JP2008180008A - Connection structure between column and beam, and method of constructing the same - Google Patents

Connection structure between column and beam, and method of constructing the same Download PDF

Info

Publication number
JP2008180008A
JP2008180008A JP2007014748A JP2007014748A JP2008180008A JP 2008180008 A JP2008180008 A JP 2008180008A JP 2007014748 A JP2007014748 A JP 2007014748A JP 2007014748 A JP2007014748 A JP 2007014748A JP 2008180008 A JP2008180008 A JP 2008180008A
Authority
JP
Japan
Prior art keywords
column
floor
concrete
strength
reinforcement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007014748A
Other languages
Japanese (ja)
Other versions
JP5248784B2 (en
Inventor
Nobuyuki Izumi
信之 和泉
Satoshi Hamada
聡 濱田
Takashi Shimizu
隆 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Corp
Original Assignee
Toda Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Corp filed Critical Toda Corp
Priority to JP2007014748A priority Critical patent/JP5248784B2/en
Publication of JP2008180008A publication Critical patent/JP2008180008A/en
Application granted granted Critical
Publication of JP5248784B2 publication Critical patent/JP5248784B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a connection structure between a column and a beam, which can prevent cracking of concrete on a basement even if high-strength concrete is used, and is good in cost efficiency, and to provide a method of constructing the connection structure. <P>SOLUTION: In the connection structure 1 between the column and the beam, a cross sectional area of a column-beam connection portion 2 on a lower side of a first-floor column of a steel reinforced concrete structure is made larger than the cross sectional area of the first-floor column 3 and the cross sectional area of a basement column 4. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は柱と梁の接合構造およびその構築方法に関するものである。   The present invention relates to a column-beam joint structure and a construction method thereof.

鉄筋コンクリート造の超高層建物における下層階の柱は、高軸力が作用するため高強度コンクリートで構築する必要がある。そのため地下階柱の高強度コンクリートの強度は1階柱よりも大きくなる。例えば、30階建ての超高層建物の場合、1階柱のコンクリート強度(Fc)は60N/mmが必要になるため、1階柱脚の曲げ降伏耐力を保証する場合には、地下階柱のコンクリート強度も同程度のFc60N/mmが必要になる。また例えば、40階建て以上の超高層建物になると、1階柱のコンクリート強度はFc100N/mmを超えるため、地下階柱についてもFc100N/mm程度が必要になる。そのため地下階柱の高強度コンクリートの強度を1階柱よりも小さくする場合、そのコンクリート強度の差は特別な検討をしない限り、Fc6N/mm前後となる。このような柱と梁の接合構造は、図7および図8に示すように、地下階柱20の断面積を1階柱21よりもわずかに大きくし、1階柱の柱主筋22を柱梁接合部23で折り曲げて地下階柱20に連続して配筋していた。また、その他の柱と梁の接合構造としては、例えば特開2005−171728号公報の発明が知られている。
特開2005−171728号公報
Columns on lower floors in reinforced concrete super high-rise buildings must be constructed of high-strength concrete because of high axial force. Therefore, the strength of the high-strength concrete of the underground floor pillar is greater than that of the first floor pillar. For example, in the case of a 30-story super high-rise building, the concrete strength (Fc) of the first floor column needs to be 60 N / mm 2. The Fc 60 N / mm 2 with the same concrete strength is required. In addition, for example, in a super high-rise building having 40 stories or more, the concrete strength of the first floor column exceeds Fc 100 N / mm 2 , so that Fc 100 N / mm 2 is also required for the underground floor column. Therefore, when the strength of the high-strength concrete in the basement column is made smaller than that of the first-story column, the difference in the concrete strength is around Fc6N / mm 2 unless special consideration is made. As shown in FIGS. 7 and 8, such a column-to-beam joint structure is such that the cross-sectional area of the underground floor column 20 is slightly larger than that of the first-floor column 21, and the column main reinforcement 22 of the first-floor column is used as the column beam. It was bent at the joint 23 and continuously arranged to the basement column 20. In addition, as another column-beam joint structure, for example, the invention of JP-A-2005-171728 is known.
JP 2005-171728 A

しかし、上記の柱と梁の接合構造のように、地下階に1階とほぼ同じ強度の高強度コンクリートを用いると、耐力壁を含んだ地下階は部材断面が大きいために、コンクリート硬化時の発熱が大きくなるとともに、コンクリートに過大な温度差、すなわち内部の膨張と外部の初期乾燥収縮によるひび割れが発生しやすくなるという問題があった。また高強度コンクリートは非常に高価で、例えばFc30N/mmの高強度コンクリートでは13000円/mとなり、Fc42N/mmでは19000円/m、Fc60N/mmでは21000円/m、Fc80N/mmでは36000円/m、Fc100N/mmでは46000円/m、Fc130N/mmでは61000円/mとなる。したがって、Fc130N/mmの高強度コンクリートは、Fc60N/mmの高強度コンクリートの約3倍の単価となるため、全体として部材断面が大きな地下階、1階柱下側における柱梁接合部、梁および床に1階と同じ強度の高強度コンクリートを用いるのは経済的でないという問題があった。 However, if high-strength concrete with almost the same strength as the first floor is used for the basement floor as in the above-mentioned joint structure between the pillar and the beam, the basement floor including the bearing wall has a large member cross section, There was a problem that heat generation increased and cracks due to an excessive temperature difference, that is, internal expansion and external initial drying shrinkage were likely to occur in the concrete. The high-strength concrete is very expensive, for example Fc30N / mm 2 of 13000 yen / m 3 becomes a high-strength concrete, Fc42N / mm In 2 19000 yen / m 3, Fc60N / mm In 2 21000 yen / m 3, Fc80N / mm in 2 36000 yen / m 3, the Fc100N / in mm 2 46000 yen / m 3, Fc130N / mm In 2 61000 yen / m 3. Therefore, high-strength concrete Fc130N / mm 2, since approximately three times the price of high-strength concrete Fc60N / mm 2, as a whole member cross section large basement, beam-column joints of 1 Kaibashira lower, There is a problem that it is not economical to use high-strength concrete having the same strength as the first floor for beams and floors.

本願発明はこれらの問題に鑑みてなされたものであり、その目的は、高強度コンクリートを使用した場合でも地下階におけるコンクリートのひび割れが防げるとともに経済性の良い柱と梁の接合構造およびその構築方法を提供することである。   The present invention has been made in view of these problems, and its purpose is to prevent the cracking of concrete in the underground floor even when high-strength concrete is used, and to provide an economical column-beam joint structure and its construction method. Is to provide.

以上の課題を解決するための柱と梁の接合構造は、鉄筋コンクリート構造物の1階柱下側における柱梁接合部の断面積を1階柱の断面積と地下階柱の断面積よりも大きくしたことを特徴とする。また1階柱下側における柱梁接合部の平面形状が八角形、四角形、または円形のいずれかであることを含む。また1階柱下側における柱梁接合部の外周部側には拘束鉄筋が配筋されたことを含む。また地下階柱は、地下階柱の下部まで配筋された1階柱の柱鉄筋と、該柱鉄筋の外側に配筋された地下階柱の他の柱鉄筋との二重配筋であり、該地下階柱の他の柱鉄筋の柱主筋上端部には定着具が設置されたことを含む。また1階柱のコンクリート強度と、地下階柱のコンクリート強度と、1階柱下側における柱梁接合部のコンクリート強度とがそれぞれ異なることを含むものである。
また柱と梁の接合構造の構築方法は、鉄筋コンクリート構造物における地下階柱の柱鉄筋と1階柱の柱鉄筋とを連続して配筋するとともに、該地下階柱における柱鉄筋の外側に、地下階柱の他の柱鉄筋を配筋してその柱主筋上端部に定着具を設置した後、地下階柱の型枠を組立形成するとともに、1階柱下側における柱梁接合部の型枠を、1階柱の断面積と地下階柱の断面積よりも大きく組立形成し、地下階柱の型枠内にコンクリートを打設して梁下で打ち止めした後、1階柱下側における柱梁接合部の型枠内に、前記のコンクリートとは強度の異なるコンクリートを打設することを特徴とする。
In order to solve the above problems, the column-beam joint structure is such that the cross-sectional area of the column-beam joint at the lower side of the first-floor column of the reinforced concrete structure is larger than the cross-sectional area of the first-floor column and that of the underground floor column. It is characterized by that. Moreover, it includes that the planar shape of the beam-column joint portion on the lower side of the first floor column is one of an octagon, a quadrangle, and a circle. In addition, it includes that the reinforcing bars are arranged on the outer peripheral side of the column beam joint on the lower side of the first floor column. In addition, the underground column is a double reinforcement of the column reinforcement of the first floor that is arranged to the bottom of the underground column and the other column reinforcement of the underground column that is arranged outside the column reinforcement. In addition, it is included that a fixing tool is installed at the upper end portion of the column main bar of the other column reinforcing bar. In addition, the concrete strength of the first floor column, the concrete strength of the underground floor column, and the concrete strength of the column beam joint portion on the lower side of the first floor column are included.
In addition, the method of constructing the joint structure between the column and the beam is to continuously arrange the column reinforcement of the underground floor column and the column reinforcement of the first floor column in the reinforced concrete structure, and to the outside of the column reinforcement in the underground floor column, After placing other column reinforcements in the basement column and installing a fixing tool at the upper end of the column main bar, the basement column formwork is assembled and formed, and the beam-to-column connection type on the lower side of the first column The frame is assembled and formed larger than the cross-sectional area of the first-floor pillar and the cross-sectional area of the basement pillar, and concrete is placed in the formwork of the basement pillar and is fixed under the beam. Concrete having a strength different from that of the concrete is placed in the formwork of the beam-column joint.

1階柱下側における柱梁接合部の断面積を1階柱の断面積と地下階柱の断面積よりも大きくしたことにより、高圧縮応力を柱梁接合部で分散することができるので、地下階における柱や耐力壁の強度を1階柱よりも小さくすることができる。例えば、従来の構成においては、1階柱がFc60N/mmの場合、柱梁接合部をFc50N/mm、地下階柱をFc50N/mmしか落とすことができなかったが、本願発明の構成においては、1階柱がFc60N/mmの場合、柱梁接合部をFc42N/mm、地下階柱をFc36N/mmまで落とすことができる。また従来の構成においては、1階柱がFc130N/mmの場合、柱梁接合部をFc120N/mm、地下階柱をFc120N/mmしか落とすことができなかったが、本願発明の構成においては、1階柱がFc120N/mmの場合、柱梁接合部をFc100N/mm、地下階柱をFc60N/mmまで落とすことができる。このことから本願発明においては、1階柱の強度に対して柱梁接合部および地下階柱の強度を5〜8割程度の強度まで落とすことが可能となった。このことから地下階全体として高価な高強度コンクリートの使用量を低減することができるので、効果的なマスコン対策となってコンクリートのひび割れを防ぐとともに、経済性の向上を図ることもできる。また地下階柱、1階柱、1階柱下側における柱梁接合部および、梁と床のコンクリートの強度を打ち分けることができるので合理的なコンクリート強度の設定、すなわち各箇所ごとを適正なコンクリート強度にすることができる。 By making the cross-sectional area of the beam-column joint below the first-floor column larger than the cross-sectional area of the first-floor column and the cross-section of the underground floor column, high compressive stress can be dispersed at the beam-column joint. The strength of the pillars and bearing walls in the basement can be made smaller than those in the first floor pillar. For example, in the conventional configuration, 1 case Kaibashira is Fc60N / mm 2, Fc50N / mm 2 to Column Joints, although underground Kaibashira could not be dropped only Fc50N / mm 2, structure of the present invention When the first floor pillar is Fc 60 N / mm 2 , the column beam joint can be dropped to Fc 42 N / mm 2 and the underground floor pillar can be dropped to Fc 36 N / mm 2 . In the conventional configuration, when the first floor column is Fc 130 N / mm 2 , only the column beam joint Fc 120 N / mm 2 and the basement column column Fc 120 N / mm 2 can be dropped. When the first floor pillar is Fc 120 N / mm 2 , the column beam joint can be dropped to Fc 100 N / mm 2 and the underground floor pillar can be dropped to Fc 60 N / mm 2 . Therefore, in the present invention, the strength of the column beam joint and the underground story column can be reduced to about 50 to 80% of the strength of the first story column. As a result, the amount of expensive high-strength concrete used in the entire underground floor can be reduced, so that it becomes an effective measure for mass control, preventing concrete from cracking and improving the economic efficiency. In addition, the strength of the concrete of the basement column, 1st column, 1st column below and the beam / floor concrete can be divided, so that reasonable concrete strength setting, that is, each part is appropriate It can be concrete strength.

以下、本願発明の柱と梁の接合構造および柱と梁の接合構造の構築方法の実施の形態について説明する。この接合構造および構築方法の各実施の形態において同じ構成は同じ符号を付して説明し、異なった構成にのみ異なった符号を付して説明する。   Hereinafter, an embodiment of a method for constructing a column-to-beam joint structure and a column-to-beam joint structure according to the present invention will be described. In the embodiments of the joint structure and the construction method, the same components are described with the same reference numerals, and only different components are described with different reference numerals.

この柱と梁の接合構造1は、鉄筋コンクリート造の超高層建物における1階柱の柱と梁の接合構造であり、1階柱下側の柱梁接合部2の断面積を1階柱3と地下階柱4の断面積よりも大きくして高圧縮応力を分散させることにより、地下階柱4のコンクリート強度を1階柱3よりも大幅に小さくしようとするものである。これは耐力壁を含めた地下階の部材のコンクリート強度を小さくすることにより、効果的なマスコン対策と経済性の向上を図ろうとするものである。   This column-to-beam joint structure 1 is a first-column pillar-to-beam joint structure in a reinforced concrete super high-rise building. The concrete strength of the underground floor pillar 4 is to be made significantly smaller than that of the first floor pillar 3 by dispersing the high compressive stress by making it larger than the cross-sectional area of the underground floor pillar 4. This is to reduce the concrete strength of the members of the basement floor including the bearing wall, and to improve the effective mass control measures and economic efficiency.

このように地下階柱4のコンクリート強度を1階柱3よりも小さくするには、1階柱下側の柱梁接合部2の断面積を1階柱3と地下階柱4の断面積よりも大きくする他、地下階柱4の断面積を1階柱3の断面積よりもやや大きな構成にする。   Thus, in order to make the concrete strength of the basement column 4 smaller than that of the first-story column 3, the cross-sectional area of the column beam joint 2 on the lower side of the first-story column is determined from the cross-sectional area of the first-story column 3 and the basement column 4 In addition, the cross-sectional area of the basement column 4 is made slightly larger than the cross-sectional area of the first-story column 3.

この柱梁接合部2は、図1に示すように、1階柱3と地下階柱4の断面積よりも大きな平面八角形に形成されている。この柱梁接合部2の対向する四辺には各梁5が接合され、これらの梁間を結ぶ他の四辺6が地下階柱の四隅7を通るように形成されている。   As shown in FIG. 1, the column beam joint portion 2 is formed in a plane octagon larger than the cross-sectional areas of the first floor column 3 and the underground floor column 4. Each beam 5 is joined to the four opposite sides of the column beam joint 2, and the other four sides 6 connecting these beams pass through the four corners 7 of the basement column.

また柱梁接合部2には、図2に示すように、柱主筋8と帯筋9とからなる1階柱の柱鉄筋10が配筋され、この柱鉄筋10の角部には拘束筋11が梁間を結ぶ四辺6に沿って配筋されている。これは分散された圧縮応力に拘束筋11で抵抗することによって断面積が大きくなった部分12のコンクリートが割れてしまうのを防ぐためである。したがって、断面積が大きくなった(支圧の面積が大きくなった)1階柱下側の柱梁接合部2を介して断面積の異なる1階柱3と地下階柱4とが接合された構成になっている。   In addition, as shown in FIG. 2, the first-column column reinforcement 10 composed of the column main reinforcement 8 and the strip reinforcement 9 is arranged at the column beam joint 2, and the constraining reinforcement 11 is provided at the corner of the column reinforcement 10. Are arranged along the four sides 6 connecting the beams. This is to prevent the concrete in the portion 12 having a large cross-sectional area from being cracked by resisting the distributed compressive stress with the restraint bars 11. Therefore, the first-floor column 3 and the underground floor column 4 having different cross-sectional areas were joined via the beam-to-column joint 2 on the lower side of the first-floor column, where the cross-sectional area was increased (the area of bearing pressure was increased). It is configured.

この柱梁接合部2の断面積は、1階柱下側の柱梁接合部の断面積≧√(Fc1/FC2)×(1階柱断面積)の式から算出することにより、最も効率的な大きさに設定することができる。ここにFc1は1階柱のコンクリート強度、FC2は柱梁接合部のコンクリート強度であり、柱梁接合部2の断面積が1階柱の断面積よりも割り増し(支圧の面積を大きくした)したものとなる。   The cross-sectional area of the beam-column joint 2 is the most efficient by calculating from the formula of the cross-sectional area of the beam-column joint below the first-floor column ≧ √ (Fc1 / FC2) × (first-floor column cross-sectional area) Can be set to any size. Here, Fc1 is the concrete strength of the first-floor column, and FC2 is the concrete strength of the beam-column joint. Will be.

したがって、例えば1階柱3をFc130N/mmにし、地下階柱4をFc60N/mmに設定する場合には、上記の式から柱梁接合部2の断面積を算出して、このコンクリート強度を設定することもできる。 Therefore, for example, when the first floor column 3 is set to Fc 130 N / mm 2 and the underground floor column 4 is set to Fc 60 N / mm 2 , the cross-sectional area of the column beam joint 2 is calculated from the above formula, and this concrete strength is calculated. Can also be set.

なお柱梁接合部2は上記の平面八角形に限らず、平面四角形または平面円形であってもよい。   The column beam joint 2 is not limited to the above-mentioned plane octagon, but may be a plane quadrangle or a plane circle.

また地下階柱4は、図3に示すように、1階柱3よりもコンクリート強度が大幅に小さくなるため、断面積がやや大きくなっている。そして、この地下階柱4の下部にまで1階柱3の柱鉄筋10が連続して配筋され、この柱鉄筋10の外側に、地下階柱の他の柱鉄筋13が配筋された二重配筋になっている。そして、この柱鉄筋13における柱主筋15の上端部に定着具16が設置されている。   Further, as shown in FIG. 3, the underground floor pillar 4 has a slightly smaller cross-sectional area because the concrete strength is significantly smaller than that of the first floor pillar 3. And the column reinforcement 10 of the 1st floor column 3 is continuously arranged to the lower part of this underground floor column 4, and the other column reinforcement 13 of the underground floor column is arranged outside this column reinforcement 10. It is double reinforcement. A fixing tool 16 is installed at the upper end portion of the column main reinforcing bar 15 in the column reinforcing bar 13.

このように1階柱3と地下階柱4の大きさ(断面積)が異なる場合、従来は図8に示すように、柱梁接合部23において1階柱21の柱鉄筋の柱主筋22を折り曲げて地下階柱20に配筋していたが、あまり大きく折り曲げると高応力によって弾けてしまうため、このような二重配筋にして高応力に対して抵抗している。   When the size (cross-sectional area) of the first floor pillar 3 and the underground floor pillar 4 is different as described above, conventionally, as shown in FIG. Although it is bent and arranged in the underground floor column 20, if it is bent too much, it will be repelled by high stress, so such double reinforcement is used to resist high stress.

このように1階の柱梁接合部2、地下階柱4および梁5の高強度コンクリートの強度をそれぞれ適正に設定することにより、各部のコンクリートを強度に応じて打ち分けることができる。その打ち分け方法としては、1階柱下側の柱梁接合部2、地下階柱4および梁5のコンクリート強度がそれぞれ異なっている場合、まず地下階柱4の高強度コンクリートを梁下まで打ち込んだ後、この高強度コンクリートと異なった強度の高強度コンクリートを1階柱下側の柱梁接合部2に打ち込み、最後に、これらと強度の異なる高強度コンクリートを梁5に打ち込むものである。   Thus, the concrete of each part can be divided according to intensity | strength by setting the intensity | strength of the high-strength concrete of the column beam junction part 2 of the 1st floor, the underground floor pillar 4, and the beam 5 appropriately. As a method of laying, when the concrete strength of the beam-column joint 2 under the first floor column, the underground floor column 4 and the beam 5 are different from each other, first, the high-strength concrete of the underground floor column 4 is driven to the bottom of the beam. Thereafter, high-strength concrete having a strength different from that of the high-strength concrete is driven into the beam-to-column joint 2 below the first floor column, and finally, high-strength concrete having a strength different from that is driven into the beam 5.

また1階柱下側の柱梁接合部2と地下階柱4とのコンクリート強度が同じ場合の打ち分け方法としては、まず地下階柱4と1階柱下側の柱梁接合部2の上面まで高強度コンクリートを打ち込んだ後、この高強度コンクリートと異なる強度の高強度コンクリートを梁5に打ち込むものである。   In addition, when the concrete strength of the column beam joint 2 below the first floor column and the underground floor column 4 is the same, first, the upper surface of the column beam joint 2 below the basement column 4 and the first column below. After the high-strength concrete is driven in, a high-strength concrete having a strength different from that of the high-strength concrete is driven into the beam 5.

次に、上記の柱と梁の接合構造の構築方法の実施の形態を図3に基づいて説明する。まず、コンクリート基礎14上に、地下階柱の柱鉄筋10と1階柱の柱鉄筋10とを連続して配筋するとともに、該地下階柱の柱鉄筋10の外側に、他の柱鉄筋13を配筋して二重配筋とする。そして、この柱鉄筋13における柱主筋15の上端部に定着具16を設置する。   Next, an embodiment of a method for constructing the above-described column-beam joint structure will be described with reference to FIG. First, the column reinforcement 10 of the underground floor column and the column reinforcement 10 of the first floor column are continuously arranged on the concrete foundation 14, and another column reinforcement 13 is disposed outside the column reinforcement 10 of the underground floor column. To arrange double bars. And the fixing tool 16 is installed in the upper end part of the column main reinforcement 15 in this column reinforcement.

次に、これらの地下階柱間に耐力壁の壁鉄筋(図示せず)を配筋するとともに、1階柱下側の柱梁接合部2に梁鉄筋(図示せず)を配筋する。次に、地下階柱の柱鉄筋10と耐力壁の壁鉄筋とを囲むようにして、柱型枠と壁型枠(図示せず)を、梁鉄筋を囲むように梁型枠(図示せず)をそれぞれ組立形成する。   Next, a wall reinforcing bar (not shown) of the bearing wall is arranged between these underground floor columns, and a beam reinforcing bar (not shown) is arranged at the column beam joint 2 on the lower side of the first floor column. Next, a column mold and a wall frame (not shown) are enclosed so as to surround the column reinforcement 10 of the basement column and the wall reinforcement of the bearing wall, and a beam mold (not shown) is enclosed so as to surround the beam reinforcement. Each is assembled and formed.

そして1階柱下側の柱梁接合部2、地下階柱4、梁5のコンクリート強度がそれぞれ異なっている場合は、まず柱型枠および壁型枠の梁下まで高強度コンクリートを打ち込んだ後、これと異なった強度の高強度コンクリートを1階柱下側の柱梁接合部2に打ち込む。そして最後に、これらと強度の異なる高強度コンクリートを梁型枠に打ち込むと、各箇所に強度の異なる高強度コンクリートが打ち分けられた柱と梁の接合構造1が構築される。   And if the concrete strength of the beam-column joint 2 under the first floor column, the underground floor column 4, and the beam 5 are different from each other, the high-strength concrete is first driven to the bottom of the column formwork and the wall formwork. Then, high-strength concrete having a different strength is driven into the beam-column joint 2 on the lower side of the first floor column. Finally, when high-strength concrete having different strength is driven into the beam form, a column-beam joint structure 1 is constructed in which high-strength concrete having different strength is placed at each location.

なお、1階柱下側の柱梁接合部2と地下階柱4とのコンクリート強度が同じ場合は、まず地下階柱4と1階柱下側の柱梁接合部2の上面まで高強度コンクリートを打ち込んだ後、この高強度コンクリートと異なる強度の高強度コンクリートを梁5に打ち込むものとする。   If the concrete strength of the beam-column joint 2 below the first-floor column is the same as that of the underground-floor column 4, first, the high-strength concrete up to the upper surface of the column-beam joint 2 below the first-floor column 4 and the first-floor column Then, high strength concrete having a strength different from that of the high strength concrete is driven into the beam 5.

また下記の表1は、Fc130N/mmの超高強度鉄筋コンクリート柱の構造実験を行ったものである。ここにおいて試験体は1階柱を想定した1/3〜1/4の縮尺模型とした。また柱にはコンクリート圧縮強度(σ)130N/mmの超高強度コンクリート、USD685級の主筋(D16)、およびSBPD1275のせん断補強筋を使用した。また柱の下部は柱梁接合部、地下階柱、1階梁を想定した形状とする。またUHRC19は、45°方向加力とする。なお表中※1は(靭性保証せん断強度Rp=0.01)/(断面分割法曲げ耐力)であり、表中※2は(靭性保証せん断強度Rp=0)/(断面分割法曲げ耐力)であり、図中3の[]内は、テストピース圧縮強度(對緘養生)である。 Table 1 below shows a structural experiment of an ultra high strength reinforced concrete column of Fc 130 N / mm 2 . Here, the test specimen was a scale model of 1/3 to 1/4 assuming a first floor pillar. Further, ultra high strength concrete having a concrete compressive strength (σ B ) of 130 N / mm 2 , a USD 685 grade main reinforcement (D16), and a shear reinforcement of SBPD 1275 were used for the columns. In addition, the lower part of the column is assumed to have a column beam joint, an underground floor column, and a first floor beam. The UHRC 19 is a 45 ° direction force. In the table, * 1 is (toughness guaranteed shear strength Rp = 0.01) / (section split method bending strength), and * 2 is (toughness guaranteed shear strength Rp = 0) / (section split method bending strength). In FIG. 3, the value in [] is the test piece compressive strength (care curing).

Figure 2008180008
Figure 2008180008

またUHRC18、UHRC19、UHRC20は、図4〜図6に示す柱と梁の接合構造17、18、19で実験を行ったものである。この結果、Fc130N/mmの柱直下の接合部について、八角形の形状にしたUHRC18およびUHRC19は、1/25〜1/20rad.まで裁荷した場合でも、縦ひび割れと斜めひび割れとが発生したものの、接合部かぶりコンクリートの剥落は見られなかった。 Moreover, UHRC18, UHRC19, and UHRC20 are the ones in which the column-to-beam joint structures 17, 18, and 19 shown in FIGS. As a result, the octagonal UHRC18 and UHRC19 at the joint portion directly below the column of Fc130N / mm 2 generated vertical cracks and oblique cracks even when the load was applied from 1/25 to 1/20 rad. However, no peeling of the cover concrete was observed.

一方、地下階柱4と同じ大きさの通常の接合部としたUHRC20の場合は、1/50rad.で接合部コーナーのかぶりコンクリートのひび割れが大きくなり、1/33rad.でほとんど剥落直前の状態になった。このことから本願発明の上記の効果を確認することができた。   On the other hand, in the case of UHRC20, which is a normal joint having the same size as the basement column 4, cracks in the cover concrete at the joint corner become large at 1/50 rad., Almost at the state just before peeling off at 1/33 rad. became. From this, the above-mentioned effect of the present invention could be confirmed.

なお、上記の実施の形態においては高強度コンクリートを用いて説明したが、これは高強度コンクリートに限らず、通常の強度のコンクリートであっても適用することができる。   In addition, in said embodiment, although demonstrated using high-strength concrete, this is not restricted to high-strength concrete, It can apply also to concrete of normal intensity | strength.

柱と梁の接合構造の概念図であり、(1)は平面図、(2)は側面図である。It is a conceptual diagram of the joining structure of a pillar and a beam, (1) is a top view, (2) is a side view. (1)は柱梁接合部の断面図、(2)は1階柱の断面図、(3)は地下階柱の断面図である。(1) is a cross-sectional view of the beam-column joint, (2) is a cross-sectional view of the first-floor column, and (3) is a cross-sectional view of the basement column. 柱と梁の接合構造の断面図である。It is sectional drawing of the junction structure of a column and a beam. (1)は構造実験における柱と梁の接合構造の断面図、(2)および(3)は(1)の履歴曲線図である。(1) is a sectional view of a joined structure of columns and beams in a structural experiment, and (2) and (3) are hysteresis curve diagrams of (1). (1)は構造実験における柱と梁の接合構造の断面図、(2)および(3)は(1)の履歴曲線図である。(1) is a sectional view of a joined structure of columns and beams in a structural experiment, and (2) and (3) are hysteresis curve diagrams of (1). (1)は構造実験における柱と梁の接合構造の断面図、(2)および(3)は(1)の履歴曲線図である。(1) is a sectional view of a joined structure of columns and beams in a structural experiment, and (2) and (3) are hysteresis curve diagrams of (1). 従来の柱と梁の接合構造の概念図であり、(1)は平面図、(2)は側面図である。It is a conceptual diagram of the connection structure of the conventional pillar and beam, (1) is a top view, (2) is a side view. 従来の柱と梁の接合構造の断面図である。It is sectional drawing of the conventional junction structure of a pillar and a beam.

符号の説明Explanation of symbols

1、17、18、19 柱と梁の接合構造
2、23 柱梁接合部
3、21 1階柱
4、20 地下階柱
5 梁
6 四辺
7 四隅
8、15、22 柱主筋
9 帯筋
10 柱鉄筋
11 拘束筋
12 コンクリート
13 他の柱鉄筋
14 コンクリート基礎
16 定着具
1, 17, 18, 19 Column-to-beam joint structure 2, 23 Column-to-beam joint 3, 21 First-floor column 4, 20 Basement column 5 Beam 6 Four sides 7 Four corners 8, 15, 22 Column main bar 9 Strip 10 Column Reinforcement 11 Restraint 12 Concrete 13 Other column reinforcement 14 Concrete foundation 16 Fixing tool

Claims (6)

鉄筋コンクリート構造物の1階柱下側における柱梁接合部の断面積を1階柱の断面積と地下階柱の断面積よりも大きくしたことを特徴とする柱と梁の接合構造。   A column-to-beam connection structure characterized in that the cross-sectional area of the beam-column joint at the lower side of the first-floor column of the reinforced concrete structure is larger than the cross-sectional area of the first-floor column and the cross-sectional area of the underground floor column. 1階柱下側における柱梁接合部の平面形状が八角形、四角形、または円形のいずれかであることを特徴とする請求項1に記載の柱と梁の接合構造。   2. The column-beam junction structure according to claim 1, wherein the planar shape of the beam-column joint portion on the lower side of the first-floor column is an octagon, a quadrangle, or a circle. 1階柱下側における柱梁接合部の外周部側には拘束筋が配筋されたことを特徴とする請求項1または2に記載の柱と梁の接合構造。   3. The column-to-beam joint structure according to claim 1 or 2, wherein a constraining bar is arranged on the outer peripheral side of the column-beam joint on the lower side of the first floor column. 地下階柱は、地下階柱の下部まで配筋された1階柱の柱鉄筋と、該柱鉄筋の外側に配筋された地下階柱の他の柱鉄筋との二重配筋であり、該地下階柱の他の柱鉄筋の柱主筋上端部には定着具が設置されたことを特徴とする請求項1〜3のいずれかに記載の柱と梁の接合構造。   The underground floor pillar is a double reinforcement of a column reinforcement of the first floor pillar arranged to the lower part of the underground floor pillar and another pillar reinforcement of the underground floor pillar arranged outside the pillar reinforcement, The column-to-beam joint structure according to any one of claims 1 to 3, wherein a fixing tool is installed at an upper end portion of the column main reinforcing bar of the other column reinforcing bar. 1階柱のコンクリート強度と、地下階柱のコンクリート強度と、1階柱下側における柱梁接合部のコンクリート強度とがそれぞれ異なることを特徴とする請求項1〜4のいずれかに記載の柱と梁の接合構造。   The column according to any one of claims 1 to 4, wherein the concrete strength of the first-floor column, the concrete strength of the basement column, and the concrete strength of the column beam joint at the lower side of the first-floor column are different from each other. And beam joint structure. 鉄筋コンクリート構造物における地下階柱の柱鉄筋と1階柱の柱鉄筋とを連続して配筋するとともに、該地下階柱における柱鉄筋の外側に、地下階柱の他の柱鉄筋を配筋してその柱主筋上端部に定着具を設置した後、地下階柱の型枠を組立形成するとともに、1階柱下側における柱梁接合部の型枠を、1階柱の断面積と地下階柱の断面積よりも大きく組立形成し、地下階柱の型枠内にコンクリートを打設して梁下で打ち止めした後、1階柱下側における柱梁接合部の型枠内に、前記のコンクリートとは強度の異なるコンクリートを打設することを特徴とする柱と梁の接合構造の構築方法。   In the reinforced concrete structure, the column reinforcement of the underground floor column and the column reinforcement of the first floor column are continuously arranged, and the other column reinforcement of the underground floor column is arranged outside the column reinforcement of the underground floor column. After installing the fixing tool at the upper end of the pillar main bar, assembling and forming the formwork of the underground floor pillar, the formwork of the column beam joint on the lower side of the first floor pillar, and the cross-sectional area of the first floor pillar and the basement floor After assembling and forming larger than the cross-sectional area of the column, placing concrete in the formwork of the basement column and stopping it under the beam, in the formwork of the column beam joint on the lower side of the first floor column, A method for constructing a joint structure between columns and beams, characterized in that concrete having a strength different from that of concrete is cast.
JP2007014748A 2007-01-25 2007-01-25 Column and beam joint structure Active JP5248784B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007014748A JP5248784B2 (en) 2007-01-25 2007-01-25 Column and beam joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007014748A JP5248784B2 (en) 2007-01-25 2007-01-25 Column and beam joint structure

Publications (2)

Publication Number Publication Date
JP2008180008A true JP2008180008A (en) 2008-08-07
JP5248784B2 JP5248784B2 (en) 2013-07-31

Family

ID=39724106

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007014748A Active JP5248784B2 (en) 2007-01-25 2007-01-25 Column and beam joint structure

Country Status (1)

Country Link
JP (1) JP5248784B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232812A (en) * 2021-12-29 2022-03-25 中铁建设集团有限公司 Unequal strength wall beam joint based on steel plate hoop constrained concrete superposed short column

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171101U (en) * 1983-04-28 1984-11-15 株式会社 構造計画研究所 Column beam joint reinforcement
JPS60129350A (en) * 1983-12-16 1985-07-10 鹿島建設株式会社 Construction of reinforced concrete pillar
JPH01154923A (en) * 1987-12-14 1989-06-16 Fujita Corp Joining section of reinforced concrete post and beam
JPH02144433A (en) * 1988-11-28 1990-06-04 Mitsubishi Kensetsu Kk Constructing connection for column-girder
JP2002070154A (en) * 2000-08-31 2002-03-08 Railway Technical Res Inst Fixing structure for structural steel product and joint structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59171101U (en) * 1983-04-28 1984-11-15 株式会社 構造計画研究所 Column beam joint reinforcement
JPS60129350A (en) * 1983-12-16 1985-07-10 鹿島建設株式会社 Construction of reinforced concrete pillar
JPH01154923A (en) * 1987-12-14 1989-06-16 Fujita Corp Joining section of reinforced concrete post and beam
JPH02144433A (en) * 1988-11-28 1990-06-04 Mitsubishi Kensetsu Kk Constructing connection for column-girder
JP2002070154A (en) * 2000-08-31 2002-03-08 Railway Technical Res Inst Fixing structure for structural steel product and joint structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114232812A (en) * 2021-12-29 2022-03-25 中铁建设集团有限公司 Unequal strength wall beam joint based on steel plate hoop constrained concrete superposed short column

Also Published As

Publication number Publication date
JP5248784B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
JP6815183B2 (en) Complex building
US20150027076A1 (en) Sleeve Device For Increasing Shear Capacity
JP2011069148A (en) Building structure
JP4577004B2 (en) Construction method for building frames consisting of steel-concrete composite beams and SRC columns
JP2016094766A (en) Building frame construction method
JP5424761B2 (en) Seismic reinforcement method for existing buildings
JP5248784B2 (en) Column and beam joint structure
KR100578641B1 (en) Steel-Concrete Hybrid Column, Hybrid Structure System Using the Same, and Construction Method Thereof
JP2007154565A (en) Joint structure and construction method of column and beam-less slab
JP2007162255A (en) Seismically reinforcing method by using concrete blocks
JP2019011675A (en) Composite structure
JP2006328798A (en) Composite structure frame
JP7228398B2 (en) Joint structure of CFT column and RC column
JP2005171548A (en) Reinforcing structure and reinforcing method for flat plate frame
JP7137978B2 (en) Plate-shaped member for pillar
JPH09264050A (en) Building structure
JP2006169837A (en) Column-beam joint structure of reinforced concrete construction
JP7364510B2 (en) floor structure
KR101165443B1 (en) Floor construction for lowering story-height
KR102349442B1 (en) Coupling structure of column and girder having single girder in lateral direction, double girder in backward direction and concrete part around the column
KR101785317B1 (en) the connection structure between wall type precast concrete upper column and wall type precast concrete lower column, the RC connection structure between wall type precast concrete column and precast concrete beam using the same
JP2017040122A (en) Reinforced concrete column-beam joint precast member
JP2022163290A (en) Structure
KR101779399B1 (en) the hybrid precast concrete beam connecting structure for a horizontal extending a building and the construction method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130411

R150 Certificate of patent or registration of utility model

Ref document number: 5248784

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250