JP2008173581A - Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it - Google Patents

Catalytic cracking catalyst of hydrocarbon oil and catalytic cracking method of hydrocarbon oil using it Download PDF

Info

Publication number
JP2008173581A
JP2008173581A JP2007010409A JP2007010409A JP2008173581A JP 2008173581 A JP2008173581 A JP 2008173581A JP 2007010409 A JP2007010409 A JP 2007010409A JP 2007010409 A JP2007010409 A JP 2007010409A JP 2008173581 A JP2008173581 A JP 2008173581A
Authority
JP
Japan
Prior art keywords
catalyst
catalytic cracking
hydrocarbon oil
mass
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010409A
Other languages
Japanese (ja)
Other versions
JP4818136B2 (en
Inventor
Tadashi Shibuya
忠 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Japan Petroleum Energy Center JPEC
Original Assignee
Cosmo Oil Co Ltd
Petroleum Energy Center PEC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd, Petroleum Energy Center PEC filed Critical Cosmo Oil Co Ltd
Priority to JP2007010409A priority Critical patent/JP4818136B2/en
Publication of JP2008173581A publication Critical patent/JP2008173581A/en
Application granted granted Critical
Publication of JP4818136B2 publication Critical patent/JP4818136B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a catalytic cracking catalyst having high cracking activity in the catalytic cracking of hydrocarbon oil, reducing the amount of production of a dry gas, LPG and coke being cracking products and enhancing the selectivity of gasoline to efficiently manufacture FCC gasoline in a high yield, and a catalytic cracking method of the hydrocarbon oil using the catalyst. <P>SOLUTION: The catalytic cracking catalyst of the hydrocarbon oil contains 10-75 mass% of a clay mineral showing the XRD pattern of Kaolinite-1Md and Illite-2M1 in X-ray diffraction (XRD), 20-60 mass% of crystalline aluminosilicate and 5-40 mass% of an alumina binder. The catalytic cracking method of the hydrocarbon oil using the catalyst is also disclosed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化水素油の接触分解触媒(以下「FCC触媒」と記すこともある)と、それを用いる炭化水素油の接触分解方法に関し、さらに詳しくは、高い分解活性を有し、また、分解生成物であるドライガス(水素、C1〜C2)、LPG、コークの生成を低減させ、ガソリン留分(以下「FCCガソリン」と記すこともある)の収率を向上させることができる炭化水素油の接触分解触媒と、それを用いる炭化水素油の接触分解方法に関する。   The present invention relates to a catalytic cracking catalyst for hydrocarbon oil (hereinafter also referred to as “FCC catalyst”) and a method for catalytic cracking of hydrocarbon oil using the same, more specifically, having a high cracking activity, Hydrocarbons that can reduce the production of cracked products such as dry gas (hydrogen, C1-C2), LPG, and coke, and improve the yield of gasoline fractions (hereinafter sometimes referred to as “FCC gasoline”). The present invention relates to an oil catalytic cracking catalyst and a hydrocarbon oil catalytic cracking method using the catalyst.

重質炭化水素油の接触分解は、石油精製工程で得られる低品位な重質油を接触分解することによって、軽質な炭化水素油へと変換する反応であるが、FCCガソリンを製造する際に、副生成物として、ドライガス(水素、C1〜C2)、コーク、液化石油ガス(Liquefied Petroleum Gas:LPG)、中間留分(Light Cycle Oil :LCO)、重質留分(Heavy Cycle Oil :HCO)が生産される。効率的にFCCガソリンを製造するためには、触媒の分解活性が高く、またガソリン収率が高く、さらには重質留分の選択性が低いことが望ましい。   Catalytic cracking of heavy hydrocarbon oil is a reaction that converts low-grade heavy oil obtained in the petroleum refining process into light hydrocarbon oil by catalytic cracking. When producing FCC gasoline, As by-products, dry gas (hydrogen, C1-C2), coke, liquefied petroleum gas (Liquid Petroleum Gas: LPG), middle distillate (Light Cycle Oil: LCO), heavy distillate (Heavy Cycle Oil: HCO) ) Is produced. In order to efficiently produce FCC gasoline, it is desirable that the cracking activity of the catalyst is high, the gasoline yield is high, and the selectivity of the heavy fraction is low.

また、自動車用ガソリンは、原油の精製工程において得られる複数のガソリン基材を混合することにより製造されており、特に重質な炭化水素油の接触分解から得られるFCCガソリンは、ガソリンへの配合量も多いため、FCCガソリン収率を向上させることは当業者にとって望ましい。   In addition, gasoline for automobiles is manufactured by mixing a plurality of gasoline base materials obtained in the refining process of crude oil. FCC gasoline obtained from catalytic cracking of heavy hydrocarbon oils is blended with gasoline. Because of the large amount, it is desirable for those skilled in the art to improve FCC gasoline yield.

しかし、炭化水素油の接触分解方法においては、近年の原油の重質化・低品位化に伴い、バナジウムやニッケル等の重金属や残留炭素分の高い原料油を流動接触分解装置に投入しなければならない事態が生じている。バナジウムは、FCC触媒に沈着し堆積すると、FCC触媒の活性成分である結晶性アルミノ珪酸塩の構造を破壊するため、触媒の著しい活性低下をもたらし、かつ水素・コークの生成量を増大させ、ガソリンの選択性を低下させるなどの問題を有していることが知られている。また、ニッケルも、触媒表面に沈着堆積し、脱水素反応を促進するため水素・コークの生成量を増加させ、ガソリンの選択性を低下させるなどの問題を有している。   However, in the method of catalytic cracking of hydrocarbon oil, with the recent heavy and low grade of crude oil, heavy metals such as vanadium and nickel and feedstock with high residual carbon content must be put into the fluid catalytic cracking unit. There is a situation that cannot be avoided. When vanadium is deposited and deposited on the FCC catalyst, it destroys the structure of the crystalline aluminosilicate that is the active component of the FCC catalyst, causing a significant decrease in the activity of the catalyst and increasing the production of hydrogen and coke. It is known to have problems such as lowering the selectivity. Nickel is also deposited on the surface of the catalyst and has problems such as increasing the amount of hydrogen and coke generated to promote the dehydrogenation reaction and lowering the selectivity of gasoline.

従来から、炭化水素油の接触分解には、ゼオライト、粘土鉱物などの無機酸化物マトリックス及びバインダーからなる接触分解触媒が良く用いられている(例えば、特許文献1〜3参照)。しかし、従来の接触分解触媒では、上記のように近年の原油の重質化・低品位化に伴い、ドライガス、LPG、コークの生成量の増大や、ガソリンの選択性の低下などが問題となっており、接触分解触媒のドライガス、LPG、コークの生成量の低減や、ガソリンの選択性の向上などが強く望まれている。
特開平8−57328号公報 特開平9−285728号公報 特開平10−118501号公報
Conventionally, a catalytic cracking catalyst comprising an inorganic oxide matrix such as zeolite or clay mineral and a binder is often used for catalytic cracking of hydrocarbon oil (see, for example, Patent Documents 1 to 3). However, with conventional catalytic cracking catalysts, as described above, with the recent increase in the weight and quality of crude oil, there are problems such as an increase in the amount of dry gas, LPG and coke produced, and a decrease in gasoline selectivity. Therefore, reduction of the amount of dry gas, LPG, and coke produced from the catalytic cracking catalyst and improvement in gasoline selectivity are strongly desired.
JP-A-8-57328 JP-A-9-285728 Japanese Patent Laid-Open No. 10-118501

以上の諸状況に鑑み、本発明は、炭化水素油の接触分解において、重質留分の分解性を向上させると同時に、分解生成物であるドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できる接触分解触媒を提供することを目的とする。   In view of the above circumstances, the present invention improves the decomposability of heavy fractions in catalytic cracking of hydrocarbon oils, and at the same time reduces the amount of cracked products such as dry gas, LPG and coke, Another object of the present invention is to provide a catalytic cracking catalyst that can improve the selectivity of gasoline and can produce FCC gasoline efficiently and in high yield.

本発明者らは、上記の目的を達成するために検討を重ねた結果、特定のX線回折(XRD)パターンを単独で示す粘土鉱物を用いたFCC触媒であれば、炭化水素油の接触分解反応において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できることを見出し、本発明を完成させるに至った。   As a result of repeated investigations to achieve the above object, the inventors of the present invention have achieved catalytic cracking of hydrocarbon oils in the case of an FCC catalyst using a clay mineral that exhibits a specific X-ray diffraction (XRD) pattern alone. In the reaction, it has been found that FCC gasoline can be produced efficiently and in high yield by having high cracking activity, reducing the generation amount of dry gas, LPG and coke, and improving the selectivity of gasoline. It came to complete.

即ち、本発明は、次の炭化水素油の接触分解触媒、及びそれを用いた炭化水素油の接触分解方法を提供する。
(1)X線回折(XRD)においてKaolinite−1Md及びIllite−2M1のXRDパターンを示す粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜60質量%、結合剤であるアルミナバインダーを5〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。
(2)前記粘土鉱物が、さらにQuartzのXRDパターンを示すことを特徴とする上記(1)に記載の炭化水素油の接触分解触媒。
(3)炭化水素油を接触分解するにあたり、上記(1)又は(2)に記載の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。
(4)X線回折(XRD)におけるKaolinite−1Mdの2θ=20°付近のピーク強度をIとし、Illite−2M1の2θ=9°付近のピーク強度をIとしたとき、ピーク強度の比I/Iが3以下であることを特徴とする上記(1)又は(2)に記載の炭化水素油の接触分解触媒。
That is, this invention provides the following catalytic cracking catalyst of hydrocarbon oil, and the catalytic cracking method of hydrocarbon oil using the same.
(1) In X-ray diffraction (XRD), 10 to 75% by mass of clay minerals showing XRD patterns of Kaolinite-1Md and Illite-2M1, 20 to 60% by mass of crystalline aluminosilicate, and an alumina binder as a binder. A catalytic cracking catalyst for hydrocarbon oil, comprising 5 to 40% by mass.
(2) The hydrocarbon oil catalytic cracking catalyst according to (1) above, wherein the clay mineral further exhibits a Quartz XRD pattern.
(3) A catalytic cracking method for hydrocarbon oil, wherein the catalytic cracking catalyst according to (1) or (2) is used for catalytic cracking of hydrocarbon oil.
(4) When the peak intensity of Kaolinite-1Md near 2θ = 20 ° in X-ray diffraction (XRD) is I 0 and the peak intensity of Illite-2M1 near 2θ = 9 ° is I 1 , the ratio of peak intensities I 1 / I 0 is 3 or less, The catalytic cracking catalyst for hydrocarbon oils according to (1) or (2) above.

本発明に係る接触分解触媒は、炭化水素油の接触分解において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で得ることができる。一般に、FCCプロセスにおいては、その性質上、わずかでもドライガス、LPG、コークの生成量が低減できれば、FCC装置にかかるコスト及び負担を減少させることができる。特にFCC装置を高稼働率で運用する場合には、ドライガス、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。さらに、一般にFCCガソリンは、市場に出荷するガソリンへの配合量が多いため、ガソリンの選択性の向上により生み出される利益は非常に大きい。   The catalytic cracking catalyst according to the present invention has a high cracking activity in the catalytic cracking of hydrocarbon oil, reduces the generation amount of dry gas, LPG and coke, and improves the selectivity of gasoline. It can be obtained efficiently and in high yield. In general, in the FCC process, if the amount of dry gas, LPG, and coke produced can be reduced by a small amount, the cost and burden on the FCC apparatus can be reduced. In particular, when the FCC apparatus is operated at a high operating rate, by reducing the dry gas, LPG, and coke, the regeneration tower temperature and the gas section can be afforded, so that the apparatus can be operated more efficiently. Further, since FCC gasoline generally has a large blending amount with gasoline to be shipped to the market, the profit generated by improving the selectivity of gasoline is very large.

即ち、本発明のFCC触媒は、上記のように高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で得ることができるので、実用上極めて有効である。   That is, the FCC catalyst of the present invention has a high cracking activity as described above, reduces the generation amount of dry gas, LPG and coke, and improves the selectivity of gasoline, thereby improving the yield of FCC gasoline efficiently. Therefore, it is extremely effective in practical use.

以下に本発明の実施の態様を詳細に説明する。
<触媒の構成成分>
本発明に係る接触分解触媒は、結晶性アルミノ珪酸塩、粘土鉱物、アルミナバインダーを含有してなる。
Hereinafter, embodiments of the present invention will be described in detail.
<Components of catalyst>
The catalytic cracking catalyst according to the present invention comprises crystalline aluminosilicate, clay mineral, and alumina binder.

(結晶性アルミノ珪酸塩)
本発明で触媒成分に用いる結晶性アルミノ珪酸塩は、天然物であっても、人工物であってもよく、またその構造形態も多岐にわたっており、正方晶系、斜方晶系、立方晶系、六方晶系などの結晶構造を有する。この結晶性アルミノ珪酸塩としては、モルデナイト、βゼオライト、ZSM系ゼオライト、A型ゼオライト、X型ゼオライト、Y型ゼオライト等を用いることができ、Y型ゼオライトが好ましく、安定化Y型ゼオライトが特に好ましい。安定化Y型ゼオライトとしては、(a)化学組成分析によるバルクのSiO/Alモル比が4〜15、好ましくは5〜10、(b)単位格子寸法が24.35〜24.65Å、好ましくは、24.40〜24.60、(c)全Alに対するゼオライト骨格内Alのモル比が0.3〜1.0、好ましくは0.4〜1.0、のものを用いることができる。この安定化Y型ゼオライトは、天然のフォージャサイトと基本的に同一の結晶構造を有し、酸化物として下記に示す組成物を有する。
(0.02〜1.0)R2/mO・Al・(5〜11)SiO・(5〜8)H
R:Na、K、その他のアルカリ金属イオン、アルカリ土類金属イオン
m:Rの原子価
(Crystalline aluminosilicate)
The crystalline aluminosilicate used for the catalyst component in the present invention may be a natural product or an artificial product, and its structural form is wide-ranging, and is tetragonal, orthorhombic, cubic. Have a hexagonal crystal structure. As this crystalline aluminosilicate, mordenite, β zeolite, ZSM type zeolite, A type zeolite, X type zeolite, Y type zeolite and the like can be used, Y type zeolite is preferable, and stabilized Y type zeolite is particularly preferable. . As the stabilized Y-type zeolite, (a) bulk SiO 2 / Al 2 O 3 molar ratio by chemical composition analysis is 4 to 15, preferably 5 to 10, and (b) unit cell size is 24.35 to 24. 65 cm, preferably 24.40 to 24.60, (c) The molar ratio of Al in the zeolite framework to the total Al is 0.3 to 1.0, preferably 0.4 to 1.0. Can do. This stabilized Y-type zeolite has basically the same crystal structure as natural faujasite and has the following composition as an oxide.
(0.02~1.0) R 2 / m O · Al 2 O 3 · (5~11) SiO 2 · (5~8) H 2 O
R: Na, K, other alkali metal ions, alkaline earth metal ions m: R valence

本発明で用いるゼオライトの単位格子寸法は、X線回折装置(XRD)により測定することができ、またその全Alに対するゼオライト骨格内Alのモル数は、化学組成分析によるSiO/Al比及び単位格子寸法から下記の式(A)〜(C)を用いて算出することができる。なお、式(A)はH.K.Beyeretal.,J.Chem.Soc.,FaradayTrans.1,(81),2899(1985).に記載の式を採用したものである。
・NA1=(a−2.425)/0.000868・・・・・(A)
:単位格子寸法/nm
Al:単位格子当たりのAl原子数
2.425:単位格子骨格内の全Al原子が骨格外に脱離したときの単位格子寸法
0.000868:実験により求めた計算値であり、aとNAlについて1次式で整理したとき(a=0.000868NAl+2.425)の傾き
・(Si/Al)計算式=(192−NAl)/NAl・・・・・(B)
192:Y型ゼオライトの単位格子寸法あたりの(Si+Al)の原子数
・ゼオライト骨格内Al/全Al=(Si/Al)化学組成分析値/(Si/Al)計算式・・・・・(C)
The unit cell size of the zeolite used in the present invention can be measured by an X-ray diffractometer (XRD), and the number of moles of Al in the zeolite framework relative to the total Al is SiO 2 / Al 2 O 3 by chemical composition analysis. It can be calculated from the ratio and unit cell size using the following formulas (A) to (C). In addition, Formula (A) is H.264. K. Beyeretal. , J .; Chem. Soc. , Faraday Trans. 1, (81), 2899 (1985). Is adopted.
N A1 = (a o -2.425) /0.000868 (A)
a o : unit cell dimension / nm
N Al : Number of Al atoms per unit cell 2.425: Unit cell size when all Al atoms in the unit cell skeleton are desorbed outside the skeleton 0.000868: Calculated value obtained by experiment, a o and Inclination of N Al when arranged by a linear expression (a o = 0.000868N Al +2.425) (Si / Al) calculation formula = (192−N Al ) / N Al (B)
192: Number of atoms of (Si + Al) per unit cell size of Y-type zeolite-Al in zeolite framework / total Al = (Si / Al) chemical composition analysis value / (Si / Al) calculation formula (C )

上記ゼオライトのSiO/Alモル比は、触媒の酸強度を示しており、一般にモル比が大きいほど触媒の酸強度が強くなる。そして、一般にSiO/Alモル比は、4以上であることが、重質炭化水素油の接触分解に必要な酸強度を得ることができ、その結果分解反応が好適に進行して好ましい。また、15以下であることが、必要な酸の数が減少し、重質炭化水素油の分解活性が低下することを抑制できて好ましい。 The SiO 2 / Al 2 O 3 molar ratio of the zeolite indicates the acid strength of the catalyst. Generally, the larger the molar ratio, the stronger the acid strength of the catalyst. In general, when the SiO 2 / Al 2 O 3 molar ratio is 4 or more, the acid strength necessary for the catalytic cracking of heavy hydrocarbon oil can be obtained, and as a result, the cracking reaction proceeds suitably. preferable. Moreover, it is preferable that it is 15 or less because the number of required acids decreases and it can suppress that the decomposition activity of heavy hydrocarbon oil falls.

ゼオライトの単位格子寸法は、ゼオライトを構成する単位ユニットのサイズを示しているが、24.35Å以上であることが、重質炭化水素油の分解に必要なAlの数が減少しすぎ、その結果分解が進行し難くなることを抑制できて好ましい。また、24.65Å以下であることが、ゼオライト結晶の劣化が進行しやすくなり、FCC触媒の分解活性の低下が著しくなることを抑制できて好ましい。   The unit cell size of the zeolite indicates the size of the unit unit constituting the zeolite. However, when the unit cell size is 24.35 mm or more, the number of Al necessary for the decomposition of the heavy hydrocarbon oil is excessively reduced, and as a result It is preferable because decomposition can be prevented from being difficult to proceed. Moreover, it is preferable that it is 24.65 or less because deterioration of a zeolite crystal | crystallization progresses easily and it can suppress that the fall of the decomposition activity of a FCC catalyst becomes remarkable.

全Alに対するゼオライト骨格内Alのモル比は、0.3以上であることが、ゼオライト結晶を構成するAlの量が少なくなりすぎ、その結果ゼオライトの骨格から脱落したAl粒子が多くなり、強酸点が発現しないために接触分解反応が進行しなくなることを抑制できて好ましい。また、ゼオライト骨格内Alの全Alに対するモル比が1に近いと、ゼオライト内のAlの多くがゼオライト単位格子に取り込まれていることを意味し、ゼオライト内のAlが強酸点の発現に効果的に寄与するため好ましい。 If the molar ratio of Al in the zeolite framework to the total Al is 0.3 or more, the amount of Al constituting the zeolite crystal becomes too small, and as a result, more Al 2 O 3 particles fall off from the zeolite framework. Since the strong acid point is not expressed, it is preferable to prevent the catalytic decomposition reaction from proceeding. Moreover, when the molar ratio of Al in the zeolite framework to the total Al is close to 1, it means that most of the Al in the zeolite is taken into the zeolite unit cell, and the Al in the zeolite is effective for the expression of strong acid sites. It is preferable because it contributes to

上記のような要件を満たすゼオライトとして、特許第2544317号公報に記載されているヒートショック結晶性珪酸塩も使用することができる。このゼオライトは、SiO/Alモル比が5〜15、単位格子寸法が24.50以上24.70未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満である安定化Y型ゼオライトを600〜1200℃で5〜300分間、空気又は窒素雰囲気下で、結晶化度低下率が20%以下となるように焼成したものであり、化学組成分析によるバルクのSiO/Alモル比が5〜15、全Alに対するゼオライト骨格内Alのモル比が0.3〜0.6、単位格子寸法が24.45Å未満、アルカリ金属含有量が酸化物換算で0.02質量%以上1質量%未満、細孔分布において50Å付近及び180Å付近に特徴的なピークを示し、100Å以上の細孔容積が全細孔容積の10〜40%であり、かつY型ゼオライトの主要なX線回折パターンを有する結晶性アルミノ珪酸塩である。 As a zeolite that satisfies the above requirements, the heat shock crystalline silicate described in Japanese Patent No. 2544317 can also be used. This zeolite has a SiO 2 / Al 2 O 3 molar ratio of 5 to 15, a unit cell size of 24.50 or more and less than 24.70, and an alkali metal content of 0.02% by mass or more and less than 1% by mass in terms of oxides. The stabilized Y-type zeolite is calcined at 600 to 1200 ° C. for 5 to 300 minutes in air or nitrogen atmosphere so that the crystallinity reduction rate is 20% or less. SiO 2 / Al 2 O 3 molar ratio is 5 to 15, molar ratio of Al in zeolite framework to total Al is 0.3 to 0.6, unit cell size is less than 24.45 mm, alkali metal content is oxide equivalent 0.02% by mass or more and less than 1% by mass, showing a characteristic peak in the pore distribution around 50 and 180%, with a pore volume of 100 or more being 10 to 40% of the total pore volume, and Y Type Z It is a crystalline aluminosilicate with the main X-ray diffraction pattern of Olite.

(アルミナバインダー)
本発明で触媒成分に用いるアルミナバインダーは、結晶性アルミノケイ酸塩や粘土鉱物などの粒子間に存在し、触媒を微粒子化する時の成形性を良くし、触媒微粒子を球状にさせ、また得られる触媒微粒子の流動性及び耐摩耗性を図るために結合剤として使用される。アルミナバインダーは分散性が良いため結合力が強く、触媒強度を高めることができる。また、分解性に優れ、オクタン価の高いガソリン留分を得ることができる。
(Alumina binder)
The alumina binder used as a catalyst component in the present invention is present between particles such as crystalline aluminosilicate and clay mineral, improves the moldability when the catalyst is atomized, makes the catalyst particles spherical, and is also obtained. Used as a binder to improve the fluidity and wear resistance of the catalyst fine particles. Since the alumina binder has good dispersibility, the bonding strength is strong and the catalyst strength can be increased. In addition, a gasoline fraction having excellent decomposability and a high octane number can be obtained.

上記アルミナバインダーとしては、幾つかの種類が知られており、ジブサイト、バイアライト、ベーマイト、ベントナイト、結晶性アルミナなどを酸溶液中に溶解させた溶液や、ベーマイトゲル、無定形のアルミナゲルを水溶液中に分散させた溶液、あるいはアルミナゾルを使用することができる。好ましくはアルミナゾルである。   As the above-mentioned alumina binder, several types are known. A solution obtained by dissolving dibsite, vialite, boehmite, bentonite, crystalline alumina, etc. in an acid solution, boehmite gel, amorphous alumina gel in aqueous solution A solution dispersed therein or an alumina sol can be used. Alumina sol is preferred.

本発明で用いるアルミナゾルの粒子サイズは小さければ小さい程よいが、本発明では、粒子径0.01〜5.0μmの範囲内のものを好適に使用することができる。アルミナゾルの粒子径が、0.01μmより大きいと、触媒を成形しやすく、流動性に優れた触媒粒子を得ることができるため好ましい。また、5.0μmより小さいと、強度、磨耗性に優れた触媒粒子を得ることができるため好ましい。アルミナバインダーを構成するアルミナ粒子の形状は特に制限されるものではなく、球状、繊維状、不定形等のいずれかであってもよい。また、アルミナゾルは、陽性電荷を帯びるため、一般には陰性の安定剤が使用されており、本発明で用いるアルミナゾルの安定剤としては、塩素イオン、硝酸イオン、酢酸イオン等が挙げられ、好ましくは塩素イオンである。また、本発明で得られる効果を逸脱しない限り、シリカバインダーなどを混合して使用することもできる。   The smaller the particle size of the alumina sol used in the present invention is, the better. However, in the present invention, those having a particle diameter in the range of 0.01 to 5.0 μm can be suitably used. When the particle diameter of the alumina sol is larger than 0.01 μm, it is preferable because the catalyst can be easily molded and catalyst particles having excellent fluidity can be obtained. Moreover, when it is smaller than 5.0 μm, catalyst particles having excellent strength and wear properties can be obtained, which is preferable. The shape of the alumina particles constituting the alumina binder is not particularly limited, and may be any of spherical, fibrous, amorphous, and the like. In addition, since alumina sol is positively charged, a negative stabilizer is generally used. Examples of the alumina sol stabilizer used in the present invention include chlorine ion, nitrate ion, acetate ion, and preferably chlorine chloride. Ion. Moreover, a silica binder etc. can also be mixed and used, unless it deviates from the effect acquired by this invention.

(粘土鉱物)
本発明で用いる粘土鉱物は、Kaolinite−1MdのXRD(X線回折)パターンと、Illite−2M1のXRDパターンとを示すものである。粘土鉱物は、本発明の触媒において、マトリックスとして機能する。Kaolinite−1Mdの代表的なピークは2θ=13°、20°及び25°付近に観測され、それぞれ(001)面、(110)面及び(002)面のピークを意味する。Illite−2M1のピークは2θ=9°、18°及び27°付近に観測され、それぞれ(002)面、(004)面及び(006)面のピークを意味する。本発明で用いる粘土鉱物は、XRDパターンにおいてKaolinite−1Md及びIllite−2M1の両ピークを有することが肝要である。ここで、「1Md」や「2M1」といった記号は、結晶のポリタイプ(多形)を示しており、Mは単斜(monoclinic)を示し、また、記号の前の数字は、単位胞中に含む単位構造層の枚数を示す。
(Clay mineral)
The clay mineral used in the present invention exhibits an XRD (X-ray diffraction) pattern of Kaolinite-1Md and an XRD pattern of Illite-2M1. The clay mineral functions as a matrix in the catalyst of the present invention. Representative peaks of Kaolinite-1Md are observed around 2θ = 13 °, 20 ° and 25 °, and mean peaks of (001) plane, (110) plane and (002) plane, respectively. The peaks of Illite-2M1 are observed around 2θ = 9 °, 18 °, and 27 °, and mean the peaks of the (002) plane, (004) plane, and (006) plane, respectively. It is important that the clay mineral used in the present invention has both peaks of Kaolinite-1Md and Illite-2M1 in the XRD pattern. Here, the symbols “1Md” and “2M1” indicate the polytype (polymorphism) of the crystal, M indicates monoclinic, and the number before the symbol is in the unit cell. Indicates the number of unit structure layers to be included.

また、本発明では、必要に応じて、上記Kaolinite−1MdのXRDパターンと、Illite−2M1のXRDパターンを示す粘土鉱物において、さらにQuartzのXRDパターンを示すことが好ましい。Quartzの代表的なピークは2θ=21°、27°及び50°付近に観測され、それぞれ(100)面、(101)面及び(112)面のピークを意味する。   Moreover, in the present invention, it is preferable that the clay mineral showing the Kaolinite-1Md XRD pattern and the Illite-2M1 XRD pattern further exhibit a Quartz XRD pattern as necessary. Typical peaks of Quartz are observed around 2θ = 21 °, 27 °, and 50 °, and mean peaks of (100) plane, (101) plane, and (112) plane, respectively.

上記のような特定のXRDピークを単独で示す粘土鉱物は、カオリン(組成式:AlSiO(OH))やイライト(組成式:K0.75(Al1.750.25 2+)(Si3.5Al0.5)O10(OH)(R2+=Mg2+、Fe2+))を、場合により石英(組成式:SiO)をも既に含んでいるということを意味する。本発明では、このような粘土鉱物を用いることで、Kaolinite−1MdのXRDパターンのみを示す粘土鉱物を用いるよりも所望の活性の高い触媒を提供することができる。なお、上記粘土鉱物におけるカオリンとイライトのモル比をX:Yとすると、Y/(X+Y)×100、すなわちイライトの含有量は、好ましくは0.5〜30mol%、より好ましくは1〜15mol%、さらに好ましくは3〜10mol%である。30mol%より多いと触媒中のカリウムの含有量が多くなり、触媒の水熱耐久性が低下する懸念がある。また、0.5mol%より少ないと、十分な効果が得られない。 Clay minerals exhibiting specific XRD peaks as described above are kaolin (composition formula: Al 2 SiO 5 (OH) 4 ) and illite (composition formula: K 0.75 (Al 1.75 R 0.25 2+). ) (Si 3.5 Al 0.5 ) O 10 (OH) 2 (R 2+ = Mg 2+ , Fe 2+ )), possibly also containing quartz (composition formula: SiO 2 ). To do. In the present invention, by using such a clay mineral, it is possible to provide a catalyst having a higher desired activity than using a clay mineral showing only the XRD pattern of Kaolinite-1Md. When the molar ratio of kaolin and illite in the clay mineral is X: Y, Y / (X + Y) × 100, that is, the illite content is preferably 0.5 to 30 mol%, more preferably 1 to 15 mol%. More preferably, it is 3 to 10 mol%. When the amount is more than 30 mol%, the content of potassium in the catalyst increases, and there is a concern that the hydrothermal durability of the catalyst is lowered. Moreover, when it is less than 0.5 mol%, a sufficient effect cannot be obtained.

本発明の接触分解触媒でかかる優れた効果が得られる原因の詳細は必ずしも明らかではないが、上記一定のXRDパターンを示す特定の結晶構造を有する粘土鉱物を含有することで、接触分解触媒内に好適な細孔径が形成されたためと考えられる。つまり本発明の接触分解触媒では炭化水素油と分解活性点との接触効率が向上したため、高い分解活性を有し、ドライガス、LPG、コークの生成量が低減し、かつガソリン選択性が向上して優れた効果が得られると考えられる。   Although the details of the reason why such excellent effects are obtained with the catalytic cracking catalyst of the present invention are not necessarily clear, the inclusion of a clay mineral having a specific crystal structure showing the above-mentioned certain XRD pattern allows the catalytic cracking catalyst to be included in the catalytic cracking catalyst. This is probably because a suitable pore diameter was formed. In other words, in the catalytic cracking catalyst of the present invention, the contact efficiency between the hydrocarbon oil and the cracking active point is improved, so that it has high cracking activity, the generation amount of dry gas, LPG and coke is reduced, and the gasoline selectivity is improved. It is thought that excellent effects can be obtained.

本発明の接触分解触媒は、上記一定のXRDパターンを示す粘土鉱物に起因して、X線回折(XRD)において、Kaolinite−1Mdのピーク(2θ=20°付近のピーク強度をIとする)を含み、かつIllite−2M1(2θ=9°付近のピーク強度をIとする)のピークを有し、必要に応じて、さらにQuartz(2θ=27°付近のピーク強度をIとする)のピークを有するXRDパターンを示す。これらのピークの強度比の好ましい値は、I/Iは3以下、I/Iは10以下、であり、より好ましい値は、I/I=0.1〜1.5、I/I=1〜5である。本発明の接触分解触媒は、上記一定のXRDパターンを示す特定の粘土鉱物を含有することにより、炭化水素油の接触分解において、高い分解活性を有し、ドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという優れた効果を得ることができる。 The catalytic cracking catalyst of the present invention has a Kaolinite-1Md peak in X-ray diffraction (XRD) due to the above-mentioned clay mineral exhibiting a certain XRD pattern (the peak intensity near 2θ = 20 ° is I 0 ). And has a peak of Illite-2M1 (peak intensity around 2θ = 9 ° is assumed as I 1 ), and if necessary, further Quartz (peak intensity around 2θ = 27 ° is assumed as I 2 ) The XRD pattern with the peak of is shown. Preferable values of the intensity ratio of these peaks are I 1 / I 0 of 3 or less and I 2 / I 0 of 10 or less, and more preferable values of I 1 / I 0 = 0.1 to 1.5 , I 2 / I 0 = 1-5. The catalytic cracking catalyst of the present invention contains a specific clay mineral exhibiting the above-mentioned constant XRD pattern, thereby having high cracking activity in the catalytic cracking of hydrocarbon oil, and reducing the production amount of dry gas, LPG and coke. It is possible to obtain the excellent effect that the FCC gasoline can be produced efficiently and in a high yield by reducing the gasoline selectivity.

また、上記一定のXRDパターンを示す粘土鉱物には、板状、粒状、針状、六角板状等の形態が知られているが、本発明ではどのような形態でも使用することができる。   Moreover, although the form of plate shape, granular shape, needle shape, hexagonal plate shape, etc. are known as the clay mineral showing the above-mentioned certain XRD pattern, any form can be used in the present invention.

本発明の触媒成分には、上記特定のXRDパターンを示す粘土鉱物に加え、必要に応じて他の粘土鉱物(無機酸化物)を混合して用いることができる。他の粘土鉱物としては、モンモリロナイト、カオリン、ベントナイト、アタパルガイト、ボーキサイト、クオーツ(石英)、イライト、ベーマイト等が挙げられ、主成分はカオリンであることが好ましい。カオリンには、カオリナイト(六角板状、Kaolinite−1A)、積層に乱れのあるカオリナイト(Kaolinite−1Md)、ハロイサイト(針状)、ナクライト(六角板状、Kaolinite−1M)、ディッカイト(板状、Kaolinite−2M)等が知られており、上記のうちどの形態のカオリンでも混合することができる。ここで、「1A」は、結晶のポリタイプ(多形)を示しており、Aは三斜(Asym/Triclinic)を示している。なお、カオリン等の他の粘土鉱物の形状は特に制限されるものではなく、六角板状、針状、板状のいずれであってもよい。   In addition to the clay mineral showing the specific XRD pattern, other clay minerals (inorganic oxides) can be mixed and used as necessary for the catalyst component of the present invention. Other clay minerals include montmorillonite, kaolin, bentonite, attapulgite, bauxite, quartz (quartz), illite, boehmite and the like, and the main component is preferably kaolin. Kaolin includes kaolinite (hexagonal plate shape, Kaolinite-1A), kaolinite (Kaolinite-1Md) with disordered lamination, halloysite (needle shape), nacrite (hexagonal plate shape, Kaolinite-1M), dickite (plate shape) Kaolinite-2M) and the like, and any form of kaolin can be mixed. Here, “1A” indicates the polytype (polymorph) of the crystal, and A indicates triclinic (Asym / Triclinic). The shape of other clay minerals such as kaolin is not particularly limited, and may be any of hexagonal plate shape, needle shape, and plate shape.

上記一定のXRDパターンを示す粘土鉱物および他の粘土鉱物の粒子サイズは、小さければ小さい程よいが、本発明では、平均粒子径が0.1〜10μmのものであれば、強度、磨耗性に優れた触媒粒子を造粒できるため好ましい。平均粒子径が0.1μm以上であれば、触媒中に粘土鉱物を好適に分散させることができて、好ましい。また、10μm以下であれば、流動性に優れた触媒粒子を造粒することができ、触媒の強度が保たれるため、触媒の散飛、生成油中への混入等の好ましくはない現象を回避することができて、好ましい。また、比表面積5〜40m/gであることが分解活性を得る上で好ましい。比表面積が5m/g以上であれば、油滴と十分な接触面積が得られるため、好ましく、40m/g以下であれば、重質油が接触できるだけの細孔径を有するため、好ましい。さらに、SiO/Alモル比1.5〜2.5、水分2.0質量%以下、吸油量40〜80ml/100gの性状を有するものであれば、原料炭化水素油を効率よく吸油し、分解することができるため好ましい。 The smaller the particle size of clay minerals and other clay minerals exhibiting the above-mentioned constant XRD pattern, the better. However, in the present invention, if the average particle size is 0.1 to 10 μm, the strength and wear resistance are excellent. It is preferable because the catalyst particles can be granulated. If the average particle diameter is 0.1 μm or more, the clay mineral can be suitably dispersed in the catalyst, which is preferable. Moreover, if it is 10 μm or less, catalyst particles having excellent fluidity can be granulated, and the strength of the catalyst can be maintained. Therefore, undesirable phenomena such as scattering of the catalyst and mixing in the produced oil are caused. This is preferable because it can be avoided. Moreover, it is preferable when obtaining a decomposition activity that it is a specific surface area of 5-40 m < 2 > / g. A specific surface area of 5 m 2 / g or more is preferable because a sufficient contact area with oil droplets can be obtained, and a specific surface area of 40 m 2 / g or less is preferable because the heavy oil has a pore diameter that can be contacted. Further, SiO 2 / Al 2 O 3 molar ratio 1.5 to 2.5, water content 2.0 wt% or less, as long as it has the properties of an oil absorption of 40~80ml / 100g, efficiently feedstock hydrocarbon oil It is preferable because it can absorb oil and decompose.

(粘土鉱物以外のマトリックス等)
本発明の触媒には、上記粘土鉱物以外のマトリックス成分として、シリカ、シリカ−アルミナ、アルミナ、擬ベーマイト、シリカ−マグネシア、アルミナ−マグネシア、リン−アルミナ、シリカ−ジルコニア、シリカ−マグネシア−アルミナ等の通常の接触分解用触媒に使用される公知の無機酸化物の酸化物微粒子を含有させることもできる。また、アルカリ土類や、マンガン、アンチモン、スズ等のメタル不活性化機能を持つ無機酸化物を含有させることもできる。
(Matrix other than clay mineral)
In the catalyst of the present invention, as a matrix component other than the clay mineral, silica, silica-alumina, alumina, pseudoboehmite, silica-magnesia, alumina-magnesia, phosphorus-alumina, silica-zirconia, silica-magnesia-alumina, etc. It is also possible to contain oxide fine particles of known inorganic oxides used for ordinary catalytic cracking catalysts. In addition, an alkaline earth or an inorganic oxide having a metal inactivating function such as manganese, antimony, tin, or the like can be contained.

<触媒の調製>
以上のような各成分から構成されている本発明の接触分解触媒を調製するには、種々の方法があって、その調製方法は特に制限されないが、例えば次のような手順で調製することができる。
先ず、上記の結晶性アルミノ珪酸塩、アルミナバインダー及び粘土鉱物を混合溶液中で攪拌混合し、均一な水性スラリーを得る。このときの結晶性アルミノ珪酸塩、アルミナバインダー、及び粘土鉱物の混合割合は、触媒乾燥基準で、結晶性アルミノ珪酸塩が20〜60質量%、好ましくは30〜50質量%、アルミナバインダーが5〜40質量%、好ましくは10〜20質量%、粘土鉱物が10〜75質量%、好ましくは30〜70質量%の範囲に入るようにする。
<Preparation of catalyst>
There are various methods for preparing the catalytic cracking catalyst of the present invention composed of the above components, and the preparation method is not particularly limited. For example, it can be prepared by the following procedure. it can.
First, the above crystalline aluminosilicate, alumina binder and clay mineral are stirred and mixed in a mixed solution to obtain a uniform aqueous slurry. At this time, the mixing ratio of the crystalline aluminosilicate, the alumina binder, and the clay mineral is 20 to 60% by mass of the crystalline aluminosilicate, preferably 30 to 50% by mass, and 5 to 5% of the alumina binder on the basis of catalyst drying. 40 mass%, preferably 10 to 20 mass%, and clay mineral is 10 to 75 mass%, preferably 30 to 70 mass%.

結晶性アルミノ珪酸塩の量が20質量%以上であれば、所期の分解活性を得ることができ、また、60質量%以下であれば、相対的に粘土鉱物やアルミナバインダーの量が少なくなりすぎて、次のような好ましくない現象が生じることを回避できる。即ち、粘土鉱物やアルミナバインダーの量が少なすぎると、触媒強度が低下するのみならず、触媒の嵩密度が小さくなり、装置の運転において好ましくない結果を生じる。   If the amount of crystalline aluminosilicate is 20% by mass or more, the desired decomposition activity can be obtained, and if it is 60% by mass or less, the amount of clay mineral and alumina binder is relatively reduced. Therefore, the following undesirable phenomenon can be avoided. That is, if the amount of the clay mineral or the alumina binder is too small, not only the catalyst strength is lowered, but also the bulk density of the catalyst is reduced, which produces an undesirable result in the operation of the apparatus.

また、アルミナバインダーの量が5質量%以上であれば、触媒の強度が保てるため、触媒の飛散、生成油中への混入等の好ましくない現象を回避でき、また、40質量%以下であれば、使用量に見合った触媒性能の向上が認められ、経済的に有利となる。   Further, if the amount of the alumina binder is 5% by mass or more, the strength of the catalyst can be maintained, so that undesirable phenomena such as catalyst scattering and mixing in the produced oil can be avoided, and if it is 40% by mass or less. An improvement in catalyst performance commensurate with the amount used is recognized, which is economically advantageous.

さらにまた、粘土鉱物の量が10質量%以上であれば、触媒強度や、触媒の嵩密度が小さくて、装置の運転に支障をきたすことを回避でき、また、75質量%以下であれば、相対的に結晶性アルミノ珪酸塩やアルミナバインダーの量が少なくなり、結晶性アルミノ珪酸塩の量の不足により所期の高い分解活性が得られなくなることや、結合剤量の不足により触媒の調製が困難となることを回避できる。そして、粘土鉱物の混合割合を上記範囲とすることが、高い分解活性を有し、分解生成物であるドライガス、LPG、コークの生成量を低減させ、かつガソリンの選択性を向上させて、FCCガソリンを効率良く高収率で製造できるという本発明の優れた効果を得る上で肝要である。   Furthermore, if the amount of the clay mineral is 10% by mass or more, the catalyst strength and the bulk density of the catalyst are small, and it can be avoided that the operation of the apparatus is hindered, and if it is 75% by mass or less, The amount of crystalline aluminosilicate and alumina binder is relatively small, the expected amount of decomposition activity cannot be obtained due to the insufficient amount of crystalline aluminosilicate, and the catalyst preparation due to the insufficient amount of binder. The difficulty can be avoided. And making the mixing ratio of clay minerals in the above range has high decomposition activity, reduces the generation amount of dry gas, LPG and coke as decomposition products, and improves the selectivity of gasoline, It is essential to obtain the excellent effect of the present invention that FCC gasoline can be produced efficiently and in high yield.

上記の各成分を混合して調製される水性スラリー中の固形分の割合は、約5〜60質量%、より好ましくは10〜50質量%が適している。固形分の割合がこの範囲であれば、蒸発させる水分量が適当となり、噴霧乾燥工程などで支障をきたすことがなく、また、スラリーの粘度が高くなり過ぎて、スラリーの輸送が困難になることがない。   The ratio of the solid content in the aqueous slurry prepared by mixing the above components is about 5 to 60% by mass, more preferably 10 to 50% by mass. If the ratio of the solid content is within this range, the amount of water to be evaporated will be appropriate, and there will be no trouble in the spray drying process, etc., and the viscosity of the slurry will be too high, making it difficult to transport the slurry. There is no.

次いで、調製された結晶性アルミノ珪酸塩/アルミナバインダー/粘土鉱物の混合スラリーを通常噴霧乾燥し、触媒粒子を得る。噴霧乾燥工程は、一般に、噴霧乾燥装置を用い、ガス入口温度を約200〜400℃、ガス出口温度を約100〜200℃として行う。噴霧乾燥により得られる微小球体は、一般に、約20〜150μmの粒子径で、約10〜30質量%の水分含有量であることが好ましい。   Next, the prepared mixed slurry of crystalline aluminosilicate / alumina binder / clay mineral is usually spray-dried to obtain catalyst particles. The spray drying process is generally performed using a spray drying apparatus at a gas inlet temperature of about 200 to 400 ° C and a gas outlet temperature of about 100 to 200 ° C. In general, the microspheres obtained by spray drying preferably have a particle size of about 20 to 150 μm and a water content of about 10 to 30% by mass.

上記の水性スラリーを噴霧乾燥して得られた微小球体は、必要に応じて200℃以上で焼成し、焼成物とすることもでき、また、噴霧乾燥装置で水性スラリーの噴霧乾燥を行う際、ガス出口温度を200℃以上に保つことができる設備を備えている場合には、噴霧乾燥工程に微小球体の焼成工程を含めることも可能である。   The microspheres obtained by spray-drying the above aqueous slurry can be fired at 200 ° C. or higher as necessary to form a fired product, and when spray drying of the aqueous slurry with a spray drying device, When equipped with equipment capable of maintaining the gas outlet temperature at 200 ° C. or higher, it is possible to include a microsphere firing step in the spray drying step.

<触媒の洗浄>
上記のようにして得られた触媒の微小球体あるいはその焼成物は、通常、結晶性アルミノ珪酸塩や、アルミナバインダーや、粘土鉱物の各触媒成分からの可溶性不純物やナトリウムやカリウム等のアルカリ金属が含まれているため、水やアンモニア水を用いて可溶性不純物を洗浄除去し、次いでアルカリ金属をイオン交換することによって洗浄除去する。得られた微小球体やその焼成物に過剰のナトリウムやカリウムが存在しない場合は、その洗浄除去を行うことなく、そのまま触媒として用いることもできる。
<Catalyst cleaning>
The catalyst microspheres or calcined product obtained as described above are usually composed of crystalline aluminosilicate, alumina binder, soluble impurities from each catalyst component of clay mineral, and alkali metals such as sodium and potassium. Since it is contained, soluble impurities are washed away using water or aqueous ammonia, and then the alkali metal is washed away by ion exchange. When there is no excess sodium or potassium in the obtained microspheres or the fired product thereof, they can be used as a catalyst without being washed away.

上記のナトリウムやカリウム等のアルカリ金属の洗浄除去は、具体的には、硫酸アンモニウム、亜硫酸アンモニウム、硫酸水素アンモニウム、亜硫酸水素アンモニウム、チオ硫酸アンモニウム、亜硝酸アンモニウム、硝酸アンモニウム、ホスフィン酸アンモニウム、ホスホン酸アンモニウム、リン酸アンモニウム、リン酸水素アンモニウム、リン酸二水素アンモニウム、炭酸アンモニウム、炭酸水素アンモニウム、塩化アンモニウム、臭化アンモニウム、ヨウ化アンモニウム、ギ酸アンモニウム、酢酸アンモニウム、シュウ酸アンモニウムなどのアンモニウム塩の水溶液を用いてイオン交換して行うことができる。   Specifically, the washing and removal of alkali metals such as sodium and potassium are specifically ammonium sulfate, ammonium sulfite, ammonium hydrogen sulfate, ammonium hydrogen sulfite, ammonium thiosulfate, ammonium nitrite, ammonium nitrate, ammonium phosphinate, ammonium phosphonate, and phosphoric acid. Ions using aqueous solutions of ammonium salts such as ammonium, ammonium hydrogen phosphate, ammonium dihydrogen phosphate, ammonium carbonate, ammonium hydrogen carbonate, ammonium chloride, ammonium bromide, ammonium iodide, ammonium formate, ammonium acetate, ammonium oxalate Can be exchanged.

上記洗浄に続いて、この微小球体あるいはその焼成物を約100〜500℃の温度で再度乾燥し、水分含有量を約1〜25質量%にして、本発明に係る接触分解触媒が得られる。   Subsequent to the washing, the microspheres or the calcined product thereof is dried again at a temperature of about 100 to 500 ° C. to adjust the water content to about 1 to 25% by mass, whereby the catalytic cracking catalyst according to the present invention is obtained.

<接触分解方法>
本発明において、炭化水素油を接触分解するには、ガソリンの沸点範囲200℃以上で沸騰する炭化水素油(炭化水素混合物)を、上記本発明の接触分解触媒に接触させればよい。このガソリン沸点範囲以上で沸騰する炭化水素混合物とは、原油の常圧あるいは減圧蒸留で得られる軽油留分や、常圧蒸留残渣油及び減圧蒸留残渣油を意味し、もちろんコーカー軽油、溶剤脱瀝油、脱剤脱瀝アスファルト、タールサンド油、シェールオイル油、石炭液化油、GTL(Gas to Liquids)油、植物油、廃潤滑油、廃食油をも包括するものである。
<Catalytic decomposition method>
In the present invention, in order to catalytically crack hydrocarbon oil, hydrocarbon oil (hydrocarbon mixture) boiling in a boiling range of gasoline of 200 ° C. or higher may be brought into contact with the catalytic cracking catalyst of the present invention. The hydrocarbon mixture boiling above the gasoline boiling range means light oil fraction obtained by normal pressure or vacuum distillation of crude oil, atmospheric distillation residue oil and vacuum distillation residue oil, of course coker gas oil, solvent denitrification It includes oil, dehumidified and deasphalted asphalt, tar sand oil, shale oil oil, coal liquefied oil, GTL (Gas to Liquids) oil, vegetable oil, waste lubricating oil, and waste cooking oil.

商業的規模での接触分解は、通常、垂直に据え付けられたクラッキング反応器と触媒再生器との2種の容器からなる接触分解装置に、上記した本発明のFCC触媒を連続的に流動循環させて行う。即ち、触媒再生器から出てくる熱い再生触媒を、分解すべき炭化水素油と混合し、クラッキング反応器内を上向の方向に導く。その結果、触媒上に析出したコークによって失活したFCC触媒を、分解生成物から分離し、ストリッピング後、触媒再生器に移す。触媒再生器に移した使用済みのFCC触媒を、該触媒上のコークを空気燃焼による除去で再生し、再びクラッキング反応器に循環する。一方、分解生成物はドライガス、LPG、ガソリン留分、中間留分、及び重質留分(HCO)あるいはスラリー油のような1種類以上の重質留分に分離する。もちろん、これらの重質留分を、クラッキング反応器内に再循環させて分解反応をより進めることもできる。   In the catalytic cracking on a commercial scale, the above-described FCC catalyst of the present invention is usually continuously fluidized and circulated in a catalytic cracking apparatus composed of two kinds of containers, a vertically installed cracking reactor and a catalyst regenerator. Do it. That is, the hot regenerated catalyst coming out of the catalyst regenerator is mixed with the hydrocarbon oil to be decomposed and guided in the upward direction in the cracking reactor. As a result, the FCC catalyst deactivated by the coke deposited on the catalyst is separated from the decomposition product, and after stripping, it is transferred to a catalyst regenerator. The spent FCC catalyst transferred to the catalyst regenerator is regenerated by removing the coke on the catalyst by air combustion, and is recycled to the cracking reactor. On the other hand, the cracked product is separated into one or more heavy fractions such as dry gas, LPG, gasoline fraction, middle fraction, and heavy fraction (HCO) or slurry oil. Of course, these heavy fractions can be recycled into the cracking reactor to further proceed the cracking reaction.

上記の接触分解におけるクラッキング反応器の運転条件としては、圧力が常圧〜5kg/cm、温度が約400〜600℃、好ましくは約450〜550℃、触媒/原料炭化水素油の重量比が約2〜20、好ましくは約4〜15とすることが適している。 The operating conditions of the cracking reactor in the catalytic cracking are as follows: the pressure is normal pressure to 5 kg / cm 2 , the temperature is about 400 to 600 ° C., preferably about 450 to 550 ° C., and the weight ratio of catalyst / raw hydrocarbon oil is It is suitable to be about 2-20, preferably about 4-15.

反応温度が400℃以上であれば、原料炭化水素油の分解反応が好適に進行して、分解生成物を好適に得ることができる。また、600℃以下であれば、分解により生成するドライガスやLPGなどの軽質ガス生成量を軽減でき、目的物のガソリン留分の収率を相対的に増大させることができて経済的である。   If reaction temperature is 400 degreeC or more, the decomposition reaction of raw material hydrocarbon oil will advance suitably, and a decomposition product can be obtained suitably. Moreover, if it is 600 degrees C or less, the amount of light gas production | generations, such as dry gas and LPG produced | generated by decomposition | disassembly, can be reduced, and the yield of the gasoline fraction of a target object can be increased relatively, and it is economical. .

圧力が5kg/cm以下であれば、モル数の増加する反応の分解反応の進行が阻害されにくい。また、触媒/原料炭化水素油の重量比が2以上であれば、クラッキング反応器内の触媒濃度を適度に保つことができ、原料炭化水素油の分解が好適に進行する。また、20以下であれば、触媒濃度を上げる効果が飽和してしまい、触媒濃度を高くするに見合った効果が得られずに不利となることを防ぐことができる。 If the pressure is 5 kg / cm 2 or less, the progress of the decomposition reaction in which the number of moles is increased is hardly inhibited. Further, if the weight ratio of the catalyst / raw hydrocarbon oil is 2 or more, the catalyst concentration in the cracking reactor can be kept moderate, and the decomposition of the raw hydrocarbon oil suitably proceeds. On the other hand, if it is 20 or less, the effect of increasing the catalyst concentration is saturated, and it is possible to prevent disadvantages without obtaining an effect commensurate with increasing the catalyst concentration.

以下、本発明を実施例、比較例により具体的に説明するが、これは単に例示であって、本発明を制限するものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this is only an illustration and does not restrict | limit this invention.

〔分析機器、分析条件等〕
実施例、比較例で得た各触媒の分析に使用した機器、計算式等は次のとおりである。
・組成分析(ICP):Thermo Jarrell Ash社製 “IRIS Advantage”
・比表面積(SA):日本ベル株式会社製‘BELSORP28SA’ (高精度全自動ガス吸着装置)
・XRD機器:理学電機株式会社製‘RINT2500V’
* 前処理:各触媒は100℃で24時間乾燥を用ってから以下の条件で測定した。
管電圧:50kv
管電流:200mA
走査モード:連続
スキャンスピード:2°/min
スキャンステップ:0.02°
測定範囲(2θ):5〜90°
発散,散乱スリット:1°
受光スリット:0.3mm
[Analytical equipment, analysis conditions, etc.]
The equipment, calculation formulas, etc. used for the analysis of each catalyst obtained in Examples and Comparative Examples are as follows.
Composition analysis (ICP): “IRIS Advantage” manufactured by Thermo Jarrel Ash
Specific surface area (SA): Nippon Bell Co., Ltd. 'BELSORP28SA' (High-precision fully automatic gas adsorption device)
・ XRD * Device: RINT2500V manufactured by Rigaku Corporation
* Pretreatment: Each catalyst was measured for 24 hours after drying at 100 ° C under the following conditions.
Tube voltage: 50 kv
Tube current: 200 mA
Scanning mode: Continuous Scanning speed: 2 ° / min
Scan step: 0.02 °
Measurement range (2θ): 5 to 90 °
Divergence, scattering slit: 1 °
Receiving slit: 0.3mm

〔触媒の調製〕
実施例1
アルミナゾル120gに蒸留水75gを加え、Al濃度15質量%のアルミナゾル水溶液を調製した。このアルミナゾル水溶液に、表2の性状を有し、XRD測定において図1のXRDパターンを示す粘土鉱物(a)(山陽クレー工業社製:BIカオリン)を120g(乾燥基準)加え、5分間混合した。その後、表1の性状を有する安定化Y型ゼオライト69g(乾燥基準)に蒸留水125gを加えて調製したゼオライトスラリーを加えた後、10分間混合し、混合スラリーを得た。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。この触媒前駆体をマッフル炉で、250℃で1時間焼成した後、pH=5となるようにアンモニア水を加えていき、次いで60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、実施例1に係る触媒を得た。
(Preparation of catalyst)
Example 1
Distilled water 75 g was added to 120 g of alumina sol to prepare an alumina sol aqueous solution having an Al 2 O 3 concentration of 15% by mass. To this aqueous solution of alumina sol, 120 g (dry basis) of clay mineral (a) (Sanyo Clay Industry Co., Ltd .: BI Kaolin) having the properties shown in Table 2 and showing the XRD pattern of FIG. 1 in XRD measurement was added and mixed for 5 minutes. . Then, after adding a zeolite slurry prepared by adding 125 g of distilled water to 69 g of a stabilized Y-type zeolite having the properties shown in Table 1 (dry basis), the mixture was mixed for 10 minutes to obtain a mixed slurry.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. After calcining this catalyst precursor in a muffle furnace at 250 ° C. for 1 hour, ammonia water was added so that pH = 5, and then ion-exchanged twice with 3 L of a 5 mass% ammonium sulfate aqueous solution at 60 ° C. Further, it was washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst which concerns on Example 1 was obtained.

比較例1
アルミナゾル120gに蒸留水75gを加え、Al濃度15質量%のアルミナゾル水溶液を調製した。このアルミナゾル水溶液に、表2の性状を有し、XRD測定において図2のXRDパターンを示す粘土鉱物(b)を120g(乾燥基準)加え、5分間混合した。その後、表1の性状を有する安定化Y型ゼオライト69g(乾燥基準)に蒸留水125gを加えて調製したゼオライトスラリーを加えた後、10分間混合し、混合スラリーを得た。
得られた混合スラリーを210℃の入口温度、及び140℃の出口温度の条件で噴霧乾燥し、得られた微小球体を触媒前駆体とした。この触媒前駆体をマッフル炉で、250℃で1時間焼成した後、pH=5となるようにアンモニア水を加えていき、次いで60℃の5質量%の硫酸アンモニウム水溶液3Lで2回イオン交換した後、さらに6Lの蒸留水で洗浄した。その後、乾燥機中、110℃で一晩乾燥し、比較例1に係る触媒を得た。
Comparative Example 1
Distilled water 75 g was added to 120 g of alumina sol to prepare an alumina sol aqueous solution having an Al 2 O 3 concentration of 15% by mass. To this alumina sol aqueous solution, 120 g (dry basis) of clay mineral (b) having the properties shown in Table 2 and exhibiting the XRD pattern of FIG. 2 in XRD measurement was added and mixed for 5 minutes. Then, after adding a zeolite slurry prepared by adding 125 g of distilled water to 69 g of a stabilized Y-type zeolite having the properties shown in Table 1 (dry basis), the mixture was mixed for 10 minutes to obtain a mixed slurry.
The obtained mixed slurry was spray-dried under conditions of an inlet temperature of 210 ° C. and an outlet temperature of 140 ° C., and the obtained microspheres were used as catalyst precursors. After calcining this catalyst precursor in a muffle furnace at 250 ° C. for 1 hour, ammonia water was added so that pH = 5, and then ion-exchanged twice with 3 L of a 5 mass% ammonium sulfate aqueous solution at 60 ° C. Further, it was washed with 6 L of distilled water. Then, it dried at 110 degreeC overnight in the dryer, and the catalyst which concerns on the comparative example 1 was obtained.

Figure 2008173581
Figure 2008173581

Figure 2008173581
Figure 2008173581

〔触媒組成〕
上記の実施例1及び比較例1で得た触媒の組成を表3に纏めて示す。
[Catalyst composition]
The compositions of the catalysts obtained in Example 1 and Comparative Example 1 are summarized in Table 3.

Figure 2008173581
Figure 2008173581

〔触媒活性評価〕
実施例1及び比較例1で得た各触媒について、沸騰床マイクロ活性試験装置(KAYSER TECHNOLOGY社製 ACE-Model R+)を用いて、同一原料油、同一測定条件のもと、接触分解特性を試験した。なお、試験に先立ち、上記触媒について、実際の使用状況に近似させるべく、即ち平衡化させるべく以下の模擬平衡化処理(強制劣化処理)を行った。まず、各触媒を室温から600℃まで30分間で昇温し、600℃にて2時間保持して乾燥した後、ニッケル及びバナジウムがそれぞれ1000質量ppm、2000質量ppmとなるようにナフテン酸ニッケル、ナフテン酸バナジウムを含むシクロヘキサン溶液を吸収させた。次いで100℃で乾燥し、しかる後600℃まで30分間で昇温し、600℃で2時間保持して焼成を行い、さらに、各触媒を、流動状態で、空気雰囲気下で室温から800℃まで90分間で昇温し、800℃に到達後、100%スチーム雰囲気に切替え、6時間処理した。
[Evaluation of catalyst activity]
For each catalyst obtained in Example 1 and Comparative Example 1, the catalytic cracking characteristics were measured under the same feedstock and the same measurement conditions using an ebullated bed microactivity test apparatus (ACE-Model R + manufactured by KAYSER TECHNOLOGY). Tested. Prior to the test, the following simulated equilibration process (forced deterioration process) was performed on the catalyst in order to approximate the actual usage, that is, to equilibrate. First, each catalyst was heated from room temperature to 600 ° C. over 30 minutes, kept at 600 ° C. for 2 hours and dried, and then nickel naphthenate so that nickel and vanadium were 1000 ppm by mass and 2000 ppm by mass, A cyclohexane solution containing vanadium naphthenate was absorbed. Next, it is dried at 100 ° C., then heated up to 600 ° C. over 30 minutes, held at 600 ° C. for 2 hours and calcined, and each catalyst is allowed to flow from room temperature to 800 ° C. in an air atmosphere. The temperature was raised in 90 minutes, and after reaching 800 ° C., the atmosphere was switched to a 100% steam atmosphere and treated for 6 hours.

上記平衡化処理した触媒を用い、また、原料油として表4に性状を示す炭化水素油(脱硫減圧軽油(VGO)50容量%+脱流残油(DDSP)50容量%)を使用し、沸騰床マイクロ活性試験装置にて、触媒活性評価試験を行った。その際、反応温度510℃、反応時間75〜150秒、触媒/炭化水素油比(質量比)3.0、4.0、5.0、6.0とした。その試験結果をグラフ化し、このグラフ(図示省略)から転化率が60質量%となる触媒/炭化水素油比(質量比)を回帰計算により算出した。ここで、転化率とは100−中間留分(質量%)−重質留分(質量%)である。さらに、回帰計算により転化率60質量%の時の算出されたFCC生成油の組成を表5にそれぞれ示す。   Using the above-equilibrated catalyst and boiling hydrocarbon oil (desulfurized vacuum gas oil (VGO) 50 vol% + desulfurized residual oil (DDSP) 50 vol%) as shown in Table 4 as feedstock oil A catalytic activity evaluation test was performed using a floor microactivity test apparatus. At that time, the reaction temperature was 510 ° C., the reaction time was 75 to 150 seconds, and the catalyst / hydrocarbon oil ratio (mass ratio) was 3.0, 4.0, 5.0, 6.0. The test results were graphed, and from this graph (not shown), the catalyst / hydrocarbon oil ratio (mass ratio) at which the conversion was 60% by mass was calculated by regression calculation. Here, the conversion rate is 100-middle fraction (mass%)-heavy fraction (mass%). Further, Table 5 shows the compositions of the FCC-generated oil calculated by the regression calculation when the conversion is 60% by mass.

Figure 2008173581
Figure 2008173581

Figure 2008173581
Figure 2008173581

比較例1で得られた触媒はFCCガソリンの収率が低く、ドライガス(水素、C1〜2)、LPG及びコーク量が多いため、炭化水素油の接触分解反応において、装置にかかるコストや負担を考慮すると不利である。しかしながら、本発明に従った実施例1で得られた触媒は、ドライガス、コーク、LPGの生成量を低減させ、FCCガソリンを高収率で得ることができる。   Since the catalyst obtained in Comparative Example 1 has a low FCC gasoline yield and a large amount of dry gas (hydrogen, C1-2), LPG and coke, the cost and burden on the apparatus in the catalytic cracking reaction of hydrocarbon oil. Is a disadvantage. However, the catalyst obtained in Example 1 according to the present invention can reduce the production amount of dry gas, coke and LPG, and can obtain FCC gasoline in high yield.

特にFCCを高稼働率で運用する場合には、ドライガス、LPG、コークを低減することで、再生塔温度、ガスセクションに余裕ができるため、より効率的な装置運転が可能となる。また、FCCガソリンは、市場に出荷されるガソリンへの配合量が多いため、FCCガソリンを若干でも高収率で得ることができれば、経済的なメリットが大きい。   In particular, when the FCC is operated at a high operating rate, by reducing the dry gas, LPG, and coke, the regeneration tower temperature and the gas section can be afforded, so that more efficient operation of the apparatus becomes possible. In addition, since FCC gasoline has a large blending amount with gasoline shipped to the market, if FCC gasoline can be obtained even in a slightly high yield, there is a great economic merit.

実施例1で用いた粘土鉱物(a)のXRD測定におけるXRDパターンである。It is an XRD pattern in the XRD measurement of the clay mineral (a) used in Example 1. 比較例1で用いた粘土鉱物(b)のXRD測定におけるXRDパターンである。It is an XRD pattern in the XRD measurement of the clay mineral (b) used in Comparative Example 1.

Claims (4)

X線回折(XRD)においてKaolinite−1Md及びIllite−2M1のXRDパターンを示す粘土鉱物を10〜75質量%、結晶性アルミノ珪酸塩を20〜60質量%、結合剤であるアルミナバインダーを5〜40質量%含有してなることを特徴とする炭化水素油の接触分解触媒。   10 to 75% by mass of clay minerals showing XRD patterns of Kaolinite-1Md and Illite-2M1 in X-ray diffraction (XRD), 20 to 60% by mass of crystalline aluminosilicate, and 5 to 40 of alumina binder as a binder A catalytic cracking catalyst for hydrocarbon oils, characterized in that it is contained by mass%. 前記粘土鉱物が、さらにQuartzのXRDパターンを示すことを特徴とする請求項1に記載の炭化水素油の接触分解触媒。   The catalytic cracking catalyst for hydrocarbon oil according to claim 1, wherein the clay mineral further exhibits a Quartz XRD pattern. 炭化水素油を接触分解するにあたり、請求項1又は2に記載の接触分解触媒を使用することを特徴とする炭化水素油の接触分解方法。   A catalytic cracking method for hydrocarbon oil, wherein the catalytic cracking catalyst according to claim 1 or 2 is used for catalytic cracking of hydrocarbon oil. X線回折(XRD)におけるKaolinite−1Mdの2θ=20°付近のピーク強度をIとし、Illite−2M1の2θ=9°付近のピーク強度をIとしたとき、ピーク強度の比I/Iが3以下であることを特徴とする請求項1又は2に記載の炭化水素油の接触分解触媒。 In X-ray diffraction (XRD), when the peak intensity of Kaolinite-1Md near 2θ = 20 ° is I 0 and the peak intensity of Illite-2M1 near 2θ = 9 ° is I 1 , the peak intensity ratio I 1 / The catalytic cracking catalyst for hydrocarbon oil according to claim 1 or 2, wherein I 0 is 3 or less.
JP2007010409A 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst Active JP4818136B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010409A JP4818136B2 (en) 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007010409A JP4818136B2 (en) 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Publications (2)

Publication Number Publication Date
JP2008173581A true JP2008173581A (en) 2008-07-31
JP4818136B2 JP4818136B2 (en) 2011-11-16

Family

ID=39701014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010409A Active JP4818136B2 (en) 2007-01-19 2007-01-19 Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst

Country Status (1)

Country Link
JP (1) JP4818136B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570017A (en) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 Five-membered ring zeolite catalytic cracking catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111445A (en) * 1988-09-06 1990-04-24 Petroleo Brasileiro Sa Kaolin-containing fluidized cracking catalyst
JPH09175813A (en) * 1995-10-23 1997-07-08 Sekisui Chem Co Ltd Inoragnic powder and curable inorganic composition
JP2006305490A (en) * 2005-04-28 2006-11-09 Petroleum Energy Center Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method
JP2008525185A (en) * 2004-12-28 2008-07-17 中國石油化工股▲フン▼有限公司 Catalyst and method for cracking hydrocarbons

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02111445A (en) * 1988-09-06 1990-04-24 Petroleo Brasileiro Sa Kaolin-containing fluidized cracking catalyst
JPH09175813A (en) * 1995-10-23 1997-07-08 Sekisui Chem Co Ltd Inoragnic powder and curable inorganic composition
JP2008525185A (en) * 2004-12-28 2008-07-17 中國石油化工股▲フン▼有限公司 Catalyst and method for cracking hydrocarbons
JP2006305490A (en) * 2005-04-28 2006-11-09 Petroleum Energy Center Catalyst for catalytic decomposition of hydrocarbon oil and catalytic decomposition method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112570017A (en) * 2019-09-29 2021-03-30 中国石油化工股份有限公司 Five-membered ring zeolite catalytic cracking catalyst
CN112570017B (en) * 2019-09-29 2023-06-09 中国石油化工股份有限公司 Five-membered ring zeolite catalytic cracking catalyst

Also Published As

Publication number Publication date
JP4818136B2 (en) 2011-11-16

Similar Documents

Publication Publication Date Title
JP5008570B2 (en) Catalysts for light olefins and LPG in fluid catalytic reactors
JP5911446B2 (en) Method for producing catalytic cracking catalyst of hydrocarbon oil
CN101405078B (en) Cracking catalyst, process for preparation thereof, and process for catalytic cracking of hydrocarbon oil
JP5126613B2 (en) Catalytic cracking catalyst, production method thereof, and catalytic cracking method of hydrocarbon oil
JP4689472B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5904922B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP2010247146A (en) Catalytic cracking catalyst and method of producing the same, and method of catalytically cracking hydrocarbon oil
JP4818135B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5660674B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same
JP4818157B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916321B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4916320B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445781B2 (en) Method for producing catalytic cracking catalyst
JP4818136B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818156B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4818131B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4773420B2 (en) Hydrocarbon oil catalytic cracking catalyst and hydrocarbon oil catalytic cracking method
JP5499407B2 (en) Method for producing catalytic cracking catalyst
JP5445780B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP4818132B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689577B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP4689576B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for catalytic cracking of hydrocarbon oil using the catalyst
JP5445779B2 (en) Hydrocarbon oil catalytic cracking catalyst and method for producing the same, and hydrocarbon oil catalytic cracking method
JP7123864B2 (en) Fluid catalytic cracking catalyst for hydrocarbon oil
JP6632065B2 (en) Catalytic cracking catalyst for hydrocarbon oil, method for producing catalytic cracking catalyst for hydrocarbon oil, and catalytic cracking method for hydrocarbon oil

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110823

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110830

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140909

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4818136

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250