JP2008179149A - Rtm molding method - Google Patents

Rtm molding method Download PDF

Info

Publication number
JP2008179149A
JP2008179149A JP2008035709A JP2008035709A JP2008179149A JP 2008179149 A JP2008179149 A JP 2008179149A JP 2008035709 A JP2008035709 A JP 2008035709A JP 2008035709 A JP2008035709 A JP 2008035709A JP 2008179149 A JP2008179149 A JP 2008179149A
Authority
JP
Japan
Prior art keywords
resin
reinforcing fiber
fiber base
molding method
diffusion medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008035709A
Other languages
Japanese (ja)
Other versions
JP4542588B2 (en
Inventor
Shunei Sekido
俊英 関戸
Kazuaki Kitaoka
一章 北岡
Koji Kotani
浩司 小谷
Shigeru Nishiyama
西山  茂
Masahiko Shimizu
正彦 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Toray Industries Inc
Original Assignee
Mitsubishi Heavy Industries Ltd
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Toray Industries Inc filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008035709A priority Critical patent/JP4542588B2/en
Publication of JP2008179149A publication Critical patent/JP2008179149A/en
Application granted granted Critical
Publication of JP4542588B2 publication Critical patent/JP4542588B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an RTM molding method which improves a quality in a design aspect of a molded article, and at the same time, can mold a thick article structure with a good resin impregnation property. <P>SOLUTION: The RTM molding method comprises a step of setting lower a resin flow resistance of a first resin distribution medium 5 arranged on a first surface of a reinforcing fiber substrate than the resin flow resistance of a second resin distribution medium arranged on a second surface in a shaping mold 1, and a step of impregnating the resin in the reinforcing fiber substrate by a suction through the second resin distribution medium while injecting the resin into the first resin distribution medium 5. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、繊維強化プラスチック(以下、FRPと言う。)製の構造体を成形する Resin Transfer Molding(以下、RTMと言う。)成形方法の改良に関し、とくに、厚物の成形が可能であり、かつ、表面性状について品質の向上が可能なRTM成形方法に関する。   The present invention relates to an improved Resin Transfer Molding (hereinafter referred to as RTM) molding method for molding a structure made of fiber reinforced plastic (hereinafter referred to as FRP), and in particular, it is possible to mold a thick material. And it is related with the RTM shaping | molding method which can improve quality about surface property.

従来より、FRPは種々の分野に使用されているが、FRP構造体の製造方法としては、プリプレグによって予め成形すべき構造体の形状を有するプリフォームを形成した後に、これを所定の温度、圧力条件に設定されたオートクレーブ内で硬化させる、いわゆるプリプレグ/オートクレーブ成形方法が一般的であった。しかし、近年製造コスト低減のためにRTM成形方法が注目され、徐々にこの成形法が広まりつつある。   Conventionally, FRP has been used in various fields. As a method for manufacturing an FRP structure, a preform having a shape of a structure to be molded in advance is formed by a prepreg, and this is then processed at a predetermined temperature and pressure. A so-called prepreg / autoclave molding method in which curing is performed in an autoclave set to conditions is common. However, in recent years, RTM molding methods have attracted attention for reducing manufacturing costs, and this molding method is gradually spreading.

代表的なRTM成形方法として、特許文献1に記載の成形方法が知られている。特許文献1に記載のRTM成形方法では、強化繊維材の積層体からなる強化繊維基材の両面に、ピールプライ/樹脂分散メディアを配置し、これらを成形型(ツール)面上に配置して、全体をバッグ材で覆うとともに、バッグ材によりシールされた内部に対し樹脂注入ゲートと減圧のための吸引ゲートを設ける。この状態において、常温または加熱雰囲気下で、吸引ゲートを通してバッグ内を吸引することにより減圧しながら樹脂注入ゲートより樹脂を注入して、基本的に、樹脂を強化繊維基材の上面側から下面側へまたは下面側から上面側へ流動させ、樹脂を強化繊維基材に含浸させる。そして、含浸が終了した後は、常温または加熱雰囲気下で樹脂を硬化させ、硬化後に、バッグ材を剥がして成形体を脱型する。   As a typical RTM molding method, a molding method described in Patent Document 1 is known. In the RTM molding method described in Patent Document 1, peel ply / resin dispersion media are arranged on both sides of a reinforcing fiber base made of a laminate of reinforcing fiber materials, and these are arranged on a molding die (tool) surface. The whole is covered with a bag material, and a resin injection gate and a suction gate for pressure reduction are provided in the interior sealed by the bag material. In this state, the resin is injected from the resin injection gate while reducing the pressure by sucking the inside of the bag through the suction gate at room temperature or in a heated atmosphere. The resin is impregnated into the reinforcing fiber base material by flowing from the lower surface side to the upper surface side. Then, after the impregnation is completed, the resin is cured at normal temperature or in a heated atmosphere, and after curing, the bag material is peeled off and the molded body is demolded.

しかしながら、この成形方法においては、以下のような問題がある。
まず、強化繊維基材の両面に樹脂分散メディアが配置されるものの、強化繊維基材に対しては基本的に片面側からの樹脂含浸が行われるため、基材の厚み方向に含浸可能な距離に限界があり、強化繊維基材が厚くなりすぎると、所定の含浸が不可能になる。
However, this molding method has the following problems.
First, although resin dispersion media are arranged on both sides of the reinforcing fiber substrate, since the resin impregnation from one side is basically performed on the reinforcing fiber substrate, the distance that can be impregnated in the thickness direction of the substrate If the reinforcing fiber base becomes too thick, the predetermined impregnation becomes impossible.

厚い強化繊維基材に樹脂を含浸させるために、強化繊維基材の両面に配置された樹脂分散メディアの両方から強化繊維基材内に樹脂を含浸させることも考えられるが、上記成形方法では、両面側に実質的に同じ形状、特性の樹脂分散メディアが配置されるため、単に両面側から樹脂を含浸させると、樹脂が同時に同じように基材の厚み方向に含浸されていき、ボイドが側方等に押し出されにくくなって、基材内にボイドが閉じ込められやすくなる。ボイドが閉じ込められてしまうと、目標とする成形品の性能が得られなくなる。このようなボイドの閉じ込めを回避するために、基本的に片面側からの樹脂含浸が行われている。   In order to impregnate the resin into the thick reinforcing fiber base, it is possible to impregnate the resin into the reinforcing fiber base from both of the resin dispersion media arranged on both sides of the reinforcing fiber base. Since resin dispersion media with substantially the same shape and characteristics are arranged on both sides, simply impregnating the resin from both sides will cause the resin to be impregnated in the same direction in the thickness direction of the substrate, and the void It becomes difficult to extrude to a direction etc., and a void becomes easy to be confine | sealed in a base material. If the void is confined, the target performance of the molded article cannot be obtained. In order to avoid such confinement of voids, resin impregnation is basically performed from one side.

また、上記成形方法における別の問題として、成形品の意匠面について良好な平滑性を得にくいという問題がある。すなわち、上記樹脂分散メディアは、樹脂の分散性能を高めるために、通気抵抗の低い比較的凹凸の度合いの大きな部材に構成されるが、このような比較的大きな凹凸を有する樹脂分散メディアが強化繊維基材の両面に配置されて成形されるので、成形品の一方の面である意匠面にも樹脂分散メディアの比較的大きな凹凸が反映されてしまう。その結果、意匠性が損なわれるとともに、成形品の表面に凹凸が形成されてしまうため、空気力学特性等が低下するという問題が生じることもある。   Another problem in the molding method is that it is difficult to obtain good smoothness on the design surface of the molded product. That is, the resin dispersion medium is configured as a member having a relatively large degree of unevenness with low airflow resistance in order to enhance the resin dispersion performance. Since it arrange | positions and shape | molds on both surfaces of a base material, the comparatively big unevenness | corrugation of the resin dispersion medium will be reflected also in the design surface which is one side of a molded article. As a result, the designability is impaired, and unevenness is formed on the surface of the molded product, which may cause a problem that aerodynamic characteristics and the like are deteriorated.

このような問題に対処するために、樹脂分散メディアとして凹凸の度合いの小さいものを使用することが考えられるが、そうすると通気抵抗が大きくなりすぎて、目標とする樹脂の分散性能が得られない。また、吸引の際の強化繊維基材内からの通気も悪くなるため、真空度が上がらず、とくに厚い基材に対してその厚み方向に完全に含浸させることが困難になる。   In order to cope with such a problem, it is conceivable to use a resin dispersion medium having a small degree of unevenness. However, if it does so, the airflow resistance becomes too large and the target resin dispersion performance cannot be obtained. Moreover, since the ventilation from the inside of the reinforcing fiber base during suction is worsened, the degree of vacuum does not increase, and it becomes difficult to completely impregnate a thick base in the thickness direction.

このように、樹脂分散メディアの凹凸の大きさが樹脂拡散、通気性能を左右することになるが、樹脂拡散、通気性能を改善するための樹脂分散メディアの凹凸(比較的大きな凹凸)と、成形品の表面性状を改善するための樹脂分散メディアの凹凸(比較的小さな凹凸)とは、相反する関係にある。したがって、強化繊維基材の両面に、実質的に同じ樹脂分散メディアを配置する上記従来方法では、樹脂の含浸性向上と成形品の表面性状向上との両方をともに達成することは困難であり、厚い強化繊維基材を使用する成形では、とくに困難となる。   In this way, the size of the unevenness of the resin-dispersed media will affect the resin diffusion and ventilation performance, but the resin dispersion media unevenness (relatively large unevenness) and molding to improve the resin diffusion and ventilation performance The unevenness (relatively small unevenness) of the resin-dispersed media for improving the surface properties of the product has a contradictory relationship. Therefore, in the above-described conventional method in which substantially the same resin dispersion medium is disposed on both surfaces of the reinforcing fiber base, it is difficult to achieve both improvement of the resin impregnation property and improvement of the surface property of the molded product. This is particularly difficult in molding using a thick reinforcing fiber substrate.

ここで、樹脂の強化繊維基材への含浸性(パーミアビリティ)については、一般に以下の式で表されることが知られている。
I=(ε/(1−ε))√(αP/2)×∫〔dt/√(μ(t)t)〕
I:パーミアビリティ、ε:基材の抵抗、α:定数、P:基材内の真空圧
μ(t):粘度、t:経過時間
ここで、パーミアビリティは樹脂が基材に含浸する距離(厚み)に相当する。
Here, it is known that the impregnation property (permeability) of the resin to the reinforcing fiber base is generally expressed by the following formula.
I = (ε / (1-ε)) √ (αP / 2) × ∫ [dt / √ (μ (t) t)]
I: Permeability, ε: Resistance of base material, α: Constant, P: Vacuum pressure in base material μ (t): Viscosity, t: Elapsed time Here, the permeability is the distance that the resin impregnates the base material ( Thickness).

成形品の表面性状に関する品質を向上させるために、ツール面側に通気材料を配設しないことも考えられるが、その場合、基材内の通気が悪くなり、真空度が上がらないため、特に厚物(厚板)を成形する場合に、完全に含浸させることが困難となる。したがって、厚物を成形するためには、ツール面側に通気のためのメディアを配置することが必要となるが、そうすると前述の如く、反対面側の樹脂拡散性能を維持しつつ、ツール面側の表面性状を向上することが困難となる。   In order to improve the quality of the surface properties of the molded product, it is conceivable not to provide a ventilation material on the tool surface side, but in that case, the ventilation in the base material deteriorates and the degree of vacuum does not increase. When molding an object (thick plate), it is difficult to impregnate completely. Therefore, in order to mold a thick material, it is necessary to arrange a medium for ventilation on the tool surface side, and as described above, while maintaining the resin diffusion performance on the opposite surface side, the tool surface side It becomes difficult to improve the surface properties of the.

また、強化繊維基材への樹脂含浸に関し、基材と樹脂の種類により上記式における各値や定数、粘度は異なるものの、時間が経過するに伴い含浸距離は収束し、さらに、樹脂の粘度上昇が生じる上、やがて樹脂がゲル化するため、樹脂が含浸できる距離には限界が生じ、強化繊維基材がある厚み以上になると、もはや上記の従来方法では、完全に含浸させることが不可能となっていた。
米国特許5,052,906号明細書(請求項1、第1図)
In addition, regarding the resin impregnation into the reinforcing fiber base, the values, constants, and viscosities in the above formulas differ depending on the type of base and resin, but the impregnation distance converges as time passes, and the viscosity of the resin increases. In addition, since the resin gels before long, there is a limit to the distance that the resin can be impregnated, and when the reinforcing fiber substrate exceeds a certain thickness, it is no longer possible to impregnate completely with the conventional method described above. It was.
US Pat. No. 5,052,906 (Claim 1, FIG. 1)

本発明の課題は、上記従来技術における上記のような問題点を解決し、成形品の意匠面の品質を向上させるとともに、厚物構造体を良好な樹脂含浸性をもって成形できるRTM成形方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems in the prior art, improve the quality of the design surface of a molded product, and provide an RTM molding method capable of molding a thick structure with good resin impregnation. There is to do.

上記課題を解決するために、本発明に係るRTM成形方法は、成形型内に強化繊維基材を配置するとともに、該強化繊維基材の両面上に樹脂流動抵抗が前記強化繊維基材よりも低い樹脂拡散媒体を配置し、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を前記強化繊維基材中に含浸させるRTM成形方法において、前記強化繊維基材の第1の面上に配置される第1の樹脂拡散媒体の樹脂流動抵抗を、第2の面上に配置される第2の樹脂拡散媒体の樹脂流動抵抗よりも低く設定し、前記第1の樹脂拡散媒体に樹脂を注入しつつ前記第2の樹脂拡散媒体を介して吸引することにより、前記強化繊維基材中に樹脂を含浸させることを特徴とする方法からなる(第1の方法)。   In order to solve the above-described problems, the RTM molding method according to the present invention includes a reinforcing fiber base disposed in a mold, and a resin flow resistance on both surfaces of the reinforcing fiber base is higher than that of the reinforcing fiber base. An RTM in which a low resin diffusion medium is placed, the inside of the mold is decompressed by suction, a resin is injected into the mold through the resin diffusion medium, and the reinforcing resin base material is impregnated with the injected resin In the molding method, the resin flow resistance of the first resin diffusion medium disposed on the first surface of the reinforcing fiber substrate is the resin flow resistance of the second resin diffusion medium disposed on the second surface. The reinforcing fiber base material is impregnated with the resin by suction through the second resin diffusion medium while injecting the resin into the first resin diffusion medium. It consists of a method (first method).

すなわち、本発明に係るRTM成形方法においては、強化繊維基材の両面に配置される樹脂拡散媒体の樹脂流動抵抗に意図的に大小関係を持たせる。樹脂流動抵抗は、現実的には、通気抵抗を測定し、測定された通気抵抗に対応する値として把握できる。   That is, in the RTM molding method according to the present invention, the resin flow resistance of the resin diffusion medium disposed on both surfaces of the reinforcing fiber base is intentionally given a magnitude relationship. In practice, the resin flow resistance can be grasped as a value corresponding to the measured ventilation resistance by measuring the ventilation resistance.

本発明において、強化繊維基材は単層のものでもよく、複数の強化繊維材の積層体からなるものでもよいが、本発明に係るRTM成形方法は特に厚物の成形、つまり、厚い強化繊維基材に樹脂を含浸させる成形に好適なものであることから、本発明は、主として、複数の強化繊維材の積層体からなる強化繊維基材を使用する場合を対象としている。   In the present invention, the reinforcing fiber substrate may be a single layer or may be composed of a laminate of a plurality of reinforcing fiber materials, but the RTM molding method according to the present invention is particularly a thick article, that is, a thick reinforcing fiber. Since the present invention is suitable for molding in which a base material is impregnated with a resin, the present invention is mainly directed to the case where a reinforcing fiber base material composed of a laminate of a plurality of reinforcing fiber materials is used.

この本発明に係るRTM成形方法においては、上記第2の樹脂拡散媒体の樹脂流動抵抗を上記強化繊維基材の樹脂流動抵抗の1/3以下とすることが好ましい。これによって、第2の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)は第1の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)よりは高いものの、強化繊維基材の樹脂流動抵抗(通気抵抗)に比べると十分に低く抑えられるので、強化繊維基材からの通気が悪くなって基材内の真空度が下がることが抑えられ、厚い強化繊維基材に対しても樹脂含浸性が損なわれることが回避される。   In the RTM molding method according to the present invention, the resin flow resistance of the second resin diffusion medium is preferably set to 1/3 or less of the resin flow resistance of the reinforcing fiber base. As a result, the resin flow resistance (air flow resistance) of the second resin diffusion medium is higher than the resin flow resistance (air flow resistance) of the first resin diffusion medium, but the resin flow resistance (air flow resistance) of the reinforcing fiber base is increased. Compared to a sufficiently low level, the ventilation from the reinforcing fiber base is prevented from worsening and the degree of vacuum in the base is prevented from being lowered, and the resin impregnation property is impaired even for a thick reinforcing fiber base. Avoided.

また、上記第1の樹脂拡散媒体の樹脂流動抵抗を上記強化繊維基材の樹脂流動抵抗の1/10以下とすることが好ましい。これによって、第1の樹脂拡散媒体に注入された樹脂の、強化繊維基材の面方向への拡散性が十分に高く確保され、第1の樹脂拡散媒体に注入された樹脂は、該面に沿う方向に迅速に拡散されつつ、強化繊維基材の厚み方向に迅速に含浸されていくことになる。このような第1の樹脂拡散媒体の樹脂流動抵抗、第2の樹脂拡散媒体の樹脂流動抵抗が満足された上で、第1の樹脂拡散媒体の樹脂流動抵抗と第2の樹脂拡散媒体の樹脂流動抵抗に大小関係が持たせられる。   The resin flow resistance of the first resin diffusion medium is preferably 1/10 or less of the resin flow resistance of the reinforcing fiber substrate. This ensures that the resin injected into the first resin diffusion medium has a sufficiently high diffusibility in the surface direction of the reinforcing fiber base, and the resin injected into the first resin diffusion medium is not deposited on the surface. It is rapidly impregnated in the direction along the direction and rapidly impregnated in the thickness direction of the reinforcing fiber substrate. After satisfying the resin flow resistance of the first resin diffusion medium and the resin flow resistance of the second resin diffusion medium, the resin flow resistance of the first resin diffusion medium and the resin of the second resin diffusion medium are satisfied. A magnitude relationship is given to flow resistance.

また、本発明に係るRTM成形方法においては、とくに、樹脂が上記第2の面に到達する前に、上記第2の樹脂拡散媒体からも樹脂の注入を開始することが好ましい。つまり、この時点から、実質的に両面からの樹脂含浸が開始される。   Moreover, in the RTM molding method according to the present invention, it is particularly preferable to start the injection of the resin from the second resin diffusion medium before the resin reaches the second surface. That is, resin impregnation from both sides substantially starts from this point.

また、本発明に係るRTM成形方法においては、少なくとも一方の樹脂拡散媒体と強化繊維基材との間に、成形後に樹脂拡散媒体と一体的に剥離可能なピールプライを介装することが好ましい。これによって樹脂拡散媒体を容易に剥離させることができる。ただし、成形品を脱型後、少なくとも一方の樹脂拡散媒体を、成形品から剥離せずに成形品内に残存させることもできる。この場合には、樹脂拡散媒体を残存させる側に対してピールプライは不要である。   In the RTM molding method according to the present invention, it is preferable to interpose a peel ply that can be peeled integrally with the resin diffusion medium after molding between at least one of the resin diffusion medium and the reinforcing fiber substrate. As a result, the resin diffusion medium can be easily peeled off. However, after demolding the molded product, at least one of the resin diffusion media can be left in the molded product without peeling from the molded product. In this case, no peel ply is required for the side on which the resin diffusion medium remains.

また、本発明に係るRTM成形方法においては、少なくとも一方の樹脂拡散媒体と強化繊維基材との間に多孔性シートを介装することもできる。この多孔性シートは、上記ピールプライとは異なる機能を有し、樹脂拡散媒体の樹脂拡散機能を保ちつつ樹脂拡散媒体の凹凸の強化繊維基材側への転写を抑制するためのシートである。したがって、成形品の意匠面側への配置が好ましいものである。   Moreover, in the RTM molding method according to the present invention, a porous sheet can be interposed between at least one of the resin diffusion media and the reinforcing fiber substrate. This porous sheet has a function different from that of the peel ply, and is a sheet for suppressing transfer of unevenness of the resin diffusion medium to the reinforcing fiber substrate side while maintaining the resin diffusion function of the resin diffusion medium. Therefore, the arrangement of the molded product on the design surface side is preferable.

さらに、本発明に係るRTM成形方法においては、少なくとも一方の樹脂拡散媒体を、成形型の内面に樹脂流路としての溝を設けることにより構成することもできる。この場合、別途樹脂拡散媒体を作成しなくても、成形型の内面自体を樹脂拡散媒体として用いることが可能となる。   Furthermore, in the RTM molding method according to the present invention, at least one of the resin diffusion media can be configured by providing grooves as resin channels on the inner surface of the molding die. In this case, the inner surface of the mold itself can be used as the resin diffusion medium without separately preparing a resin diffusion medium.

また、本発明は、とくに優れた意匠面を成形する観点から、次のようなRTM成形方法も提供する。すなわち、本発明に係るRTM成形方法は、成形型に強化繊維基材を配置するとともに、該強化繊維基材の、成形型と反対側の面に、樹脂流動抵抗が前記基材よりも低い樹脂拡散媒体を配置するとともに、該強化繊維基材と成形型面との間に、気体透過膜と通気性基材からなる脱気媒体を設け、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を、前記気体透過膜と成形型間に形成された脱気空間から吸引することにより、前記強化繊維基材内に樹脂を含浸させることを特徴とする方法からなる(第2の方法)。   The present invention also provides the following RTM molding method from the viewpoint of molding a particularly excellent design surface. That is, in the RTM molding method according to the present invention, a reinforcing fiber base is disposed in a molding die, and a resin flow resistance is lower than that of the base on the surface of the reinforcing fiber base opposite to the molding die. A diffusion medium is disposed, a deaeration medium comprising a gas permeable membrane and a breathable base material is provided between the reinforcing fiber base and the mold surface, and the mold is decompressed by suction, and then the molding is performed. The resin is injected into the mold through the resin diffusion medium, and the injected resin is sucked from the deaeration space formed between the gas permeable membrane and the mold, so that the resin is injected into the reinforcing fiber base. It comprises a method characterized by impregnation (second method).

この第2の方法において、上記強化繊維基材は、たとえば強化繊維の積層体からなる。   In the second method, the reinforcing fiber base is made of, for example, a laminate of reinforcing fibers.

また、上記第2の方法においては、上記気体透過膜としては、成形後に、成形品から剥離可能な離型性を有するものを使用することが好ましい。   Moreover, in the said 2nd method, it is preferable to use what has the release property which can peel from a molded article after shaping | molding as said gas permeable film.

また、上記第2の方法において、とくの面積の広い成形品を成形する場合には、上記樹脂拡散媒体の上部に、少なくとも2カ所以上の樹脂注入ゲートを配置するとともに、樹脂注入に際して、少なくとも隣り合う樹脂注入ゲート2カ所から、または、すべての樹脂注入ゲートから、同時に樹脂注入することが好ましい。   In the second method, when a molded product having a large area is formed, at least two or more resin injection gates are arranged above the resin diffusion medium and at least adjacent to the resin injection. It is preferable to inject the resin simultaneously from two matching resin injection gates or from all the resin injection gates.

さらに、上記第2の方法において、とくの面積の広い成形品を成形する場合には、上記気体透過膜と成形型間に形成された脱気空間からの吸引経路に加えて、成形型内に少なくとも1つの別の吸引経路を設けることが好ましい。   Furthermore, in the second method, when molding a molded product having a large area, in addition to the suction path from the deaeration space formed between the gas permeable membrane and the molding die, Preferably at least one additional suction path is provided.

上記のような本発明に係るRTM成形方法(第1の方法)においては、より低い樹脂流動抵抗を有する第1の樹脂拡散媒体に樹脂が注入され、注入された樹脂が、強化繊維基材の第1の面に沿う方向に迅速にかつ十分に広く拡散されつつ、強化繊維基材内の厚み方向に迅速に含浸されていく。そして、基本的に、より高い樹脂流動抵抗を有する第2の樹脂拡散媒体を介しての吸引により成形型内が減圧され、上記注入樹脂が吸引・減圧状態の強化繊維基材内に含浸されていく。このとき、第2の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)は第1の樹脂拡散媒体の樹脂流動抵抗(通気抵抗)よりは高いものの、強化繊維基材の樹脂流動抵抗(通気抵抗)に比べると十分に低く抑えられているので、強化繊維基材からの通気が悪くなって基材内の真空度が下がることが抑えられ、樹脂の迅速な含浸性が確保される。したがって、厚い強化繊維基材に対しても十分に良好な樹脂含浸性が確保される。第2の樹脂拡散媒体は、その樹脂流動抵抗(通気抵抗)が第1の樹脂拡散媒体のそれよりも高く設定されるので、第2の樹脂拡散媒体は、第1の樹脂拡散媒体に比べ、凹凸の小さな媒体に形成でき、この第2の樹脂拡散媒体の表面形態の成形品表面への転写が生じたとしても、その転写による成形品表面の凹凸の度合いは小さく抑えられる。したがって、この表面側を意匠面側とすることにより、凹凸の小さな望ましい成形品の意匠面が得られることになる。   In the RTM molding method (first method) according to the present invention as described above, the resin is injected into the first resin diffusion medium having a lower resin flow resistance, and the injected resin is the reinforcing fiber base material. While being diffused quickly and sufficiently widely in the direction along the first surface, it is rapidly impregnated in the thickness direction in the reinforcing fiber substrate. Basically, the inside of the mold is depressurized by suction through the second resin diffusion medium having a higher resin flow resistance, and the injected resin is impregnated into the reinforcing fiber base in the suction / depressurized state. Go. At this time, the resin flow resistance (air flow resistance) of the second resin diffusion medium is higher than the resin flow resistance (air flow resistance) of the first resin diffusion medium, but the resin flow resistance (air flow resistance) of the reinforcing fiber base material. Since it is suppressed sufficiently low, the ventilation from the reinforcing fiber base material is prevented from being deteriorated and the degree of vacuum in the base material is prevented from being lowered, and the rapid impregnation of the resin is ensured. Therefore, a sufficiently good resin impregnation property is ensured even for a thick reinforcing fiber substrate. Since the second resin diffusion medium has its resin flow resistance (air flow resistance) set higher than that of the first resin diffusion medium, the second resin diffusion medium is compared with the first resin diffusion medium, Even when the surface of the second resin diffusion medium can be transferred onto the surface of the molded product, the degree of unevenness on the surface of the molded product due to the transfer can be kept small. Therefore, by setting this surface side as the design surface side, it is possible to obtain a design surface of a desired molded product with small unevenness.

そして、さらに厚い強化繊維基材への樹脂含浸が要求される成形においては、とくに、上記のように第1の樹脂拡散媒体側からの強化繊維基材への樹脂含浸だけでは、強化繊維基材の第2の樹脂拡散媒体側表面まで十分に樹脂を含浸させることが困難な場合(従来の樹脂含浸限界を越える場合)には、第1の樹脂拡散媒体側からの強化繊維基材内に含浸されてきた樹脂が強化繊維基材の第2の面に到達する前に、第2の樹脂拡散媒体からも樹脂の注入を開始することができる。この第2の樹脂拡散媒体側からの樹脂注入により、強化繊維基材内の樹脂が十分に含浸されにくかった部分、つまり、第2の面側の部分に対しても、樹脂含浸が補われるようになり、強化繊維基材の厚み方向の全体にわたって、十分に樹脂を含浸させることが可能になる。すなわち、このプロセスにおいては、強化繊維基材の厚み方向への樹脂含浸は、主に第1の樹脂拡散媒体側からの含浸によることになり、含浸不足分が第2の樹脂拡散媒体側からの含浸により補われることになる。また、第1の樹脂拡散媒体と第2の樹脂拡散媒体に通気抵抗(樹脂流動抵抗)に大小関係を持たせてあるので、第1の樹脂拡散媒体側からは樹脂の迅速な含浸が行われつつ、第2の樹脂拡散媒体側においては、樹脂含浸が補われるとともに、第1の樹脂拡散媒体側から含浸される樹脂により押し出されてきたボイドが、第2の樹脂拡散媒体側から含浸されてくる樹脂によって強化繊維基材内に閉じ込められるのではなく、側方へと、つまり、強化繊維基材の第2の面に沿う方向へと、比較的遅い速度で押し出されることになる。その結果、両面側からの樹脂含浸であるにもかかわらず、ボイドが強化繊維基材内に閉じ込められることが回避され、しかも、第2の面側での樹脂含浸が補われることになり、ボイド封入の問題を伴うことなく良好に厚物を成形することが可能になる。しかもこのとき、上述したように第2の樹脂拡散媒体側を成形品の意匠面とすることにより、凹凸の小さな優れた意匠面も同時に得られることになる。つまり、厚物成形と表面品質の向上が同時に達成される。   And in the molding which requires resin impregnation to a thicker reinforcing fiber base material, the reinforcing fiber base material can be obtained only by impregnating the reinforcing fiber base material from the first resin diffusion medium side as described above. When it is difficult to sufficiently impregnate the resin up to the surface of the second resin diffusion medium (when the conventional resin impregnation limit is exceeded), the reinforcing fiber base material from the first resin diffusion medium side is impregnated. Before the resin that has been reached reaches the second surface of the reinforcing fiber substrate, the injection of the resin can also be started from the second resin diffusion medium. By the resin injection from the second resin diffusion medium side, the resin impregnation is also compensated for the portion in which the resin in the reinforcing fiber base is not sufficiently impregnated, that is, the second surface side portion. Thus, the resin can be sufficiently impregnated throughout the thickness direction of the reinforcing fiber base. That is, in this process, the resin impregnation in the thickness direction of the reinforcing fiber base is mainly due to the impregnation from the first resin diffusion medium side, and the shortage of impregnation is from the second resin diffusion medium side. It will be compensated by impregnation. In addition, since the first resin diffusion medium and the second resin diffusion medium have a magnitude relationship in ventilation resistance (resin flow resistance), the first resin diffusion medium is rapidly impregnated with resin. On the other hand, on the second resin diffusion medium side, the resin impregnation is supplemented, and the void pushed out by the resin impregnated from the first resin diffusion medium side is impregnated from the second resin diffusion medium side. Instead of being confined within the reinforcing fiber substrate by the coming resin, it will be extruded at a relatively slow rate to the side, ie, along the second surface of the reinforcing fiber substrate. As a result, it is avoided that the void is confined in the reinforcing fiber base material despite the resin impregnation from both sides, and the resin impregnation on the second surface side is supplemented. It becomes possible to form a thick article well without enclosing problems. In addition, at this time, as described above, the design surface of the molded product is the second resin diffusion medium side, so that an excellent design surface with small unevenness can be obtained at the same time. That is, thick molding and surface quality improvement are achieved at the same time.

また、前述の本発明に係るRTM成形方法(第2の方法)は、次のような場合に有効である。すなわち、成形型側の成形面(意匠面)の平滑性がさらに強く要求される場合や、さらに厚くかつ大面積の強化繊維基材への樹脂含浸が要求される成形においては、とくに、成形型面のあらゆる場所からの脱気経路をつねに有効に働かせる手段として、該強化繊維基材と成形型面との間に、気体透過膜と通気性基材からなる脱気媒体を設けることができる。それにより、樹脂注入時に、強化繊維基材の下面側(意匠面成形側)に樹脂が到達する時間に差があって含浸部分の遅い箇所が生じようとしても、気体透過膜と成形型間に形成された脱気空間から吸引することにより、最終的にその面のすべての部分にわたって樹脂を完全に含浸させることが可能となる。その結果、成形型面に沿った平滑性の良好な意匠面が得られる。   Further, the RTM molding method (second method) according to the present invention is effective in the following cases. That is, in the case where the smoothness of the molding surface (design surface) on the mold side is required more strongly, or in the molding that requires resin impregnation into a thicker and larger area reinforcing fiber base material, As a means for making the degassing path from any place on the surface always effective, a degassing medium comprising a gas permeable membrane and a breathable substrate can be provided between the reinforcing fiber substrate and the mold surface. As a result, even when there is a difference in the time for the resin to reach the lower surface side (design surface molding side) of the reinforcing fiber base during resin injection and a slow part of the impregnated part is generated, the gas permeable membrane and the mold By suction from the formed deaeration space, it is finally possible to completely impregnate the resin over all parts of the surface. As a result, a design surface with good smoothness along the mold surface can be obtained.

また、少なくとも隣り合った樹脂注入ゲートから、さらには、すべての樹脂注入ゲートから同時に樹脂注入した場合、通常は、樹脂の流れが重なる部分ができて、吸引しきれない領域が発生し、未含浸部ができることが多いが、上記方法によれば、常に脱気経路が確保されているため、最終的にすべての面を完全に含浸させることが可能となる。   In addition, when resin is injected from at least adjacent resin injection gates, and also from all resin injection gates at the same time, there is usually a region where the resin flows overlap and an area that cannot be completely sucked is generated, which is not impregnated. However, according to the above method, since the deaeration path is always secured, it is possible to finally completely impregnate all surfaces.

また、気体透過膜は、例えば表面に非常に微細な穴があいており、平滑な面を形成しているものが好ましいが、このような態様のものを用いると、前記通気性基材に薄い凹凸の少ない基材を用いることと併せて、成形品の表面品位を向上させることができる。   Further, the gas permeable membrane preferably has, for example, very fine holes on the surface and forms a smooth surface. However, when such a mode is used, the gas-permeable membrane is thin on the breathable substrate. Combined with the use of a substrate with less unevenness, the surface quality of the molded product can be improved.

以上説明したように、本発明のRTM成形方法によれば、樹脂含浸の際に要求される通気性を十分に確保しつつ、強化繊維基材内に十分に良好に樹脂を含浸させることができ、成形品の意匠面に形成される凹凸を小さく抑えて、優れた表面性状の成形品を得ることができる。また、とくに厚物成形において、従来方法では不具合を生じることなく基材の厚み方向全体にわたって樹脂を含浸させることが不可能であった場合に対しても、ボイド等を発生させることなく、目標とする成形を行うことが可能となる。   As described above, according to the RTM molding method of the present invention, the reinforcing fiber base material can be sufficiently satisfactorily impregnated while sufficiently ensuring the air permeability required for resin impregnation. In addition, it is possible to obtain a molded article having excellent surface properties by suppressing the unevenness formed on the design surface of the molded article to be small. In particular, in thick molding, even if it is impossible to impregnate the resin throughout the thickness direction of the base material without causing problems in the conventional method, the target and It is possible to perform molding.

したがって、本発明は、とくに厚物成形品のRTM成形に適しており、本発明を適用すれば、10mm厚以上が要求されるような構造体(たとえば、航空機部材の翼部材等)の成形を、問題を生じさせることなく容易に行うことが可能となる。   Therefore, the present invention is particularly suitable for RTM molding of thick molded articles. When the present invention is applied, a structure (for example, a wing member of an aircraft member) that requires a thickness of 10 mm or more is molded. It is possible to easily carry out without causing a problem.

以下に、本発明の望ましい実施の形態を、図面を参照しながら説明する。
図1は、本発明の第1実施態様に係るRTM成形方法に用いられる成形装置の概略縦断面図である。ベースとなる成形型1は、たとえば、ステンレスから作製され、平板状のものに構成される。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic longitudinal sectional view of a molding apparatus used in the RTM molding method according to the first embodiment of the present invention. The molding die 1 as a base is made of, for example, stainless steel and is configured in a flat plate shape.

本実施態様においては、成形型1上に第2の樹脂拡散媒体としてのブリーザー2が配置される。ここでブリーザーとは、前述した従来の樹脂拡散メディア程には樹脂の流動抵抗が低くないが、樹脂が強化繊維基材を流れる流動抵抗よりも遙かに低い樹脂流動抵抗を有するものである。定量的には、ブリーザー2の樹脂流動抵抗は、強化繊維基材の樹脂流動抵抗の1/3以下であることが好ましい。さらに、ブリーザー2の表面の凹凸(表面粗さ)は、強化繊維基材の表面凹凸(表面粗さ)の1.3倍以下であることが好ましい。ブリーザー2としては、具体的には、強化繊維であるガラス繊維や炭素繊維からなる低目付(100g/m2 以下)のサーフェスマットや平織物、メッシュ織物、または合成繊維からなる太デニール(200デニール以上)の織物や編物が好ましい。 In this embodiment, a breather 2 as a second resin diffusion medium is disposed on the mold 1. Here, the breather has a resin flow resistance that is not as low as that of the conventional resin diffusion media described above, but is much lower than the flow resistance of the resin flowing through the reinforcing fiber substrate. Quantitatively, it is preferable that the resin flow resistance of the breather 2 is 1/3 or less of the resin flow resistance of the reinforcing fiber base. Furthermore, the surface irregularities (surface roughness) of the breather 2 are preferably 1.3 times or less of the surface irregularities (surface roughness) of the reinforcing fiber substrate. Specifically, the breather 2 is a surface mat, a plain fabric, a mesh fabric, or a thick denier (200 denier) made of glass fiber or carbon fiber, which is a reinforcing fiber, with a low basis weight (100 g / m 2 or less). The woven fabrics and knitted fabrics described above are preferable.

ブリーザー2の上には、ピールプライ3aが配置される。ピールプライ3aは、成形体からメディア等を容易に除去するために敷布され、ピールプライ3aとしては、たとえば、ナイロン製タフタのように離型の機能をなす織物が使用される。   A peel ply 3 a is disposed on the breather 2. The peel ply 3a is laid in order to easily remove media and the like from the molded body. As the peel ply 3a, for example, a woven fabric having a releasing function such as a nylon taffeta is used.

ピールプライ3aの上には、強化繊維基材4が配置される。本実施態様では、強化繊維基材4は、複数の強化繊維材、とくに複数の強化繊維織物を積層したものに形成されている。本発明は、とくにこのような複数の強化繊維材が積層された厚い強化繊維基材4を用いた成形に好適なものである。ただし、1枚の強化繊維材からなる強化繊維基材を使用する場合にも、もちろん、本発明の適用は可能であり、その場合にも、本発明はとくに厚い強化繊維基材を使用する成形に好適なものである。   A reinforcing fiber base 4 is disposed on the peel ply 3a. In this embodiment, the reinforcing fiber base 4 is formed by laminating a plurality of reinforcing fiber materials, particularly a plurality of reinforcing fiber fabrics. The present invention is particularly suitable for molding using a thick reinforcing fiber substrate 4 in which a plurality of such reinforcing fiber materials are laminated. However, even when a reinforcing fiber base made of a single reinforcing fiber material is used, the present invention can of course be applied. In this case, the present invention is a molding using a particularly thick reinforcing fiber base. It is suitable for.

強化繊維基材4の上には、ピールプライ3bを介して第1の樹脂拡散媒体5が配置される。第1の樹脂拡散媒体5は、表面に凹凸を有し、樹脂の流動抵抗が強化繊維基材4(強化繊維材の積層体)の樹脂流動抵抗の1/10以下の媒体である。第1の樹脂拡散媒体5と第2の樹脂拡散媒体としてのブリーザー2には、樹脂流動抵抗に大小関係が付与されており、ブリーザー2の樹脂流動抵抗の方が第1の樹脂拡散媒体5の樹脂流動抵抗よりも高く設定されている。第1の樹脂拡散媒体5としては、具体的には、ポリエチレンやポリプロピレン樹脂製のメッシュ織物で、目開きが#400以下のものが好ましい。この配置の結果、強化繊維基材4の第1の面に対しては、第1の樹脂拡散媒体5が配置され、反対側の第2の面に対しては、第2の樹脂拡散媒体としてのブリーザー2が配置されることになる。   A first resin diffusion medium 5 is disposed on the reinforcing fiber base 4 via a peel ply 3b. The first resin diffusion medium 5 is a medium having irregularities on the surface and having a resin flow resistance of 1/10 or less of the resin flow resistance of the reinforcing fiber substrate 4 (a laminate of reinforcing fiber materials). The first resin diffusion medium 5 and the breather 2 as the second resin diffusion medium are given a magnitude relationship in the resin flow resistance, and the resin flow resistance of the breather 2 is greater than that of the first resin diffusion medium 5. It is set higher than the resin flow resistance. Specifically, the first resin diffusion medium 5 is preferably a mesh fabric made of polyethylene or polypropylene resin and having an opening of # 400 or less. As a result of this arrangement, the first resin diffusion medium 5 is arranged on the first surface of the reinforcing fiber base 4 and the second resin diffusion medium is arranged on the opposite second surface. The breather 2 is arranged.

このように成形型1上に配置されたものの全体がバッグ材8で覆われる。バッグ材8は、減圧キャビティを形成するための気密材料であるが、バッグ材8には、耐熱性等を考慮して、たとえばナイロン製のフィルムを用いることが好ましい。バッグ材8で覆われた内部に、第1の樹脂拡散媒体5に対して樹脂注入ゲート6cが設けられ、第2の樹脂拡散媒体としてのブリーザー2に対して吸引により内部を減圧する吸引ゲート6a、6bが設けられる。これらゲート6a、6b、6cは、たとえば、アルミニウム製のCチャンネル材等を使用して構成され、これらチャンネル材は、プラスチック製のチューブを介して外部部材と接続される。バッグ材8の縁部と成形型1との間には、粘着性の高い合成ゴム製のシーラント7が介装され、この間がシールされて、バッグ材8内を減圧状態に保つために外部からの空気の流入が防止される。プラスチック製のポット12内には含浸すべきFRPマトリックス樹脂としての熱硬化性樹脂10が貯留されており、適切なタイミングでバルブ9を開けることにより、樹脂注入ゲート6cを介して樹脂が注入される。真空ポンプ11により、吸引ゲート6a、6bを介してバッグ材8で覆われたキャビティ内が減圧状態に保持される。なお、バッグ材8として、第1のバッグ材をさらに第2のバッグ材で覆い二重バッグとすることで、空気漏れを防ぐことができ、その結果、強化繊維の体積含有率(Vf)を向上させることができる。   In this way, the entire material disposed on the mold 1 is covered with the bag material 8. The bag material 8 is an airtight material for forming a decompression cavity, but it is preferable to use, for example, a nylon film for the bag material 8 in consideration of heat resistance and the like. In the interior covered with the bag material 8, a resin injection gate 6c is provided for the first resin diffusion medium 5, and a suction gate 6a for decompressing the interior by suction with respect to the breather 2 as the second resin diffusion medium. , 6b are provided. These gates 6a, 6b, and 6c are configured using, for example, an aluminum C-channel material or the like, and these channel materials are connected to an external member via a plastic tube. A highly adhesive synthetic rubber sealant 7 is interposed between the edge of the bag material 8 and the mold 1, and the space between the sealant 7 is sealed to keep the bag material 8 in a reduced pressure state from the outside. Inflow of air is prevented. A thermosetting resin 10 as an FRP matrix resin to be impregnated is stored in the plastic pot 12, and the resin is injected through the resin injection gate 6c by opening the valve 9 at an appropriate timing. . The inside of the cavity covered with the bag material 8 is held in a reduced pressure state by the vacuum pump 11 through the suction gates 6a and 6b. In addition, as the bag material 8, the first bag material is further covered with the second bag material to form a double bag, thereby preventing air leakage. As a result, the volume content (Vf) of the reinforcing fiber is reduced. Can be improved.

また、バッグ材8が一重バッグであっても、その外周縁にシーラント7を二重に並列配置することでも空気漏れを防ぐことができ、二重バッグと同様な効果を上げることができる。この場合は、二重バッグとすることよりも副資材の使用量と取付時間を低減でき、より低コストに成形できるメリットがある。   Moreover, even if the bag material 8 is a single bag, air leakage can be prevented by arranging the sealants 7 in parallel on the outer periphery of the bag material 8, and the same effect as the double bag can be obtained. In this case, there is an advantage that the usage amount and the attachment time of the auxiliary material can be reduced and the molding can be performed at a lower cost than the double bag.

なお、図1に示した成形装置においては、強化繊維基材4の上面には、従来通り、ピールプライ3b/樹脂分散媒体5を配置し、強化繊維基材4の下面側にはピールプライ3a/ブリーザー2を配置したが、ピールプライ3aを配置せずに、成形後、ブリーザー2を成形体にそのまま残すようにしてもよい。   In the molding apparatus shown in FIG. 1, the peel ply 3b / resin dispersion medium 5 is disposed on the upper surface of the reinforcing fiber substrate 4 as in the conventional manner, and the peel ply 3a / breather is disposed on the lower surface side of the reinforcing fiber substrate 4. However, the breather 2 may be left as it is in the molded body after molding without arranging the peel ply 3a.

本実施態様における成形は次のように行われる。
常温または加熱雰囲気下で、図1に示した構成の積層体を成形型1(ツール)面上に配置し、上側に配置した樹脂注入ゲート6cと下側に配置した吸引ゲート6a、6bを含めてバッグ材で覆う。この状態において、バッグ材8内を吸引ゲート6a、6bを通しての吸引により減圧しながら、樹脂注入ゲート6cより樹脂を注入すると、マトリックス樹脂10は第1の樹脂拡散媒体5内を強化繊維基材4の上面に沿う方向に迅速に拡散しつつ強化繊維基材4の上面から下面に向けて流動し強化繊維基材4内に含浸していく。含浸が終了した後、常温または加熱雰囲気下で樹脂を硬化させた後、バッグ材8を剥がして成形体を脱型する。その後ピールプライ3a、3b、樹脂分散媒体5とブリーザー2は剥脱して製品から取り除く。ただし、一形態としてブリーザー2は成型品にそのまま残してもよい。
Molding in this embodiment is performed as follows.
The laminated body having the structure shown in FIG. 1 is disposed on the mold 1 (tool) surface at room temperature or in a heated atmosphere, and includes a resin injection gate 6c disposed on the upper side and suction gates 6a and 6b disposed on the lower side. Cover with bag material. In this state, when the resin is injected from the resin injection gate 6c while the bag material 8 is depressurized by suction through the suction gates 6a and 6b, the matrix resin 10 passes through the first resin diffusion medium 5 in the reinforcing fiber substrate 4. The reinforcing fiber base material 4 flows from the upper surface to the lower surface while rapidly diffusing in the direction along the upper surface of the reinforcing fiber base material 4 and is impregnated into the reinforcing fiber base material 4. After the impregnation is completed, the resin is cured at room temperature or in a heated atmosphere, and then the bag material 8 is peeled off to remove the molded body. Thereafter, the peel plies 3a and 3b, the resin dispersion medium 5 and the breather 2 are peeled off and removed from the product. However, the breather 2 may be left as it is in the molded product as one form.

この成形においては、第1の樹脂拡散媒体5の樹脂流動抵抗は低く設定されているので、第1の樹脂拡散媒体5に注入された樹脂は、強化繊維基材4の第1の面に沿う方向に迅速にかつ十分に広く拡散されつつ、強化繊維基材4内にその厚み方向に迅速に含浸されていく。このときバッグ材8内部を減圧するために、第2の樹脂拡散媒体としてのブリーザー2を介してバッグ材8内部から吸引されるが、ブリーザー2の樹脂流動抵抗(通気抵抗)は第1の樹脂拡散媒体5の樹脂流動抵抗(通気抵抗)よりは高いものの、強化繊維基材4の樹脂流動抵抗(通気抵抗)に比べると十分に低く抑えられているので、強化繊維基材からの通気が悪くなって基材内の真空度が下がることが抑えられ、樹脂の迅速な含浸性が確保される。したがって、厚い強化繊維基材4に対しても第1の樹脂拡散媒体5側からの十分に良好な樹脂含浸性が確保される。そして、ブリーザー2の樹脂流動抵抗(通気抵抗)が第1の樹脂拡散媒体5のそれよりも高く設定されているので、ブリーザー2は、第1の樹脂拡散媒体5に比べ、凹凸の小さな媒体に形成できる。したがって、たとえこのようなブリーザー2の表面形態が成形品の表面に転写したとしても、その転写による成形品表面の凹凸の度合いは小さく抑えられる。つまり、良好な樹脂含浸性を確保しつつ、第2の樹脂拡散媒体側における成形品表面の凹凸が小さく抑えられることになる。この凹凸の小さな成形品表面側を意匠面側とすることにより、望ましい表面性状の成形品が得られることになる。すなわち、従来方法において樹脂の硬化により成形品のツール面側に生じていたメディアの痕跡を、無くすることが可能になる。   In this molding, since the resin flow resistance of the first resin diffusion medium 5 is set low, the resin injected into the first resin diffusion medium 5 is along the first surface of the reinforcing fiber base 4. While being diffused quickly and sufficiently widely in the direction, the reinforcing fiber substrate 4 is rapidly impregnated in the thickness direction. At this time, in order to depressurize the inside of the bag material 8, it is sucked from the inside of the bag material 8 through the breather 2 as the second resin diffusion medium, but the resin flow resistance (breathing resistance) of the breather 2 is the first resin. Although it is higher than the resin flow resistance (breathing resistance) of the diffusion medium 5, it is sufficiently low compared to the resin flow resistance (breathing resistance) of the reinforcing fiber base 4, so that the ventilation from the reinforcing fiber base is poor. Thus, the lowering of the degree of vacuum in the substrate is suppressed, and rapid impregnation of the resin is ensured. Therefore, a sufficiently good resin impregnation property from the first resin diffusion medium 5 side is ensured even for the thick reinforcing fiber base 4. Since the resin flow resistance (breathing resistance) of the breather 2 is set higher than that of the first resin diffusion medium 5, the breather 2 is a medium with less irregularities than the first resin diffusion medium 5. Can be formed. Therefore, even if such a surface form of the breather 2 is transferred to the surface of the molded product, the degree of unevenness on the surface of the molded product due to the transfer can be kept small. That is, the unevenness on the surface of the molded product on the second resin diffusion medium side can be kept small while ensuring good resin impregnation. By setting the surface side of the molded product having small irregularities as the design surface side, a molded product having a desirable surface property can be obtained. That is, it is possible to eliminate the trace of the media that has occurred on the tool surface side of the molded product due to the curing of the resin in the conventional method.

図2は、本発明の第2実施態様に係る成形装置の概略縦断面図で、ブリーザーの代わりに、強化繊維基材の片面に第2の樹脂拡散媒体5aと多孔シート20を配置したものを示している。図3は、本発明の第3実施態様に係る成形装置の概略縦断面図で、図2における成形型面上に配置した樹脂拡散媒体の代わりに、成形型に溝を加工することにより成形型面自体を樹脂注入側の樹脂拡散媒体として構成したものを示している。以下、図1の装置に比べて異なる点のみを説明する。   FIG. 2 is a schematic longitudinal sectional view of a molding apparatus according to a second embodiment of the present invention, in which a second resin diffusion medium 5a and a porous sheet 20 are arranged on one side of a reinforcing fiber base instead of a breather. Show. FIG. 3 is a schematic longitudinal sectional view of a molding apparatus according to a third embodiment of the present invention, and a mold is formed by processing grooves in the mold instead of the resin diffusion medium arranged on the mold surface in FIG. The surface itself is configured as a resin diffusion medium on the resin injection side. Only differences from the apparatus of FIG. 1 will be described below.

20は多孔シートを示しており、多孔シート20の材料としては、金属薄板材(アルミニウムやステンレス材)、スチールのパンチングメタルで厚さが0.1mm以上、あるいは、樹脂フィルム(ナイロン、ポリエステル、ポリエチレン、ポリプロピレン、ポリイミド)で厚さが0.2mm以上、FRPシートで厚さが0.2mm以上のシート材を用いることが好ましい。孔は、加工上は丸型が好ましいが、特に形状は限定しない。多孔シート20を成形体から剥脱した後に成形体の表面にその痕跡が殆ど残らないようにするためには、孔径は3mm以下が望ましく、さらに好ましくは1.5mm以下が望ましい。孔の配置はランダムでも規則的でもよい。好ましい孔ピッチは、使用する強化繊維基材の仕様によって異なるが、15mm以下,望ましくは10mm以下がよい。多孔シート20への要求機能としては、平滑性が最終製品に要求される表面粗度と同等以上であり、剛性は樹脂分散媒体の凹凸の影響を反映させないだけの剛性であり、上記所要の剛性を保持しつつ、樹脂の通過が可能なように孔が多数開いているものである。30は成形型に加工した溝で、溝30は、幅が0.5mm〜5mm、深さが1mm〜6mm、ピッチは2mm〜25mm、断面形状は矩形や逆台形や三角形をなすことが好ましい。さらに好ましくは、幅が約1mm、深さが約3mmの断面矩形で、ピッチが約8mmの溝が望ましい。   Reference numeral 20 denotes a perforated sheet. The material of the perforated sheet 20 is a metal thin plate material (aluminum or stainless steel), steel punching metal with a thickness of 0.1 mm or more, or a resin film (nylon, polyester, polyethylene). , Polypropylene, polyimide), and a sheet material having a thickness of 0.2 mm or more and an FRP sheet having a thickness of 0.2 mm or more is preferably used. The hole is preferably a round shape, but the shape is not particularly limited. In order to leave almost no trace on the surface of the molded body after peeling the porous sheet 20 from the molded body, the hole diameter is desirably 3 mm or less, more desirably 1.5 mm or less. The arrangement of the holes may be random or regular. A preferable hole pitch varies depending on the specification of the reinforcing fiber base to be used, but it is 15 mm or less, preferably 10 mm or less. The required function for the porous sheet 20 is that the smoothness is equal to or greater than the surface roughness required for the final product, and the rigidity is a rigidity that does not reflect the influence of the unevenness of the resin dispersion medium. A large number of holes are opened so that the resin can pass therethrough. Reference numeral 30 denotes a groove processed into a mold, and the groove 30 preferably has a width of 0.5 mm to 5 mm, a depth of 1 mm to 6 mm, a pitch of 2 mm to 25 mm, and a cross-sectional shape of a rectangle, inverted trapezoid or triangle. More preferably, a groove having a rectangular cross section with a width of about 1 mm and a depth of about 3 mm and a pitch of about 8 mm is desirable.

図2の成形装置において、強化繊維基材4の下面に、強化繊維基材4に接する側から、ピールプライ3a/多孔シート20/第2の樹脂分散媒体5aを配置する。ただし、多孔シート20とピールプライ3aの配置は逆でもよい。また、実施の一態様として図2の成形装置において、樹脂分散媒体5aを使わずに、図3のごとくツール面(成形面)に樹脂注入用(図示例)あるいは減圧吸引用の溝を設ける。この場合は、上記樹脂分散媒体を用いる場合よりも、樹脂注入或いは減圧吸引が全面に渡ってより均一にすることが可能になるため、よりボイドや欠肉の発生を少なくし安定して良品が得られやすくなる。そして、強化繊維基材4の上面には、従来通りのピールプライ3b/樹脂分散媒体5(強化繊維基材4側にピールプライを配置)或いは該強化繊維基材4の下面側と同様のものを配置して、後は、図1と同様の方法で成形を実施する。   2, the peel ply 3a / the porous sheet 20 / the second resin dispersion medium 5a are disposed on the lower surface of the reinforcing fiber base 4 from the side in contact with the reinforcing fiber base 4. However, the arrangement of the porous sheet 20 and the peel ply 3a may be reversed. As an embodiment of the present invention, in the molding apparatus of FIG. 2, a groove for resin injection (illustrated example) or vacuum suction is provided on the tool surface (molding surface) as shown in FIG. 3 without using the resin dispersion medium 5a. In this case, since the resin injection or vacuum suction can be made more uniform over the entire surface than in the case of using the resin dispersion medium, the generation of voids and undercuts can be further reduced and a good product can be stably produced. It becomes easy to obtain. Then, on the upper surface of the reinforcing fiber base 4, the conventional peel ply 3b / resin dispersion medium 5 (the peel ply is arranged on the reinforcing fiber base 4 side) or the same as the lower side of the reinforcing fiber base 4 is arranged. Thereafter, molding is performed in the same manner as in FIG.

図4は本発明の第4実施態様に係る成形装置の概略縦断面図で、図3の強化繊維基材の上部に減圧のための2つの吸引ゲート6d、6eを設置して、途中で一方のゲート6dを樹脂の注入口に切り換えて、強化繊維基材の両面側から樹脂の注入を行うようにしたものを示している。以下に、図1〜図3の装置に比べて異なる点のみを説明する。   FIG. 4 is a schematic longitudinal sectional view of a molding apparatus according to a fourth embodiment of the present invention. Two suction gates 6d and 6e for decompression are installed on the upper part of the reinforcing fiber base of FIG. The gate 6d is switched to the resin injection port, and the resin is injected from both sides of the reinforcing fiber base. Only differences from the apparatus of FIGS. 1 to 3 will be described below.

吸引ゲート6dについては、成形途中に樹脂の注入口に切り換える。吸引ゲートとして使用する場合には、バルブ42を閉じてからバルブ41を開き、樹脂注入ゲートに切り換える場合には、バルブ41を閉じてバルブ42を開く。   The suction gate 6d is switched to a resin inlet during molding. When used as a suction gate, the valve 42 is closed and then the valve 41 is opened. When switching to the resin injection gate, the valve 41 is closed and the valve 42 is opened.

図4の成形装置において、常温または加熱雰囲気下で、溝30を加工した成形型(ツール)面上に多孔シート20、ピールプライ3aを介して強化繊維基材4を配置し、上面側に複数個配置した減圧のための吸引ゲート6d、6eと下面側に配置した樹脂注入ゲート(溝30)を含めてバッグ材で覆う。この状態において、バルブ41を開、バルブ42およびバルブ9を閉としてバッグ材8内を吸引ゲートより吸引して減圧しながら、バルブ9を開けて樹脂注入ゲートとしての溝30に樹脂を注入すると、マトリックス樹脂10は強化繊維基材4の下面から上面へ流動し含浸していく。ただし、強化繊維基材4の板厚が10mm以上の場合、樹脂と強化繊維基材の組み合わせによっては、樹脂が上面まで完全に含浸することが困難となる場合がある。したがって、上面まで良好に含浸できない場合は、樹脂が強化繊維基材4の上面に到達する前に、上面側の吸引ゲートの少なくとも一つ(図4では6d)を、バルブ41を閉、バルブ42を開として樹脂注入ゲートに切り換えることができる。樹脂注入ゲートに切り換えた場合、上面側からも樹脂が注入されることになり、上記樹脂含浸不足が補われる。同時に、ゲート6d側から吸引ゲート6e側へと樹脂が流動されるので、この樹脂の流動に伴って吸引ゲート6e方向にボイドが押し出される。つまり、第1の樹脂拡散媒体としての成形型の溝30側から迅速な樹脂含浸が行われつつ、厚い強化繊維基材4の上面側に対して樹脂含浸不足が補われ、同時にボイドが側方に押し出されて強化繊維基材4内に閉じ込められることが防止される。その結果、従来方法では含浸限界厚さの存在により十分に含浸させることができなかった厚い強化繊維基材4を使用した場合にも成形が可能になり、同時にその成形の際にボイドが閉じ込められることを回避して、成形品の良好な品質を確保することが可能となる。   In the molding apparatus of FIG. 4, the reinforcing fiber substrate 4 is disposed on the surface of the mold (tool) in which the groove 30 is processed at room temperature or in a heated atmosphere via the porous sheet 20 and the peel ply 3a. The bag includes the suction gates 6d and 6e for decompression and the resin injection gate (groove 30) disposed on the lower surface side. In this state, when the valve 41 is opened, the valve 42 and the valve 9 are closed, and the bag material 8 is sucked from the suction gate and decompressed, the valve 9 is opened and the resin is injected into the groove 30 as the resin injection gate. The matrix resin 10 flows and impregnates from the lower surface to the upper surface of the reinforcing fiber base 4. However, when the plate thickness of the reinforcing fiber base 4 is 10 mm or more, depending on the combination of the resin and the reinforcing fiber base, it may be difficult to completely impregnate the resin up to the upper surface. Therefore, when the upper surface cannot be satisfactorily impregnated, before the resin reaches the upper surface of the reinforcing fiber base 4, at least one of the suction gates on the upper surface side (6d in FIG. 4) is closed and the valve 41 is closed. Can be switched to the resin injection gate. In the case of switching to the resin injection gate, the resin is also injected from the upper surface side, and the insufficient resin impregnation is compensated. At the same time, since the resin flows from the gate 6d side to the suction gate 6e side, a void is pushed out in the direction of the suction gate 6e as the resin flows. That is, while the resin 30 is rapidly impregnated from the groove 30 side of the mold as the first resin diffusion medium, the shortage of resin impregnation is compensated for the upper surface side of the thick reinforcing fiber base 4 and at the same time the voids are laterally formed. To be trapped in the reinforcing fiber substrate 4. As a result, even when a thick reinforcing fiber base 4 that cannot be sufficiently impregnated due to the presence of the impregnation limit thickness in the conventional method can be molded, and at the same time, voids are confined during the molding. By avoiding this, it is possible to ensure good quality of the molded product.

含浸が終了した後、常温または加熱雰囲気下で樹脂を硬化させるが、媒体自体の凹凸形状や硬化の際に生じる媒体に溜まった樹脂の硬化ヒケの影響を、適度な剛性を有する多孔シート20が遮断する。そのため、脱型後多孔シート20/ピールプライ3a、3b/樹脂分散媒体5を剥がして取り出した成形品のツール面側の表面性状としては、殆どツール面の平滑性を反映したものが得られる。   After the impregnation is completed, the resin is cured at room temperature or in a heated atmosphere. However, the porous sheet 20 having an appropriate rigidity is affected by the uneven shape of the medium itself and the effect of the resin sink marks accumulated in the medium during the curing. Cut off. Therefore, as the surface properties on the tool surface side of the molded product taken out by peeling off the porous sheet 20 / peel ply 3a, 3b / resin dispersion medium 5 after demolding, the surface properties almost reflecting the smoothness of the tool surface can be obtained.

図5は、本発明の第5実施態様に係るRTM成形方法の実施に用いる成形装置の概略断面図で、前述の実施態様と基本的部位は同じであるが、成形型1上に気体透過膜50、通気性基材51およびシールテープ52からなる脱気媒体54を設け、気体透過膜50と成形型1との間に形成された脱気空間から脱気孔53を通して吸引できるようになっている点が異なっている。以下、本実施態様による成形方法について、前述の実施態様と異なる点のみ説明する。   FIG. 5 is a schematic cross-sectional view of a molding apparatus used for carrying out the RTM molding method according to the fifth embodiment of the present invention. 50, a deaeration medium 54 including a gas permeable substrate 51 and a seal tape 52 is provided, and can be sucked through a deaeration hole 53 from a deaeration space formed between the gas permeable membrane 50 and the mold 1. The point is different. Hereinafter, only the points different from the above-described embodiment will be described for the molding method according to this embodiment.

まず、常温または加熱雰囲気下で、強化繊維基材の積層体4を成形型1(ツール)面上に配置し、上側に配置した樹脂注入ゲート6fと、成形型1と積層体4の間に配置した気体透過膜50および通気性基材51を含めて、バッグ材8で覆う。この場合、気体透過膜50の外周は、すべて、シールテープ52で、成形型面に貼り付けてシールする。この状態において、真空ポンプ11で吸引し、気体通過膜50、脱気空間を通してバッグ8内を減圧しながら、樹脂注入ゲート6fより、樹脂を注入すると、マトリックス樹脂10は第1の樹脂拡散媒体5内を強化繊維基材4の上面に沿う方向(平面方向)に迅速に拡散しつつ、強化繊維基材4の上面から下面に向けて流動し、強化繊維基材4内に含浸していく。含浸が終了した後、常温または加熱雰囲気下で樹脂を硬化させた後、バッグ材8をはがして成形体を脱型する。   First, the laminated body 4 of the reinforcing fiber base material is disposed on the mold 1 (tool) surface at room temperature or in a heated atmosphere, and the resin injection gate 6f disposed on the upper side is interposed between the mold 1 and the laminated body 4. The gas permeable membrane 50 and the breathable base material 51 disposed are covered with the bag material 8. In this case, the entire outer periphery of the gas permeable membrane 50 is sealed with a sealing tape 52 attached to the mold surface. In this state, when the resin is injected from the resin injection gate 6 f while sucking with the vacuum pump 11 and reducing the pressure in the bag 8 through the gas passage film 50 and the deaeration space, the matrix resin 10 becomes the first resin diffusion medium 5. While rapidly diffusing in the direction along the upper surface (planar direction) of the reinforcing fiber base 4, it flows from the upper surface to the lower surface of the reinforcing fiber base 4 and impregnates the reinforcing fiber base 4. After the impregnation is completed, the resin is cured at room temperature or in a heated atmosphere, and then the bag material 8 is removed to remove the molded body.

ここで、気体透過膜50は、微多孔質のシートや樹脂フィルム、紙や布などに微多孔膜をコーティングした基材など、気体は通すが、樹脂や液体を通さないものであれば、どのようなものを使用してもよい。また、表面の平滑性があるものの方が、成形品の表面品位を良いものにすることができる。また、気体透過膜50には、離型性があることが望ましいが、場合によっては成形品と一体化させることも可能である。   Here, the gas permeable membrane 50 can be any porous material such as a microporous sheet, a resin film, or a base material in which paper or cloth is coated with the microporous membrane, as long as it allows gas to pass but does not pass resin or liquid. Such a thing may be used. Moreover, the surface with smoothness can improve the surface quality of the molded product. In addition, the gas permeable membrane 50 desirably has releasability, but may be integrated with a molded product depending on circumstances.

通気性基材51は、含浸性向上のためには、通気性がよいことが好ましく、成形品の平滑性向上のためには、できるだけ凹凸がないことが好ましい。   The breathable substrate 51 preferably has good breathability in order to improve the impregnation property, and preferably has as little as possible unevenness in order to improve the smoothness of the molded product.

このRTM成形方法においては、成形型1内を吸引により減圧した後、該成形型1内に樹脂拡散媒体8を介して樹脂を注入しつつ、注入した樹脂を、気体透過膜50と成形型1との間に形成された脱気空間から吸引しながら、注入されてきた樹脂を強化繊維基材4内に含浸させることができるので、意匠面となる成形型側の成形面において、樹脂を迅速かつ十分に拡がらせることができ、優れた品位の意匠面を成形できる。しかも、気体透過膜50に微小気孔の平滑性の高いものを使用することにより、凹凸の極めて小さい、平滑性の高い意匠面を成形できる。したがって、強化繊維基材4の積層体で厚みの厚いものに対しても、積層体全体に良好に樹脂含浸できるようになり、かつ、上記の如く凹凸の極めて小さい、平滑性の高い意匠面が得られる。   In this RTM molding method, the inside of the mold 1 is decompressed by suction, and then the injected resin is injected into the mold 1 via the resin diffusion medium 8, and the injected resin is injected into the gas permeable membrane 50 and the mold 1. Since the injected resin can be impregnated into the reinforcing fiber base material 4 while being sucked from the deaeration space formed between the resin and the resin, the resin can be quickly squeezed on the molding surface on the mold side which is the design surface. In addition, it can be sufficiently expanded, and an excellent quality design surface can be formed. In addition, by using the gas permeable membrane 50 having a high smoothness of micropores, a design surface with extremely small unevenness and high smoothness can be formed. Therefore, even for a thick laminate of reinforcing fiber bases 4, the entire laminate can be satisfactorily impregnated with the resin, and the design surface having a very smooth surface with extremely small irregularities as described above. can get.

図6は第6実施態様を示しており、図5に示した第5実施態様の応用例である。複数の樹脂注入ゲート6g、6hのうち、少なくとも2つの隣り合った樹脂注入ゲートから、同時に樹脂を注入する方法であり、面積の広い大型の成形品に対して有効である。図では、積層体4が平板状であるが、突起や板厚変化のある成形品、曲面板など樹脂の流れの制御が難しい積層体であっても、樹脂を全体に行き渡らせることが可能となる。   FIG. 6 shows a sixth embodiment, which is an application example of the fifth embodiment shown in FIG. This is a method of simultaneously injecting resin from at least two adjacent resin injection gates among a plurality of resin injection gates 6g and 6h, and is effective for a large molded article having a large area. In the figure, the laminate 4 has a flat plate shape, but it is possible to spread the resin throughout the entire laminate even if it is difficult to control the flow of the resin, such as a molded product with projections or changes in plate thickness, or a curved plate. Become.

そして、気体透過膜50と成形型1との間に形成された脱気空間からの吸引経路(吸引孔53)も、複数設けられており、大型の成形品に対しても、十分に吸引できるようになっている。また、必要に応じて、上記脱気空間からの吸引経路に加え、これとは別に吸引ゲート6a(吸引経路)を設けることも可能であり、これによって、樹脂注入時の含浸方向の制御や、樹脂含浸後の余剰樹脂の吸引などに活用することができる。   Further, a plurality of suction paths (suction holes 53) from the deaeration space formed between the gas permeable membrane 50 and the mold 1 are provided, and a large molded product can be sufficiently sucked. It is like that. Further, if necessary, in addition to the suction path from the deaeration space, it is possible to provide a suction gate 6a (suction path) separately from this, thereby controlling the impregnation direction during resin injection, It can be used for suctioning excess resin after resin impregnation.

以下に、本発明を実施例に基づいて説明する。
実施例1
図1のRTM用成形装置において、成形型1の成形面にブリーザー2(ガラス繊維のサーフェースマット、80g/m2 目付)を配置し、両端部に吸引ゲート6a、6bを配設して、真空ポンプ11に接続した。ブリーザー2上にピールプライ3aを配置し、その上に炭素繊維織物(東レ(株)製、T300の炭素繊維を使用した平織物CO6343、目付;200g/m2 )を120プライ積層した強化繊維基材4を配置した。このとき、ブリーザー2と強化繊維基材4の間のピールプライ3aは省略する場合があるが、これはブリーザーを成形後の製品に残すことが前提であり、そのときのブリーザーとしては炭素繊維のメッシュ織物が望ましい。
Hereinafter, the present invention will be described based on examples.
Example 1
In the RTM molding device of FIG. 1, a breather 2 (glass fiber surface mat, 80 g / m 2 basis weight) is disposed on the molding surface of the mold 1, and suction gates 6a and 6b are disposed at both ends. The vacuum pump 11 was connected. Reinforced fiber base material in which a peel ply 3a is arranged on the breather 2, and a 120-ply laminated carbon fiber fabric (a plain fabric CO6343 using T300 carbon fiber, weight per unit: 200 g / m 2 ) manufactured by Toray Industries, Inc. 4 was placed. At this time, the peel ply 3a between the breather 2 and the reinforcing fiber base 4 may be omitted, but this is based on the premise that the breather is left in the molded product, and a carbon fiber mesh is used as the breather at that time. Woven fabric is desirable.

強化繊維基材4の上にピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である樹脂拡散媒体5((株)東京ポリマー製、”ネトロン”TSX−400P)を配置して、その上には樹脂注入ゲート6cを配置してバルブ9を介して樹脂ポット12と接続した。これら全体にバッグ材8(バッグシート)を被せて周囲をシーラント7でシールした(なお、この図では省略しているが、二重バッグとした)。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で吸引、減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより媒体5内に拡散しつつ、強化繊維基材4の厚み方向に上から下へ含浸され、約25mm厚の基材が未含浸部なく完全に樹脂含浸された。樹脂含浸後、約50分後にバルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持し、マトリックス樹脂を硬化させた。その後、室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを引き剥がすことにより、成形品の表面の硬化樹脂及び媒体とブリーザーを取り除いた。媒体の接していた面には凹凸がみられるのに対して、ブリーザーの接していた面は表面平滑性の良い面が得られた。   The peel ply 3b is disposed on the reinforcing fiber base 4, and the resin diffusion medium 5 ("Netron" TSX-400P, manufactured by Tokyo Polymer Co., Ltd.), which is a polypropylene mesh material, is disposed on the peel ply 3b. The resin injection gate 6c was disposed and connected to the resin pot 12 through the valve 9. The whole was covered with a bag material 8 (bag sheet) and the periphery was sealed with a sealant 7 (note that although not shown in this figure, a double bag was used). The valve 9 was closed, the inside of the cavity covered with the bag material 8 was sucked and depressurized with a vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is accommodated in a resin pot 12 and valved. When 9 is opened, the matrix resin 10 is impregnated in the thickness direction of the reinforcing fiber base 4 from the top to the bottom while diffusing into the medium 5 from the resin injection line, and the base of about 25 mm thickness is completely removed without any unimpregnated portion. Resin impregnated. About 50 minutes after the resin impregnation, the valve 9 was closed to stop the supply of the resin, and the whole was heated to 130 ° C. at about 2 ° C./minute and held for 2 hours to cure the matrix resin. Thereafter, the temperature was lowered to about 2 ° C./min to room temperature, the whole was removed from the mold, and the bag material 8 was removed. By peeling off the peel ply from the cured product, the cured resin, medium and breather on the surface of the molded product were removed. The surface where the medium was in contact was uneven, whereas the surface where the breather was in contact was a surface with good surface smoothness.

実施例2
図2のRTM用成形装置において、その成形型1の成形面にポリプロピレン製メッシュ材である媒体5a((株)東京ポリマー製、”ネトロン”TSX−400P)を配置し、その周辺部には吸引ゲート6a、6bを置き、それらを真空ポンプ11に接続した。媒体5a上に多孔シート20(0.2mm厚みのポリエステルフィルムで直径1mmの穴が10mmピッチで配設されたもの)を配置し、その上にピールプライ3aを、その上に炭素繊維織物(東レ(株)製、T300の炭素繊維を使用した平織物CO6343、目付;200g/m2 )を120プライ積層した強化繊維基材4を配置した。
Example 2
In the RTM molding device shown in FIG. 2, a medium 5a (made by Tokyo Polymer Co., Ltd., “Netron” TSX-400P) is disposed on the molding surface of the mold 1 and suction is applied to the periphery thereof. Gates 6 a and 6 b were placed and connected to the vacuum pump 11. A porous sheet 20 (a polyester film having a thickness of 0.2 mm and holes having a diameter of 1 mm arranged at a pitch of 10 mm) is placed on the medium 5a, a peel ply 3a is placed thereon, and a carbon fiber fabric (Toray ( Co., Ltd., a reinforced fiber substrate 4 in which 120 plies of plain fabric CO6343 using a T300 carbon fiber, basis weight: 200 g / m 2 ) was laminated.

強化繊維基材4の上にはピールプライ3bを配置し、その上に媒体5bを配置してその上には樹脂注入口6cを置き、これを樹脂注入ゲートとしてバルブ9を介して樹脂ポット12と接続した。このときピールプライ3bの代わりに多孔シートを配置してもよい。これら全体にバッグ材8を二重に被せて周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより上側の媒体5bに拡散しつつ、炭素繊維織物積層体4の厚み方向に上から下へ含浸され、約25mm厚の強化繊維基材4が未含浸部なく完全に樹脂含浸された。樹脂含浸の後、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持してマトリックス樹脂を硬化させ、そのあと室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを除去して、硬化樹脂及び媒体と多孔シートを取り除いた結果、媒体の接していた面には凹凸がみられるのに対して、多孔シートの接していた面は表面平滑性の良い面が得られた。   A peel ply 3b is disposed on the reinforcing fiber substrate 4, a medium 5b is disposed thereon, a resin injection port 6c is disposed thereon, and this is used as a resin injection gate via the valve 9 and the resin pot 12 Connected. At this time, a porous sheet may be arranged instead of the peel ply 3b. The bag material 8 was covered twice over the whole, and the periphery was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was decompressed with a vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is accommodated in a resin pot 12 and valved. When 9 is opened, the matrix resin 10 is impregnated in the thickness direction of the carbon fiber woven laminate 4 from the top to the bottom while diffusing into the medium 5b above the resin injection line, and the reinforcing fiber base 4 having a thickness of about 25 mm is not yet formed. The resin was completely impregnated without the impregnation part. After the resin impregnation, the valve 9 is closed to stop the supply of the resin, the whole is heated to 130 ° C. at about 2 ° C./minute and held for 2 hours to cure the matrix resin, and then to about 2 ° C./room temperature. The temperature was lowered in minutes, the whole was removed from the mold, and the bag material 8 was removed. As a result of removing the peel ply from the cured product and removing the cured resin, the medium, and the porous sheet, the surface on which the medium is in contact is uneven, whereas the surface on which the porous sheet is in contact is surface smooth. A good aspect was obtained.

実施例3
図3のRTM用成形装置において、その樹脂拡散用の井型の溝30(幅1mm、深さ3mmの断面矩形の溝でピッチが8mm)を加工した成形型を用いて、該溝にバルブ9を介して樹脂ポット12を接続した。成形面上に多孔シート20(0.2mm厚みのポリエステルフィルムで直径1mmの穴が10mmピッチで配設されたもの)を配置し、その上にピールプライ3aを、その上に炭素繊維織物(東レ(株)製、T300の炭素繊維を使用した平織物CO6343、目付;200g/m2 )を120プライ積層した強化繊維基材4を配置した。強化繊維基材4の上にはピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である媒体5((株)東京ポリマー製、”ネトロン”TSX−400p)を配置し、その上には吸引ゲート6を置き、真空ポンプ11に接続した。全体にバッグ材8を二重に被せて周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより溝付き成形面に拡散しつつ、炭素繊維織物積層体4の厚み方向に下から上へ含浸され、25mm厚の積層体が未含浸部なく完全に樹脂含浸された。樹脂含浸の後、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持してマトリックス樹脂を硬化させ、そのあと室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを引き剥がすことにより、成型品の表面についていた硬化樹脂及び媒体と多孔シートが取り去られて成型品の表面が現れたが、媒体の接していた面には媒体の跡である凹凸が見られるのに対して、多孔シートの接していた面は表面平滑性の良い面が得られた。
Example 3
In the RTM molding device of FIG. 3, a valve 9 is formed in the groove by using a molding die in which a well 30 for resin diffusion is processed (a rectangular groove having a width of 1 mm and a depth of 3 mm and a pitch of 8 mm). The resin pot 12 was connected via A porous sheet 20 (a polyester film having a thickness of 0.2 mm and holes having a diameter of 1 mm arranged at a pitch of 10 mm) is placed on the molding surface, a peel ply 3a is placed thereon, and a carbon fiber fabric (Toray ( Co., Ltd., a reinforced fiber substrate 4 in which 120 plies of plain fabric CO6343 using a T300 carbon fiber, basis weight: 200 g / m 2 ) was laminated. A peel ply 3b is disposed on the reinforcing fiber base 4, and a medium 5 (“Netron” TSX-400p, manufactured by Tokyo Polymer Co., Ltd.), which is a polypropylene mesh material, is disposed on the peel ply 3b. The gate 6 was placed and connected to the vacuum pump 11. The bag material 8 was covered twice on the whole, and the periphery was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was decompressed with a vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is accommodated in a resin pot 12 and valved. When 9 is opened, the matrix resin 10 is impregnated from the resin injection line to the grooved molding surface, and is impregnated from the bottom to the top in the thickness direction of the carbon fiber woven laminate 4, and the 25 mm thick laminate is completely free from the unimpregnated portion. Was impregnated with resin. After the resin impregnation, the valve 9 is closed to stop the supply of the resin, the whole is heated to 130 ° C. at about 2 ° C./minute and held for 2 hours to cure the matrix resin, and then to about 2 ° C./room temperature. The temperature was lowered in minutes, the whole was removed from the mold, and the bag material 8 was removed. By peeling off the peel ply from the cured product, the cured resin and medium and the porous sheet on the surface of the molded product were removed, and the surface of the molded product appeared. Although the unevenness was observed, the surface with which the porous sheet was in contact had a surface with good surface smoothness.

実施例4
図4のRTM用成形装置において、その樹脂拡散用の井形の溝30(幅1mm深さ3mmの断面矩形の溝でピッチが8mm)を加工した成形型を用いて、溝30にバルブ9を介して樹脂ポット12を接続した。成形面上に多孔シート20(0.2mm厚みのステンレス製パンチングメタルで直径1mmの穴が15mmピッチに加工されているもの)を配置し、その上にピールプライ3aを、その上に炭素繊維織物(東レ(株)製、T800Sの炭素繊維を使用した一方向織物、目付;285g/m2 )を120プライ積層した強化繊維基材4を配置した。強化繊維基材4の上にはピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である媒体5((株)東京ポリマー製、”ネトロン”TSX−400p)を配置し、その上には吸引ゲート6d、6eを置き、真空ポンプ11に接続した。全体にバッグ材8を二重に被せて周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で減圧するとともに全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘度が320mPa・sのエポキシ樹脂)を樹脂ポット12内に収容してバルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより溝付き成形面に拡散しつつ、炭素繊維織物積層体4の厚み方向に下から上へ含浸された。しかし、該状態を保持した場合、強化繊維基材4の厚さの約2/3まで含浸した時点で、樹脂の含浸が収束してしまう。
Example 4
In the RTM molding apparatus of FIG. 4, a molding die obtained by processing a well 30 for resin diffusion (a rectangular groove having a width of 1 mm and a depth of 3 mm and a pitch of 8 mm) is inserted into the groove 30 via a valve 9. The resin pot 12 was connected. A porous sheet 20 (0.2 mm-thick stainless steel punched metal with holes with a diameter of 1 mm being processed at a pitch of 15 mm) is placed on the molding surface, a peel ply 3a is placed thereon, and a carbon fiber fabric ( A reinforced fiber substrate 4 in which 120 plies of a unidirectional woven fabric using T800S carbon fiber manufactured by Toray Industries, Inc., with a basis weight of 285 g / m 2 ) was laminated was disposed. A peel ply 3b is disposed on the reinforcing fiber base 4, and a medium 5 (“Netron” TSX-400p, manufactured by Tokyo Polymer Co., Ltd.), which is a polypropylene mesh material, is disposed on the peel ply 3b. Gates 6d and 6e were placed and connected to the vacuum pump 11. The bag material 8 was covered twice on the whole, and the periphery was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was decompressed by the vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin viscosity of 320 mPa · s after 1 hour at 70 ° C.) is accommodated in a resin pot 12 and valved. When 9 was opened, the matrix resin 10 was impregnated from the bottom to the top in the thickness direction of the carbon fiber woven laminate 4 while diffusing from the resin injection line to the grooved molding surface. However, when this state is maintained, the impregnation of the resin converges when impregnating up to about 2/3 of the thickness of the reinforcing fiber base 4.

そこで、樹脂が強化繊維基材4の厚さの1/2以上に含浸した時、バルブ41を閉じ、バルブ42を開放して、吸引ゲート6dを樹脂注入ゲートに切り換えた。ゲート6dより注入された樹脂は、拡散媒体5内を吸引ゲート6eの方向に拡散するとともに、媒体5内を介して樹脂が下方向に基材内へと含浸した。やがて、基材内全てに樹脂が含浸した。そして、バルブ9、42を閉じて樹脂の供給を中止した。   Therefore, when the resin impregnated 1/2 or more of the thickness of the reinforcing fiber base 4, the valve 41 was closed, the valve 42 was opened, and the suction gate 6d was switched to the resin injection gate. The resin injected from the gate 6d diffused in the diffusion medium 5 in the direction of the suction gate 6e, and the resin was impregnated downward into the substrate through the medium 5. Eventually, the entire substrate was impregnated with resin. Then, the valves 9 and 42 were closed to stop the resin supply.

約2℃/分で全体を130℃に昇温して2時間保持してマトリックス樹脂を硬化させ、そのあと室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化物からピールプライを引き剥がすことにより、成型品の表面についていた硬化樹脂及び媒体と多孔シートが取り去られて成型品の表面が現れたが、媒体の接していた面には媒体の跡である凹凸が見られるのに対して、多孔シートの接していた面は表面平滑性の良い面が得られた。   The whole is heated to 130 ° C. at about 2 ° C./minute and held for 2 hours to cure the matrix resin, and then cooled to room temperature at about 2 ° C./minute, the whole is removed from the mold and the bag material 8 is removed. Removed. By peeling off the peel ply from the cured product, the cured resin and medium and the porous sheet on the surface of the molded product were removed, and the surface of the molded product appeared. Although the unevenness was observed, the surface with which the porous sheet was in contact had a surface with good surface smoothness.

実施例5
図5のRTM成形装置において、成形型1の成形面に通気性基材51として、米国RICHMOND社製の「ピールプライ#60001」を配置し、さらにその上に、離型性がある気体透過性膜50として、米国RICHMOND社製の「T.S.B. system 」に使用されている Vapor Permeable Release Film 「E3760」を配置して、周囲すべてを耐熱性のニトフロンテープ52でシールした。気体透過膜50と成形型1で囲まれた脱気空間から成形型1に設けた脱気孔53を通して、真空ポンプ11に接続した。
Example 5
In the RTM molding device of FIG. 5, “Peel Ply # 60001” manufactured by RICHMOND of the United States is disposed as the breathable substrate 51 on the molding surface of the molding die 1, and further, a gas permeable membrane having releasability thereon. 50, Vapor Permeable Release Film “E3760” used in “TSB system” manufactured by RICHMOND of the United States was placed, and the entire periphery was sealed with heat-resistant nitroflon tape 52. The deaeration space surrounded by the gas permeable membrane 50 and the mold 1 was connected to the vacuum pump 11 through the deaeration holes 53 provided in the mold 1.

続いて、気体透過膜50の上に、炭素繊維織物(東レ(株)製、T300の炭素繊維織物を使用した平織物CO6343、目付;200g/m2 )を120ply積層した強化繊維基材4(厚み約25mm)を配置した。 Subsequently, on the gas permeable membrane 50, a reinforced fiber base material 4 (laminated with 120 ply of carbon fiber fabric (manufactured by Toray Industries, Inc., plain fabric CO6343 using T300 carbon fiber fabric, basis weight; 200 g / m 2 )). About 25 mm thick).

次に、強化繊維基材4の上にピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である樹脂拡散媒体5(東京ポリマー製、”ネトロン”TSXー400P)を配置し、さらにその上に樹脂注入ゲート6fを配置して、バルブ9を介して、樹脂ポット12と接続した。これら全体にバッグ材8をかぶせて、周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で吸引・減圧するとともに、全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘土が320mPa・sのエポキシ樹脂)を樹脂ポット内に収容し、バルブ9を開放すると、マトリックス樹脂10が樹脂注入ラインより、媒体5内に拡散しつつ、強化繊維基材4の厚み方向に上から下へ含浸された。この場合、気体透過膜50が存在しないと、強化繊維基材4の下面が成形型1の表面に圧着してしまい、基材下面近傍に存在する気体が抜けきらず、得られた成形体は表面が「あばた状」になるが、気体透過膜50を設けたことで成形型1と該膜50との間に脱気空間が形成され、上記気体が強化繊維基材4の下面全体から通気性基材51を介して完全に脱気されるので、基材は厚みが25mmでありながら未含浸部なく完全に樹脂含浸され、特に表面品位が著しく向上した。樹脂含浸後、所定の樹脂量が注入された段階で、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持し、マトリックス樹脂を硬化させた。その後、室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化した成形品の下面は、気体透過膜50を引き剥がすことにより、表面平滑性の良い面が得られた。   Next, the peel ply 3b is arranged on the reinforcing fiber base 4, and the resin diffusion medium 5 (Tokyo Polymer, “Netron” TSX-400P), which is a polypropylene mesh material, is arranged on the reinforcing ply 3b. A resin injection gate 6 f was arranged and connected to the resin pot 12 through the valve 9. A bag material 8 was placed over the whole, and the periphery was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was sucked and depressurized with a vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin clay of 320 mPa · s after 1 hour at 70 ° C.) is contained in a resin pot, and a valve 9 The matrix resin 10 was impregnated from the top to the bottom in the thickness direction of the reinforcing fiber base 4 while diffusing into the medium 5 from the resin injection line. In this case, if the gas permeable membrane 50 is not present, the lower surface of the reinforcing fiber base material 4 is pressure-bonded to the surface of the molding die 1, and the gas existing in the vicinity of the lower surface of the base material is not completely removed. However, when the gas permeable membrane 50 is provided, a deaeration space is formed between the mold 1 and the membrane 50, and the gas is permeable from the entire lower surface of the reinforcing fiber base 4. Since it was completely deaerated through the base material 51, the base material was completely impregnated with a resin without an unimpregnated portion although the thickness was 25 mm, and the surface quality was particularly improved. After the resin impregnation, when a predetermined amount of resin is injected, the valve 9 is closed to stop the supply of the resin, and the whole is heated to 130 ° C. at about 2 ° C./minute and held for 2 hours to cure the matrix resin. I let you. Thereafter, the temperature was lowered to about 2 ° C./min to room temperature, the whole was removed from the mold, and the bag material 8 was removed. A surface having good surface smoothness was obtained on the lower surface of the cured molded article by peeling off the gas permeable membrane 50.

実施例6
図6のRTM成形装置において、実施例5と同様に、成形型1の成形面に通気性基材51として、米国RICHMOND社製の「ピールプライ#60001」を配置し、さらにその上に、離型性がある気体透過膜50として、米国RICHMOND社製の「T.S.B. system 」に使用されている Vapor Permeable Release Film 「E3760」を配置して、周囲すべてを耐熱性のニトフロンテープ52でシールした。気体透過膜50と成形型1で囲まれた脱気空間から成形型1に設けた脱気孔53を通して、真空ポンプ11に接続した。
Example 6
In the RTM molding apparatus of FIG. 6, as in Example 5, “Peel Ply # 60001” manufactured by RICHMOND of the United States as a breathable base material 51 is disposed on the molding surface of the mold 1, and a mold release is further performed thereon. Vapor Permeable Release Film “E3760” used in “TSB system” manufactured by RICHMOND of the United States was placed as a gas permeable membrane 50 having a property, and the entire periphery was sealed with heat-resistant nitroflon tape 52. The deaeration space surrounded by the gas permeable membrane 50 and the mold 1 was connected to the vacuum pump 11 through the deaeration holes 53 provided in the mold 1.

続いて、気体透過膜50の上に、炭素繊維織物(東レ(株)製、T300の炭素繊維織物を使用した平織物CO6343、目付;200g/m2 )を120ply積層した強化繊維基材4を配置した。その際、強化繊維基材下面の1辺にも吸引ゲート6aを配置した。 Subsequently, a reinforced fiber base material 4 in which a carbon fiber fabric (a plain fabric CO6343 using a T300 carbon fiber fabric, weight per unit: 200 g / m 2 ) 120 ply laminated on the gas permeable membrane 50 is laminated. Arranged. At that time, the suction gate 6a was also arranged on one side of the lower surface of the reinforcing fiber base.

強化繊維基材4の上にピールプライ3bを配置し、その上にポリプロピレン製メッシュ材である樹脂拡散媒体5(東京ポリマー(株)製、”ネトロン”TSXー400P)を配置して、その上には、樹脂注入ゲート6g、6hの2本のゲートを配置して、バルブ9を介して、樹脂ポット12と接続した。これら全体にバッグ材8をかぶせて、周囲をシーラント7でシールした。バルブ9を閉じ、バッグ材8で覆ったキャビティ内を真空ポンプ11で吸引・減圧するとともに、全体をオーブン内で70℃に加熱して1時間保持した。熱硬化性エポキシマトリックス樹脂10(70℃(注入温度)における樹脂粘度が130mPa・s、70℃で1時間経過後の樹脂粘土が320mPa・sのエポキシ樹脂)を樹脂ポット内に収容し、バルブ9を開放すると、マトリックス樹脂10が2本樹脂注入ライン6g、6hより同時に、媒体5内に流れ、面上に拡散しつつ、強化繊維基材4の厚み方向に上から下へ含浸され、約25mmの基材が未含浸部なく完全に樹脂含浸された。   A peel ply 3b is arranged on the reinforcing fiber base 4, and a resin diffusion medium 5 (manufactured by Tokyo Polymer Co., Ltd., “Netron” TSX-400P) is arranged on the reinforcing ply base material 4 and on top thereof. The two resin injection gates 6g and 6h were arranged and connected to the resin pot 12 through the valve 9. A bag material 8 was placed over the whole, and the periphery was sealed with a sealant 7. The valve 9 was closed, the inside of the cavity covered with the bag material 8 was sucked and depressurized with a vacuum pump 11, and the whole was heated to 70 ° C. in an oven and held for 1 hour. A thermosetting epoxy matrix resin 10 (an epoxy resin having a resin viscosity of 130 mPa · s at 70 ° C. (injection temperature) and a resin clay of 320 mPa · s after 1 hour at 70 ° C.) is contained in a resin pot, and a valve 9 Is opened, the matrix resin 10 flows into the medium 5 simultaneously from the two resin injection lines 6g and 6h, and is impregnated from the top to the bottom in the thickness direction of the reinforcing fiber base 4 while diffusing on the surface, and is about 25 mm. The substrate was completely impregnated with resin without any unimpregnated part.

その際、注入ゲート6g、6hの真下の領域は樹脂が強化繊維基材4の下面まで到達するのが速く、すなわち2本の注入ゲートの中間領域は、樹脂が強化繊維基材の下面まで到達するのが遅かったが、最終的には、気体透過膜50の脱気経路による吸引により完全に樹脂含浸された。   At that time, the resin immediately reaches the lower surface of the reinforcing fiber base 4 in the region immediately below the injection gates 6g and 6h, that is, the resin reaches the lower surface of the reinforcing fiber base in the middle region between the two injection gates. Although it was slow to complete, finally, the resin was completely impregnated by suction through the degassing path of the gas permeable membrane 50.

樹脂含浸後、所定の樹脂量が注入された段階で、バルブ9を閉じて樹脂の供給を止め、約2℃/分で全体を130℃に昇温して2時間保持し、マトリックス樹脂を硬化させた。吸引ゲート8からも吸引したことにより、実施例5と比較して、樹脂含浸時間が速かった。   After the resin impregnation, when a predetermined amount of resin is injected, the valve 9 is closed to stop the supply of the resin, and the whole is heated to 130 ° C. at about 2 ° C./minute and held for 2 hours to cure the matrix resin. I let you. By sucking from the suction gate 8 as well, the resin impregnation time was faster than in Example 5.

その後、室温まで約2℃/分で降温し、全体を成形型から取り外してバッグ材8を取り除いた。硬化した成形品の下面は、気体透過膜50を引き剥がすことにより、表面平滑性の良い面が得られた。   Thereafter, the temperature was lowered to about 2 ° C./min to room temperature, the whole was removed from the mold, and the bag material 8 was removed. A surface having good surface smoothness was obtained on the lower surface of the cured molded article by peeling off the gas permeable membrane 50.

本発明のRTM成形方法は、とくに厚物成形品のRTM成形に適しており、10mm厚以上が要求されるような構造体(たとえば、航空機部材の翼部材等)の成形に適している。   The RTM molding method of the present invention is particularly suitable for RTM molding of a thick article, and is suitable for molding a structure (for example, a wing member of an aircraft member) requiring a thickness of 10 mm or more.

本発明の第1実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus used for the RTM shaping | molding method which concerns on the 1st embodiment of this invention. 本発明の第2実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus used for the RTM shaping | molding method which concerns on the 2nd embodiment of this invention. 本発明の第3実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus used for the RTM shaping | molding method which concerns on the 3rd embodiment of this invention. 本発明の第4実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus used for the RTM shaping | molding method which concerns on the 4th embodiment of this invention. 本発明の第5実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus used for the RTM shaping | molding method which concerns on the 5th embodiment of this invention. 本発明の第6実施態様に係るRTM成型方法に用いられる成形装置の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the shaping | molding apparatus used for the RTM shaping | molding method which concerns on the 6th embodiment of this invention.

符号の説明Explanation of symbols

1 成形型
2 第2の樹脂拡散媒体としてのブリーザー
3a、3b ピールプライ
4 強化繊維基材
5、5a、5b 樹脂拡散媒体
6、6a、6b、6d、6e 吸引ゲート
6c、6f、6g、6h 樹脂注入ゲート
7 シーラント
8 バッグ材
9、41、42 バルブ
10 マトリックス樹脂
11 真空ポンプ
12 樹脂ポット
20 多孔シート
30 樹脂拡散用型溝
50 気体透過膜
51 通気性基材
52 シールテープ
53 脱気孔
54 脱気媒体
DESCRIPTION OF SYMBOLS 1 Mold 2 Breather as 2nd resin diffusion medium 3a, 3b Peel ply 4 Reinforcing fiber base material 5, 5a, 5b Resin diffusion medium 6, 6a, 6b, 6d, 6e Suction gate 6c, 6f, 6g, 6h Resin injection Gate 7 Sealant 8 Bag material 9, 41, 42 Valve 10 Matrix resin 11 Vacuum pump 12 Resin pot 20 Porous sheet 30 Resin diffusion mold groove 50 Gas permeable membrane 51 Breathable base material 52 Seal tape 53 Deaeration hole 54 Deaeration medium

Claims (14)

成形型内に強化繊維基材を配置するとともに、該強化繊維基材の両面上に樹脂流動抵抗が前記強化繊維基材よりも低い樹脂拡散媒体を配置し、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を前記強化繊維基材中に含浸させるRTM成形方法において、前記強化繊維基材の第1の面上に配置される第1の樹脂拡散媒体の樹脂流動抵抗を、第2の面上に配置される第2の樹脂拡散媒体の樹脂流動抵抗よりも低く設定し、前記第1の樹脂拡散媒体に樹脂を注入しつつ前記第2の樹脂拡散媒体を介して吸引することにより、前記強化繊維基材中に樹脂を含浸させることを特徴とするRTM成形方法。   A reinforcing fiber base is disposed in the mold, a resin diffusion medium having a resin flow resistance lower than that of the reinforcing fiber base is disposed on both sides of the reinforcing fiber base, and the inside of the mold is decompressed by suction. Thereafter, in the RTM molding method in which a resin is injected into the mold through the resin diffusion medium and the injected resin is impregnated into the reinforcing fiber base, the resin is disposed on the first surface of the reinforcing fiber base. The resin flow resistance of the first resin diffusion medium is set lower than the resin flow resistance of the second resin diffusion medium disposed on the second surface, and the resin is injected into the first resin diffusion medium However, the RTM molding method is characterized in that the reinforcing fiber base material is impregnated with the resin by suction through the second resin diffusion medium. 前記強化繊維基材が強化繊維材の積層体からなる、請求項1に記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the reinforcing fiber base is made of a laminate of reinforcing fiber materials. 前記第2の樹脂拡散媒体の樹脂流動抵抗を前記強化繊維基材の樹脂流動抵抗の1/3以下とする、請求項1または2に記載のRTM成形方法。   The RTM molding method according to claim 1 or 2, wherein the resin flow resistance of the second resin diffusion medium is set to 1/3 or less of the resin flow resistance of the reinforcing fiber base. 前記第1の樹脂拡散媒体の樹脂流動抵抗を前記強化繊維基材の樹脂流動抵抗の1/10以下とする、請求項1〜3のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein a resin flow resistance of the first resin diffusion medium is set to 1/10 or less of a resin flow resistance of the reinforcing fiber base. 樹脂が前記第2の面に到達する前に、前記第2の樹脂拡散媒体からも樹脂の注入を開始する、請求項1〜4のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein the injection of the resin is also started from the second resin diffusion medium before the resin reaches the second surface. 少なくとも一方の樹脂拡散媒体と前記強化繊維基材との間に、成形後に樹脂拡散媒体と一体的に剥離可能なピールプライを介装する、請求項1〜5のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein a peel ply that can be peeled integrally with the resin diffusion medium after molding is interposed between at least one resin diffusion medium and the reinforcing fiber base. 少なくとも一方の樹脂拡散媒体と前記強化繊維基材との間に多孔性シートを介装する、請求項1〜6のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein a porous sheet is interposed between at least one resin diffusion medium and the reinforcing fiber substrate. 少なくとも一方の樹脂拡散媒体を、成形型の内面に樹脂流路としての溝を設けることにより構成する、請求項1〜7のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein at least one of the resin diffusion media is configured by providing a groove as a resin flow path on the inner surface of the molding die. 成形品を脱型後、少なくとも一方の樹脂拡散媒体を、成形品から剥離せずに成形品内に残存させる、請求項1〜8のいずれかに記載のRTM成形方法。   The RTM molding method according to claim 1, wherein at least one of the resin diffusion media is left in the molded product without being peeled from the molded product after the molded product is removed from the mold. 成形型に強化繊維基材を配置するとともに、該強化繊維基材の、成形型と反対側の面に、樹脂流動抵抗が前記基材よりも低い樹脂拡散媒体を配置するとともに、該強化繊維基材と成形型面との間に、気体透過膜と通気性基材からなる脱気媒体を設け、前記成形型内を吸引により減圧した後、該成形型内に前記樹脂拡散媒体を介して樹脂を注入し、注入した樹脂を、前記気体透過膜と成形型間に形成された脱気空間から吸引することにより、前記強化繊維基材内に樹脂を含浸させることを特徴とするRTM成形方法。   A reinforcing fiber base is disposed in the mold, and a resin diffusion medium having a resin flow resistance lower than that of the base is disposed on the surface of the reinforcing fiber base opposite to the mold, and the reinforcing fiber base A degassing medium comprising a gas permeable membrane and a gas permeable substrate is provided between the material and the mold surface, and after the pressure inside the mold is reduced by suction, the resin is placed in the mold via the resin diffusion medium. The RTM molding method is characterized in that the reinforcing fiber base material is impregnated with the resin by sucking the injected resin from a deaeration space formed between the gas permeable membrane and the mold. 前記強化繊維基材が強化繊維の積層体からなる、請求項10に記載のRTM成形方法。   The RTM molding method according to claim 10, wherein the reinforcing fiber base is composed of a laminate of reinforcing fibers. 前記気体透過膜が、成形後に、成形品から剥離可能な離型性を有することを特徴とする、請求項10または11に記載のRTM成形方法。   The RTM molding method according to claim 10 or 11, wherein the gas permeable membrane has a releasability capable of being peeled off from a molded product after molding. 前記樹脂拡散媒体の上部に、少なくとも2カ所以上の樹脂注入ゲートを配置するとともに、樹脂注入に際して、少なくとも隣り合う樹脂注入ゲート2カ所から、または、すべての樹脂注入ゲートから、同時に樹脂注入することを特徴とする、請求項10〜12のいずれかに記載のRTM成形方法。   At least two or more resin injection gates are disposed above the resin diffusion medium, and at the time of resin injection, resin injection is performed simultaneously from at least two adjacent resin injection gates or from all resin injection gates. The RTM molding method according to claim 10, wherein the RTM molding method is characterized. 前記気体透過膜と成形型間に形成された脱気空間からの吸引経路に加えて、成形型内に少なくとも1つの別の吸引経路を設けることを特徴とする請求項10〜13のいずれかに記載のRTM成形方法。   14. In addition to the suction path from the deaeration space formed between the gas permeable membrane and the mold, at least one other suction path is provided in the mold. The described RTM molding method.
JP2008035709A 2002-10-09 2008-02-18 RTM molding method Expired - Fee Related JP4542588B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008035709A JP4542588B2 (en) 2002-10-09 2008-02-18 RTM molding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002295932 2002-10-09
JP2008035709A JP4542588B2 (en) 2002-10-09 2008-02-18 RTM molding method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002312454A Division JP4104422B2 (en) 2002-10-09 2002-10-28 RTM molding method

Publications (2)

Publication Number Publication Date
JP2008179149A true JP2008179149A (en) 2008-08-07
JP4542588B2 JP4542588B2 (en) 2010-09-15

Family

ID=39723400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008035709A Expired - Fee Related JP4542588B2 (en) 2002-10-09 2008-02-18 RTM molding method

Country Status (1)

Country Link
JP (1) JP4542588B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206599A1 (en) * 2009-01-08 2010-07-14 Eurocopter Deutschland GmbH Vacuum-supported prepreg infusion hybrid method with quick hardening
WO2012039409A1 (en) 2010-09-24 2012-03-29 東レ株式会社 Method for producing fiber-reinforced plastic
JP2012528024A (en) * 2009-05-25 2012-11-12 エアバス オペレーションズ ゲーエムベーハー Apparatus and method for manufacturing composite elements
JP2013132853A (en) * 2011-12-27 2013-07-08 Kawasaki Heavy Ind Ltd Method for manufacturing resin impregnated material
US9919463B2 (en) 2011-02-28 2018-03-20 Mitsubishi Heavy Industries, Ltd. RTM molding device, RTM molding method, and semi-molded body
JP2018134863A (en) * 2017-01-30 2018-08-30 ゼネラル・エレクトリック・カンパニイ System, method, and apparatus for infusing composite structure
JP2019089239A (en) * 2017-11-14 2019-06-13 東京R&Dコンポジット工業株式会社 Breather cloth

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237124A (en) * 1988-03-18 1989-09-21 Nissei Plastics Ind Co Molding method for fiber reinforced resin molded product
US5052906A (en) * 1989-03-30 1991-10-01 Seemann Composite Systems, Inc. Plastic transfer molding apparatus for the production of fiber reinforced plastic structures
JPH10504501A (en) * 1994-05-27 1998-05-06 スクリンプ システムズ エル.エル.シー. Vacuum bag and manufacturing process with unity
JPH11107105A (en) * 1997-08-04 1999-04-20 Toray Ind Inc Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
US5968445A (en) * 1998-01-05 1999-10-19 The Boeing Company Method and apparatus for curing large composite panels
JP2000043172A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Frp sandwich-structure and manufacture thereof
JP2003305733A (en) * 2002-04-18 2003-10-28 Mitsubishi Rayon Co Ltd Molding apparatus for fiber reinforced plastic molded object and molding method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01237124A (en) * 1988-03-18 1989-09-21 Nissei Plastics Ind Co Molding method for fiber reinforced resin molded product
US5052906A (en) * 1989-03-30 1991-10-01 Seemann Composite Systems, Inc. Plastic transfer molding apparatus for the production of fiber reinforced plastic structures
JPH10504501A (en) * 1994-05-27 1998-05-06 スクリンプ システムズ エル.エル.シー. Vacuum bag and manufacturing process with unity
JPH11107105A (en) * 1997-08-04 1999-04-20 Toray Ind Inc Carbon fiber woven fabric and fiber-reinforced plastic and molding of fiber-reinforced plastic
US5968445A (en) * 1998-01-05 1999-10-19 The Boeing Company Method and apparatus for curing large composite panels
JP2000043172A (en) * 1998-07-31 2000-02-15 Toray Ind Inc Frp sandwich-structure and manufacture thereof
JP2003305733A (en) * 2002-04-18 2003-10-28 Mitsubishi Rayon Co Ltd Molding apparatus for fiber reinforced plastic molded object and molding method using the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2206599A1 (en) * 2009-01-08 2010-07-14 Eurocopter Deutschland GmbH Vacuum-supported prepreg infusion hybrid method with quick hardening
JP2012528024A (en) * 2009-05-25 2012-11-12 エアバス オペレーションズ ゲーエムベーハー Apparatus and method for manufacturing composite elements
WO2012039409A1 (en) 2010-09-24 2012-03-29 東レ株式会社 Method for producing fiber-reinforced plastic
US9205602B2 (en) 2010-09-24 2015-12-08 Toray Industries, Inc. Method for producing fiber-reinforced plastic
US9919463B2 (en) 2011-02-28 2018-03-20 Mitsubishi Heavy Industries, Ltd. RTM molding device, RTM molding method, and semi-molded body
JP2013132853A (en) * 2011-12-27 2013-07-08 Kawasaki Heavy Ind Ltd Method for manufacturing resin impregnated material
JP2018134863A (en) * 2017-01-30 2018-08-30 ゼネラル・エレクトリック・カンパニイ System, method, and apparatus for infusing composite structure
US10786957B2 (en) 2017-01-30 2020-09-29 General Electric Company System, method, and apparatus for infusing a composite structure
JP2019089239A (en) * 2017-11-14 2019-06-13 東京R&Dコンポジット工業株式会社 Breather cloth

Also Published As

Publication number Publication date
JP4542588B2 (en) 2010-09-15

Similar Documents

Publication Publication Date Title
JP4104422B2 (en) RTM molding method
US9120253B2 (en) Methods of RTM molding
US9205602B2 (en) Method for producing fiber-reinforced plastic
JP2008179149A (en) Rtm molding method
WO2018030470A1 (en) Method for producing fiber-reinforced resin molded articles
US9421717B2 (en) Manufacturing a composite
JP2009045924A (en) Frp production method
JP2003025347A (en) Vacuum rtm molding method
JP6616352B2 (en) Method and system for injecting resin into a composite preform
JP4104413B2 (en) RTM molding method
JP2007176163A (en) Manufacturing process of fiber-reinforced plastic
JP2012245623A (en) Method and device of molding composite material using porous mold
JP2005271248A (en) Frp manufacturing method
JP4104414B2 (en) Method for producing fiber-reinforced resin molded body
JP2009248552A (en) Method for producing fiber-reinforced resin molding
JP2015003502A (en) Method and apparatus for production of fiber-reinforced plastic molding and wall of elevator
JP5738061B2 (en) FRP structure manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100604

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100625

R150 Certificate of patent or registration of utility model

Ref document number: 4542588

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees