view showing a state in which the rod body is housed in the rod body housing portion. It is. 図11(A)は、実施形態3に係る燃料電池システムの燃料カートリッジを模式的に示す平面図である。図11(B)は、図11(A)のD-D線に沿った概略断面図である。図11(C)は、実施形態3に係る燃料電池システムの燃料カートリッジ挿入補強部を模式的に示す平面図である。図11(D)は、図11(C)のE-E線に沿った概略断面図である。FIG. 11A is a plan view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 3. FIG. FIG. 11B is a schematic cross-sectional view along the line DD in FIG. FIG. 11C is a plan view schematically showing a fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 3. FIG. 11D is a schematic cross-sectional view along the line EE in FIG. 図12(A)は、取り外し規制部が開口内に進入した状態を示す概略断面図であり、図12(B)は、取り外し規制部が開口内から退出した状態を示す概略断面図である。FIG. 12A is a schematic cross-sectional view showing a state in which the removal restricting portion has entered the opening, and FIG. 12B is a schematic cross-sectional view showing a state in which the removal restricting portion has exited from the opening. 変形例に係る燃料電池システムの外観を示す斜視図である。It is a perspective view which shows the external appearance of the fuel cell system which concerns on a modification.
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。また、実施の形態は、発明を限定するものではなく例示であって、実施の形態に記述されるすべての特徴やその組み合わせは、必ずしも発明の本質的なものであるとは限らない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In all the drawings, the same reference numerals are given to the same components, and the description will be omitted as appropriate. The embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.
 (実施形態1)
 図1(A)は、実施形態1に係る燃料電池システムの外観を示す斜視図である。図1(B)は、実施形態1に係る燃料電池システムの筐体側壁をスライドさせた状態を示す斜視図である。図2は、実施形態1に係る燃料電池システムを分解した状態を示す斜視図である。
(Embodiment 1)
FIG. 1A is a perspective view showing the appearance of the fuel cell system according to Embodiment 1. FIG. FIG. 1B is a perspective view showing a state in which the housing side wall of the fuel cell system according to Embodiment 1 is slid. FIG. 2 is a perspective view showing a state in which the fuel cell system according to Embodiment 1 is disassembled.
 本実施形態に係る燃料電池システム1は、例えばモバイル用途のシステムであって、筐体2と、燃料電池モジュール100と、複数の燃料カートリッジ200a,200b(以下では適宜、燃料カートリッジ200a及び燃料カートリッジ200bをまとめて燃料カートリッジ200という)と、圧力調整部300と、指示部400と、制御部(制御回路)500と、二次電池600とを主な構成として備える。 The fuel cell system 1 according to the present embodiment is a system for mobile use, for example, and includes a housing 2, a fuel cell module 100, and a plurality of fuel cartridges 200a and 200b (hereinafter, appropriately, the fuel cartridge 200a and the fuel cartridge 200b). Are collectively referred to as a fuel cartridge 200), a pressure adjustment unit 300, an instruction unit 400, a control unit (control circuit) 500, and a secondary battery 600.
 筐体2は、略直方体状であり、対向する2つの側壁2a1と底部2a2とが一体的に形成された略U字状の本体部2aと、本体部2aとは別体で設けられた2つの側壁2bと、開口2c1を有する枠状の蓋部2cとを有する。2つの側壁2bは、互いに対向しかつ2つの側壁2a1と略直交するように配置され、本体部2aに対して底部2a2の主表面と略直交する方向にスライド可能に連結される。また、各側壁2bには貫通孔2b1が設けられている。蓋部2cは、底部2a2と対向するように配置され、側壁2a1の端部に嵌め合わされる。 The housing 2 has a substantially rectangular parallelepiped shape, and a substantially U-shaped main body 2a in which two opposing side walls 2a1 and a bottom 2a2 are integrally formed, and 2 provided separately from the main body 2a. It has two side walls 2b and a frame-like lid portion 2c having an opening 2c1. The two side walls 2b are disposed so as to face each other and substantially orthogonal to the two side walls 2a1, and are slidably connected to the main body 2a in a direction substantially orthogonal to the main surface of the bottom 2a2. Each side wall 2b is provided with a through hole 2b1. The lid 2c is disposed so as to face the bottom 2a2, and is fitted to the end of the side wall 2a1.
 燃料電池モジュール100は、平面配列された複数の燃料電池101a,101b,101c,101d(以下では適宜、燃料電池101a~101dをまとめて燃料電池101という)と、燃料電池101の一方の主表面側に配置された燃料分配プレート112と、燃料電池101の他方の主表面側に配置された空気拡散層114と、空気拡散層114の燃料電池101とは反対の主表面側に配置されたカソード保護層116とを有する。本実施形態の燃料電池モジュール100は、4つの燃料電池101a~101dを有するが、その数は限定されない。これらの燃料電池101は、燃料分配プレート112の主表面上に2行2列に並べられ、さらにその上に空気拡散層114とカソード保護層116とがこの順で積層される。カソード保護層116は、複数の開口116aを有し、蓋部2cの開口2c1から外部に露出して燃料電池システム1の筐体の一部を構成する。 The fuel cell module 100 includes a plurality of fuel cells 101a, 101b, 101c, and 101d arranged in a plane (hereinafter, the fuel cells 101a to 101d are collectively referred to as the fuel cell 101 as appropriate) and one main surface side of the fuel cell 101. The fuel distribution plate 112 disposed on the other side, the air diffusion layer 114 disposed on the other main surface side of the fuel cell 101, and the cathode protection disposed on the main surface side of the air diffusion layer 114 opposite to the fuel cell 101. Layer 116. The fuel cell module 100 of the present embodiment includes four fuel cells 101a to 101d, but the number is not limited. These fuel cells 101 are arranged in two rows and two columns on the main surface of the fuel distribution plate 112, and an air diffusion layer 114 and a cathode protective layer 116 are laminated thereon in this order. The cathode protective layer 116 has a plurality of openings 116a and is exposed to the outside through the openings 2c1 of the lid portion 2c and constitutes a part of the casing of the fuel cell system 1.
 燃料分配プレート112の燃料電池101とは反対の主表面側には、燃料カートリッジ200と、圧力調整部300と、指示部400とが配置される。本実施形態の燃料電池システム1は、2つの燃料カートリッジ200a,200bを有するが、その数は限定されない。燃料カートリッジ200は、扁平な直方体形状であり、側面に水素放出充填口202を有する。各燃料カートリッジ200は、一方の主表面が燃料分配プレート112と対向し、水素放出充填口202が圧力調整部300側を向くように配置される。また、燃料カートリッジ200は、水素放出充填口202が設けられた側面と対向する側面が、側壁2b側を向くように配置される。 On the main surface side of the fuel distribution plate 112 opposite to the fuel cell 101, the fuel cartridge 200, the pressure adjusting unit 300, and the indicating unit 400 are arranged. Although the fuel cell system 1 of this embodiment has two fuel cartridges 200a and 200b, the number is not limited. The fuel cartridge 200 has a flat rectangular parallelepiped shape and has a hydrogen discharge filling port 202 on a side surface. Each fuel cartridge 200 is disposed such that one main surface faces the fuel distribution plate 112 and the hydrogen discharge filling port 202 faces the pressure adjusting unit 300 side. Further, the fuel cartridge 200 is disposed such that the side surface facing the side surface provided with the hydrogen discharge filling port 202 faces the side wall 2b.
 燃料電池101と燃料カートリッジ200とは、燃料分配プレート112を挟んで近接するため、互いに熱交換可能である。本実施形態では、一方の側壁2bに近い側で当該側壁2bと平行に並ぶ2つの燃料電池101a,101bが、当該側壁2b側に配置された燃料カートリッジ200aと熱交換可能であり、他方の側壁2bに近い側で当該側壁2bと平行に並ぶ2つの燃料電池101c,101dが、当該側壁2b側に配置された燃料カートリッジ200bと熱交換可能である。 Since the fuel cell 101 and the fuel cartridge 200 are close to each other with the fuel distribution plate 112 interposed therebetween, heat exchange is possible between them. In the present embodiment, the two fuel cells 101a and 101b arranged in parallel with the side wall 2b on the side close to one side wall 2b can exchange heat with the fuel cartridge 200a disposed on the side wall 2b side, and the other side wall. Two fuel cells 101c and 101d arranged in parallel to the side wall 2b on the side close to 2b can exchange heat with the fuel cartridge 200b arranged on the side wall 2b side.
 また、燃料分配プレート112の燃料電池101とは反対の主表面側には、筒状の燃料カートリッジ挿入補強部4が設けられる。外部から差し込まれる燃料カートリッジ200は、燃料カートリッジ挿入補強部4内に挿通され、圧力調整部300に接続される。燃料カートリッジ挿入補強部4によって、筐体2の強度が補強される。 In addition, a cylindrical fuel cartridge insertion reinforcing portion 4 is provided on the main surface side of the fuel distribution plate 112 opposite to the fuel cell 101. The fuel cartridge 200 inserted from the outside is inserted into the fuel cartridge insertion reinforcing portion 4 and connected to the pressure adjusting portion 300. The strength of the housing 2 is reinforced by the fuel cartridge insertion reinforcing portion 4.
 圧力調整部300は、装着された2つの燃料カートリッジ200a,200bによって挟まれるように配置される。圧力調整部300は、燃料カートリッジ200の水素放出充填口202が接続されるカートリッジ接続部302(図3(A)参照)と、燃料カートリッジ200と燃料電池モジュール100とをつなぐ燃料流路304(図3(A)、図5参照)と、当該燃料流路における水素の流通を調整するための弁機構(図5参照)とを有する。圧力調整部300の内部構造については後に詳細に説明する。 The pressure adjusting unit 300 is disposed so as to be sandwiched between two attached fuel cartridges 200a and 200b. The pressure adjustment unit 300 includes a cartridge connection unit 302 (see FIG. 3A) to which the hydrogen discharge filling port 202 of the fuel cartridge 200 is connected, and a fuel flow path 304 (see FIG. 3) that connects the fuel cartridge 200 and the fuel cell module 100. 3 (A) and FIG. 5) and a valve mechanism (see FIG. 5) for adjusting the flow of hydrogen in the fuel flow path. The internal structure of the pressure adjusting unit 300 will be described in detail later.
 燃料カートリッジ200は、筐体2に対して、より具体的には圧力調整部300に対して着脱可能に設けられる。後述するように指示部400を操作し、側壁2bをスライドさせることで、燃料カートリッジ200の抜き差しが可能となる。外部から燃料カートリッジ200が差し込まれると、水素放出充填口202がカートリッジ接続部302に接続され、燃料カートリッジ200の内部と圧力調整部300の燃料流路とが連通される。 The fuel cartridge 200 is detachably provided to the housing 2, more specifically, to the pressure adjustment unit 300. As will be described later, the fuel cartridge 200 can be inserted and removed by operating the instruction unit 400 and sliding the side wall 2b. When the fuel cartridge 200 is inserted from the outside, the hydrogen discharge filling port 202 is connected to the cartridge connecting portion 302, and the inside of the fuel cartridge 200 and the fuel flow path of the pressure adjusting portion 300 are communicated.
 指示部400は、燃料カートリッジ200ごとに設けられており、ユーザが押し込み操作するスイッチ402を備える。スイッチ402は、側壁2bに設けられた貫通孔2b1に挿通されており、外部から押し込み操作可能である。スイッチ402が押し込まれると、指示部400は、燃料カートリッジ200の取り外しを指示する信号を制御部500に送信する。ユーザは、取り外したい燃料カートリッジ200に対応するスイッチ402を押し込むことで、当該燃料カートリッジ200の取り外しを指示することができる。 The instruction unit 400 is provided for each fuel cartridge 200 and includes a switch 402 that is pressed by a user. The switch 402 is inserted through a through hole 2b1 provided in the side wall 2b and can be pushed in from the outside. When switch 402 is pushed in, instruction unit 400 transmits a signal instructing removal of fuel cartridge 200 to control unit 500. The user can instruct removal of the fuel cartridge 200 by pressing the switch 402 corresponding to the fuel cartridge 200 to be removed.
 スイッチ402は、押し込み操作がなされる前の状態で貫通孔2b1内に延在する。そのため、側壁2bのスライドが妨げられる。スイッチ402が押し込まれると、スイッチ402と側壁2bとの係合が解除され、側壁2bを下方、すなわち蓋部2cから離間する方向にスライドさせることができる。側壁2bのスライドによって、燃料カートリッジ200が露出し、燃料カートリッジ200の取り出しが可能となる。 The switch 402 extends into the through hole 2b1 before being pushed. Therefore, the sliding of the side wall 2b is prevented. When the switch 402 is pushed in, the engagement between the switch 402 and the side wall 2b is released, and the side wall 2b can be slid downward, that is, in a direction away from the lid portion 2c. The fuel cartridge 200 is exposed by the slide of the side wall 2b, and the fuel cartridge 200 can be taken out.
 本実施形態の指示部400には、取り外し対象の燃料カートリッジ200からの後述する優先水素排出処理が終了するまで当該燃料カートリッジ200の取り外しを禁止し、優先水素排出処理の終了後に取り外しを許容する取り外し規制部900が設けられる。本実施形態の取り外し規制部900は、青色及び赤色に発光可能なLEDを有し、燃料カートリッジ200の取り外しが許容される状態でLEDを青色に発光させ、取り外しが禁止される状態でLEDを赤色に発光させる。これにより、燃料カートリッジ200の取り出しの禁止と許容とを切り替える。 The instruction unit 400 of the present embodiment prohibits the removal of the fuel cartridge 200 from the fuel cartridge 200 to be removed until a priority hydrogen discharge process to be described later is completed, and allows the removal after the priority hydrogen discharge process is completed. A restriction unit 900 is provided. The removal restricting unit 900 according to this embodiment includes LEDs that can emit blue and red light. The LED emits blue light when the removal of the fuel cartridge 200 is allowed, and the LED is red when removal is prohibited. Make it emit light. As a result, switching between prohibiting and permitting removal of the fuel cartridge 200 is switched.
 なお、後述する取り外し対象でない燃料カートリッジ200と熱交換する燃料電池101のオフ制御、もしくは後述する取り外し対象である燃料カートリッジ200と熱交換する燃料電池101のオフ制御を実施する場合、取り外し規制部900は、これらの制御が実行された後に燃料カートリッジ200の取り外しを許容する。また、取り外し規制部900は、燃料カートリッジ200が所定の第3温度以上である場合に燃料カートリッジ200の取り外しを禁止し、所定の第3温度未満である場合に燃料カートリッジ200の取り外しを許容する。これにより、燃料電池システム1の安全性をより高めることができる。前記「所定の第3温度」は、設計者による実験やシミュレーションに基づき適宜設定することができる。 In addition, when performing the off control of the fuel cell 101 that exchanges heat with the fuel cartridge 200 that is not a removal target, which will be described later, or the off control of the fuel cell 101 that exchanges heat with the fuel cartridge 200 that is a removal target, which will be described later, Allows removal of the fuel cartridge 200 after these controls are executed. Further, the removal restricting unit 900 prohibits the removal of the fuel cartridge 200 when the fuel cartridge 200 is equal to or higher than the predetermined third temperature, and allows the removal of the fuel cartridge 200 when the temperature is lower than the predetermined third temperature. Thereby, the safety | security of the fuel cell system 1 can be improved more. The “predetermined third temperature” can be appropriately set based on an experiment or simulation by a designer.
 燃料カートリッジ200の下方、すなわち燃料カートリッジ200の燃料分配プレート112と反対の主表面側には、断熱性を有する保持板6が配置される。したがって、燃料カートリッジ200、圧力調整部300、指示部400、及び燃料カートリッジ挿入補強部4は、燃料分配プレート112と保持板6とで挟まれた領域に配置される。保持板6の下方には、制御部500及び二次電池600が配置される。保持板6により、燃料カートリッジ200から制御部500及び二次電池600への伝熱が抑制される。 A holding plate 6 having heat insulation is arranged below the fuel cartridge 200, that is, on the main surface side opposite to the fuel distribution plate 112 of the fuel cartridge 200. Therefore, the fuel cartridge 200, the pressure adjustment unit 300, the instruction unit 400, and the fuel cartridge insertion reinforcement unit 4 are arranged in a region sandwiched between the fuel distribution plate 112 and the holding plate 6. Below the holding plate 6, the controller 500 and the secondary battery 600 are arranged. The holding plate 6 suppresses heat transfer from the fuel cartridge 200 to the control unit 500 and the secondary battery 600.
 制御部500は、圧力調整部300の弁機構を制御して、燃料カートリッジ200から燃料電池101への水素の供給を制御する。また、制御部500は、各燃料電池101a~101dのオンオフ切替を制御する。さらに、制御部500は、取り外し規制部900を制御する。制御部500により実行される制御については後に詳細に説明する。二次電池600は、燃料電池システム1にかかる電力負荷が急激に増大した場合や、燃料電池101から電力を供給できない場合の補助電源として機能する。なお、燃料電池システム1は、二次電池600を備えていなくてもよい。 The control unit 500 controls the valve mechanism of the pressure adjustment unit 300 to control the supply of hydrogen from the fuel cartridge 200 to the fuel cell 101. The control unit 500 controls on / off switching of each of the fuel cells 101a to 101d. Further, the control unit 500 controls the removal restricting unit 900. The control executed by the control unit 500 will be described in detail later. The secondary battery 600 functions as an auxiliary power source when the power load applied to the fuel cell system 1 suddenly increases or when power cannot be supplied from the fuel cell 101. Note that the fuel cell system 1 may not include the secondary battery 600.
 次に、燃料電池101及び燃料カートリッジ200の内部構造について詳細に説明する。図3(A)は、図1のA-A線に沿った概略断面図である。図3(B)は、図3(A)の破線で囲まれた領域Bの拡大図である。燃料電池101は、膜電極接合体(セル)104を主な構成として有する。膜電極接合体104は、単数でも複数でもよい。膜電極接合体104が複数の場合、各膜電極接合体104は、平面状に複数配設され、インターコネクタ、集電体、配線などの電気接続部材(図示せず)により直列に接続された構造や、積層されたスタック構造等をとることができる。 Next, the internal structure of the fuel cell 101 and the fuel cartridge 200 will be described in detail. FIG. 3A is a schematic cross-sectional view along the line AA in FIG. FIG. 3B is an enlarged view of a region B surrounded by a broken line in FIG. The fuel cell 101 has a membrane electrode assembly (cell) 104 as a main configuration. The membrane electrode assembly 104 may be singular or plural. When there are a plurality of membrane electrode assemblies 104, a plurality of membrane electrode assemblies 104 are arranged in a planar shape and connected in series by an electrical connection member (not shown) such as an interconnector, a current collector, or a wiring. A structure, a stacked stack structure, or the like can be employed.
 膜電極接合体104は、電解質膜106、電解質膜106の一方の面に設けられたカソード108、及び電解質膜106の他方の面に設けられたアノード110で構成される。すなわち、一対のカソード108とアノード110との間に電解質膜106が挟持されてセルが構成される。セルは、水素と空気中の酸素との電気化学反応により発電する。 The membrane electrode assembly 104 includes an electrolyte membrane 106, a cathode 108 provided on one surface of the electrolyte membrane 106, and an anode 110 provided on the other surface of the electrolyte membrane 106. That is, the electrolyte membrane 106 is sandwiched between the pair of cathodes 108 and the anode 110 to constitute a cell. The cell generates electricity by an electrochemical reaction between hydrogen and oxygen in the air.
 電解質膜106は、湿潤状態において良好なイオン伝導性を示すことが好ましく、カソード108とアノード110との間でプロトンを移動させるイオン交換膜として機能する。電解質膜106は、含フッ素重合体や非フッ素重合体等の固体高分子材料によって形成され、例えば、スルホン酸型パーフルオロカーボン重合体、ポリサルホン樹脂、ホスホン酸基又はカルボン酸基を有するパーフルオロカーボン重合体等を用いることができる。スルホン酸型パーフルオロカーボン重合体の例として、ナフィオン(デュポン社製:登録商標)112などが挙げられる。また、非フッ素重合体の例として、スルホン化された、芳香族ポリエーテルエーテルケトン、ポリスルホンなどが挙げられる。電解質膜106の厚さは、たとえば10~200μmである。 The electrolyte membrane 106 preferably exhibits good ion conductivity in a wet state, and functions as an ion exchange membrane that moves protons between the cathode 108 and the anode 110. The electrolyte membrane 106 is formed of a solid polymer material such as a fluorine-containing polymer or a non-fluorine polymer. Etc. can be used. Examples of the sulfonic acid type perfluorocarbon polymer include Nafion (manufactured by DuPont: registered trademark) 112. Examples of non-fluorine polymers include sulfonated aromatic polyetheretherketone and polysulfone. The thickness of the electrolyte membrane 106 is, for example, 10 to 200 μm.
 カソード108及びアノード110は、それぞれイオン交換樹脂及び触媒粒子、場合によって炭素粒子を有する。カソード108及びアノード110が有するイオン交換樹脂は、触媒粒子と電解質膜106を接続し、両者間においてプロトンを伝達する役割を持つ。このイオン交換樹脂は、電解質膜106と同様の高分子材料から形成されてよい。触媒金属としては、Sc、Y、Ti、Zr、V、Nb、Fe、Co、Ni、Ru、Rh、Pd、Pt、Os、Ir、ランタノイド系列元素やアクチノイド系列の元素の中から選ばれる合金や単体が挙げられる。また触媒を担持する場合には炭素粒子として、アセチレンブラック、ケッチェンブラック、カーボンナノチューブなどを用いてもよい。なお、カソード108およびアノード110の厚さは、それぞれ、たとえば10~40μmである。 The cathode 108 and the anode 110 have ion exchange resin and catalyst particles, and possibly carbon particles, respectively. The ion exchange resin that the cathode 108 and the anode 110 have has a role of connecting the catalyst particles and the electrolyte membrane 106 and transmitting protons therebetween. This ion exchange resin may be formed of the same polymer material as the electrolyte membrane 106. Examples of catalyst metals include Sc, Y, Ti, Zr, V, Nb, Fe, Co, Ni, Ru, Rh, Pd, Pt, Os, Ir, alloys selected from lanthanoid series elements and actinoid series elements, A simple substance is mentioned. When the catalyst is supported, acetylene black, ketjen black, carbon nanotubes or the like may be used as the carbon particles. The thicknesses of the cathode 108 and the anode 110 are each 10 to 40 μm, for example.
 膜電極接合体104のカソード108側には、空気拡散層114及びカソード保護層116がこの順に積層される。酸化剤としての空気は、外部から開口116aを介して筐体2内に供給され、空気拡散層114で膜電極接合体104の面方向に拡散されて、カソード108に供給される。 The air diffusion layer 114 and the cathode protective layer 116 are laminated in this order on the cathode 108 side of the membrane electrode assembly 104. Air as an oxidant is supplied from the outside into the housing 2 through the opening 116 a, diffused in the surface direction of the membrane electrode assembly 104 by the air diffusion layer 114, and supplied to the cathode 108.
 膜電極接合体104のアノード110側には、燃料分配プレート112が積層される。燃料分配プレート112には、圧力調整部300の燃料流路304の出口が接続されている。燃料流路304の入口側には、カートリッジ接続部302が設けられている。 A fuel distribution plate 112 is laminated on the anode 110 side of the membrane electrode assembly 104. The fuel distribution plate 112 is connected to the outlet of the fuel flow path 304 of the pressure adjustment unit 300. A cartridge connecting portion 302 is provided on the inlet side of the fuel flow path 304.
 燃料カートリッジ200は、内部に燃料である水素を貯蔵するための水素吸蔵合金204を収容する。水素吸蔵合金204は、水素の吸蔵と、吸蔵した水素の放出とが可能であり、水素吸蔵時に発熱し、水素放出時に吸熱する。水素吸蔵合金204は、例えば希土類系のMmNi4.32Mn0.18Al0.1Fe0.1Co0.3(Mmはミッシュメタル)である。なお、水素吸蔵合金204は、これに限定されず、例えばLa-Ni系等の他の希土類系の合金、Ti-Mn系合金、Ti-Fe系合金、Ti-Zr系合金、Mg-Ni系合金、Zr-Mn系合金等であってもよい。具体的には、水素吸蔵合金204としてLaNi合金、MgNi合金、Ti1+XCr2-yMn(x=0.1~0.3、y=0~1.0)合金などを挙げることができる。 The fuel cartridge 200 accommodates a hydrogen storage alloy 204 for storing hydrogen as fuel. The hydrogen storage alloy 204 is capable of storing hydrogen and releasing the stored hydrogen, and generates heat when storing hydrogen and absorbs heat when releasing hydrogen. The hydrogen storage alloy 204 is, for example, a rare earth-based MmNi 4.32 Mn 0.18 Al 0.1 Fe 0.1 Co 0.3 (Mm is Misch metal). The hydrogen storage alloy 204 is not limited to this, but other rare earth alloys such as La—Ni alloys, Ti—Mn alloys, Ti—Fe alloys, Ti—Zr alloys, Mg—Ni alloys. An alloy or a Zr—Mn alloy may be used. Specifically, mention LaNi 5 alloy, Mg 2 Ni alloy, Ti 1 + X Cr 2- y Mn y (x = 0.1 ~ 0.3, y = 0 ~ 1.0) and an alloy as a hydrogen absorbing alloy 204 be able to.
 水素吸蔵合金204は、上述した水素吸蔵合金の粉末にポリテトラフルオロエチレン(PTFE)デイスパージョンなどの結着剤を混合し、プレス機で圧縮成形した圧縮成形体(ペレット)とすることができる。必要に応じて、圧縮成形後に焼結処理がなされていてもよい。また、水素吸蔵合金204は、ペレット形状ではなく、水素吸蔵合金の粉末が燃料カートリッジ200の内部に充填されたものであってもよい。水素吸蔵合金204の形状は、特に限定されない。 The hydrogen storage alloy 204 can be formed into a compression molded body (pellet) obtained by mixing a binder such as polytetrafluoroethylene (PTFE) dispersion into the hydrogen storage alloy powder described above and compression-molding it with a press. . If necessary, a sintering process may be performed after the compression molding. Further, the hydrogen storage alloy 204 may not be in the form of a pellet, but may be one in which the hydrogen storage alloy powder is filled in the fuel cartridge 200. The shape of the hydrogen storage alloy 204 is not particularly limited.
 燃料カートリッジ200の水素放出充填口202には、封止機構(図示せず)が設けられる。この封止機構は、燃料カートリッジ200が筐体2に差し込まれ、燃料カートリッジ200の水素放出充填口202と圧力調整部300の燃料流路304とが接続された状態でのみ、水素流通の遮断を解除するように構成される。 The hydrogen discharge filling port 202 of the fuel cartridge 200 is provided with a sealing mechanism (not shown). This sealing mechanism cuts off the hydrogen flow only when the fuel cartridge 200 is inserted into the housing 2 and the hydrogen discharge filling port 202 of the fuel cartridge 200 and the fuel flow path 304 of the pressure adjusting unit 300 are connected. Configured to release.
 水素吸蔵合金204から放出された水素は、水素放出充填口202を介して圧力調整部300の燃料流路304に送出され、燃料流路304及び燃料分配プレート112を経て、アノード110に供給される。 Hydrogen released from the hydrogen storage alloy 204 is sent to the fuel flow path 304 of the pressure adjusting unit 300 through the hydrogen discharge filling port 202, and supplied to the anode 110 through the fuel flow path 304 and the fuel distribution plate 112. .
 燃料カートリッジ200a,200bの外表面には、それぞれ温度センサ700a,700bが設けられる(以下では適宜、温度センサ700a及び温度センサ700bをまとめて温度センサ700という)。温度センサ700aにより燃料カートリッジ200aの表面温度が測定され、温度センサ700bにより燃料カートリッジ200bの表面温度が測定される。温度センサ700は、測定した燃料カートリッジ200の温度情報を示す信号を制御部500に送信する。 Temperature sensors 700a and 700b are provided on the outer surfaces of the fuel cartridges 200a and 200b, respectively (hereinafter, the temperature sensor 700a and the temperature sensor 700b are collectively referred to as the temperature sensor 700 as appropriate). The surface temperature of the fuel cartridge 200a is measured by the temperature sensor 700a, and the surface temperature of the fuel cartridge 200b is measured by the temperature sensor 700b. The temperature sensor 700 transmits a signal indicating the measured temperature information of the fuel cartridge 200 to the control unit 500.
 図4は、実施形態1に係る燃料電池システムの回路構成を示す図である。本実施形態の燃料電池システム1は、DC/DCコンバータ800a,800b、二次電池充電回路602等を有する。DC/DCコンバータ800aの端子dは、外部負荷(図示せず)に接続される。また、DC/DCコンバータ800aには、燃料電池101a~101dが接続される。燃料電池101a~101dとDC/DCコンバータ800aとを接続する経路にはそれぞれ、第1スイッチ回路SW1~第4スイッチ回路SW4が設けられる。 FIG. 4 is a diagram showing a circuit configuration of the fuel cell system according to the first embodiment. The fuel cell system 1 of this embodiment includes DC / DC converters 800a and 800b, a secondary battery charging circuit 602, and the like. Terminal d of DC / DC converter 800a is connected to an external load (not shown). Further, fuel cells 101a to 101d are connected to the DC / DC converter 800a. A first switch circuit SW1 to a fourth switch circuit SW4 are provided on paths connecting the fuel cells 101a to 101d and the DC / DC converter 800a, respectively.
 第1スイッチ回路SW1~第4スイッチ回路SW4はそれぞれ、3つの接点a,b,cを有する。燃料電池101aは、第1スイッチ回路SW1の接点bに接続される。燃料電池101bは、第2スイッチ回路SW2の接点bに接続される。燃料電池101cは、第3スイッチ回路SW3の接点bに接続される。燃料電池101dは、第4スイッチ回路SW4の接点bに接続される。制御部500は、各スイッチ回路の接点aに接続される。DC/DCコンバータ800aは、各スイッチ回路の接点cに接続される。 The first switch circuit SW1 to the fourth switch circuit SW4 each have three contacts a, b, and c. The fuel cell 101a is connected to the contact b of the first switch circuit SW1. The fuel cell 101b is connected to the contact b of the second switch circuit SW2. The fuel cell 101c is connected to the contact b of the third switch circuit SW3. The fuel cell 101d is connected to the contact b of the fourth switch circuit SW4. The controller 500 is connected to the contact a of each switch circuit. The DC / DC converter 800a is connected to the contact c of each switch circuit.
 第1スイッチ回路SW1の接点cとDC/DCコンバータ800aとを接続する経路には、第1スイッチ回路SW1からDC/DCコンバータ800aに向かう方向を順方向とするダイオードD1が設けられる。第2スイッチ回路SW2の接点cとDC/DCコンバータ800aとを接続する経路には、第2スイッチ回路SW2からDC/DCコンバータ800aに向かう方向を順方向とするダイオードD2が設けられる。第3スイッチ回路SW3の接点cとDC/DCコンバータ800aとを接続する経路には、第3スイッチ回路SW3からDC/DCコンバータ800aに向かう方向を順方向とするダイオードD3が設けられる。第4スイッチ回路SW4の接点cとDC/DCコンバータ800aとを接続する経路には、第4スイッチ回路SW4からDC/DCコンバータ800aに向かう方向を順方向とするダイオードD4が設けられる。 In a path connecting the contact c of the first switch circuit SW1 and the DC / DC converter 800a, a diode D1 having a forward direction from the first switch circuit SW1 toward the DC / DC converter 800a is provided. In a path connecting the contact c of the second switch circuit SW2 and the DC / DC converter 800a, a diode D2 having a forward direction from the second switch circuit SW2 toward the DC / DC converter 800a is provided. A diode D3 having a forward direction from the third switch circuit SW3 to the DC / DC converter 800a is provided in a path connecting the contact c of the third switch circuit SW3 and the DC / DC converter 800a. A diode D4 having a forward direction from the fourth switch circuit SW4 to the DC / DC converter 800a is provided in a path connecting the contact c of the fourth switch circuit SW4 and the DC / DC converter 800a.
 二次電池600は、DC/DCコンバータ800bに接続される。DC/DCコンバータ800bは、DC/DCコンバータ800aに接続される。DC/DCコンバータ800aとDC/DCコンバータ800bとを接続する経路には、DC/DCコンバータ800bからDC/DCコンバータ800aに向かう方向を順方向とするダイオードD5が設けられる。また、二次電池600は、二次電池充電回路602に接続される。二次電池充電回路602は、DC/DCコンバータ800aに接続される。 Secondary battery 600 is connected to DC / DC converter 800b. The DC / DC converter 800b is connected to the DC / DC converter 800a. A diode D5 having a forward direction from the DC / DC converter 800b to the DC / DC converter 800a is provided in a path connecting the DC / DC converter 800a and the DC / DC converter 800b. Secondary battery 600 is connected to secondary battery charging circuit 602. The secondary battery charging circuit 602 is connected to the DC / DC converter 800a.
 制御部500は、第1スイッチ回路SW1~第4スイッチ回路SW4の切り替えによって複数の燃料電池101a~101dのオンオフをそれぞれ独立に切り替え可能である。また、制御部500は、温度センサ700a,700bに接続され、温度センサ700a,700bから信号を受信する。さらに、制御部500は、DC/DCコンバータ800a,800bによる直流電圧の変換を制御する。また、制御部500は、二次電池充電回路602を制御して、例えば外部から供給される電力により二次電池600を充電する。 The controller 500 can independently switch on / off the plurality of fuel cells 101a to 101d by switching the first switch circuit SW1 to the fourth switch circuit SW4. The control unit 500 is connected to the temperature sensors 700a and 700b and receives signals from the temperature sensors 700a and 700b. Further, the control unit 500 controls the conversion of the DC voltage by the DC / DC converters 800a and 800b. In addition, the control unit 500 controls the secondary battery charging circuit 602 to charge the secondary battery 600 with, for example, power supplied from the outside.
 続いて、本実施形態に係る燃料電池システム1の運転制御について説明する。図5は、実施形態1に係る燃料電池システムの模式図である。圧力調整部300の燃料流路304は、第1燃料流路306と、複数の第2燃料流路308a,308b(以下では適宜、第2燃料流路308a及び第2燃料流路308bをまとめて第2燃料流路308という)とを有する。第1燃料流路306と第2燃料流路308とは、燃料電池101及び燃料カートリッジ200に対して並列に接続される。 Subsequently, operation control of the fuel cell system 1 according to the present embodiment will be described. FIG. 5 is a schematic diagram of the fuel cell system according to the first embodiment. The fuel flow path 304 of the pressure adjustment unit 300 includes a first fuel flow path 306 and a plurality of second fuel flow paths 308a and 308b (hereinafter, the second fuel flow path 308a and the second fuel flow path 308b are appropriately combined. Second fuel flow path 308). The first fuel channel 306 and the second fuel channel 308 are connected in parallel to the fuel cell 101 and the fuel cartridge 200.
 第1燃料流路306は、各燃料カートリッジ200a,200bに接続される複数の分岐部310a,310b(以下では適宜、分岐部310a及び分岐部310bをまとめて分岐部310という)と、複数の分岐部310a,310bが集合して燃料電池101と接続される合流部312とを有する。 The first fuel flow path 306 includes a plurality of branch portions 310a and 310b connected to the fuel cartridges 200a and 200b (hereinafter, the branch portion 310a and the branch portion 310b are collectively referred to as a branch portion 310) and a plurality of branches. The parts 310 a and 310 b are assembled to have a joining part 312 connected to the fuel cell 101.
 分岐部310aは、一端がカートリッジ接続部302を介して燃料カートリッジ200aに接続され、他端が合流部312の一端に接続される。分岐部310bは、一端がカートリッジ接続部302を介して燃料カートリッジ200bに接続され、他端が合流部312の一端に接続される。合流部312の他端は、燃料分配プレート112を介して各燃料電池101a~101dに接続される。各分岐部310a,310bには逆止弁314a,314bが設けられ、これにより合流部312側からカートリッジ接続部302側への水素の逆流が抑制される。 The branch portion 310 a has one end connected to the fuel cartridge 200 a via the cartridge connection portion 302 and the other end connected to one end of the junction portion 312. One end of the branching portion 310 b is connected to the fuel cartridge 200 b via the cartridge connecting portion 302, and the other end is connected to one end of the merging portion 312. The other end of the junction 312 is connected to each of the fuel cells 101a to 101d via the fuel distribution plate 112. Each branch part 310a, 310b is provided with check valves 314a, 314b, thereby suppressing the backflow of hydrogen from the junction part 312 side to the cartridge connection part 302 side.
 合流部312には逆止弁316が設けられ、これにより燃料電池101側から分岐部310側への水素の逆流が抑制される。また、合流部312には、分岐部310側の端部と逆止弁316との間に第1流量調節部318が設けられる。本実施形態の燃料電池システム1では、第1流量調節部318は、第1減圧弁320を有する。第1減圧弁320により第1流量調節部318内の水素の圧力が調整される。第1減圧弁320により燃料カートリッジ200から供給される水素の圧力が低減されて、燃料電池101のアノード110が保護される。 The junction part 312 is provided with a check valve 316, which suppresses the backflow of hydrogen from the fuel cell 101 side to the branch part 310 side. In addition, a first flow rate adjusting unit 318 is provided in the merging unit 312 between the end on the branching unit 310 side and the check valve 316. In the fuel cell system 1 of the present embodiment, the first flow rate adjustment unit 318 has a first pressure reducing valve 320. The first pressure reducing valve 320 adjusts the hydrogen pressure in the first flow rate adjusting unit 318. The pressure of hydrogen supplied from the fuel cartridge 200 is reduced by the first pressure reducing valve 320, and the anode 110 of the fuel cell 101 is protected.
 第2燃料流路308aは、一端が分岐部310aにおけるカートリッジ接続部302と逆止弁314aとの間に接続され、他端が合流部312における逆止弁316と燃料分配プレート112側の端部との間に接続される。したがって、燃料カートリッジ200aと燃料電池101とは、第1燃料流路306及び第2燃料流路308aの2つの流路によって接続される。第2燃料流路308aには逆止弁322aが設けられ、これにより燃料電池101側から燃料カートリッジ200a側への水素の逆流が抑制される。また、第2燃料流路308aには、分岐部310a側の端部と逆止弁322aとの間に第2流量調節部324aが設けられる。本実施形態の燃料電池システム1では、第2流量調節部324aは、第2減圧弁326aを有する。第2減圧弁326aにより第2燃料流路308a内の水素の圧力が調整される。 One end of the second fuel flow path 308a is connected between the cartridge connecting portion 302 and the check valve 314a in the branch portion 310a, and the other end is an end portion on the fuel distribution plate 112 side of the check valve 316 in the junction portion 312. Connected between. Therefore, the fuel cartridge 200a and the fuel cell 101 are connected by two flow paths, the first fuel flow path 306 and the second fuel flow path 308a. The second fuel flow path 308a is provided with a check valve 322a, which suppresses the back flow of hydrogen from the fuel cell 101 side to the fuel cartridge 200a side. The second fuel flow path 308a is provided with a second flow rate adjustment unit 324a between the end on the branching unit 310a side and the check valve 322a. In the fuel cell system 1 of the present embodiment, the second flow rate adjustment unit 324a includes a second pressure reducing valve 326a. The second pressure reducing valve 326a adjusts the hydrogen pressure in the second fuel flow path 308a.
 第2燃料流路308bは、一端が分岐部310bにおけるカートリッジ接続部302と逆止弁314bとの間に接続され、他端が合流部312における逆止弁316と燃料分配プレート112側の端部との間に接続される。したがって、燃料カートリッジ200bと燃料電池101とは、第1燃料流路306及び第2燃料流路308bの2つの流路によって接続される。第2燃料流路308bには逆止弁322bが設けられ、これにより燃料電池101側から燃料カートリッジ200b側への水素の逆流が抑制される。また、第2燃料流路308bには、分岐部310b側の端部と逆止弁322bとの間に第2流量調節部324bが設けられる。本実施形態の燃料電池システム1では、第2流量調節部324bは、第2減圧弁326bを有する。第2減圧弁326bにより第2燃料流路308b内の水素の圧力が調整される。 One end of the second fuel flow path 308b is connected between the cartridge connecting portion 302 and the check valve 314b in the branching portion 310b, and the other end is an end portion on the side of the check valve 316 and the fuel distribution plate 112 in the merging portion 312. Connected between. Therefore, the fuel cartridge 200b and the fuel cell 101 are connected by two flow paths, the first fuel flow path 306 and the second fuel flow path 308b. The second fuel flow path 308b is provided with a check valve 322b, thereby suppressing the back flow of hydrogen from the fuel cell 101 side to the fuel cartridge 200b side. Further, the second fuel flow path 308b is provided with a second flow rate adjusting unit 324b between the end on the branching unit 310b side and the check valve 322b. In the fuel cell system 1 of the present embodiment, the second flow rate adjustment unit 324b has a second pressure reducing valve 326b. The second pressure reducing valve 326b adjusts the hydrogen pressure in the second fuel flow path 308b.
 以下では適宜、第2流量調節部324a及び第2流量調節部324bをまとめて第2流量調節部324といい、第2減圧弁326a及び第2減圧弁326bをまとめて第2減圧弁326という。ここで、図6を用いて第1減圧弁320及び第2減圧弁326の構造について説明する。図6は、第1減圧弁及び第2減圧弁の概略断面図である。なお、第1減圧弁320及び第2減圧弁326は同一の構造を有するため、以下では第1減圧弁320の構造について説明し、第2減圧弁326の説明は省略する。 Hereinafter, the second flow rate adjustment unit 324a and the second flow rate adjustment unit 324b are collectively referred to as a second flow rate adjustment unit 324, and the second pressure reduction valve 326a and the second pressure reduction valve 326b are collectively referred to as a second pressure reduction valve 326, as appropriate. Here, the structure of the first pressure reducing valve 320 and the second pressure reducing valve 326 will be described with reference to FIG. FIG. 6 is a schematic cross-sectional view of the first pressure reducing valve and the second pressure reducing valve. Since the first pressure reducing valve 320 and the second pressure reducing valve 326 have the same structure, the structure of the first pressure reducing valve 320 will be described below, and the description of the second pressure reducing valve 326 will be omitted.
 第1減圧弁320は、弁棒3202と、ダイアフラム3204と、弁ばね3206と、調圧ばね3208と、調圧ばね調整ねじ3210と、外圧入力部3212と、弁棒収容部3214とを主な構成として有する。弁棒収容部3214は、合流部312の流路内に嵌め込まれている。また、弁棒収容部3214は、第1減圧弁320の1次側S1、すなわち水素流れの上流側に配置される1次側開口部3214aと、第1減圧弁320の2次側S2、すなわち水素流れの下流側に配置される2次側開口部3214bとを有する。 The first pressure reducing valve 320 mainly includes a valve rod 3202, a diaphragm 3204, a valve spring 3206, a pressure regulating spring 3208, a pressure regulating spring adjustment screw 3210, an external pressure input portion 3212, and a valve rod housing portion 3214. Have as a configuration. The valve stem housing portion 3214 is fitted into the flow path of the merging portion 312. Further, the valve rod housing portion 3214 includes a primary side S1 of the first pressure reducing valve 320, that is, a primary side opening 3214a disposed on the upstream side of the hydrogen flow, and a secondary side S2 of the first pressure reducing valve 320, that is, And a secondary opening 3214b disposed downstream of the hydrogen flow.
 弁棒3202は、フランジ部3202aを有し、フランジ部3202aを含む一端側が弁棒収容部3214内に収容され、他端側が2次側開口部3214bを介して弁棒収容部3214の外に配置される。弁棒収容部3214の内壁における2次側開口部3214bの周縁部にはパッキン3216が設けられる。弁棒3202の一端側には、弁ばね3206が設けられる。弁ばね3206は、弁棒収容部3214の内壁とフランジ部3202aとの間に配置され、弁棒3202が弁棒収容部3214内から退出する方向(図6における上方向)に弁棒3202を付勢する。また、フランジ部3202aの径は、2次側開口部3214bの開口径よりも大きく、弁棒3202が上方向に変位するとフランジ部3202aがパッキン3216に当接するように設定される。 The valve stem 3202 has a flange portion 3202a, one end side including the flange portion 3202a is accommodated in the valve rod accommodating portion 3214, and the other end side is disposed outside the valve stem accommodating portion 3214 via the secondary side opening 3214b. Is done. A packing 3216 is provided on the peripheral edge of the secondary side opening 3214b on the inner wall of the valve stem housing 3214. A valve spring 3206 is provided on one end side of the valve rod 3202. The valve spring 3206 is disposed between the inner wall of the valve rod housing portion 3214 and the flange portion 3202a, and the valve rod 3202 is attached in the direction in which the valve rod 3202 retreats from the valve rod housing portion 3214 (upward direction in FIG. 6). To force. Further, the diameter of the flange portion 3202a is larger than the opening diameter of the secondary side opening portion 3214b, and is set so that the flange portion 3202a contacts the packing 3216 when the valve stem 3202 is displaced upward.
 弁棒3202の他端は、ダイアフラム3204の一方の主表面に当接する。ダイアフラム3204の一方の主表面は、第1減圧弁320の2次側S2側の空間に接する。ダイアフラム3204の他方の主表面には調圧ばね3208が当接し、調圧ばね3208によりダイアフラム3204を介して、弁棒3202が弁棒収容部3214内に進入する方向(図6における下方向)に付勢される。調圧ばね3208のダイアフラム3204と反対側の端部には調圧ばね調整ねじ3210が配置され、調圧ばね調整ねじ3210により調圧ばね3208の反発力が調整される。また、調圧ばね3208のダイアフラム3204と反対側の端部には、外圧入力部3212が配置される。外圧入力部3212は、調圧ばね3208に力Fを入力して、調圧ばね3208を圧縮する。これにより、調圧ばね3208の反発力が増大される。後述する燃料制御部502は、外圧入力部3212を制御して力Fの大きさを調整する。 The other end of the valve rod 3202 contacts one main surface of the diaphragm 3204. One main surface of the diaphragm 3204 is in contact with the space on the secondary side S2 side of the first pressure reducing valve 320. A pressure regulating spring 3208 abuts the other main surface of the diaphragm 3204, and the valve rod 3202 enters the valve rod housing portion 3214 via the diaphragm 3204 by the pressure regulating spring 3208 (downward direction in FIG. 6). Be energized. A pressure adjusting spring adjusting screw 3210 is disposed at the end of the pressure adjusting spring 3208 opposite to the diaphragm 3204, and the repulsive force of the pressure adjusting spring 3208 is adjusted by the pressure adjusting spring adjusting screw 3210. In addition, an external pressure input portion 3212 is disposed at the end of the pressure regulating spring 3208 opposite to the diaphragm 3204. The external pressure input unit 3212 inputs a force F to the pressure adjustment spring 3208 and compresses the pressure adjustment spring 3208. Thereby, the repulsive force of the pressure regulation spring 3208 is increased. A fuel control unit 502 described later controls the external pressure input unit 3212 to adjust the magnitude of the force F.
 フランジ部3202aとパッキン3216との間に隙間Dが形成される状態(図6に示す状態)では、合流部312を流れる水素は、第1減圧弁320の1次側S1から1次側開口部3214a、弁棒収容部3214、隙間D、及び2次側開口部3214bを経由して第1減圧弁320の2次側S2に流れる。これにより、2次側S2側の圧力が大きくなり、当該圧力によりダイアフラム3204が調圧ばね3208を圧縮する方向に押し上げられる。また、ダイアフラム3204に連動して弁棒3202が押し上げられて、フランジ部3202aがパッキン3216に接近して隙間Dが閉じられる。その結果、第1減圧弁320の1次側S1から2次側S2側への水素の移動が停止する。 In a state where the gap D is formed between the flange portion 3202a and the packing 3216 (the state shown in FIG. 6), the hydrogen flowing through the merging portion 312 flows from the primary side S1 of the first pressure reducing valve 320 to the primary side opening. It flows to the secondary side S2 of the first pressure reducing valve 320 via 3214a, the valve rod housing portion 3214, the gap D, and the secondary side opening 3214b. As a result, the pressure on the secondary side S <b> 2 increases, and the diaphragm 3204 is pushed up by the pressure in a direction in which the pressure regulating spring 3208 is compressed. Further, the valve rod 3202 is pushed up in conjunction with the diaphragm 3204, the flange portion 3202 a approaches the packing 3216, and the gap D is closed. As a result, the movement of hydrogen from the primary side S1 to the secondary side S2 of the first pressure reducing valve 320 stops.
 燃料電池101により水素が消費されて第1減圧弁320の2次側S2の水素が減ると、2次側S2の圧力が小さくなり、調圧ばね3208の付勢力によりダイアフラム3204及び弁棒3202が押し下げられる。これによりフランジ部3202aがパッキン3216から離間して隙間Dが徐々に大きくなる。その結果、第1減圧弁320の1次側S1から2次側S2側への水素の移動が起こる。以上の動作が繰り返されて、第1減圧弁320の2次側S2の圧力が一定に保たれる。 When the hydrogen is consumed by the fuel cell 101 and the hydrogen on the secondary side S2 of the first pressure reducing valve 320 is reduced, the pressure on the secondary side S2 is reduced, and the diaphragm 3204 and the valve rod 3202 are moved by the biasing force of the pressure regulating spring 3208. Pushed down. As a result, the flange portion 3202a is separated from the packing 3216, and the gap D gradually increases. As a result, hydrogen moves from the primary side S1 of the first pressure reducing valve 320 to the secondary side S2. The above operation is repeated, and the pressure on the secondary side S2 of the first pressure reducing valve 320 is kept constant.
 また、外圧入力部3212の入力が燃料制御部502により増大されると、調圧ばね3208の反発力が増大する。これにより、隙間Dを閉じるために必要な第1減圧弁320の2次側S2の圧力が増大される。したがって、2次側S2の圧力を増大させることで、燃料カートリッジ200からの水素放出を促進させることができる。 Further, when the input of the external pressure input unit 3212 is increased by the fuel control unit 502, the repulsive force of the pressure regulating spring 3208 increases. Accordingly, the pressure on the secondary side S2 of the first pressure reducing valve 320 necessary for closing the gap D is increased. Therefore, hydrogen release from the fuel cartridge 200 can be promoted by increasing the pressure on the secondary side S2.
 図5に示すように、各燃料カートリッジ200a,200bは、燃料電池101に対して並列に接続される。したがって、各燃料カートリッジ200a,200bは、燃料電池101に対して互いに独立に水素を供給可能である。そのため、燃料電池101の運転中に、任意の一部の燃料カートリッジ200が燃料電池101に接続された状態で、残りの燃料カートリッジ200を取り外し可能である。すなわち、本実施形態に係る燃料電池システム1は、燃料カートリッジ200のホットスワップに対応している。 As shown in FIG. 5, the fuel cartridges 200 a and 200 b are connected in parallel to the fuel cell 101. Accordingly, the fuel cartridges 200 a and 200 b can supply hydrogen to the fuel cell 101 independently of each other. Therefore, during operation of the fuel cell 101, the remaining fuel cartridges 200 can be removed while any part of the fuel cartridges 200 is connected to the fuel cell 101. That is, the fuel cell system 1 according to the present embodiment is compatible with hot swapping of the fuel cartridge 200.
 制御部500は、各燃料カートリッジ200a,200bから燃料電池101への燃料の供給を制御する燃料制御部502と、各燃料電池101a~101dのオンオフを切り替える切替制御部504とを有する。なお、制御部500は、ハードウェア構成としてはコンピュータのCPUやメモリをはじめとする素子や回路で実現され、ソフトウェア構成としてはコンピュータプログラム等によって実現されるが、図5ではそれらの連携によって実現される機能ブロックとして描いている。したがって、これらの機能ブロックはハードウェア、ソフトウェアの組合せによっていろいろなかたちで実現できることは、当業者には理解されるところである。 The control unit 500 includes a fuel control unit 502 that controls the supply of fuel from the fuel cartridges 200a and 200b to the fuel cell 101, and a switching control unit 504 that switches on and off the fuel cells 101a to 101d. The control unit 500 is realized by elements and circuits such as a CPU and a memory of a computer as a hardware configuration, and realized by a computer program or the like as a software configuration, but in FIG. It is drawn as a functional block. Therefore, those skilled in the art will understand that these functional blocks can be realized in various forms by a combination of hardware and software.
 燃料制御部502は、燃料電池101の運転中に任意の燃料カートリッジ200の取り外し指示がなされていないとき、各燃料カートリッジ200a,200bにおいて第2燃料流路308より第1燃料流路306に優先的に水素が流れるように第1流量調節部318及び第2流量調節部324を制御する。すなわち、燃料電池システム1の通常運転時は、主に第1燃料流路306を介して燃料カートリッジ200から燃料電池101へ水素が供給される。例えば、燃料カートリッジ200の水素は、第1燃料流路306のみを介して燃料電池101に供給される。 The fuel control unit 502 gives priority to the first fuel flow path 306 over the second fuel flow path 308 in each fuel cartridge 200a, 200b when an instruction to remove any fuel cartridge 200 is not given during operation of the fuel cell 101. The first flow rate adjustment unit 318 and the second flow rate adjustment unit 324 are controlled so that hydrogen flows through the first flow rate adjustment unit 324. That is, during normal operation of the fuel cell system 1, hydrogen is supplied from the fuel cartridge 200 to the fuel cell 101 mainly via the first fuel flow path 306. For example, the hydrogen in the fuel cartridge 200 is supplied to the fuel cell 101 only through the first fuel channel 306.
 また、燃料制御部502は、燃料電池101の運転中に、指示部400により任意の燃料カートリッジ200の取り外し指示がなされたとき、第1燃料流路306の水素流量が取り外し指示がなされていないときよりも小さくなり、取り外しの対象となる燃料カートリッジ200に接続される第2燃料流路308の水素流量が取り外し指示がなされていないときよりも大きくなるように第1流量調節部318及び第2流量調節部324を制御する。他の燃料カートリッジ200に接続される第2燃料流路308の水素流量は、取り外し指示がなされていないときの流量に維持されるか、当該流量よりも低減される。 In addition, the fuel control unit 502 is instructed to remove an arbitrary fuel cartridge 200 by the instruction unit 400 during the operation of the fuel cell 101, and when the removal instruction of the hydrogen flow rate of the first fuel channel 306 is not issued. The first flow rate adjusting unit 318 and the second flow rate so that the hydrogen flow rate of the second fuel flow path 308 connected to the fuel cartridge 200 to be removed becomes larger than when the removal instruction is not given. The adjustment unit 324 is controlled. The hydrogen flow rate of the second fuel flow path 308 connected to the other fuel cartridge 200 is maintained at the flow rate when the removal instruction is not given, or is lower than the flow rate.
 すなわち、燃料カートリッジ200の取り外し指示がなされた場合、第1燃料流路306を介した燃料カートリッジ200から燃料電池101への水素供給が抑制されることで、取り外しの対象でない燃料カートリッジ200から燃料電池101への水素の供給が抑制される。そして、取り外し対象の燃料カートリッジ200の水素が、当該燃料カートリッジ200と燃料電池101とを接続する第2燃料流路308を介して優先的に燃料電池101に供給される。例えば、燃料電池101には、取り外しの対象となる燃料カートリッジ200の水素のみが第2燃料流路308を介して供給される。 In other words, when an instruction to remove the fuel cartridge 200 is given, the supply of hydrogen from the fuel cartridge 200 to the fuel cell 101 via the first fuel flow path 306 is suppressed, so that the fuel cartridge 200 from the fuel cartridge 200 that is not the object of removal is prevented. Supply of hydrogen to 101 is suppressed. Then, the hydrogen of the fuel cartridge 200 to be removed is preferentially supplied to the fuel cell 101 via the second fuel flow path 308 connecting the fuel cartridge 200 and the fuel cell 101. For example, only the hydrogen of the fuel cartridge 200 to be removed is supplied to the fuel cell 101 via the second fuel flow path 308.
 そして、燃料制御部502は、取り外しの対象となる燃料カートリッジ200から優先的に水素を放出させた後に、当該燃料カートリッジ200の取り外しを許容する。本実施形態では、燃料カートリッジ200a,200bのそれぞれに対応する指示部400a,400bに取り外し規制部900a,900bが設けられている。燃料制御部502は、取り外し対象の燃料カートリッジ200からの優先水素排出処理の終了の後、取り外しの対象となる燃料カートリッジ200に対応する取り外し規制部900のLEDを赤色から青色に切り替えることで、燃料カートリッジ200の取り外しを許容する。なお、前記「取り出し対象の燃料カートリッジ200からの優先水素放出処理の終了」とは、例えば、燃料カートリッジ200の取り出し指示がなされてから所定時間が経過するまでである。この所定時間は、設計者による実験やシミュレーションに基づき適宜設定することができる。 The fuel control unit 502 allows the fuel cartridge 200 to be removed after preferentially releasing hydrogen from the fuel cartridge 200 to be removed. In the present embodiment, the removal restricting portions 900a and 900b are provided in the instruction portions 400a and 400b corresponding to the fuel cartridges 200a and 200b, respectively. The fuel control unit 502 switches the LED of the removal restricting unit 900 corresponding to the fuel cartridge 200 to be removed from red to blue after completion of the priority hydrogen discharge process from the fuel cartridge 200 to be removed, thereby changing the fuel. The cartridge 200 is allowed to be removed. The “end of preferential hydrogen release from the fuel cartridge 200 to be taken out” is, for example, until a predetermined time elapses after an instruction to take out the fuel cartridge 200 is issued. This predetermined time can be appropriately set based on experiments and simulations by the designer.
 本実施形態では、上述のように第1流量調節部318が第1減圧弁320を有し、第2流量調節部324a,324bが第2減圧弁326a,326bを有する。そこで、燃料制御部502は、取り外し指示がなされていないとき、第1減圧弁320の2次側S2の圧力が各第2減圧弁326の2次側S2の圧力よりも高くなるように第1減圧弁320及び第2減圧弁326を制御する。また、燃料制御部502は、取り外し指示がなされたとき、取り外しの対象となる燃料カートリッジ200に接続される第2燃料流路308に設けられた第2減圧弁326の2次側S2の圧力が、第1減圧弁320の2次側S2の圧力、及び取り外しの対象となる燃料カートリッジ200以外の燃料カートリッジ200に接続される第2燃料流路308に設けられた第2減圧弁326の2次側S2の圧力よりも高くなるように第1減圧弁320及び第2減圧弁326を制御する。 In the present embodiment, as described above, the first flow rate adjusting unit 318 has the first pressure reducing valve 320, and the second flow rate adjusting units 324a and 324b have the second pressure reducing valves 326a and 326b. Accordingly, the fuel control unit 502 performs the first control so that the pressure on the secondary side S2 of the first pressure reducing valve 320 is higher than the pressure on the secondary side S2 of each second pressure reducing valve 326 when no removal instruction is given. The pressure reducing valve 320 and the second pressure reducing valve 326 are controlled. In addition, when the removal instruction is given, the fuel control unit 502 determines that the pressure on the secondary side S2 of the second pressure reducing valve 326 provided in the second fuel flow path 308 connected to the fuel cartridge 200 to be removed is increased. , The pressure on the secondary side S2 of the first pressure reducing valve 320, and the secondary pressure of the second pressure reducing valve 326 provided in the second fuel flow path 308 connected to the fuel cartridge 200 other than the fuel cartridge 200 to be removed. The first pressure reducing valve 320 and the second pressure reducing valve 326 are controlled to be higher than the pressure on the side S2.
 このように、本実施形態の燃料電池システム1において、燃料制御部502は、燃料電池101の運転中に任意の燃料カートリッジ200の取り外し指示がなされた場合、取り外しの対象となる燃料カートリッジ200から、それ以外の燃料カートリッジ200よりも優先的に水素を放出させた後に、取り外しの対象となる燃料カートリッジ200の取り外しを許容する。これにより、取り外し指示がなされたときに取り外し対象の燃料カートリッジ200に水素が残存する場合であっても、当該燃料カートリッジ200の水素残量を減らすことができる。そのため、燃料カートリッジ200への水素充填や交換作業の頻度が高くなることを抑制することができる。 As described above, in the fuel cell system 1 of the present embodiment, when the fuel control unit 502 is instructed to remove any fuel cartridge 200 during the operation of the fuel cell 101, the fuel control unit 502 starts from the fuel cartridge 200 to be removed. After releasing hydrogen preferentially over the other fuel cartridges 200, the removal of the fuel cartridge 200 to be removed is allowed. Thereby, even if hydrogen remains in the fuel cartridge 200 to be removed when the removal instruction is given, the remaining amount of hydrogen in the fuel cartridge 200 can be reduced. Therefore, it is possible to suppress the frequency of hydrogen filling and replacement work for the fuel cartridge 200 from increasing.
 また、本実施形態の燃料電池システム1では、上述のように燃料電池101a,101bが燃料カートリッジ200aと熱交換可能であり、燃料電池101c,101dが燃料カートリッジ200bと熱交換可能である。これにより、燃料電池101における電気化学反応で発生した熱で燃料カートリッジ200を昇温させて、水素吸蔵合金204の水素放出を促進させることができる。また、同時に水素吸蔵合金204の水素放出時の吸熱反応により燃料電池101を放熱することができる。 Further, in the fuel cell system 1 of this embodiment, as described above, the fuel cells 101a and 101b can exchange heat with the fuel cartridge 200a, and the fuel cells 101c and 101d can exchange heat with the fuel cartridge 200b. Thereby, the temperature of the fuel cartridge 200 can be raised by the heat generated by the electrochemical reaction in the fuel cell 101, and the hydrogen release of the hydrogen storage alloy 204 can be promoted. At the same time, the fuel cell 101 can dissipate heat by an endothermic reaction when the hydrogen storage alloy 204 releases hydrogen.
 水素吸蔵合金204の水素放出は吸熱反応であるため、燃料カートリッジ200の取り外しを許容する前に取り外し対象の燃料カートリッジ200から優先的に水素を放出させることで、当該燃料カートリッジ200の表面温度を低減することができる。これにより、燃料カートリッジ200を取り外す際に、燃料カートリッジ200の表面がより冷却された状態となるため、ユーザの作業性及び作業時の安全性を高めることができる。 Since the hydrogen release of the hydrogen storage alloy 204 is an endothermic reaction, the surface temperature of the fuel cartridge 200 is reduced by preferentially releasing hydrogen from the fuel cartridge 200 to be removed before allowing the fuel cartridge 200 to be removed. can do. Thereby, when the fuel cartridge 200 is removed, the surface of the fuel cartridge 200 is further cooled, so that the user's workability and safety during work can be improved.
 また、切替制御部504は、燃料電池101の発電中に任意の燃料カートリッジ200の取り外し指示がなされたとき、取り外しの対象となる燃料カートリッジ200と熱交換する燃料電池101の少なくとも1つをオフにする。例えば、燃料カートリッジ200aの取り外しが指示された場合、燃料カートリッジ200aと熱交換する燃料電池101a及び燃料電池101bの少なくとも一方をオフにする。これにより、取り外しの対象となる燃料カートリッジ200をより冷却することができる。 In addition, when an instruction to remove any fuel cartridge 200 is given during power generation of the fuel cell 101, the switching control unit 504 turns off at least one of the fuel cells 101 that exchanges heat with the fuel cartridge 200 to be removed. To do. For example, when removal of the fuel cartridge 200a is instructed, at least one of the fuel cell 101a and the fuel cell 101b that exchange heat with the fuel cartridge 200a is turned off. Thereby, the fuel cartridge 200 to be removed can be further cooled.
 切替制御部504は、燃料電池101の発電中に任意の燃料カートリッジ200の取り外し指示がなされたとき、取り外しの対象となる燃料カートリッジ200以外の燃料カートリッジ200と熱交換する燃料電池101の少なくとも1つをオフにしてもよい。例えば、燃料カートリッジ200aの取り外しが指示された場合、燃料カートリッジ200bと熱交換する燃料電池101c及び燃料電池101dの少なくとも一方をオフにする。燃料電池101の一部をオフにする場合、燃料電池システム1全体の発電量を維持するために、他の燃料電池101の発電量を増大させる必要がある。したがって、取り外しの対象でない燃料カートリッジ200と熱交換する燃料電池101をオフにすると、取り外しの対象である燃料カートリッジ200と熱交換する燃料電池101の発電量が増大する。その結果、当該燃料電池101の発熱量が増大し、取り外しの対象である燃料カートリッジ200がより加熱される。 When an instruction to remove any fuel cartridge 200 is given during power generation of the fuel cell 101, the switching control unit 504 at least one of the fuel cells 101 that exchanges heat with a fuel cartridge 200 other than the fuel cartridge 200 to be removed. May be turned off. For example, when removal of the fuel cartridge 200a is instructed, at least one of the fuel cell 101c and the fuel cell 101d that exchange heat with the fuel cartridge 200b is turned off. When a part of the fuel cell 101 is turned off, it is necessary to increase the power generation amount of the other fuel cells 101 in order to maintain the power generation amount of the entire fuel cell system 1. Therefore, when the fuel cell 101 that exchanges heat with the fuel cartridge 200 that is not the object of removal is turned off, the power generation amount of the fuel cell 101 that exchanges heat with the fuel cartridge 200 that is the object of removal increases. As a result, the amount of heat generated by the fuel cell 101 increases, and the fuel cartridge 200 to be removed is further heated.
 図7は、燃料カートリッジの表面温度が20℃、40℃、60℃であるときの燃料カートリッジ中の水素残量と水素放出圧力との関係を示す図である。図7から、燃料カートリッジ200の表面温度が高いほど、高い水素放出圧力を維持することができることが分かる。特に、水素残量が10%~95%の範囲にあるとき、燃料カートリッジ200の表面温度が高いほど水素放出圧力が高い値で維持させる。そのため、取り外し対象の燃料カートリッジ200と熱交換する燃料電池101の発電量を増大させて当該燃料カートリッジ200をより加熱することで、当該燃料カートリッジ200の水素残量をより低減させることができる。 FIG. 7 is a graph showing the relationship between the remaining amount of hydrogen in the fuel cartridge and the hydrogen release pressure when the surface temperature of the fuel cartridge is 20 ° C., 40 ° C., and 60 ° C. From FIG. 7, it can be seen that the higher the surface temperature of the fuel cartridge 200, the higher the hydrogen release pressure can be maintained. In particular, when the remaining amount of hydrogen is in the range of 10% to 95%, the higher the surface temperature of the fuel cartridge 200, the higher the hydrogen release pressure is maintained. Therefore, the remaining amount of hydrogen in the fuel cartridge 200 can be further reduced by increasing the power generation amount of the fuel cell 101 that exchanges heat with the fuel cartridge 200 to be removed and further heating the fuel cartridge 200.
 好ましくは、切替制御部504は、取り外しの対象となる燃料カートリッジ200が所定の第1温度未満であるとき、取り外しの対象となる燃料カートリッジ200以外の燃料カートリッジ200と熱交換する燃料電池101の少なくとも1つをオフにする。これにより、燃料カートリッジ200の取り外し作業の頻度を低減させるとともに、燃料電池システム1による外部への電力供給をより安定させることができ、また、他の燃料電池101に負荷がかかる回数を低減させることができる。前記「所定の第1温度」は、設計者による実験やシミュレーションに基づき適宜設定することができる。 Preferably, when the fuel cartridge 200 to be removed is lower than a predetermined first temperature, the switching control unit 504 at least of the fuel cell 101 that exchanges heat with a fuel cartridge 200 other than the fuel cartridge 200 to be removed. Turn one off. As a result, the frequency of the removal work of the fuel cartridge 200 can be reduced, the power supply to the outside by the fuel cell system 1 can be made more stable, and the number of times the load is applied to the other fuel cells 101 can be reduced. Can do. The “predetermined first temperature” can be appropriately set based on an experiment or simulation by a designer.
 また、好ましくは、切替制御部504は、取り外しの対象となる燃料カートリッジ200が所定の第2温度以上であるとき、取り外しの対象となる燃料カートリッジ200と熱交換する燃料電池101の少なくとも1つをオフにする。これにより、ユーザの作業性及び安全性を向上させるとともに、燃料電池システム1による外部への電力供給をより安定させることができ、また、他の燃料電池101に負荷がかかる回数を低減させることができる。前記「所定の第2温度」は、設計者による実験やシミュレーションに基づき適宜設定することができる。なお、所定の第1~第3温度は、例えば第1温度、第2温度、第3温度の順に高い温度である。例えば、第1温度は35℃、第2温度は40℃、第3温度は45℃である。また、例えば、第1温度は、25~40℃の範囲で設定することができ、第2温度は40~50℃の範囲で設定することができ、第3温度は、40℃~60℃の範囲で設定することができる。 Preferably, the switching control unit 504 switches at least one of the fuel cells 101 to exchange heat with the fuel cartridge 200 to be removed when the fuel cartridge 200 to be removed has a predetermined second temperature or higher. Turn off. Thereby, while improving workability | operativity and safety of a user, the electric power supply to the exterior by the fuel cell system 1 can be stabilized more, and the frequency | count that a load is applied to the other fuel cell 101 can be reduced. it can. The “predetermined second temperature” can be appropriately set based on an experiment or simulation by a designer. The predetermined first to third temperatures are, for example, higher temperatures in the order of the first temperature, the second temperature, and the third temperature. For example, the first temperature is 35 ° C., the second temperature is 40 ° C., and the third temperature is 45 ° C. For example, the first temperature can be set in the range of 25 to 40 ° C., the second temperature can be set in the range of 40 to 50 ° C., and the third temperature can be set in the range of 40 ° C. to 60 ° C. Can be set by range.
 なお、切替制御部504は、燃料電池システム1にかかる電力負荷が燃料電池システム1の最大発電量を下回る場合に、オフの対象となる燃料電池101をオフにする。これにより、燃料電池システム1が外部電力負荷に対して供給する電力量が不足することをより確実に回避することができるため、燃料電池システム1の信頼性を高めることができる。 Note that the switching control unit 504 turns off the fuel cell 101 to be turned off when the power load applied to the fuel cell system 1 is lower than the maximum power generation amount of the fuel cell system 1. Thereby, since it can avoid more reliably that the electric energy which the fuel cell system 1 supplies with respect to an external electric power load is insufficient, the reliability of the fuel cell system 1 can be improved.
 図8は、実施形態1に係る燃料電池システムの制御フローチャートである。図8のフローチャートではステップを意味するS(Stepの頭文字)と数字との組み合わせによって各部の処理手順を表示する。このフローは、燃料電池システム1の電源がオンとなった後、燃料制御部502及び切替制御部504を含む制御部500が所定のタイミングで繰り返し実行する。 FIG. 8 is a control flowchart of the fuel cell system according to the first embodiment. In the flowchart of FIG. 8, the processing procedure of each part is displayed by a combination of S (acronym for Step) meaning a step and a number. This flow is repeatedly executed at a predetermined timing by the control unit 500 including the fuel control unit 502 and the switching control unit 504 after the power of the fuel cell system 1 is turned on.
 まず、制御部500は、燃料電池101が運転中(発電中)であるか判断する(S101)。燃料電池101が運転中でない場合(S101のN)、制御部500は、本ルーチンを終了する。燃料電池101が運転中である場合(S101のY)、制御部500は、燃料カートリッジ200の取り外し指示があるか判断する(S102)。燃料カートリッジ200の取り外し指示がない場合(S102のN)、制御部500は、第1減圧弁320の2次側S2の圧力を各第2流量調節部324の2次側S2の圧力よりも高め(S103)、本ルーチンを終了する。 First, the control unit 500 determines whether the fuel cell 101 is in operation (power generation) (S101). When the fuel cell 101 is not in operation (N in S101), the control unit 500 ends this routine. When the fuel cell 101 is in operation (Y in S101), the control unit 500 determines whether there is an instruction to remove the fuel cartridge 200 (S102). When there is no instruction to remove the fuel cartridge 200 (N in S102), the control unit 500 increases the pressure on the secondary side S2 of the first pressure reducing valve 320 higher than the pressure on the secondary side S2 of each second flow rate adjustment unit 324. (S103), this routine is terminated.
 燃料カートリッジ200の取り外し指示がある場合(S102のY)、制御部500は、取り外し対象の燃料カートリッジ200に接続される第2減圧弁326の2次側S2の圧力を、第1減圧弁320の2次側S2の圧力よりも高める(S104)。 When there is an instruction to remove the fuel cartridge 200 (Y in S102), the control unit 500 sets the pressure on the secondary side S2 of the second pressure reducing valve 326 connected to the fuel cartridge 200 to be removed to the value of the first pressure reducing valve 320. It raises more than the pressure of secondary side S2 (S104).
 続いて、制御部500は、燃料電池システム1にかかる電力負荷が燃料電池システム1の最大発電量を下回るか判断する(S105)。当該電力負荷が燃料電池システム1の最大発電量を下回る場合(S105のY)、制御部500は、取り外し対象の燃料カートリッジ200の表面温度が第1温度未満であるか判断する(S106)。表面温度が第1温度未満である場合(S106のY)、制御部500は、取り外し対象でない燃料カートリッジ200と熱交換する燃料電池101の少なくとも1つをオフにする(S107)。その後、制御部500は、取り外し規制部900を制御して燃料カートリッジ200の取り外しを許容し(S108)、本ルーチンを終了する。 Subsequently, the control unit 500 determines whether the power load applied to the fuel cell system 1 is less than the maximum power generation amount of the fuel cell system 1 (S105). When the power load is lower than the maximum power generation amount of the fuel cell system 1 (Y in S105), the control unit 500 determines whether the surface temperature of the fuel cartridge 200 to be removed is lower than the first temperature (S106). When the surface temperature is lower than the first temperature (Y in S106), the control unit 500 turns off at least one of the fuel cells 101 that exchange heat with the fuel cartridge 200 that is not a removal target (S107). Thereafter, the control unit 500 controls the removal regulating unit 900 to allow the removal of the fuel cartridge 200 (S108), and ends this routine.
 取り外し対象の燃料カートリッジ200の表面温度が第1温度以上である場合(S106のN)、制御部500は、当該表面温度が第2温度以上であるか判断する(S109)。表面温度が第2温度未満である場合(S109のN)、制御部500は、取り外し規制部900を制御して燃料カートリッジ200の取り外しを許容し(S108)、本ルーチンを終了する。取り外し対象の燃料カートリッジ200の表面温度が第2温度以上である場合(S109のY)、制御部500は、取り外し対象の燃料カートリッジ200と熱交換する燃料電池101の少なくとも1つをオフにする(S110)。 When the surface temperature of the removal target fuel cartridge 200 is equal to or higher than the first temperature (N in S106), the control unit 500 determines whether the surface temperature is equal to or higher than the second temperature (S109). When the surface temperature is lower than the second temperature (N in S109), the control unit 500 controls the removal regulating unit 900 to permit the removal of the fuel cartridge 200 (S108), and ends this routine. When the surface temperature of the fuel cartridge 200 to be removed is equal to or higher than the second temperature (Y in S109), the control unit 500 turns off at least one of the fuel cells 101 that exchange heat with the fuel cartridge 200 to be removed (S109). S110).
 その後、制御部500は、取り外し対象の燃料カートリッジ200の表面温度が第3温度以上であるか判断する(S111)。また、燃料電池システム1にかかる電力負荷が燃料電池システム1の最大発電量以上である場合(S105のN)も同様に、制御部500は、取り外し対象の燃料カートリッジ200の表面温度が第3温度以上であるか判断する(S111)。当該燃料カートリッジ200の表面温度が第3温度未満である場合(S111のN)、制御部500は、取り外し規制部900を制御して燃料カートリッジ200の取り外しを許容し(S108)、本ルーチンを終了する。表面温度が第3温度以上である場合(S111のY)、制御部500は、取り外し規制部900を制御して燃料カートリッジ200の取り外しを禁止し(S1112)、本ルーチンを終了する。 Thereafter, the controller 500 determines whether the surface temperature of the removal target fuel cartridge 200 is equal to or higher than the third temperature (S111). Similarly, when the power load applied to the fuel cell system 1 is equal to or greater than the maximum power generation amount of the fuel cell system 1 (N in S105), the controller 500 similarly determines that the surface temperature of the fuel cartridge 200 to be removed is the third temperature. It is determined whether this is the case (S111). When the surface temperature of the fuel cartridge 200 is lower than the third temperature (N in S111), the control unit 500 controls the removal restricting unit 900 to permit the removal of the fuel cartridge 200 (S108), and ends this routine. To do. When the surface temperature is equal to or higher than the third temperature (Y in S111), the control unit 500 controls the removal restricting unit 900 to prohibit the removal of the fuel cartridge 200 (S1112), and ends this routine.
 以上説明したように、本実施形態に係る燃料電池システム1は、着脱可能に設けられた複数の燃料カートリッジ200を有する。そして、燃料制御部502は、燃料電池101の運転中に任意の燃料カートリッジ200の取り外し指示がなされた場合、取り外しの対象となる燃料カートリッジ200から、それ以外の燃料カートリッジ200よりも優先的に水素を放出させた後に、取り外しの対象となる燃料カートリッジ200の取り外しを許容する。これにより、取り外し対象となる燃料カートリッジ200の水素残量を低減させることができる。そのため、燃料カートリッジ200の取り外し作業の頻度を低減させることができ、ユーザの利便性の向上を図ることができる。 As described above, the fuel cell system 1 according to the present embodiment has a plurality of fuel cartridges 200 that are detachably provided. Then, when an instruction to remove an arbitrary fuel cartridge 200 is given during operation of the fuel cell 101, the fuel control unit 502 gives priority to hydrogen from the fuel cartridge 200 to be removed over other fuel cartridges 200. After the fuel is released, the removal of the fuel cartridge 200 to be removed is allowed. Thereby, the remaining amount of hydrogen of the fuel cartridge 200 to be removed can be reduced. Therefore, the frequency of the removal work of the fuel cartridge 200 can be reduced, and the convenience of the user can be improved.
 (実施形態2)
 実施形態2に係る燃料電池システム1は、取り外し規制部900を除き、実施形態1に係る燃料電池システム1の構成と共通する。以下、実施形態2に係る燃料電池システム1について実施形態1と異なる構成を中心に説明する。なお、実施形態1と同一の構成については同一の符号を付し、その説明は適宜省略する。図9(A)は、実施形態2に係る燃料電池システムの燃料カートリッジを模式的に示す側面図である。図9(B)は、図9(A)のB-B線に沿った概略断面図である。図9(C)は、実施形態2に係る燃料電池システムの燃料カートリッジ挿入補強部を模式的に示す側面図である。図9(D)は、図9(C)のC-C線に沿った概略断面図である。
(Embodiment 2)
The fuel cell system 1 according to the second embodiment has the same configuration as that of the fuel cell system 1 according to the first embodiment except for the removal restricting unit 900. Hereinafter, the fuel cell system 1 according to the second embodiment will be described focusing on the configuration different from the first embodiment. In addition, the same code | symbol is attached | subjected about the structure same as Embodiment 1, and the description is abbreviate | omitted suitably. FIG. 9A is a side view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 2. FIG. FIG. 9B is a schematic cross-sectional view along the line BB in FIG. 9A. FIG. 9C is a side view schematically showing the fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 2. FIG. 9D is a schematic cross-sectional view along the line CC in FIG. 9C.
 実施形態2に係る燃料電池システム1の燃料カートリッジ200には、側壁の所定位置に凹部206が設けられる。また、燃料カートリッジ挿入補強部4の側壁には、開口4aが設けられる。当該側壁の外側には、当該開口4aを塞ぐように取り外し規制部900が設けられる。凹部206と開口4aとは、燃料カートリッジ挿入補強部4の側面と交わる方向から見て、燃料カートリッジ200が燃料カートリッジ挿入補強部4に挿入された状態で重なり合うように互いの位置関係が定められる。 The fuel cartridge 200 of the fuel cell system 1 according to Embodiment 2 is provided with a recess 206 at a predetermined position on the side wall. An opening 4 a is provided in the side wall of the fuel cartridge insertion reinforcing portion 4. A removal restricting portion 900 is provided outside the side wall so as to close the opening 4a. The recess 206 and the opening 4a are positioned relative to each other so that the fuel cartridge 200 overlaps with the fuel cartridge 200 inserted into the fuel cartridge insertion reinforcement 4 when viewed from the direction intersecting the side surface of the fuel cartridge insertion reinforcement 4.
 取り外し規制部900は、筐体902と、筐体902に設けられた棒体収容部904と、棒体収容部904に収容される棒体906とを備える。本実施形態の取り外し規制部900は、例えばアクチュエータ等で構成される、電気式ロック機構である。棒体906は、棒体収容部904から突出可能に棒体収容部904内に収容される。棒体906は、棒体収容部904から突出すると、開口4aを介して凹部206に進入する。取り外し規制部900は、制御部500から制御信号を受信して、棒体906を変位させる。 The removal restricting unit 900 includes a housing 902, a rod body accommodating portion 904 provided in the housing 902, and a rod body 906 accommodated in the rod body accommodating portion 904. The removal restricting unit 900 according to the present embodiment is an electric lock mechanism configured with, for example, an actuator or the like. The rod body 906 is accommodated in the rod body accommodating portion 904 so as to protrude from the rod body accommodating portion 904. When the rod 906 protrudes from the rod housing portion 904, the rod 906 enters the recess 206 through the opening 4a. The removal restricting unit 900 receives the control signal from the control unit 500 and displaces the rod body 906.
 図10(A)は、棒体が棒体収容部から突出した状態を示す概略断面図であり、図10(B)は、棒体が棒体収容部に収容された状態を示す概略断面図である。図10(A)に示すように、取り外し規制部900は、取り出し対象の燃料カートリッジ200からの優先水素放出処理の終了、及び燃料カートリッジ200の表面温度が第3温度未満であることの両方の条件が揃うまでの間、棒体906を棒体収容部904から突出させ、凹部206に進入させる。これにより、燃料カートリッジ200の取り外しが禁止される。一方、上述した両方の条件が揃った場合、図10(B)に示すように、取り外し規制部900は、棒体906を棒体収容部904に収容する。これにより、燃料カートリッジ200の取り外しが許容される。 FIG. 10A is a schematic cross-sectional view showing a state in which the rod body protrudes from the rod body housing portion, and FIG. 10B is a schematic cross-sectional view showing a state in which the rod body is housed in the rod body housing portion. It is. As shown in FIG. 10 (A), the removal restricting unit 900 has both conditions that the preferential hydrogen release process from the fuel cartridge 200 to be taken out ends and that the surface temperature of the fuel cartridge 200 is lower than the third temperature. Until the rods are aligned, the rod body 906 is protruded from the rod body accommodating portion 904 and enters the recess 206. Thereby, the removal of the fuel cartridge 200 is prohibited. On the other hand, when both of the above-described conditions are met, the removal restricting portion 900 accommodates the rod body 906 in the rod body accommodating portion 904 as shown in FIG. Thereby, removal of the fuel cartridge 200 is permitted.
 以上説明した実施形態2に係る燃料電池システム1では、取り外し対象の燃料カートリッジ200からの優先水素放出処理が終了し、当該燃料カートリッジ200の表面温度が第3温度未満となるまで、取り外し規制部900が物理的に燃料カートリッジ200の取り外しを禁止する。そのため、本実施形態に係る燃料電池システム1によれば、実施形態1で得られる効果に加えて、取り外し対象の燃料カートリッジ200からの優先水素放出処理をより確実に実施することができ、また、ユーザの安全性をさらに高めることができるという効果を得ることができる。 In the fuel cell system 1 according to Embodiment 2 described above, the removal restricting unit 900 is completed until the priority hydrogen release process from the fuel cartridge 200 to be removed is completed and the surface temperature of the fuel cartridge 200 becomes lower than the third temperature. Physically prohibits removal of the fuel cartridge 200. Therefore, according to the fuel cell system 1 according to the present embodiment, in addition to the effects obtained in the first embodiment, the priority hydrogen release process from the fuel cartridge 200 to be removed can be more reliably performed, The effect that the safety of the user can be further enhanced can be obtained.
 (実施形態3)
 実施形態3に係る燃料電池システム1は、取り外し規制部900を除き、実施形態1に係る燃料電池システム1の構成と共通する。以下、実施形態3に係る燃料電池システム1について実施形態1と異なる構成を中心に説明する。なお、実施形態1と同一の構成については同一の符号を付し、その説明は適宜省略する。図11(A)は、実施形態3に係る燃料電池システムの燃料カートリッジを模式的に示す平面図である。図11(B)は、図11(A)のD-D線に沿った概略断面図である。図11(C)は、実施形態3に係る燃料電池システムの燃料カートリッジ挿入補強部を模式的に示す平面図である。図11(D)は、図11(C)のE-E線に沿った概略断面図である。
(Embodiment 3)
The fuel cell system 1 according to Embodiment 3 has the same configuration as that of the fuel cell system 1 according to Embodiment 1 except for the removal restricting unit 900. Hereinafter, the fuel cell system 1 according to the third embodiment will be described focusing on the configuration different from the first embodiment. In addition, the same code | symbol is attached | subjected about the structure same as Embodiment 1, and the description is abbreviate | omitted suitably. FIG. 11A is a plan view schematically showing a fuel cartridge of the fuel cell system according to Embodiment 3. FIG. FIG. 11B is a schematic cross-sectional view along the line DD in FIG. FIG. 11C is a plan view schematically showing a fuel cartridge insertion reinforcing portion of the fuel cell system according to Embodiment 3. FIG. 11D is a schematic cross-sectional view along the line EE in FIG.
 実施形態3に係る燃料電池システム1の燃料カートリッジ200には、一方の主表面に凹部208が設けられる。また、燃料カートリッジ挿入補強部4の一方の主表面には、開口4bが設けられる。また、燃料カートリッジ挿入補強部4の一方の主表面には、取り外し規制部900が設けられる。凹部208と開口4bとは、燃料カートリッジ挿入補強部4の主表面と交わる方向から見て、燃料カートリッジ200が燃料カートリッジ挿入補強部4に挿入された状態で重なり合うように互いの位置関係が定められる。 The fuel cartridge 200 of the fuel cell system 1 according to Embodiment 3 is provided with a recess 208 on one main surface. An opening 4 b is provided on one main surface of the fuel cartridge insertion reinforcing portion 4. Further, a removal restricting portion 900 is provided on one main surface of the fuel cartridge insertion reinforcing portion 4. The recess 208 and the opening 4b are positioned relative to each other so that the fuel cartridge 200 overlaps with the fuel cartridge insertion reinforcement 4 inserted into the fuel cartridge insertion reinforcement 4 when viewed from the direction intersecting the main surface of the fuel cartridge insertion reinforcement 4. .
 本実施形態の取り外し規制部900は、熱膨張率の異なる2種類の金属板が積層されてなるバイメタルで構成される。取り外し規制部900は平板状であり、取り外し規制部900の一方の端部が燃料カートリッジ挿入補強部4の一方の主表面に接続され、他端側が開口4bの一部を覆うように配置される。取り外し規制部900は、湾曲して他端側が開口4b内を経て凹部208内に進入する状態と、平面状、すなわち断面視で直線状となって他端側が凹部208から退出する状態とを、燃料カートリッジ200の温度変化により切り替え可能である。したがって、本実施形態では、取り外し規制部900は、制御部500による制御を受けることなく燃料カートリッジ200の取り外しを禁止する状態と許容する状態とを切り替える。 The removal restricting portion 900 of this embodiment is composed of a bimetal formed by laminating two types of metal plates having different thermal expansion coefficients. The removal restricting portion 900 has a flat plate shape, and is arranged so that one end of the removal restricting portion 900 is connected to one main surface of the fuel cartridge insertion reinforcing portion 4 and the other end side covers a part of the opening 4b. . The removal restricting portion 900 is curved and has a state in which the other end side enters the recess 208 through the opening 4b, and a state in which the other end side exits from the recess 208 in a planar shape, i.e., a straight line in a sectional view, Switching is possible according to the temperature change of the fuel cartridge 200. Therefore, in this embodiment, the removal restricting unit 900 switches between a state in which removal of the fuel cartridge 200 is prohibited and a state in which the removal is permitted without being controlled by the control unit 500.
 図12(A)は、取り外し規制部が開口内に進入した状態を示す概略断面図であり、図12(B)は、取り外し規制部が開口内から退出した状態を示す概略断面図である。図12(A)に示すように、取り外し規制部900は、燃料カートリッジ200の表面温度が例えば第3温度以上である場合、湾曲して凹部208内に進入する。これにより、燃料カートリッジ200の取り外しが禁止される。一方、燃料カートリッジ200の表面温度が第3温度未満になると、図12(B)に示すように、取り外し規制部900は、平面状となって凹部208から退出する。これにより、燃料カートリッジ200の取り外しが許容される。 FIG. 12 (A) is a schematic cross-sectional view showing a state where the removal restricting portion has entered the opening, and FIG. 12 (B) is a schematic cross-sectional view showing a state where the removal restricting portion has exited from the opening. As shown in FIG. 12A, the removal restricting portion 900 is curved and enters the recess 208 when the surface temperature of the fuel cartridge 200 is, for example, the third temperature or higher. Thereby, the removal of the fuel cartridge 200 is prohibited. On the other hand, when the surface temperature of the fuel cartridge 200 becomes lower than the third temperature, the removal restricting portion 900 becomes flat and retracts from the recess 208 as shown in FIG. Thereby, removal of the fuel cartridge 200 is permitted.
 以上説明した実施形態3に係る燃料電池システム1では、取り外し対象の燃料カートリッジ200の表面温度が第3温度未満となるまで、取り外し規制部900が物理的に燃料カートリッジ200の取り外しを禁止する。そのため、本実施形態に係る燃料電池システム1によれば、実施形態1で得られる効果に加えて、ユーザの安全性をさらに高めることができるという効果を得ることができる。また、本実施形態では、取り外し規制部900は、バイメタルで構成されるため、燃料カートリッジ200の取り外しの禁止と許容との切り替えに電力が必要とされない。そのため、燃料電池システム1の省電力化を図ることができる。 In the fuel cell system 1 according to the third embodiment described above, the removal restricting unit 900 physically prohibits removal of the fuel cartridge 200 until the surface temperature of the fuel cartridge 200 to be removed becomes lower than the third temperature. Therefore, according to the fuel cell system 1 according to the present embodiment, in addition to the effect obtained in the first embodiment, an effect that the safety of the user can be further improved can be obtained. Further, in the present embodiment, since the removal restricting unit 900 is formed of bimetal, no electric power is required for switching between prohibition and allowance of removal of the fuel cartridge 200. Therefore, power saving of the fuel cell system 1 can be achieved.
 本発明は、上述の各実施形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。 The present invention is not limited to the above-described embodiments, and various modifications such as design changes can be added based on the knowledge of those skilled in the art, and the embodiments to which such modifications are added. Can also be included in the scope of the present invention.
 図13は、変形例に係る燃料電池システムの外観を示す斜視図である。本変形例に係る燃料電池システム1は、4つの燃料カートリッジ200を備える。筐体2は、側壁2a1と略直交する方向に延在する4つの側壁2bを有する。すなわち、本実施形態の筐体2は、実施形態1の筐体2の側壁2bそれぞれが2つに分割された構造に相当する。4つの側壁2bはそれぞれ、いずれか1つの燃料カートリッジ200の蓋部として機能し、互いに独立にスライド可能である。4つの燃料カートリッジ200には、それぞれ指示部400及び取り外し規制部900が設けられる。 FIG. 13 is a perspective view showing an appearance of a fuel cell system according to a modification. The fuel cell system 1 according to this modification includes four fuel cartridges 200. The housing 2 has four side walls 2b extending in a direction substantially orthogonal to the side walls 2a1. That is, the housing 2 of the present embodiment corresponds to a structure in which each side wall 2b of the housing 2 of the first embodiment is divided into two. Each of the four side walls 2b functions as a lid portion of any one of the fuel cartridges 200, and can slide independently of each other. The four fuel cartridges 200 are provided with an instruction unit 400 and a removal restricting unit 900, respectively.
 1 燃料電池システム、 101 燃料電池、104 膜電極接合体、 106 電解質膜、 108 カソード、 110 アノード、 200 燃料カートリッジ、204 水素吸蔵合金、 304 燃料流路、 306 第1燃料流路、 308 第2燃料流路、 310 分岐部、 312 合流部、 318 第1流量調節部、 320 第1減圧弁、 324 第2流量調節部、 326 第2減圧弁、 400 指示部、 500 制御部、 502 燃料制御部、 504 切替制御部、 900 取り外し規制部、 S2 2次側。 1 fuel cell system, 101 fuel cell, 104 membrane electrode assembly, 106 electrolyte membrane, 108 cathode, 110 anode, 200 fuel cartridge, 204 hydrogen storage alloy, 304 fuel channel, 306 first fuel channel, 308 second fuel Flow path, 310 branching section, 312 confluence section, 318 first flow control section, 320 first pressure reducing valve, 324 second flow control section, 326 second pressure reducing valve, 400 indicating section, 500 control section, 502 fuel control section, 504 switching control unit, 900 removal regulation unit, S2 secondary side.
 本発明は、燃料電池システムに利用可能である。 The present invention can be used for a fuel cell system.

Claims (9)

  1.  電解質膜、前記電解質膜の一方の面に設けられたカソード、及び前記電解質膜の他方の面に設けられたアノードで構成される膜電極接合体を1つ以上有する燃料電池と、
     着脱可能に設けられ、燃料である水素を貯蔵するための水素吸蔵合金を収容する複数の燃料カートリッジと、
     各燃料カートリッジから前記燃料電池への燃料の供給を制御する燃料制御部と、
     ユーザが各燃料カートリッジの取り外しを指示する指示部と、
    を備え、
     各燃料カートリッジは、前記燃料電池に対して互いに独立に水素を供給可能であり、
     前記燃料制御部は、燃料電池の運転中に任意の燃料カートリッジの取り外し指示がなされた場合、取り外しの対象となる燃料カートリッジから、それ以外の燃料カートリッジよりも優先的に水素を放出させた後に、取り外しの対象となる燃料カートリッジの取り外しを許容することを特徴とする燃料電池システム。
    A fuel cell having at least one membrane electrode assembly including an electrolyte membrane, a cathode provided on one surface of the electrolyte membrane, and an anode provided on the other surface of the electrolyte membrane;
    A plurality of fuel cartridges detachably provided and containing a hydrogen storage alloy for storing hydrogen as a fuel;
    A fuel control unit for controlling the supply of fuel from each fuel cartridge to the fuel cell;
    An instruction unit for a user to instruct removal of each fuel cartridge;
    With
    Each fuel cartridge can supply hydrogen to the fuel cell independently of each other;
    When an instruction to remove an arbitrary fuel cartridge is given during operation of the fuel cell, the fuel control unit releases hydrogen from the fuel cartridge to be removed with priority over other fuel cartridges. A fuel cell system that allows removal of a fuel cartridge to be removed.
  2.  各燃料カートリッジに接続される複数の分岐部、及び前記複数の分岐部が集合して前記燃料電池と接続される合流部を有する第1燃料流路と、
     前記合流部に設けられる第1流量調節部と、
     各燃料カートリッジと前記燃料電池とを接続する複数の第2燃料流路と、
     各第2燃料流路に設けられる複数の第2流量調節部と、を備え、
     前記燃料制御部は、
     前記取り外し指示がなされていないとき、各燃料カートリッジにおいて前記第2燃料流路より前記第1燃料流路に優先的に水素が流れるように前記第1流量調節部及び前記第2流量調節部を制御し、
     前記取り外し指示がなされたとき、前記第1燃料流路の水素流量が取り外し指示がなされていないときよりも小さくなり、取り外しの対象となる燃料カートリッジに接続される第2燃料流路の水素流量が取り外し指示がなされていないときよりも大きくなるように前記第1流量調節部及び前記第2流量調節部を制御する請求項1に記載の燃料電池システム。
    A first fuel flow path having a plurality of branch portions connected to each fuel cartridge, and a junction portion where the plurality of branch portions are aggregated and connected to the fuel cell;
    A first flow rate adjusting unit provided in the merging unit;
    A plurality of second fuel flow paths connecting each fuel cartridge and the fuel cell;
    A plurality of second flow rate adjusting portions provided in each second fuel flow path,
    The fuel control unit includes:
    When the removal instruction is not given, the first flow rate control unit and the second flow rate control unit are controlled so that hydrogen flows preferentially to the first fuel channel from the second fuel channel in each fuel cartridge. And
    When the removal instruction is given, the hydrogen flow rate of the first fuel flow path becomes smaller than when the removal instruction is not given, and the hydrogen flow rate of the second fuel flow path connected to the fuel cartridge to be removed becomes smaller. 2. The fuel cell system according to claim 1, wherein the first flow rate adjusting unit and the second flow rate adjusting unit are controlled to be larger than when the removal instruction is not given.
  3.  前記第1流量調節部は第1減圧弁を有し、前記第2流量調節部は第2減圧弁を有し、
     前記燃料制御部は、
     前記取り外し指示がなされていないとき、前記第1減圧弁の2次側の圧力が各第2減圧弁の2次側の圧力よりも高くなるように前記第1減圧弁及び前記第2減圧弁を制御し、
     前記取り外し指示がなされたとき、取り外しの対象となる燃料カートリッジに接続される第2燃料流路に設けられた前記第2減圧弁の2次側の圧力が前記第1減圧弁の2次側の圧力よりも高くなるように前記第1減圧弁及び前記第2減圧弁を制御する請求項2に記載の燃料電池システム。
    The first flow rate adjusting unit has a first pressure reducing valve, the second flow rate adjusting unit has a second pressure reducing valve,
    The fuel control unit includes:
    When the removal instruction is not made, the first pressure reducing valve and the second pressure reducing valve are set such that the pressure on the secondary side of the first pressure reducing valve is higher than the pressure on the secondary side of each second pressure reducing valve. Control
    When the removal instruction is given, the pressure on the secondary side of the second pressure reducing valve provided in the second fuel flow path connected to the fuel cartridge to be removed becomes the pressure on the secondary side of the first pressure reducing valve. The fuel cell system according to claim 2, wherein the first pressure reducing valve and the second pressure reducing valve are controlled so as to be higher than a pressure.
  4.  それぞれ独立にオンオフを切り替え可能な複数の燃料電池と、
     前記複数の燃料電池のオンオフを切り替える切替制御部と、を備え、
     各燃料カートリッジは、前記複数の燃料電池に対して互いに独立に水素を供給可能であり、
     各燃料電池は、いずれかの燃料カートリッジと熱交換可能に配置されており、
     前記切替制御部は、前記取り外し指示がなされたとき、取り外しの対象となる燃料カートリッジ以外の燃料カートリッジと熱交換する燃料電池の少なくとも1つをオフにする請求項1乃至3のいずれか1項に記載の燃料電池システム。
    Multiple fuel cells that can be switched on and off independently,
    A switching control unit for switching on and off of the plurality of fuel cells,
    Each fuel cartridge can supply hydrogen to the plurality of fuel cells independently of each other;
    Each fuel cell is arranged to be able to exchange heat with one of the fuel cartridges,
    The switching control unit according to any one of claims 1 to 3, wherein when the removal instruction is given, at least one of the fuel cells that exchange heat with a fuel cartridge other than the fuel cartridge to be removed is turned off. The fuel cell system described.
  5.  それぞれ独立にオンオフを切り替え可能な複数の燃料電池と、
     前記複数の燃料電池のオンオフを切り替える切替制御部と、を備え、
     各燃料電池は、いずれかの燃料カートリッジと熱交換可能に配置されており、
     前記切替制御部は、前記取り外し指示がなされたとき、取り外しの対象となる燃料カートリッジと熱交換する燃料電池の少なくとも1つをオフにする請求項1乃至3のいずれか1項に記載の燃料電池システム。
    Multiple fuel cells that can be switched on and off independently,
    A switching control unit for switching on and off of the plurality of fuel cells,
    Each fuel cell is arranged to be able to exchange heat with one of the fuel cartridges,
    4. The fuel cell according to claim 1, wherein when the removal instruction is given, the switching control unit turns off at least one of the fuel cells that exchange heat with the fuel cartridge to be removed. 5. system.
  6.  前記切替制御部は、取り外しの対象となる燃料カートリッジが所定の第1温度未満であるとき、取り外しの対象となる燃料カートリッジ以外の燃料カートリッジと熱交換する燃料電池の少なくとも1つをオフにする請求項4に記載の燃料電池システム。 The switching control unit turns off at least one of the fuel cells that exchange heat with a fuel cartridge other than the fuel cartridge to be removed when the fuel cartridge to be removed is lower than a predetermined first temperature. Item 5. The fuel cell system according to Item 4.
  7.  前記切替制御部は、取り外しの対象となる燃料カートリッジが所定の第2温度以上であるとき、取り外しの対象となる燃料カートリッジと熱交換する燃料電池の少なくとも1つをオフにする請求項5に記載の燃料電池システム。 6. The switching control unit according to claim 5, wherein when the fuel cartridge to be removed is at a predetermined second temperature or higher, at least one of the fuel cells that exchange heat with the fuel cartridge to be removed is turned off. Fuel cell system.
  8.  前記切替制御部は、燃料電池システムにかかる電力負荷が燃料電池システムの最大発電量を下回る場合に、オフの対象となる燃料電池をオフにする請求項4乃至7のいずれか1項に記載の燃料電池システム。 8. The switch control unit according to claim 4, wherein the switching control unit turns off the fuel cell to be turned off when the power load applied to the fuel cell system is lower than the maximum power generation amount of the fuel cell system. Fuel cell system.
  9.  取り外しの対象となる燃料カートリッジの取り外しを、燃料カートリッジが所定の第3温度以上である場合に禁止し、前記第3温度未満である場合に許容する取り外し規制部を備える請求項1乃至8のいずれか1項に記載の燃料電池システム。 9. The fuel cell according to claim 1, further comprising a removal restricting portion that prohibits removal of the fuel cartridge to be removed when the fuel cartridge is at a predetermined third temperature or higher and allows the fuel cartridge when the fuel cartridge is lower than the third temperature. The fuel cell system according to claim 1.
PCT/JP2012/006838 2011-11-30 2012-10-25 Fuel cell system WO2013080429A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011262901A JP2015035253A (en) 2011-11-30 2011-11-30 Fuel cell system
JP2011-262901 2011-11-30

Publications (1)

Publication Number Publication Date
WO2013080429A1 true WO2013080429A1 (en) 2013-06-06

Family

ID=48534936

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/006838 WO2013080429A1 (en) 2011-11-30 2012-10-25 Fuel cell system

Country Status (2)

Country Link
JP (1) JP2015035253A (en)
WO (1) WO2013080429A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI748890B (en) * 2020-03-06 2021-12-01 日商日本輝爾康股份有限公司 Hydrogen power generation system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073319A (en) * 2005-09-07 2007-03-22 Sharp Corp Method of detaching fuel cell cartridge mounted on display device, detaching device, and operation part for detachment
JP2008181727A (en) * 2007-01-24 2008-08-07 Kurimoto Ltd Fuel cell system
JP2009221072A (en) * 2008-03-18 2009-10-01 Hitachi Maxell Ltd Cartridge for hydrogen supply and fuel cell power generation system
JP2010251300A (en) * 2009-03-27 2010-11-04 Sanyo Electric Co Ltd Fuel cell system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007073319A (en) * 2005-09-07 2007-03-22 Sharp Corp Method of detaching fuel cell cartridge mounted on display device, detaching device, and operation part for detachment
JP2008181727A (en) * 2007-01-24 2008-08-07 Kurimoto Ltd Fuel cell system
JP2009221072A (en) * 2008-03-18 2009-10-01 Hitachi Maxell Ltd Cartridge for hydrogen supply and fuel cell power generation system
JP2010251300A (en) * 2009-03-27 2010-11-04 Sanyo Electric Co Ltd Fuel cell system

Also Published As

Publication number Publication date
JP2015035253A (en) 2015-02-19

Similar Documents

Publication Publication Date Title
Wang et al. Prospects of fuel cell technologies
JP4621815B2 (en) Fuel cell stack
JP4077509B2 (en) Polymer electrolyte fuel cell
EP2851986A1 (en) Fuel cell and method for producing same
US20110053030A1 (en) Fuel Cell with Gas Diffusion Layer having Flow Channel and Manufacturing Method Thereof
Kim et al. Ultra compact direct hydrogen fuel cell prototype using a metal hydride hydrogen storage tank for a mobile phone
JP4950505B2 (en) Fuel cell stack
KR20110089087A (en) Fuel cell system
US7771881B2 (en) Fuel supply unit for reformer and fuel cell system with the same
JP2008103210A (en) Fuel cell and fuel cell stack
WO2015129206A1 (en) Fuel cell module and fuel cell stack
JPH07272738A (en) Fuel cell system
JP4598508B2 (en) Fuel cell system
WO2013080429A1 (en) Fuel cell system
US20100248058A1 (en) Fuel cell module
US20100248082A1 (en) Fuel cell system
US20110294027A1 (en) Fuel cell system and a method for controlling the fuel cell system
WO2013065083A1 (en) Fuel cell system
WO2010109917A1 (en) Polymer electrolyte fuel cell stack
CA2953835C (en) Fuel cell stack
JP4882240B2 (en) Fuel cell
CN111987329A (en) Fuel cell stack
WO2013145776A1 (en) Fuel cell system comprising a detachable fuel cartridge including a hydrogen storage alloy
US20130260284A1 (en) Fuel cell system
JP2014072057A (en) Fuel cell system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12853789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12853789

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP