JP2008175449A - Multiple pipe-type heat exchanger - Google Patents

Multiple pipe-type heat exchanger Download PDF

Info

Publication number
JP2008175449A
JP2008175449A JP2007008827A JP2007008827A JP2008175449A JP 2008175449 A JP2008175449 A JP 2008175449A JP 2007008827 A JP2007008827 A JP 2007008827A JP 2007008827 A JP2007008827 A JP 2007008827A JP 2008175449 A JP2008175449 A JP 2008175449A
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
pipe
inner tube
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007008827A
Other languages
Japanese (ja)
Inventor
Kazuhiko Machida
和彦 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007008827A priority Critical patent/JP2008175449A/en
Publication of JP2008175449A publication Critical patent/JP2008175449A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multiple pipe-type heat exchanger capable of reducing probability of electric corrosion, and detecting water leakage before electric corrosion. <P>SOLUTION: This multiple pipe-type heat exchanger is composed of a copper inner pipe 1 provided with a leakage detecting groove 4 on its outer surface, an aluminum outer pipe 2 covering an outer wall of the inner pipe 1 and composed of a number of refrigerant flow channels 3, an outer pipe terminal portion 5 disposed at a longitudinal end portion of the outer pipe 2 and having an inner peripheral part close to the inner pipe 1, and longer than an outer peripheral part of the outer pipe 2, and a branch portion 7 having a circular passage 6 corresponding to the refrigerant flow channels 3 and joined to the outer pipe terminal portion 5. A longitudinal end portion of the inner pipe 1 is longer than a longitudinal end portion of the outer pipe 2, a boundary between a tip of the outer pipe terminal portion 5 and the end portion of the inner pipe 1 is covered by a stretch heat shrinkable tube 8, and the leakage detecting groove 4 is formed by the halfway of the part covered by the heat shrinkable tube 8, thus the probability of electric corrosion of the aluminum outer pipe can be reduced, and the probability of flowing of components of refrigerating machine oil and the like existing in a CO<SB>2</SB>refrigerant flow channel into a water side can be reduced. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭酸ガス(CO)冷媒及びその混合冷媒と水との間で熱交換させる多重管式熱交換器に関するものであって、特に高圧側の圧力が冷媒の臨界圧力以上となるヒートポンプサイクルにて、給湯水や暖房用ブラインを加熱する超臨界ヒートポンプ式給湯装置又は超臨界ヒートポンプ式空調装置に適用する、多重管式熱交換器に関するものである。 TECHNICAL FIELD The present invention relates to a carbon dioxide (CO 2 ) refrigerant and a multi-tube heat exchanger that exchanges heat between the refrigerant mixture and water, and in particular, a heat pump in which the pressure on the high-pressure side is equal to or higher than the critical pressure of the refrigerant. The present invention relates to a multi-tube heat exchanger applied to a supercritical heat pump type hot water supply apparatus or a supercritical heat pump type air conditioner that heats hot water or heating brine in a cycle.

従来、この種の多重管式熱交換器は、銅製の内管と、内管の外壁を覆って前記内管の外壁に密着するアルミニウム製の外管と、からなり、外管は押出加工により多数の冷媒流路が形成された円筒形多穴管であり、外管に形成された多穴流路を炭酸ガスの流路とし、内管内を水の流路としたものがある(例えば、特許文献1参照)。   Conventionally, this type of multi-tube heat exchanger is composed of a copper inner tube and an aluminum outer tube covering the outer wall of the inner tube and closely contacting the outer wall of the inner tube. There are cylindrical multi-hole pipes in which a large number of refrigerant flow paths are formed, and the multi-hole flow path formed in the outer pipe is a carbon dioxide gas flow path and the inner pipe is a water flow path (for example, Patent Document 1).

図3は、特許文献1に記載された従来の多重管式熱交換器を示すものである。図3に示すように、銅製の内管1と、アルミニウム製の外管2と、からなり、外管2は押出加工により複数の冷媒流路3を形成して成る。内管1の外表面には溝状加工がなされた漏洩検知溝4を有しており、漏洩検知溝4の端末は外気に開放されている。   FIG. 3 shows a conventional multi-tube heat exchanger described in Patent Document 1. As shown in FIG. 3, the inner tube 1 is made of copper and the outer tube 2 is made of aluminum. The outer tube 2 is formed by forming a plurality of refrigerant flow paths 3 by extrusion. The outer surface of the inner tube 1 has a leak detection groove 4 that is grooved, and the end of the leak detection groove 4 is open to the outside air.

以上のように構成された多重管式熱交換器について、以下その動作を説明する。   The operation of the multi-tube heat exchanger configured as described above will be described below.

まず、内管1内には水が流れ、外管2の冷媒流路3にはCO冷媒が対向して流れる。内管1を外管2に挿入した後、内管1を拡径することにより、内管1と外管2とを密着させ、所定の長さに成形して端末部を接合した後、熱交換器を構成したものである。CO冷媒の圧力が臨界圧力以上となるので冷媒流路を多穴流路とすることで、穴径を小さくし、且つ外管をアルミ化することでコスト低減を図ったものとなっている。 First, water flows in the inner pipe 1, and CO 2 refrigerant flows in the refrigerant flow path 3 of the outer pipe 2 so as to face each other. After the inner tube 1 is inserted into the outer tube 2, the inner tube 1 is expanded in diameter so that the inner tube 1 and the outer tube 2 are brought into close contact with each other, molded to a predetermined length, and the terminal portion is joined. It constitutes an exchanger. Since the pressure of the CO 2 refrigerant becomes equal to or higher than the critical pressure, the hole diameter is reduced by making the refrigerant flow path a multi-hole flow path, and the outer pipe is aluminized to reduce the cost. .

一方、水の流路である銅製の内管1の内面から腐食が進行し、アルミニウム製の外管2との密着部にまで腐食が進行した場合、漏洩検知溝4の端末から外部へ水を排出できる。   On the other hand, when corrosion progresses from the inner surface of the copper inner pipe 1 that is a water flow path and reaches the contact portion with the aluminum outer pipe 2, water is discharged from the end of the leakage detection groove 4 to the outside. Can be discharged.

そして、その水を検知することでシステムの運転を止めれば、さらなる腐食進行で発生するCO冷媒および冷凍機油等が水側に流入する危険を回避できる。
特開2002−213885号公報
If the operation of the system is stopped by detecting the water, it is possible to avoid the danger that CO 2 refrigerant, refrigeration oil, and the like generated by further progress of corrosion flow into the water side.
JP 2002-213895 A

しかしながら、上記従来の構成では、漏洩検知溝の端部が外気に開放されているので、大気中の水分が漏洩検知溝を通じて端部から内部へ浸入することとなり、銅製の内管とアルミニウム製の外管との間で電池作用を起こして電食が発生するという課題を有していた。   However, in the above conventional configuration, the end of the leak detection groove is open to the outside air, so moisture in the atmosphere enters from the end through the leak detection groove, and the copper inner tube and the aluminum There was a problem that battery corrosion occurred between the outer tube and electric corrosion.

本発明は、上記従来の課題を解決するもので、電食する可能性を低減することと、電食する前に水の漏洩を検知させることと、の両立を図った多重管式熱交換器を提供することを目的とする。   The present invention solves the above-described conventional problems, and is a multi-tube heat exchanger that achieves both reduction of the possibility of electrolytic corrosion and detection of water leakage before electrolytic corrosion. The purpose is to provide.

上記従来の課題を解決するために、本発明の多重管式熱交換器は、内管と、前記内管の外壁を覆って前記内管の外壁に密着しかつ多数の冷媒流路からなる外管と、前記内管の外表面に形成された漏洩検知溝と、前記外管の長手方向端部にあって前記内管と近接する内周部分を前記外管の外周部分より長くした外管端末部と、前記冷媒流路に対応する環状通路を有しかつ前記外管端末部と接合した分岐部とからなり、前記内管の長手方向端部は前記外管の長手方向端部よりも長く、前記外管端末部の先端と前記内管の端部との境界を伸縮性のある被覆物で被覆し、前記被覆物で被覆された部分の途中まで前記漏洩検知溝を設けたものである。   In order to solve the above-described conventional problems, a multi-tube heat exchanger according to the present invention includes an inner tube, an outer wall that covers the outer wall of the inner tube, is in close contact with the outer wall of the inner tube, and includes a plurality of refrigerant channels. A tube, a leakage detection groove formed on the outer surface of the inner tube, and an outer tube having an inner peripheral portion adjacent to the inner tube at a longitudinal end of the outer tube that is longer than an outer peripheral portion of the outer tube A terminal portion and a branch portion having an annular passage corresponding to the refrigerant flow path and joined to the outer tube terminal portion, the longitudinal end portion of the inner tube being more than the longitudinal end portion of the outer tube Long, the boundary between the tip of the outer tube terminal and the end of the inner tube is covered with a stretchable coating, and the leak detection groove is provided halfway through the portion covered with the coating. is there.

これによって、漏洩検知溝の端部が被覆物により覆われており、外気に開放されていないので、大気中の水分が漏洩検知溝の内部へ浸入することを低減でき、銅製の内管とアルミニウム製の外管が電食する可能性を低減できる。   As a result, the end of the leak detection groove is covered with a coating and is not open to the outside air, so that moisture in the atmosphere can be prevented from entering the leak detection groove, and the copper inner tube and aluminum It is possible to reduce the possibility of electrolytic corrosion of the manufactured outer tube.

さらに、水の流路である銅製の内管の内面から腐食が進行し、アルミニウム製の外管との密着部まで到達しても、漏洩検知溝の端部に設けた被覆物は伸縮性を有しているので、被覆物を漏洩検知溝の端部にかかる水圧で押し広げることができ、水自らが流路を作って外部へ排出することができる。   Furthermore, even if corrosion progresses from the inner surface of the copper inner tube, which is the flow path of water, and reaches the close contact portion with the aluminum outer tube, the coating provided at the end of the leak detection groove is elastic. Since it has, the covering can be expanded by the water pressure applied to the end of the leakage detection groove, and the water itself can form a flow path and be discharged to the outside.

本発明の多重管式熱交換器は、アルミニウム製の外管を電食する可能性を低減できるとともに、電食する前に水の漏洩を検知させてCO冷媒流路内に存在する冷凍機油等の成分が水側に流入する可能性を低減できる。 The multi-tube heat exchanger according to the present invention can reduce the possibility of electrolytic corrosion of an aluminum outer tube, and can also detect the leakage of water before electrolytic corrosion and the refrigerating machine oil present in the CO 2 refrigerant flow path. It is possible to reduce the possibility that components such as these will flow into the water side.

請求項1に記載の発明は、内管と、前記内管の外壁を覆って前記内管の外壁に密着しかつ多数の冷媒流路からなる外管と、前記内管の外表面に形成された漏洩検知溝と、前記外管の長手方向端部にあって前記内管と近接する内周部分を前記外管の外周部分より長くした外管端末部と、前記冷媒流路に対応する環状通路を有しかつ前記外管端末部と接合した分岐部とからなり、前記内管の長手方向端部は前記外管の長手方向端部よりも長く、前記外管端末部の先端と前記内管の端部との境界を伸縮性のある被覆物で被覆し、前記被覆物で被覆された部分の途中まで前記漏洩検知溝を設けたことにより、大気中の水分が漏洩検知溝の内部へ浸入することを低減でき、銅製の内管とアルミニウム製の外管が電食する可能性を低減できる。さらに、水の流路である銅製の内管の内面から腐食が進行してアルミニウム製の外管との密着部まで到達しても、漏洩検知溝の端部に設けた被覆物は伸縮性を有しているので、被覆物を漏洩検知溝の端部にかかる水圧で押し広げ、水自らが流路を作って外部へ排出することができ、電食する前に水の漏洩を検知させてCO冷媒流路内に存在する冷凍機油等の成分が水側に流入する可能性を低減できる。 The invention according to claim 1 is formed on the outer surface of the inner tube, the outer tube which covers the outer wall of the inner tube and is in close contact with the outer wall of the inner tube and which has a large number of refrigerant flow paths. A leakage detection groove, an outer tube end portion in which an inner peripheral portion adjacent to the inner tube at a longitudinal end portion of the outer tube is longer than an outer peripheral portion of the outer tube, and an annular shape corresponding to the refrigerant flow path A branch portion having a passage and joined to the outer tube terminal portion, and a longitudinal end portion of the inner tube is longer than a longitudinal end portion of the outer tube, and a tip end of the outer tube terminal portion and the inner tube By covering the boundary with the end of the tube with a stretchable coating and providing the leakage detection groove partway through the coating, moisture in the atmosphere can enter the leakage detection groove. Infiltration can be reduced, and the possibility of electrolytic corrosion of the copper inner tube and the aluminum outer tube can be reduced. Furthermore, even if corrosion progresses from the inner surface of the copper inner tube, which is the water flow path, and reaches the contact portion with the aluminum outer tube, the coating provided at the end of the leak detection groove is elastic. Because it has, the cover can be spread with the water pressure applied to the end of the leak detection groove, the water itself can make a flow path and drain it to the outside, and let the water leak be detected before electric corrosion The possibility that components such as refrigerating machine oil present in the CO 2 refrigerant flow path will flow into the water side can be reduced.

請求項2に記載の発明は、請求項1に記載の発明において、前記被覆物は水分透過が極めて小さい材料であることにより、被覆物の表面から内側へ大気中の水分が浸透することを抑えることととなり、銅製の内管とアルミニウム製の外管との境界部分に水分がより介在しにくくなり、電食する可能性をより低減できる。   According to a second aspect of the present invention, in the first aspect of the invention, the coating is made of a material having a very small moisture permeation, thereby suppressing the penetration of moisture in the atmosphere from the surface to the inside of the coating. As a result, moisture becomes less likely to intervene at the boundary between the copper inner tube and the aluminum outer tube, and the possibility of electrolytic corrosion can be further reduced.

請求項3に記載の発明は、請求項1または2に記載の発明において、前記被覆物は熱収縮性を有するチューブ状の樹脂成形物としたことにより、チューブ状の樹脂成形物を挿入後に加熱することで収縮密着させることとなり、より隙間を低減できる。   According to a third aspect of the present invention, in the invention according to the first or second aspect, the covering is a tube-shaped resin molded product having heat-shrinkability, so that the tube-shaped resin molded product is heated after being inserted. By doing so, shrinkage is brought into close contact, and the gap can be further reduced.

請求項4に記載の発明は、請求項1から3のいずれか一項に記載の発明において、前記被覆物は電気絶縁性の材料としたことにより、アルミニウム製の外管端末部と銅製の内管の端部との境界で電食する可能性を低減できる。   The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein the covering is made of an electrically insulating material, so that the outer tube end portion made of aluminum and the inner portion made of copper are made. The possibility of electrolytic corrosion at the boundary with the end of the tube can be reduced.

請求項5に記載の発明は、請求項1から4のいずれか一項に記載の発明において、前記外管に形成された冷媒流路を炭酸ガスの流路とし、前記内管内を水の流路としたことにより、炭酸ガスを使用した超臨界ヒートポンプ(例えば給湯装置や空調装置)の多重管式熱交換器に適用することができる。   According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the refrigerant flow path formed in the outer pipe is a carbon dioxide flow path, and water flows in the inner pipe. By using the channel, it can be applied to a multi-tube heat exchanger of a supercritical heat pump (for example, a hot water supply device or an air conditioner) using carbon dioxide gas.

以下、本発明の実施の形態について、図面を参照しながら説明するが、従来例または先に説明した実施の形態と同一構成について同一符号を付して、その詳細な説明は省略する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings, but the same reference numerals are given to the same configurations as those of the conventional example or the above-described embodiments, and detailed description thereof will be omitted. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における多重管式熱交換器の端部を示す側断面図、図2は、同実施の形態における冷媒または水の漏洩時の多重管式熱交換器の端部を示す側断面拡大図である。
(Embodiment 1)
FIG. 1 is a side sectional view showing an end portion of a multi-tube heat exchanger according to Embodiment 1 of the present invention, and FIG. 2 is a cross-sectional view of the multi-tube heat exchanger when refrigerant or water leaks in the same embodiment. It is a side cross-sectional enlarged view which shows an edge part.

図1、図2において、多重管式熱交換器100は、銅製の内管1と、内管1の外壁を覆って内管1の外壁に密着しかつ多数の冷媒流路3からなるアルミニウム製の外管2と、からなり、内管1の外表面には管軸方向に漏洩検知溝4が形成されている。冷媒流路3内には冷媒(例えばCO冷媒)が流れ、内管1内には水が流れるものである。アルミニウム製の外管2は、CO冷媒が臨界圧力以上となっても充分耐え得る強度の冷媒流路3の形状および肉厚が確保されているものである。銅製の内管1においても、実使用上問題のない耐食性を有する肉厚が確保されており、好ましくは内面溝付管が望ましい。 1 and 2, a multi-tube heat exchanger 100 is made of an aluminum made of a copper inner tube 1 and an aluminum wall that covers the outer wall of the inner tube 1 and is in close contact with the outer wall of the inner tube 1, and is composed of a number of refrigerant flow paths 3. The outer tube 2 is formed with a leak detection groove 4 formed on the outer surface of the inner tube 1 in the tube axis direction. A refrigerant (for example, CO 2 refrigerant) flows in the refrigerant flow path 3, and water flows in the inner pipe 1. The outer pipe 2 made of aluminum has a shape and thickness of the refrigerant flow path 3 having a strength that can sufficiently withstand even when the CO 2 refrigerant reaches a critical pressure or higher. Also in the copper inner pipe 1, a thickness having corrosion resistance that does not cause a problem in actual use is secured, and an inner grooved pipe is preferable.

また、多重管式熱交換器100の端部は、外管2の長手方向端部にあって内管1と近接する内周部分を外管2の外周部分より長くした外管端末部5と、冷媒流路3に対応する環状通路6を有しかつ外管端末部5と接合した分岐部7と、からなり、内管1の長手方向端部は外管2の長手方向端部よりも長くなっている。熱収縮チューブ8は外管端末部5の先端と内管1の端部との境界を被覆する伸縮性を有した被覆物であり、熱収縮チューブ8で被覆された部分の途中まで漏洩検知溝4が設けられている。   In addition, the end of the multi-tube heat exchanger 100 is located at the end in the longitudinal direction of the outer tube 2, and the outer tube terminal portion 5 in which the inner peripheral portion adjacent to the inner tube 1 is longer than the outer peripheral portion of the outer tube 2. A branch portion 7 having an annular passage 6 corresponding to the refrigerant flow path 3 and joined to the outer tube terminal portion 5, and the longitudinal end portion of the inner tube 1 is longer than the longitudinal end portion of the outer tube 2. It is getting longer. The heat-shrinkable tube 8 is a covering material having elasticity that covers the boundary between the tip of the outer tube terminal 5 and the end of the inner tube 1, and leak detection grooves to the middle of the portion covered with the heat-shrinkable tube 8. 4 is provided.

以上のように構成された多重管式熱交換器について、以下その動作、作用を説明する。   The operation and action of the multi-tube heat exchanger configured as described above will be described below.

まず、アルミニウムの押出加工により形成された複数の冷媒流路3を備えた外管2を準備し、銅製の内管1を外管2の内側に挿入して、内管1に好ましくは液を充填し圧力を上げて、内管1と外管2が強固に密着するまで内管1を拡径させる。   First, an outer tube 2 having a plurality of refrigerant flow paths 3 formed by aluminum extrusion is prepared, and a copper inner tube 1 is inserted inside the outer tube 2 so that liquid is preferably applied to the inner tube 1. The inner tube 1 is expanded until the inner tube 1 and the outer tube 2 are firmly brought into close contact with each other.

極まれに、水の流路である銅製の内管1の内面から腐食が進行し、水がアルミニウム製の外管2との密着部にまで到達した場合においても、銅とアルミニウムとの間で電食が起こり急激にアルミニウムが孔食してCO冷媒の冷媒流路3に到達する前に、漏洩検知溝4から水が多重管式熱交換器100の外部に排出され、その水を検知することでシステムの運転を止めれば、CO冷媒流路内に存在する冷凍機油等の成分が水側に流入する可能性を低減できる。 In rare cases, even when corrosion progresses from the inner surface of the copper inner tube 1 that is a water flow path and the water reaches the close contact portion with the outer tube 2 made of aluminum, electric current is generated between copper and aluminum. Before the erosion occurs and the aluminum pitting suddenly and reaches the refrigerant flow path 3 of the CO 2 refrigerant, water is discharged from the leakage detection groove 4 to the outside of the multi-tube heat exchanger 100 and the water is detected. If the operation of the system is stopped, the possibility that components such as refrigerating machine oil existing in the CO 2 refrigerant flow channel flow into the water side can be reduced.

この時、従来の多重管式熱交換器の構成では、漏洩検知溝4の端部が外気に開放されているので、常時、大気中の水分が漏洩検知溝4の端部から内部へ浸入し、徐々に銅製の内管とアルミニウム製の外管との間で電池作用によるガルバニック腐食(電食)が発生する可能性を有していた。   At this time, in the configuration of the conventional multi-tube heat exchanger, the end of the leak detection groove 4 is open to the outside air, so that moisture in the atmosphere constantly enters the inside from the end of the leak detection groove 4. The galvanic corrosion (electric corrosion) due to the battery action may gradually occur between the copper inner tube and the aluminum outer tube.

そこで、外管端末部5の先端と内管1の端部との境界を熱収縮チューブ8で被覆し、かつ熱収縮チューブ8の途中まで漏洩検知溝4を設ける(熱収縮チューブ8の途中から内管1の先端までは漏洩検知溝4を設けない)ことにより、漏洩検知溝4の端部が外気に開放されず、大気中の水分が漏洩検知溝4の内部へ浸入することを低減できる。   Therefore, the boundary between the tip of the outer tube terminal 5 and the end of the inner tube 1 is covered with the heat shrink tube 8 and the leak detection groove 4 is provided partway through the heat shrink tube 8 (from the middle of the heat shrink tube 8). The leakage detection groove 4 is not provided up to the tip of the inner tube 1), so that the end of the leakage detection groove 4 is not opened to the outside air and moisture in the atmosphere can be prevented from entering the leakage detection groove 4. .

また、熱収縮チューブ8が伸縮性を有しているので、腐食進行により水がアルミニウム製の外管2との密着部にまで到達した場合には、漏洩検知溝4の端部にかかる水圧で熱収縮チューブ8を外側に押し広げることができ、水が外部へ排出されることとなる(図2参照)。すなわち、漏洩検知溝の端部を伸縮性のある被覆物で被覆することにより、大気中の水分の浸入を阻止するとともに、腐食進行により水がアルミニウム製の外管との密着部にまで到達した場合は水圧で熱収縮チューブ8を外側に押し広げることができ水を外部へ排出できる。   In addition, since the heat shrinkable tube 8 has elasticity, when water reaches the close contact portion with the aluminum outer tube 2 due to the progress of corrosion, the water pressure applied to the end of the leakage detection groove 4 The heat-shrinkable tube 8 can be pushed outward and water is discharged to the outside (see FIG. 2). That is, by covering the end of the leak detection groove with a stretchable coating, it prevents the intrusion of moisture in the atmosphere, and the water has reached the close contact portion with the aluminum outer tube due to the progress of corrosion. In this case, the heat shrinkable tube 8 can be pushed outward by water pressure, and water can be discharged to the outside.

しかも、熱収縮チューブ8に水分透過が極めて小さい材料を適用することで、熱収縮チューブ8を透過する水分を抑えることができ、水分が漏洩検知溝4の内部へ浸入することをさらに抑えることができる。   In addition, by applying a material with extremely low moisture permeation to the heat-shrinkable tube 8, it is possible to suppress the water that permeates the heat-shrinkable tube 8, and to further prevent moisture from entering the leak detection groove 4. it can.

さらに、熱収縮チューブ8は電気を通さない電気絶縁性の高い被覆物(好ましくはポリエステルやポリエチレンなどの薄膜で厚み0.01mmから1mm)とすることにより、アルミニウム製の外管端末部5の先端と銅製の内管1の端部との境界で発生する電食を防止することができる。   Furthermore, the heat-shrinkable tube 8 is made of a highly electrically insulating coating that does not conduct electricity (preferably a thin film of polyester, polyethylene, or the like and has a thickness of 0.01 mm to 1 mm), so that the tip of the outer tube terminal portion 5 made of aluminum And electrolytic corrosion occurring at the boundary between the copper inner tube 1 and the end of the copper inner tube 1 can be prevented.

また、熱収縮チューブ8は、チューブ状でかつ加熱すると収縮する樹脂材(好ましくはスミチューブなど)とすることで、装着した後に加熱するだけで、樹脂材自身が収縮して外管端末部5と内管1の端部の境界に水分の通る隙間を低減することとなり、より密着させることができるとともに加工性が良くなる。   Further, the heat shrinkable tube 8 is a tube-shaped resin material (preferably Sumitube) that shrinks when heated, so that the resin material itself contracts with the outer tube terminal portion 5 simply by heating after mounting. The gap through which moisture passes through the boundary of the end portion of the inner tube 1 is reduced, so that the inner tube 1 can be more closely attached and the workability is improved.

よって、アルミニウム製の外管を電食させないことと、電食する前に水の漏洩を検知させてCO冷媒流路内に存在する冷凍機油等の成分が水側に流入する可能性を低減できること、の両立を図ることができる。 Therefore, it is possible to prevent the outer pipe made of aluminum from being eroded, and to reduce the possibility that components such as refrigeration oil existing in the CO 2 refrigerant flow channel will flow into the water side by detecting leakage of water before erosion. It is possible to achieve both compatibility.

なお、本実施の形態では、熱収縮チューブ8は、チューブ状としているが、テープ巻きとしても同様の作用を有することは言うまでもない。   In the present embodiment, the heat-shrinkable tube 8 is formed in a tube shape, but it goes without saying that it has the same effect as a tape winding.

さらに、本実施の形態では、漏洩検知溝4は内管1の外表面に設けたものであるが、外管2の内表面に設けても同様の作用を有することは言うまでもない。   Further, in the present embodiment, the leakage detection groove 4 is provided on the outer surface of the inner tube 1, but it goes without saying that the leakage detecting groove 4 has the same function even if provided on the inner surface of the outer tube 2.

以上のように、本発明にかかる多重管式熱交換器は、アルミニウム管を電食する可能性を低減できることと、電食する前に水の漏洩を検知させることが可能となるので、ヒートポンプ式給湯装置又はヒートポンプ式空調装置用等の多重管式熱交換器の用途にも適用できる。   As described above, the multi-tube heat exchanger according to the present invention can reduce the possibility of electrolytic corrosion of an aluminum tube, and can detect water leakage before electrolytic corrosion. It is applicable also to the use of a multi-tube heat exchanger such as for a hot water supply device or a heat pump type air conditioner.

本発明の実施の形態1における多重管式熱交換器の端部を示す側断面図Side sectional view which shows the edge part of the multipipe heat exchanger in Embodiment 1 of this invention 同実施の形態における冷媒または水の漏洩時の多重管式熱交換器の端部を示す側断面拡大図The side cross-section enlarged view which shows the edge part of the multiple tube type heat exchanger at the time of the refrigerant | coolant or water leakage in the same embodiment 従来の多重管式熱交換器の断面図Sectional view of a conventional multi-tube heat exchanger

符号の説明Explanation of symbols

1 内管
2 外管
3 冷媒流路
4 漏洩検知溝
5 外管端末部
6 環状流路
7 分岐部
8 熱収縮チューブ(被覆物)
100 多重管式熱交換器
DESCRIPTION OF SYMBOLS 1 Inner pipe | tube 2 Outer pipe | tube 3 Refrigerant flow path 4 Leak detection groove 5 Outer pipe | tube terminal part 6 Annular flow path 7 Branching part 8 Heat shrinkable tube (covering material)
100 Multi-tube heat exchanger

Claims (5)

内管と、前記内管の外壁を覆って前記内管の外壁に密着しかつ多数の冷媒流路からなる外管と、前記内管の外表面に形成された漏洩検知溝と、前記外管の長手方向端部にあって前記内管と近接する内周部分を前記外管の外周部分より長くした外管端末部と、前記冷媒流路に対応する環状通路を有しかつ前記外管端末部と接合した分岐部とからなり、前記内管の長手方向端部は前記外管の長手方向端部よりも長く、前記外管端末部の先端と前記内管の端部との境界を伸縮性のある被覆物で被覆し、前記被覆物で被覆された部分の途中まで前記漏洩検知溝を設けた多重管式熱交換器。   An inner tube, an outer tube that covers the outer wall of the inner tube and is in close contact with the outer wall of the inner tube, and includes a plurality of refrigerant channels; a leak detection groove formed on an outer surface of the inner tube; and the outer tube An outer tube terminal portion having an inner peripheral portion adjacent to the inner tube that is longer than an outer peripheral portion of the outer tube, an annular passage corresponding to the refrigerant flow path, and the outer tube terminal A longitudinal end of the inner tube is longer than a longitudinal end of the outer tube, and the boundary between the distal end of the outer tube end and the end of the inner tube is expanded and contracted. A multi-tube heat exchanger in which the leakage detection groove is provided halfway along the portion covered with the covering material. 前記被覆物は水分透過が極めて小さい材料である請求項1に記載の多重管式熱交換器。   The multi-tube heat exchanger according to claim 1, wherein the covering is made of a material having extremely small moisture permeation. 前記被覆物は熱収縮性を有するチューブ状の樹脂成形物とした請求項1または2に記載の多重管式熱交換器。   The multi-tube heat exchanger according to claim 1 or 2, wherein the covering is a tubular resin molded product having heat shrinkability. 前記被覆物は電気を通さない電気絶縁性材料である請求項1から3のいずれか一項に記載の多重管式熱交換器。   The multi-tube heat exchanger according to any one of claims 1 to 3, wherein the covering is an electrically insulating material that does not conduct electricity. 前記外管に形成された冷媒流路を炭酸ガスの流路とし、前記内管内を水の流路とした請求項1から4のいずれか一項に記載の多重管式熱交換器。   5. The multi-tube heat exchanger according to claim 1, wherein the refrigerant flow path formed in the outer pipe is a carbon dioxide gas flow path, and the inner pipe is a water flow path.
JP2007008827A 2007-01-18 2007-01-18 Multiple pipe-type heat exchanger Pending JP2008175449A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007008827A JP2008175449A (en) 2007-01-18 2007-01-18 Multiple pipe-type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007008827A JP2008175449A (en) 2007-01-18 2007-01-18 Multiple pipe-type heat exchanger

Publications (1)

Publication Number Publication Date
JP2008175449A true JP2008175449A (en) 2008-07-31

Family

ID=39702594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007008827A Pending JP2008175449A (en) 2007-01-18 2007-01-18 Multiple pipe-type heat exchanger

Country Status (1)

Country Link
JP (1) JP2008175449A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564171A (en) * 2012-01-11 2012-07-11 张伟 Heat-transfer heat exchanger with double-channel heat supply pipes and production process of heat-transfer heat exchanger with double-channel heat supply pipes
CN102564173A (en) * 2012-02-08 2012-07-11 张伟 Heat transfer side kneading welding heat exchanger with headers and double dividing walls and manufacturing process of heat transfer side kneading welding heat exchanger
CN103791738A (en) * 2013-09-08 2014-05-14 张伟 Multi-tube heating water storage heat exchanger with pressure borne by closed tubes and manufacturing technology thereof
CN104501631A (en) * 2015-01-26 2015-04-08 张伟 Header body pressure-bearing type water storage type heat exchanger
CN108106174A (en) * 2017-12-08 2018-06-01 广东纽恩泰新能源科技发展有限公司 Microchannel tubing heat exchanger

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102564171A (en) * 2012-01-11 2012-07-11 张伟 Heat-transfer heat exchanger with double-channel heat supply pipes and production process of heat-transfer heat exchanger with double-channel heat supply pipes
CN102564173A (en) * 2012-02-08 2012-07-11 张伟 Heat transfer side kneading welding heat exchanger with headers and double dividing walls and manufacturing process of heat transfer side kneading welding heat exchanger
CN103791738A (en) * 2013-09-08 2014-05-14 张伟 Multi-tube heating water storage heat exchanger with pressure borne by closed tubes and manufacturing technology thereof
CN104501631A (en) * 2015-01-26 2015-04-08 张伟 Header body pressure-bearing type water storage type heat exchanger
CN108106174A (en) * 2017-12-08 2018-06-01 广东纽恩泰新能源科技发展有限公司 Microchannel tubing heat exchanger

Similar Documents

Publication Publication Date Title
JP2008175449A (en) Multiple pipe-type heat exchanger
AU2017219429B2 (en) An assembly comprising an end-fitting for terminating an unbonded flexible pipe and an unbonded flexible pipe
US8498564B2 (en) Fixing roller/fixing belt, and process for manufacturing the same
JP2009202112A (en) Hollow fiber membrane module
JP2008256015A (en) Composite pipe
JP2016184512A (en) Covered electric wire with terminal and method of manufacturing the same
JP2008298104A (en) Joint
JP2007285444A (en) Pipe joint
JP2008071641A (en) Rubber or plastic insulated power cable
JP5087662B2 (en) Cylindrical protective covering and manufacturing method thereof
ATE482079T1 (en) REGISTER
JP2007187361A (en) Multi-tube type heat exchanger
JP2007205506A (en) Multilayer pipe
KR101477625B1 (en) Tube Comprising Anti Leaking
JP6140561B2 (en) Pipe fitting
KR200318953Y1 (en) Synthetic resin double pipe
JP2011099614A (en) Heat exchanger
JP2020056476A (en) Composite pipe and joining method for composite pipe
US20230208115A1 (en) Cooling System for a Medium Voltage Switchgear
JP2005186370A (en) Heat-shrinkable tube
JP5366603B2 (en) header
JP2001280556A (en) Sheath pipe of water supply pipe
JP2009014088A (en) Heat-shrinkable tubing for heat insulation
JP2012210071A (en) Connecting method for insulating tubes and covered conductors
KR20210138417A (en) Pipe fitting apparatus of Pipe fitting method