JP2008171905A - Method and device of inspecting solid-state imaging device - Google Patents

Method and device of inspecting solid-state imaging device Download PDF

Info

Publication number
JP2008171905A
JP2008171905A JP2007001882A JP2007001882A JP2008171905A JP 2008171905 A JP2008171905 A JP 2008171905A JP 2007001882 A JP2007001882 A JP 2007001882A JP 2007001882 A JP2007001882 A JP 2007001882A JP 2008171905 A JP2008171905 A JP 2008171905A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
inspection
contactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007001882A
Other languages
Japanese (ja)
Inventor
Satoru Waga
悟 和賀
Yoshiki Takayama
義樹 高山
Tetsushi Nishio
哲史 西尾
Toshiyuki Fukuda
敏行 福田
Yoshiro Nakada
義朗 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2007001882A priority Critical patent/JP2008171905A/en
Publication of JP2008171905A publication Critical patent/JP2008171905A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the method of inspecting a semiconductor wafer by which a plurality of solid-state imaging devices formed on a semiconductor wafer can be optically and electrically inspected as a wafer at the same time. <P>SOLUTION: A solid-state imaging device wafer 21 is sucked to a contactor 241 comprised of a contactor frame 181 and a sheet frame 221 by reducing pressure, so as to connect the external connection electrode 131 of each of the solid-state imaging devices 11 with the anisotropic conductive member 211 of the contactor 241. Light is given to the main side of the solid-state imaging device wafer 21 to inspect all solid-state imaging devices 11 as a wafer at the same time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、固体撮像装置の検査方法および検査装置に関し、裏面に外部接続電極を有する固体撮像装置をウエハ状態で検査する技術に係るものである。   The present invention relates to an inspection method and an inspection device for a solid-state imaging device, and relates to a technique for inspecting a solid-state imaging device having an external connection electrode on the back surface in a wafer state.

従来、固体撮像素子の電気特性不良を確実かつ迅速に検査する方法は、ウエハを支持するプローバーステージ上にウエハを固定し、ウエハ内に形成された複数の固体撮像素子の一つずつを検査するものであり、各固体撮像素子の複数の電極面のそれぞれにプローブ針を接続して電気特性検査を行なっている。   2. Description of the Related Art Conventionally, a method for reliably and quickly inspecting a solid-state image sensor for electrical characteristic defects is performed by fixing a wafer on a prober stage that supports the wafer and inspecting each of a plurality of solid-state image sensors formed in the wafer. The probe needle is connected to each of a plurality of electrode surfaces of each solid-state imaging device, and an electrical characteristic inspection is performed.

その際、光学フィルターを通過した光をレンズで集光し、その光をスポットライトとして固体撮像素子の各画素毎に照射して電気特性検査を行い、当該画素の検査が終わればプローバーステージとウエハを画素間隔で移動させて順次に各画素の検査を行うことが、例えば、特許文献1に開示されている。   At that time, the light that has passed through the optical filter is condensed by a lens, and the light is irradiated to each pixel of the solid-state image sensor as a spotlight to perform an electrical property inspection. When the inspection of the pixel is completed, the prober stage and the wafer For example, Patent Document 1 discloses that each pixel is inspected sequentially by moving the pixel at pixel intervals.

また、従来の固体撮像装置の実装方法では、固体撮像素子を収納するための封止容器や透明部材を必要とし、組立工程中に固体撮像素子の撮像領域面上に塵埃の付着が生じる可能性があり、透明部材や封止容器の外形と固体撮像素子の撮像領域との高い相対位置精度が要求されている。このために、固体撮像装置の薄型化、小型化に対する制約、歩留り低下、組立て調整の困難さ等の問題が生じている。   In addition, the conventional mounting method of the solid-state imaging device requires a sealing container or a transparent member for housing the solid-state imaging device, and dust may be deposited on the imaging region surface of the solid-state imaging device during the assembly process. Therefore, high relative positional accuracy between the outer shape of the transparent member or the sealing container and the imaging region of the solid-state imaging device is required. For this reason, problems such as a reduction in thickness and size of the solid-state imaging device, a decrease in yield, difficulty in assembly adjustment, and the like have arisen.

これらの問題を解決するものとして、例えば特許文献2に受光センサーの実装構造体が開示されている。これは、半導体ウエハと、半導体ウエハの主面に形成された受光センサーと、半導体ウエハを貫通して受光センサー自体または受光センサーに接続する配線から裏面に達する貫通電極と、受光センサーから間隙を設けて配置された光透過性保護部材と、受光センサー以外の領域で光透過性保護部材と半導体ウエハの主面とを接着固定する封止材とで構成したものである。   As a solution to these problems, for example, Patent Document 2 discloses a light receiving sensor mounting structure. This includes a semiconductor wafer, a light receiving sensor formed on the main surface of the semiconductor wafer, a through electrode that penetrates the semiconductor wafer and connects to the light receiving sensor itself or the wiring to reach the back surface, and a gap from the light receiving sensor. And a sealing material for adhering and fixing the light transmissive protective member and the main surface of the semiconductor wafer in a region other than the light receiving sensor.

さらに、従来の固体撮像装置では、遮光板の下層に金ワイヤが位置している。このため遮光板は固体撮像素子の導体パターン面へ所定距離以上には接近して配置することができないので、金ワイヤ等からの反射光が撮像領域に侵入する。そのために、電気信号を画像に変換した場合、画像にフレアやスミア等の光学雑音が現れる問題が生じている。   Furthermore, in the conventional solid-state imaging device, the gold wire is located below the light shielding plate. For this reason, since the light shielding plate cannot be disposed close to the conductor pattern surface of the solid-state imaging device at a predetermined distance or more, the reflected light from the gold wire or the like enters the imaging region. Therefore, when an electrical signal is converted into an image, there is a problem that optical noise such as flare and smear appears in the image.

これらの問題を解決するものとして、例えば特許文献3に固体撮像装置が開示されている。これは、撮像領域の外側に周辺領域が形成される固体撮像素子と、固体撮像素子を覆って配置される透明の保護ガラスとを備えたものであって、保護ガラスの外周に、周辺領域の少なくとも一部を遮光する遮光層を形成し、保護ガラスを固体撮像素子に接合したものである。
特開昭59−225540号公報 特開2001−351997号公報 特開2002−261260号公報
For solving these problems, for example, Patent Document 3 discloses a solid-state imaging device. This is provided with a solid-state imaging device in which a peripheral region is formed outside the imaging region, and a transparent protective glass disposed so as to cover the solid-state imaging device. A light shielding layer that shields at least a part is formed, and protective glass is bonded to the solid-state imaging device.
JP 59-225540 A JP 2001-351997 A JP 2002-261260 A

上記の第1の例では、各固体撮像素子の周囲に配置された複数の導体パターンのそれぞれの表面に検査用プローブ針を加圧接触させた状態で光を照射しながら電気特性および光学特性の検査を行なう。   In the first example described above, the electrical characteristics and optical characteristics of the plurality of conductor patterns arranged around each solid-state imaging device are irradiated with light in a state where the probe needle for inspection is in pressure contact with each surface. Perform an inspection.

しかしながら、この方法では照射した光の一部が検査用プローブ針で反射し、その光の反射光が撮像領域内に侵入する。このためにフレアやスミア特性を正確に検査することができない。また、多数個の固体撮像素子を同時に検査することが困難である。   However, in this method, part of the irradiated light is reflected by the inspection probe needle, and the reflected light of the light enters the imaging region. For this reason, flare and smear characteristics cannot be accurately inspected. In addition, it is difficult to inspect a large number of solid-state imaging devices at the same time.

さらに、各固体撮像素子上に透明部材や複数の突起電極(バンプ)等の構成部材が取り付けられた半導体ウエハでは、突起電極上に検査用プローブ針を押圧しながら特性検査を行なうが、突起電極上に検査用プローブ針が接触した時に突起電極表面にプローブ針の傷痕を生じる。このため、固体撮像装置を実装基板に2次実装した際に、前述の傷痕によって突起電極と2次実装配線基板との間で接合信頼性不良を生じるという課題を有していた。   Furthermore, in a semiconductor wafer in which a constituent member such as a transparent member or a plurality of protruding electrodes (bumps) is attached on each solid-state imaging device, the characteristic inspection is performed while pressing an inspection probe needle on the protruding electrode. When the probe needle for inspection comes into contact with it, a scar of the probe needle is formed on the surface of the protruding electrode. For this reason, when the solid-state imaging device is secondarily mounted on the mounting substrate, there is a problem in that poor bonding reliability occurs between the protruding electrode and the secondary mounting wiring substrate due to the above-described scratches.

上記の第2の例は、固体撮像装置の薄型化、小型化に対する制約、歩留り低下、組立て調整の困難さ等の問題に対する解決方法を提示する。しかしながら、この構成の固体撮像装置の検査方法については開示していない。   The above second example presents a solution for problems such as thinning, restrictions on size reduction, yield reduction, difficulty in assembly adjustment, and the like of the solid-state imaging device. However, an inspection method for the solid-state imaging device having this configuration is not disclosed.

上記第3の例は、反射光が撮像領域に侵入することに起因して画像にフレアやスミア等の光学雑音が現れる問題に対する解決方法を提示する。しかしながら、この構成の固体撮像装置の検査方法については開示していない。   The third example presents a solution to the problem that optical noise such as flare and smear appears in the image due to the reflected light entering the imaging region. However, an inspection method for the solid-state imaging device having this configuration is not disclosed.

本発明は、半導体ウエハの主面に形成された複数の固体撮像装置を同時に電気的、光学的に検査することができ、かつ薄型で小型な構成の固体撮像装置を安価に実現できる固体撮像装置の検査方法および検査装置を提供することを目的とする。   The present invention is capable of simultaneously and electrically inspecting a plurality of solid-state imaging devices formed on a main surface of a semiconductor wafer, and can realize a thin and small-sized solid-state imaging device at low cost. It is an object to provide an inspection method and an inspection apparatus.

上記の課題を解決するために、本発明の固体撮像装置の検査方法は、複数の固体撮像装置を有し、主面側に前記固体撮像装置のぞれぞれの撮像領域を有し、裏面側に前記固体撮像装置のそれぞれの複数の外部接続電極を備える半導体ウエハの検査を行うものであって、コンタクタの端子部に前記固体撮像装置のそれぞれの前記外部接続電極を電気的に接続させるステップと、前記半導体ウエハの主面側から所定の検査光を照射しながら前記固体撮像装置の光学的または電気的特性を同時または順次に測定するステップとを含むことを特徴とする。   In order to solve the above problems, an inspection method for a solid-state imaging device of the present invention includes a plurality of solid-state imaging devices, each imaging region of the solid-state imaging device on a main surface side, and a back surface Inspecting a semiconductor wafer having a plurality of external connection electrodes of the solid-state imaging device on the side, and electrically connecting the external connection electrodes of the solid-state imaging device to a terminal portion of a contactor And simultaneously or sequentially measuring optical or electrical characteristics of the solid-state imaging device while irradiating predetermined inspection light from the main surface side of the semiconductor wafer.

このような検査方法とすることにより、半導体ウエハの主面側から射光しながら複数の固体撮像装置の光学的電気的特性を同時に検査することができ、そのために迅速且つ安価な検査方法が実現することができる。また、固体撮像装置を形成する前の半導体ウエハにおいて予備検査で固体撮像素子を合否判別することにより、固体撮像装置を組み立てる際に部材数が固体撮像素子の合格数だけですみ、固体撮像装置を安価に実現することができる。   By adopting such an inspection method, it is possible to simultaneously inspect optical and electrical characteristics of a plurality of solid-state imaging devices while emitting light from the main surface side of the semiconductor wafer, thereby realizing a quick and inexpensive inspection method. be able to. In addition, by determining whether or not the solid-state imaging device is accepted or rejected by preliminary inspection on the semiconductor wafer before forming the solid-state imaging device, the number of members is only the number of acceptable solid-state imaging devices when assembling the solid-state imaging device. It can be realized at low cost.

また、前記コンタクタは、所定の複数個所に形成した導電端子と前記導電端子上に配置した異方導電性部材とからなる端子部を有するフレキシブル基板と、前記フレキシブル基板に固定したシート用フレームを備えることを特徴とする。   In addition, the contactor includes a flexible substrate having a terminal portion formed of conductive terminals formed at a plurality of predetermined positions and anisotropic conductive members disposed on the conductive terminals, and a sheet frame fixed to the flexible substrate. It is characterized by that.

このような検査方法とすることにより、異方導電性部材が固体撮像装置の外部接続電極の高さばらつきを吸収することができるので半導体ウエハ内の複数の固体撮像装置の外部接続電極との接続が正確に行えるとともに、検査前の導電端子と外部接続電極の位置合わせを容易にすることができて、且つ外部接続電極表面にプローブ針の傷痕を生じない。   By adopting such an inspection method, the anisotropic conductive member can absorb the height variation of the external connection electrodes of the solid-state imaging device, so that the connection to the external connection electrodes of a plurality of solid-state imaging devices in the semiconductor wafer is possible. Can be accurately performed, the positioning of the conductive terminal and the external connection electrode before the inspection can be facilitated, and the scar of the probe needle is not generated on the surface of the external connection electrode.

また、前記半導体ウエハの裏面との間に形成する前記コンタクタの空間を減圧し、前記固体撮像装置の前記外部接続電極と前記コンタクタの端子部とを圧接させることを特徴とする。   Further, the space of the contactor formed between the semiconductor wafer and the back surface of the semiconductor wafer is decompressed, and the external connection electrode of the solid-state imaging device and the terminal portion of the contactor are pressed.

このような検査方法とすることにより、減圧によって半導体ウエハの全面に外圧が作用し、異方導電性部材を介して半導体ウエハの各外部接続電極と導電端子が圧接して電気的に接続する。よって、半導体ウエハの広い領域にわたって均等な力が作用し、外部接続電極と端子部との圧接部の接触抵抗が十分に低くて良好な電送路が得られるとともに、測定時の接触抵抗バラツキによる歩留まり低下を防止することができて、低コスト化が図れる。   By adopting such an inspection method, an external pressure is applied to the entire surface of the semiconductor wafer due to the reduced pressure, and each external connection electrode of the semiconductor wafer and the conductive terminal are pressed and electrically connected via the anisotropic conductive member. Therefore, a uniform force is applied over a wide area of the semiconductor wafer, the contact resistance of the pressure contact portion between the external connection electrode and the terminal portion is sufficiently low to obtain a good power transmission path, and a yield due to contact resistance variation during measurement. The reduction can be prevented and the cost can be reduced.

また、前記半導体ウエハに形成した前記固体撮像装置のそれぞれの前記撮像領域に対応する位置に前記撮像領域の大きさ以上の開口を有する格子状遮光部材を、前記ウエハ上または検査光源と前記ウエハとの間に配置して検査することを特徴とする。   Further, a lattice-shaped light shielding member having an opening larger than the size of the imaging region at a position corresponding to each imaging region of the solid-state imaging device formed on the semiconductor wafer, the inspection light source and the wafer It arrange | positions between and inspects.

このような検査方法とすることにより、隣接する固体撮像装置からの検査光の反射やコンタクタ各部からの検査光の反射に起因する迷光が測定結果へ影響を及ぼすことを回避でき、外乱光の影響を受けない状態で固体撮像装置の電気的特性を容易に測定できる。   By adopting such an inspection method, it is possible to avoid stray light due to reflection of inspection light from the adjacent solid-state imaging device and reflection of inspection light from each part of the contactor from affecting the measurement result, and influence of disturbance light It is possible to easily measure the electrical characteristics of the solid-state imaging device without being subjected to the above.

また、前記半導体ウエハが下方側に位置するように前記コンタクタを支持して検査することを特徴とする。
このような検査方法とすることにより、測定中に固体撮像装置の透明部材表面へ塵埃が付着することによる検査歩留りの低下を防止することができ、固体撮像装置の低コスト化が図れる。
Further, the contactor is supported and inspected so that the semiconductor wafer is positioned on the lower side.
By adopting such an inspection method, it is possible to prevent a decrease in inspection yield due to dust adhering to the transparent member surface of the solid-state imaging device during measurement, and to reduce the cost of the solid-state imaging device.

また、前記検査光の光量を段階的に変化させながらが測定することを特徴とする。
このような検査方法とすることにより、固体撮像装置の詳細特性や故障解析を容易に実施することができ、より信頼性の高い設計手法を蓄積することができる。
Further, the measurement is performed while changing the amount of the inspection light stepwise.
By using such an inspection method, it is possible to easily carry out detailed characteristics and failure analysis of the solid-state imaging device, and to accumulate more reliable design methods.

また、前記半導体ウエハの主面の全面に前記検査光を照射しながら測定することを特徴とする。
このような検査方法とすることにより、複数の固体撮像装置における光学的電気的測定を同時に測定することができて、検査時間の短縮にともなう固体撮像装置の低コスト化が図れる。
Further, the measurement is performed while irradiating the entire surface of the main surface of the semiconductor wafer with the inspection light.
By adopting such an inspection method, optical and electrical measurements in a plurality of solid-state imaging devices can be measured simultaneously, and the cost of the solid-state imaging device can be reduced as the inspection time is shortened.

また、検査対象の前記固体撮像装置を含む前記半導体ウエハの主面の一部に前記検査光を照射しながら測定することを特徴とする。
このような検査方法とすることにより、個別に固体撮像装置の詳細特性や故障解析を容易に実施することができて、より信頼性の高い設計手法を蓄積することができる。また検査光源を小さくすることができるので、安価な検査光発生装置を用いることができ、より低コストな検査方法を実現することができる。
Further, the measurement is performed while irradiating a part of the main surface of the semiconductor wafer including the solid-state imaging device to be inspected with the inspection light.
By using such an inspection method, it is possible to easily carry out detailed characteristics and failure analysis of the solid-state imaging device individually, and to accumulate more reliable design methods. In addition, since the inspection light source can be reduced, an inexpensive inspection light generator can be used, and a lower cost inspection method can be realized.

本発明の固体撮像装置の検査装置は、複数の固体撮像装置を有し、主面側に前記固体撮像装置のぞれぞれの撮像領域を有し、裏面側に前記固体撮像装置のそれぞれの複数の外部接続電極を備える半導体ウエハの検査を行うものであって、前記半導体ウエハを装着してコンタクタユニットを形成し、前記半導体ウエハの裏面の外部接続電極に圧接する端子部を有するフレキシブル配線基板を備えたコンタクタと、前記半導体ウエハの主面の前記固体撮像装置に検査光を照射する検査光源と、電気信号の発生と測定結果を判定するためのテスターと、前記コンタクタユニットと前記テスターの間で発生信号や測定結果の電気信号を伝送する接続系とを備えたことを特徴とする。   The inspection apparatus for a solid-state imaging device according to the present invention includes a plurality of solid-state imaging devices, each imaging area of the solid-state imaging device on the main surface side, and each of the solid-state imaging devices on the back surface side. A flexible wiring board for inspecting a semiconductor wafer having a plurality of external connection electrodes, comprising a contact portion that is mounted on the semiconductor wafer to form a contactor unit and that is in pressure contact with the external connection electrodes on the back surface of the semiconductor wafer A contact light source for irradiating the solid-state imaging device on the main surface of the semiconductor wafer with test light, a tester for determining the generation of electrical signals and measurement results, and between the contactor unit and the tester And a connection system for transmitting the generated signal and the electrical signal of the measurement result.

このような構成とすることにより、複数の固体撮像装置を同時に測定することができる効率的で安価な検査方法を実現することができる。   By adopting such a configuration, an efficient and inexpensive inspection method capable of simultaneously measuring a plurality of solid-state imaging devices can be realized.

本発明によれば、半導体ウエハの裏面との間に形成するコンタクタの空間の減圧によって半導体ウエハの全面に外圧が作用し、半導体ウエハの広い領域にわたって均等な力が作用し、異方導電性部材が固体撮像装置の外部接続電極の高さばらつきを吸収するので、従来のように外部接続電極表面にプローブ針の傷痕を生じることなく、外部接続電極と端子部との圧接部の接触抵抗が十分に低くて良好な電送路を得ることができ、測定時の接触抵抗バラツキによる歩留まり低下を防止することができる。しかも、シート用フレームおよびコンタクタフレームを用いて複数の固体撮像装置を同時に検査することで、検査時間の短縮、固体撮像装置の薄型小型化、必要最小限の各部品の使用によるコスト削減等が可能となる。   According to the present invention, an external pressure is applied to the entire surface of the semiconductor wafer due to the reduced pressure of the contactor space formed between the back surface of the semiconductor wafer, and an equal force is applied over a wide area of the semiconductor wafer. Absorbs variations in the height of the external connection electrode of the solid-state imaging device, so that the contact resistance of the pressure contact portion between the external connection electrode and the terminal portion is sufficient without causing a scar on the probe needle on the surface of the external connection electrode as in the past. Therefore, it is possible to obtain an excellent electric transmission path and to prevent a decrease in yield due to variations in contact resistance during measurement. In addition, by inspecting multiple solid-state imaging devices simultaneously using a sheet frame and contactor frame, it is possible to shorten the inspection time, reduce the thickness and size of the solid-state imaging device, and reduce costs by using the minimum required parts. It becomes.

以下、本発明の実施の形態を図面に基づいて説明する。これらの図面におけるそれぞれの厚みや長さ等は図面の作成上から実際の形状と異なる。また、半導体ウエハ上に形成された固体撮像装置の個数や固体撮像装置主面上の導体パターンの個数も実際とは異なり、図示しやすい数量としている。
(第1の実施の形態)
図1は本発明の第1の実施の形態にかかる固体撮像装置の検査方法を示すものである。本実施の形態の検査方法は、固体撮像装置11が複数形成された半導体ウエハ(以下、固体撮像装置ウエハ21という)を、コンタクタ241を用いて測定する方法である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The thickness, length, and the like in these drawings differ from the actual shapes from the drawing creation. Also, the number of solid-state imaging devices formed on the semiconductor wafer and the number of conductor patterns on the main surface of the solid-state imaging device are different from actual ones and are easy to show.
(First embodiment)
FIG. 1 shows an inspection method for a solid-state imaging device according to a first embodiment of the present invention. The inspection method according to the present embodiment is a method for measuring a semiconductor wafer (hereinafter, referred to as a solid-state imaging device wafer 21) on which a plurality of solid-state imaging devices 11 are formed using a contactor 241.

コンタクタ241はコンタクタフレーム181、シート用フレーム221、フレキシブル基板191、異方導電性部材211、第1シールリング161および第2シールリング171で構成される。   The contactor 241 includes a contactor frame 181, a seat frame 221, a flexible substrate 191, an anisotropic conductive member 211, a first seal ring 161, and a second seal ring 171.

コンタクタフレーム181は外形が円筒状をなし、開口部の内側壁面に仕切り段差301が形成してあり、開口部は仕切り段差301を境に上部が円筒上方開口をなし、下部が円筒上方開口をなす。仕切り段差301は開口を備えており、開口は固体撮像装置ウエハ21の有効パターン面積と同等もしくはそれ以上の直径を有している。   The contactor frame 181 has a cylindrical outer shape, and a partition step 301 is formed on the inner wall surface of the opening. The opening has a cylindrical upper opening at the partition step 301 and the lower part has a cylindrical upper opening. . The partition step 301 has an opening, and the opening has a diameter equal to or larger than the effective pattern area of the solid-state imaging device wafer 21.

コンタクタフレーム181の円筒上方開口の深さは、固体撮像装置ウエハ21の外部接続電極131の最下面から透明部材151の上面までの高さと同等もしくはそれ以上の深さが好ましい。円筒上方開口の直径は検査対象とする固体撮像装置ウエハ21の直径よりも所定値だけ大きく形成されており、所定値は0.5mmから2mmの範囲にあり、好ましくは1mmである。   The depth of the cylindrical upper opening of the contactor frame 181 is preferably equal to or greater than the height from the lowermost surface of the external connection electrode 131 of the solid-state imaging device wafer 21 to the upper surface of the transparent member 151. The diameter of the cylindrical upper opening is formed to be larger than the diameter of the solid-state imaging device wafer 21 to be inspected by a predetermined value, and the predetermined value is in the range of 0.5 mm to 2 mm, preferably 1 mm.

円筒下方開口の直径は、円筒上方開口の直径と同等であってもよく、それ以上の直径であってもよい。さらに、仕切り段差301の開口内側面には孔が形成されており、孔はコンタクタフレーム181の外部側面の減圧口231に繋がっている。コンタクタフレーム181には、例えば樹脂、鋳鉄、アルミニウム等を用いることができ、円筒上方開口や円筒下方開口の内壁面はテフロン(登録商標)系樹脂被膜加工を施してもよい。   The diameter of the cylindrical lower opening may be equal to or larger than the diameter of the cylindrical upper opening. Further, a hole is formed on the inner surface of the opening of the partition step 301, and the hole is connected to the decompression port 231 on the outer side surface of the contactor frame 181. For the contactor frame 181, for example, resin, cast iron, aluminum or the like can be used.

シート用フレーム221は円環形状をなし、外径は円筒下方開口の直径より所定値だけ小さく形成されており、所定値は0.5mmから3mmの範囲にあり、好ましくは0.5mmである。シート用フレーム221は開口を備えており、開口は固体撮像装置ウエハ21の有効パターン面積と同等もしくはそれ以上の直径を有している。シート用フレーム221には、例えば樹脂、鋳鉄、アルミニウム等を用いることができる。   The seat frame 221 has an annular shape, and the outer diameter is smaller than the diameter of the cylindrical lower opening by a predetermined value, and the predetermined value is in the range of 0.5 mm to 3 mm, preferably 0.5 mm. The sheet frame 221 has an opening, and the opening has a diameter equal to or larger than the effective pattern area of the solid-state imaging device wafer 21. For the sheet frame 221, for example, resin, cast iron, aluminum, or the like can be used.

フレキシブル基板191は円板形状をなし、シート用フレーム221の外径と同等もしくはそれ以上の大きさをなし、厚みは0.05mmから1.5mmの範囲にあって好ましくは1.0mmである。フレキシブル基板191には、例えばポリイミド樹脂、ポリアミド樹脂等を用いることができる。   The flexible substrate 191 has a disk shape, is equal to or larger than the outer diameter of the sheet frame 221, and has a thickness in the range of 0.05 mm to 1.5 mm, and preferably 1.0 mm. For the flexible substrate 191, for example, a polyimide resin, a polyamide resin, or the like can be used.

フレキシブル基板191のシート上面には導電端子201のパターンが形成されており、このパターンは固体撮像装置ウエハ21の複数の外部接続電極131に対応する位置にある。導電端子201はその表面に化学的に安定な良導体の箔、またはメッキ層の被膜を積層するのが好ましく、例えば電解メッキと無電解メッキを併用して形成した後に、所定のパターンにエッチング加工することにより形成され、ニッケルと金、もしくは銅と金等の積層膜をなす。   A pattern of conductive terminals 201 is formed on the sheet upper surface of the flexible substrate 191, and this pattern is at a position corresponding to the plurality of external connection electrodes 131 of the solid-state imaging device wafer 21. The conductive terminal 201 is preferably laminated with a chemically stable foil of a good conductor or a coating of a plating layer on its surface. For example, the conductive terminal 201 is formed by using both electrolytic plating and electroless plating and then etched into a predetermined pattern. Thus, a laminated film of nickel and gold or copper and gold is formed.

異方導電性部材211は弾性を備えた電気的接続部材であり、垂直方向に電気的導通を有し、水平方向は絶縁されている。第1シールリング161と第2シールリング171のシールリングは、コンタクタフレーム181の仕切り段差301の上面と下面にそれぞれ載置し得る直径をなし、例えばシリコンゴムやバイトン等からなる。   The anisotropic conductive member 211 is an electrical connection member having elasticity, has electrical conduction in the vertical direction, and is insulated in the horizontal direction. The seal rings of the first seal ring 161 and the second seal ring 171 have diameters that can be respectively placed on the upper and lower surfaces of the partition step 301 of the contactor frame 181 and are made of, for example, silicon rubber or Viton.

次に、上記の構成部材を有するコンタクタ241を用いて検査する固体撮像装置ウエハ21について説明する。
本実施の形態の検査方法の対象である固体撮像装置ウエハ21はウエハ内領域に複数の固体撮像装置11を有している。固体撮像装置11は主面側に透明部材151が接着されており、透明部材151は撮像領域41を覆って配置されている。固体撮像装置11は裏面側に形成した複数のランド121に外部接続電極131が接合しており、ランド121は主面側の導体パターン91と電気的に接続している。固体撮像装置11については後に図3、図4を参照して詳細に説明する。
Next, the solid-state imaging device wafer 21 to be inspected using the contactor 241 having the above constituent members will be described.
The solid-state image pickup device wafer 21 that is the object of the inspection method of the present embodiment has a plurality of solid-state image pickup devices 11 in a region within the wafer. The solid-state imaging device 11 has a transparent member 151 bonded to the main surface side, and the transparent member 151 is disposed so as to cover the imaging region 41. In the solid-state imaging device 11, external connection electrodes 131 are joined to a plurality of lands 121 formed on the back surface side, and the lands 121 are electrically connected to the conductor pattern 91 on the main surface side. The solid-state imaging device 11 will be described in detail later with reference to FIGS.

固体撮像装置ウエハ21は、第1シールリング161を覆って仕切り段差301の上面に積載してコンタクタ241に搭載する。仕切り段差301の段差下面にはフレキシブル基板191が第2シールリング171を覆って配置してあり、フレキシブル基板191はシート用フレーム221を介してコンタクタフレーム181に固定しており、導電端子201の上に異方導電性部材211を備えている。   The solid-state imaging device wafer 21 is loaded on the upper surface of the partition step 301 so as to cover the first seal ring 161 and mounted on the contactor 241. A flexible substrate 191 is disposed on the lower surface of the partition step 301 so as to cover the second seal ring 171, and the flexible substrate 191 is fixed to the contactor frame 181 via the sheet frame 221, Is provided with an anisotropic conductive member 211.

そして、コンタクタフレーム181の内壁、固体撮像装置ウエハ21およびフレキシブル基板191で囲まれた空間を減圧することにより、仕切り段差301の段差上面に対する固体撮像装置ウエハ21の固定と、段差下面に対するシート用フレーム221の固定と、外部接続電極131と異方導電性部材211の圧接とが可能となる。   Then, by decompressing the space surrounded by the inner wall of the contactor frame 181, the solid-state imaging device wafer 21 and the flexible substrate 191, the solid-state imaging device wafer 21 is fixed to the upper surface of the step of the partition step 301 and the sheet frame is attached to the lower surface of the step. 221 can be fixed, and the external connection electrode 131 and the anisotropic conductive member 211 can be pressed.

フレキシブル基板191は一方の面に、固体撮像装置ウエハ21の外部接続電極131に対応する位置に配置された導電端子201と、接続系に接続される接続端子(図示せず)と、接続端子と導電端子201を接続する導体配線(図示せず)を有している。フレキシブル基板191の導電端子201と異方導電性部材211との電気的接続は、異方導電性部材211の片側の端面をフレキシブル基板191の導電端子201の上に異方導電性接着剤で接着して行なう。   The flexible substrate 191 has, on one surface, a conductive terminal 201 disposed at a position corresponding to the external connection electrode 131 of the solid-state imaging device wafer 21, a connection terminal (not shown) connected to the connection system, a connection terminal, Conductive wiring (not shown) for connecting the conductive terminal 201 is provided. The electrical connection between the conductive terminal 201 of the flexible substrate 191 and the anisotropic conductive member 211 is performed by bonding one end face of the anisotropic conductive member 211 onto the conductive terminal 201 of the flexible substrate 191 with an anisotropic conductive adhesive. And do it.

以下に第1の実施の形態にかかる検査方法の工程を説明する。図2は第1の実施の形態にかかる固体撮像装置の検査工程を示す断面図であり、以下に図2(a)から図2(e)の各ステップを説明する。   The steps of the inspection method according to the first embodiment will be described below. FIG. 2 is a cross-sectional view showing the inspection process of the solid-state imaging device according to the first embodiment. Each step of FIGS. 2A to 2E will be described below.

図2(a)に示すものは、固体撮像装置ウエハ21を準備するステップである。固体撮像装置ウエハ21は、主面に複数の固体撮像装置11を備え、各固体撮像装置11の主面に撮像領域41を覆う透明部材151が透明接着剤141で接着され、裏面にはスルーホールに充填された貫通導体101を介して主面の導体パターン91と接続された複数の外部接続電極131が接合されている。   What is shown in FIG. 2A is a step of preparing the solid-state imaging device wafer 21. The solid-state imaging device wafer 21 includes a plurality of solid-state imaging devices 11 on the main surface, a transparent member 151 covering the imaging region 41 is bonded to the main surface of each solid-state imaging device 11 with a transparent adhesive 141, and a through-hole is formed on the back surface. A plurality of external connection electrodes 131 connected to the conductor pattern 91 on the main surface are joined to each other through the through conductor 101 filled therein.

図2(b)に示すものは、コンタクタ241のコンタクタフレーム181に固体撮像装置ウエハ21を載置するステップである。
本ステップでは、コンタクタ241を構成するコンタクタフレーム181の円筒上方開口に第1シールリング161を挿入し、コンタクタフレーム181の仕切り段差301の上面に第1シールリング161を載置し、その上に固体撮像装置ウエハ21を載置する。固体撮像装置ウエハ21は第1シールリング161の全体を覆って配置し、主面を上方に向けて、外部接続電極131を有する裏面を下方に向けて配置する。
FIG. 2B shows a step of placing the solid-state imaging device wafer 21 on the contactor frame 181 of the contactor 241.
In this step, the first seal ring 161 is inserted into the cylindrical upper opening of the contactor frame 181 constituting the contactor 241, and the first seal ring 161 is placed on the upper surface of the partition step 301 of the contactor frame 181. The imaging device wafer 21 is placed. The solid-state imaging device wafer 21 is disposed so as to cover the entire first seal ring 161, with the main surface facing upward and the back surface having the external connection electrodes 131 facing downward.

この際に、例えば仕切り段差301に配置した第1シールリング161の上面に固体撮像装置ウエハ21の裏面を直接に積み重ねてもよいし、仕切り段差301の上面と第1シールリング161の表面の何れか一方もしくは両方に低蒸気圧のシーリンググリース被膜を形成して後に固体撮像装置ウエハ21を載置してもよい。   At this time, for example, the back surface of the solid-state imaging device wafer 21 may be directly stacked on the upper surface of the first seal ring 161 disposed in the partition step 301, or either the upper surface of the partition step 301 or the surface of the first seal ring 161. Alternatively, a solid-state image pickup device wafer 21 may be mounted after forming a low vapor pressure sealing grease film on one or both of them.

図2(c)に示すものは、コンタクタ241のコンタクタフレーム181にシート用フレーム221を嵌め込んで装着するステップであり、異方導電性部材211の接触面と固体撮像装置ウエハ21の外部接続電極131を接触させる。   FIG. 2C shows a step of fitting and attaching the seat frame 221 to the contactor frame 181 of the contactor 241, the contact surface of the anisotropic conductive member 211 and the external connection electrode of the solid-state imaging device wafer 21. 131 is brought into contact.

本ステップでは、フレキシブル基板191の上面の所定位置に第2シールリング171を載置し、フレキシブル基板191およびその下面に気密性を維持して固定したシート用フレーム221をコンタクタフレーム181の円筒下方開口に嵌め込み、フレキシブル基板191の上面に設けた導電端子201および異方導電性部材211を固体撮像装置ウエハ21の裏面に対向させる。   In this step, the second seal ring 171 is placed at a predetermined position on the upper surface of the flexible substrate 191, and the flexible frame 191 and the sheet frame 221 fixed to the lower surface thereof while maintaining airtightness are opened below the cylindrical shape of the contactor frame 181. The conductive terminal 201 and the anisotropic conductive member 211 provided on the upper surface of the flexible substrate 191 are opposed to the back surface of the solid-state imaging device wafer 21.

次に、シート用フレーム221のX方向、Y方向、θ方向を調整し、固体撮像装置ウエハ21の外部接続電極131とフレキシブル基板191の異方導電性部材211とが一致する位置関係にシート用フレーム221をコンタクタフレーム181に対して配置し、第2シールリング171の上面がコンタクタフレーム181の仕切り段差301の下面に接触する位置までシート用フレーム221およびフレキシブル基板191を上昇させて固体撮像装置ウエハ21の外部接続電極131と異方導電性部材211を接触させる。   Next, the X direction, the Y direction, and the θ direction of the sheet frame 221 are adjusted so that the external connection electrode 131 of the solid-state imaging device wafer 21 and the anisotropic conductive member 211 of the flexible substrate 191 coincide with each other. The frame 221 is disposed with respect to the contactor frame 181, and the sheet frame 221 and the flexible substrate 191 are raised to a position where the upper surface of the second seal ring 171 contacts the lower surface of the partition step 301 of the contactor frame 181 to raise the wafer of the solid-state imaging device The external connection electrode 131 and the anisotropic conductive member 211 are brought into contact with each other.

この際に、例えばコンタクタフレーム181の仕切り段差301の下面に第2シールリング171を直接に接触させてもよいし、仕切り段差301の下面と第2シールリング171の表面の何れか一方もしくは両方に低蒸気圧のシーリンググリース被膜を形成して後に、第2シールリング171を仕切り段差301の下面に接触させてもよい。   At this time, for example, the second seal ring 171 may be brought into direct contact with the lower surface of the partition step 301 of the contactor frame 181, or on one or both of the lower surface of the partition step 301 and the surface of the second seal ring 171. The second seal ring 171 may be brought into contact with the lower surface of the partition step 301 after forming the low vapor pressure sealing grease film.

図2(d)に示すものは、固体撮像装置ウエハ21の外部接続電極131と異方導電性部材211の接触面を圧接させるステップである。
本ステップでは、コンタクタフレーム181の内部で固体撮像装置ウエハ21の裏面とフレキシブル基板191上面とで囲まれた空間内の空気を、コンタクタフレーム181の減圧口231から真空ポンプ等で排気して当該空間内を減圧することで、固体撮像装置ウエハ21の各外部接続電極131とそれらに対応するフレキシブル基板191の異方導電性部材211を圧接させる。
FIG. 2D shows a step in which the contact surface between the external connection electrode 131 of the solid-state imaging device wafer 21 and the anisotropic conductive member 211 is pressed.
In this step, the air in the space surrounded by the back surface of the solid-state imaging device wafer 21 and the upper surface of the flexible substrate 191 inside the contactor frame 181 is exhausted from the decompression port 231 of the contactor frame 181 by a vacuum pump or the like. By depressurizing the inside, each external connection electrode 131 of the solid-state imaging device wafer 21 and the anisotropic conductive member 211 of the flexible substrate 191 corresponding thereto are pressed.

なお、減圧系はメカニカルポンプやオイルポンプ等の真空ポンプを使用するが、オイルミストやオイルの蒸気化を配慮するとメカニカルポンプが好ましい。また、前述した減圧系に加えて、コンタクタ241とコンタクタ241に装着された固体撮像装置ウエハ21との全体を加圧装置(図示せず)に入れることでより確実な圧接を実現してもよいし、固体撮像装置ウエハ21の上面とフレキシブル基板191の下面の何れか一方もしくは両方から機械的圧力を加えることでより確実な圧接を実現してもよい。   The decompression system uses a vacuum pump such as a mechanical pump or an oil pump, but a mechanical pump is preferable in consideration of vaporization of oil mist and oil. Further, in addition to the pressure reducing system described above, more reliable pressure contact may be realized by putting the contactor 241 and the entire solid-state imaging device wafer 21 mounted on the contactor 241 into a pressure device (not shown). Then, more reliable pressure contact may be realized by applying mechanical pressure from either one or both of the upper surface of the solid-state imaging device wafer 21 and the lower surface of the flexible substrate 191.

図2(e)に示すものは、コンタクタ241に装着された固体撮像装置ウエハ21の上方から検査光を照射しながら固体撮像装置11を測定するステップである。
本ステップは、固体撮像装置ウエハ21の外部接続電極131とフレキシブル基板191の上面の異方導電性部材211とを圧接させた状態で、固体撮像装置ウエハ21の主面側から検査光を照射しながら固体撮像装置11の光学的電気的特性をウエハ状態で測定する。
What is shown in FIG. 2E is a step of measuring the solid-state imaging device 11 while irradiating the inspection light from above the solid-state imaging device wafer 21 mounted on the contactor 241.
In this step, the inspection light is irradiated from the main surface side of the solid-state imaging device wafer 21 in a state where the external connection electrode 131 of the solid-state imaging device wafer 21 and the anisotropic conductive member 211 on the upper surface of the flexible substrate 191 are pressed. The optical and electrical characteristics of the solid-state imaging device 11 are measured in the wafer state.

なお、フレヤやスミアの検査で、検査光を固体撮像装置ウエハ21の全面に照射して同時に測定してもよい。
また対象箇所のみに照射して測定してもよい。このような検査方法とすることにより検査光源を小さくすることができるため、より安価な検査装置を実現できる。
In the inspection of flare and smear, the entire surface of the solid-state imaging device wafer 21 may be irradiated with inspection light and simultaneously measured.
Moreover, you may irradiate and measure only to a target location. By adopting such an inspection method, the inspection light source can be made small, so that a cheaper inspection apparatus can be realized.

さらに、固体撮像装置11の主面に照射する検査光の光量を時間とともに段階的に変化させながら測定してもよい。このような検査方法とすることにより電気特性の検査を効率的に行うことができる。   Furthermore, you may measure, changing the light quantity of the test | inspection light irradiated to the main surface of the solid-state imaging device 11 stepwise with time. By using such an inspection method, it is possible to efficiently inspect electrical characteristics.

上述のような固体撮像装置ウエハ21の検査方法では、検査時に検査針を使用しないので、固体撮像装置11の外部接続電極131の表面にキズや変形が生じることを防止して検査による外観不良の発生を抑制できるので検査後の外観歩留りの向上が図れる。   In the inspection method of the solid-state imaging device wafer 21 as described above, since no inspection needle is used during the inspection, it is possible to prevent the surface of the external connection electrode 131 of the solid-state imaging device 11 from being scratched or deformed and to cause an appearance defect due to the inspection. Since the generation can be suppressed, the appearance yield after inspection can be improved.

また、ウエハ状態で複数個の固体撮像装置11を同時に測定することができるので、検査時間の短縮と検査コストの低減が図れる。さらに、本実施の形態の固体撮像装置11は外囲器を備えず、透明部材151を直接貼り合わせているので小型薄型化が図れ、低コストで検査することができる。   In addition, since a plurality of solid-state imaging devices 11 can be simultaneously measured in the wafer state, the inspection time can be shortened and the inspection cost can be reduced. Furthermore, since the solid-state imaging device 11 according to the present embodiment does not include an envelope and the transparent member 151 is directly bonded, it can be reduced in size and thickness and can be inspected at a low cost.

次に、図3に基づいて本発明の第1の実施の形態の検査方法に用いる固体撮像装置を説明する。図3の(a)は概略斜視図、(b)は(a)のA−A矢視断面図である。
本実施の形態の固体撮像装置11は、主面の中央部に複数列のマイクロレンズ51を有する撮像領域41と、撮像領域41の周囲の周辺回路領域と、主面の周辺部に複数の導体パターン91を有する導体パターン領域と、裏面絶縁膜71を形成した裏面の周辺部に配置した複数のランド121と、各ランド121を主面側の導体パターン91と電気的に接続する貫通導体101とを備えている。
Next, a solid-state imaging device used in the inspection method according to the first embodiment of the present invention will be described with reference to FIG. 3A is a schematic perspective view, and FIG. 3B is a cross-sectional view taken along the line AA in FIG.
The solid-state imaging device 11 according to the present embodiment includes an imaging region 41 having a plurality of rows of microlenses 51 in the center of the main surface, a peripheral circuit region around the imaging region 41, and a plurality of conductors in the peripheral portion of the main surface. A conductor pattern region having a pattern 91; a plurality of lands 121 arranged in the periphery of the back surface where the back surface insulating film 71 is formed; and a through conductor 101 that electrically connects each land 121 to the conductor pattern 91 on the main surface side It has.

貫通導体101は内壁絶縁膜81が形成されたスルーホール内に充填されており、例えば、銅、ニッケル、タングステン、モリブデン、チタン、モリブデン等の単体金属または化合物を用いてなる。貫通導体101は内壁絶縁膜81でシリコン基板291から絶縁されており、上端は主面上の導体パターン91に、下端は裏面上のランド121にそれぞれ接続されている。   The through conductor 101 is filled in a through hole in which the inner wall insulating film 81 is formed, and is made of, for example, a single metal or a compound such as copper, nickel, tungsten, molybdenum, titanium, and molybdenum. The through conductor 101 is insulated from the silicon substrate 291 by the inner wall insulating film 81, and the upper end is connected to the conductor pattern 91 on the main surface and the lower end is connected to the land 121 on the back surface.

また、固体撮像装置11は、撮像領域41とその周囲の一部を含む大きさをなす矩形透明の透明部材151が主面側のマイクロレンズ51上に透明接着剤141を用いて接続されている。透明部材151は、例えば硬質ガラス、石英、透明アルミナの何れであってもよく、あるいはエポキシ系樹脂、アクリル系樹脂およびポリイミド系樹脂等の透明樹脂を用いてもよい。透明接着剤141は、例えば熱硬化性樹脂や紫外線硬化性樹脂が用いられるが、マイクロレンズ51の材料より低屈折率であり、液状もしくは半硬化状である。   Further, in the solid-state imaging device 11, a rectangular transparent transparent member 151 having a size including the imaging region 41 and a part of the periphery of the imaging region 41 is connected to the microlens 51 on the main surface side using a transparent adhesive 141. . The transparent member 151 may be, for example, hard glass, quartz, or transparent alumina, or may use a transparent resin such as an epoxy resin, an acrylic resin, or a polyimide resin. As the transparent adhesive 141, for example, a thermosetting resin or an ultraviolet curable resin is used. However, the transparent adhesive 141 has a lower refractive index than the material of the microlens 51 and is in a liquid or semi-cured state.

固体撮像装置11の裏面側の複数のランド121の上には外部接続電極131が形成されている。外部接続電極131は半田ボールであってもよいし、電解銅メッキや無電解銅メッキにより表面に銅と金の薄膜メッキが施されたバンプであってもよい。さらに、ワイヤボンディング法により形成したスタッドバンプであってもよい。   External connection electrodes 131 are formed on the plurality of lands 121 on the back surface side of the solid-state imaging device 11. The external connection electrode 131 may be a solder ball, or may be a bump whose surface is plated with a thin film of copper and gold by electrolytic copper plating or electroless copper plating. Furthermore, a stud bump formed by a wire bonding method may be used.

上述のように固体撮像装置11は、従来の固体撮像装置と違って金属細線を必要としないので、金属細線からの反射による光学ノイズの影響を受けない。また、固体撮像装置11の小型薄型化が図れ、低コストで検査することができる。   As described above, unlike the conventional solid-state imaging device, the solid-state imaging device 11 does not require a thin metal wire, and thus is not affected by optical noise due to reflection from the thin metal wire. Further, the solid-state imaging device 11 can be reduced in size and thickness, and can be inspected at low cost.

次に、図4に基づいて本発明の第1の実施の形態の検査方法に用いる固体撮像装置ウエハの他の例を説明する。図4の(a)は概略斜視図、(b)は概略平面図、(c)は(b)のB−B矢視断面図である。   Next, another example of the solid-state imaging device wafer used in the inspection method according to the first embodiment of the present invention will be described with reference to FIG. 4A is a schematic perspective view, FIG. 4B is a schematic plan view, and FIG. 4C is a cross-sectional view taken along the line B-B in FIG.

この固体撮像装置ウエハ21は、シリコン基板からなるウエハの主面に複数の固体撮像装置11が互いの境界を接して縦横に配列されている。固体撮像装置11は、主面側の中央部に配置されてマイクロレンズ51を備えた撮像領域41と、撮像領域41の外周に配置されて撮像領域41からの電気信号を外部回路に転送するための配線からなる周辺回路領域と、最外周に配置されて各配線の電気信号を外部回路へ取り出すための複数の導体パターン91と、裏面絶縁膜71を形成した裏面の周辺部に配置した複数のランド121と、内壁絶縁膜81が形成されたスルーホール内に充填されて各ランド121を主面側の導体パターン91と電気的に接続する貫通導体101とを備えている。   The solid-state imaging device wafer 21 has a plurality of solid-state imaging devices 11 arranged vertically and horizontally in contact with each other on the main surface of a wafer made of a silicon substrate. The solid-state imaging device 11 is disposed in the central portion on the main surface side and includes an imaging region 41 having a microlens 51, and is disposed on the outer periphery of the imaging region 41 to transfer an electrical signal from the imaging region 41 to an external circuit. A plurality of conductor patterns 91 arranged on the outermost periphery, a plurality of conductor patterns 91 arranged on the outermost periphery for taking out electric signals of each wiring to an external circuit, and a plurality of conductor patterns arranged on the peripheral portion of the back surface on which the back surface insulating film 71 is formed. A land 121 and a through conductor 101 that fills the through hole in which the inner wall insulating film 81 is formed and electrically connects each land 121 to the conductor pattern 91 on the main surface side are provided.

主面上の導体パターン91と裏面上のランド121との接続は以下のように行なってもよい。例えば、導体パターン91とランド121とをシリコン基板291の主面と裏面とにおける完全に対向する位置に配置し、導体パターン91とランド121の両者をスルーホール内の貫通導体101で直接に接続してもよい。あるいは、導体パターン91とランド121とをシリコン基板291の主面と裏面とにおけるオフセット位置に配置し、ランド121の直上からシリコン基板291の主面まで形成される貫通導体101と導体パターン91との間を配線パターンで接続してもよい。さらには、導体パターン91とランド121とをシリコン基板291の主面と裏面とにおけるオフセット位置に配置し、ランド121と導体パターン91を貫通導体101に配線パターンで接続してもよい。   The conductor pattern 91 on the main surface and the land 121 on the back surface may be connected as follows. For example, the conductor pattern 91 and the land 121 are arranged at positions where the main surface and the back surface of the silicon substrate 291 are completely opposed to each other, and both the conductor pattern 91 and the land 121 are directly connected by the through conductor 101 in the through hole. May be. Alternatively, the conductor pattern 91 and the land 121 are arranged at offset positions on the main surface and the back surface of the silicon substrate 291, and the through conductor 101 and the conductor pattern 91 formed from immediately above the land 121 to the main surface of the silicon substrate 291. They may be connected with a wiring pattern. Furthermore, the conductor pattern 91 and the land 121 may be disposed at offset positions on the main surface and the back surface of the silicon substrate 291, and the land 121 and the conductor pattern 91 may be connected to the through conductor 101 with a wiring pattern.

本実施の形態において、固体撮像装置ウエハ21は、透明部材151や外部接続電極131を接続する前の固体撮像素子ウエハ段階の状態で一次検査として簡単な電気的特性検査が行なわれており、組み立て時には既に合格品と不合品に分類された状態で合格品の半導体撮像素子を識別することができる。   In the present embodiment, the solid-state imaging device wafer 21 is subjected to simple electrical characteristic inspection as a primary inspection in the state of the solid-state imaging device wafer stage before connecting the transparent member 151 and the external connection electrode 131, and is assembled. Sometimes it is possible to identify an acceptable semiconductor imaging device in a state already classified into an acceptable product and an unacceptable product.

このため、電気的特性検査に合格した半導体撮像素子の主面側のマイクロレンズ51の上に透明部材151を透明接着剤141で接着し、裏面側の複数のランド121の上に外部接続電極131の半田ボールを接合し、検査で合格した半導体撮像素子だけを固体撮像装置11として組み立てることで固体撮像装置ウエハ21を形成する。   Therefore, the transparent member 151 is bonded with the transparent adhesive 141 on the microlens 51 on the main surface side of the semiconductor imaging device that has passed the electrical characteristic inspection, and the external connection electrodes 131 are formed on the plurality of lands 121 on the back surface side. The solid-state image pickup device wafer 21 is formed by assembling only the semiconductor image pickup device that passed the inspection as the solid-state image pickup device 11.

上述した固体撮像装置ウエハ21を本実施の形態の検査方法により検査することで、検査対象の固体撮像装置11が固体撮像素子ウエハ段階での一次検査で電気特性検査に合格した固体撮像素子に透明部材151や外部接続電極131を形成したものだけとなるので、透明部材151や外部接続電極131の無駄が発生せず、且つ同時に複数の固体撮像装置11を検査することができ、製造コストの著しい削減、検査時間の短縮によるリードタイムの短縮と在庫管理の簡素化および固体撮像装置11の薄型小型化が図れ、低コストで検査することができる。
(第2の実施の形態)
図5は本発明の第2の実施の形態にかかる固体撮像装置の検査方法を示すものである。本実施の形態の検査方法においては、図6に示すような格子状遮光部材252を用いることが特徴である。図6の(a)は格子状遮光部材252の概略斜視図であり、(b)は(a)のC−C矢視断面図である。
By inspecting the above-described solid-state imaging device wafer 21 by the inspection method of the present embodiment, the solid-state imaging device 11 to be inspected is transparent to the solid-state imaging device that has passed the electrical characteristic inspection in the primary inspection at the solid-state imaging device wafer stage. Since only the member 151 and the external connection electrode 131 are formed, the transparent member 151 and the external connection electrode 131 are not wasted, and a plurality of solid-state imaging devices 11 can be inspected at the same time. Reduction and lead time can be shortened by shortening the inspection time, inventory management can be simplified, and the solid-state imaging device 11 can be reduced in thickness and size, thereby enabling inspection at low cost.
(Second Embodiment)
FIG. 5 shows an inspection method for a solid-state imaging device according to the second embodiment of the present invention. The inspection method of the present embodiment is characterized by using a lattice-shaped light shielding member 252 as shown in FIG. 6A is a schematic perspective view of the lattice-shaped light shielding member 252, and FIG. 6B is a cross-sectional view taken along the line CC of FIG. 6A.

はじめに、図6に示す格子状遮光部材252の構成について説明する。格子状遮光部材252は、全体の平面が格子形状をなし、縦横に配列された複数の仕切り板262が等間隔に配置されており、縦横の仕切り板262の中心線間の間隔が、図5に示す固体撮像装置12の主面の縦横の長さと等しいものである。   First, the configuration of the grid-like light shielding member 252 shown in FIG. 6 will be described. The lattice-shaped light shielding member 252 has a lattice shape on the entire plane, and a plurality of partition plates 262 arranged in the vertical and horizontal directions are arranged at equal intervals. The interval between the center lines of the vertical and horizontal partition plates 262 is as shown in FIG. The length of the main surface of the solid-state imaging device 12 shown in FIG.

格子状遮光部材252の各格子の上面開口は固体撮像装置12の主面の撮像領域42と同等かそれ以上の大きさを有し、その下面開口は縦横ともに上方開口よりも大きく開口している。図6(a)のC−C矢視断面において、各格子の上面と下面および両側の側壁で囲まれた空間形状は台形をなし、仕切り板262の高さは固体撮像装置12の透明部材152の上面から固体撮像装置12の主面までの高さより高い構造を有する。   The upper surface opening of each lattice of the lattice-shaped light shielding member 252 has a size equal to or larger than the imaging region 42 of the main surface of the solid-state imaging device 12, and the lower surface opening is larger than the upper opening in both length and width. . 6A, the space shape surrounded by the upper and lower surfaces of each lattice and the side walls on both sides forms a trapezoid, and the height of the partition plate 262 is the transparent member 152 of the solid-state imaging device 12. The height from the top surface to the main surface of the solid-state imaging device 12 is higher.

格子状遮光部材252は格子仕切り板262の側面が粗面をなし、黒色の顔料や色素等の光線を遮断することができる材料が配合された部材からなり、その材質は樹脂であってもよいし、セラミックやガラスや金属等の無機材料であってもよい。格子状遮光部材252の外形平面形状は、図6(a)に図示したように、矩形であってもよいし、あるいはコンタクタフレームに嵌め込むことができる円形であってもよい。   The lattice-shaped light shielding member 252 is a member in which a side surface of the lattice partition plate 262 has a rough surface and is blended with a material capable of blocking light such as a black pigment or pigment, and the material may be a resin. However, it may be an inorganic material such as ceramic, glass or metal. As shown in FIG. 6A, the external planar shape of the lattice-shaped light shielding member 252 may be a rectangle, or may be a circle that can be fitted into the contactor frame.

次に、この遮光部材252を用いて検査する方法について以下に説明する。図5は、本発明の実施の形態にかかる固体撮像装置の検査方法を示す図である。コンタクタ242は、コンタクタフレーム182、シート用フレーム222、フレキシブル基板192、異方導電性部材212、第1シールリング162、第2シールリング172および減圧系で構成される。   Next, a method for inspecting using the light shielding member 252 will be described below. FIG. 5 is a diagram illustrating an inspection method for a solid-state imaging device according to an embodiment of the present invention. The contactor 242 includes a contactor frame 182, a seat frame 222, a flexible substrate 192, an anisotropic conductive member 212, a first seal ring 162, a second seal ring 172, and a decompression system.

コンタクタフレーム182は外形が円筒状をなし、内側壁面には仕切り段差302が形成されており、仕切り段差302は固体撮像装置ウエハ22の有効パターン面積と同等もしくはそれ以上の直径を有する開口を備えている。   The contactor frame 182 has a cylindrical outer shape, and a partition step 302 is formed on the inner wall surface. The partition step 302 includes an opening having a diameter equal to or larger than the effective pattern area of the solid-state imaging device wafer 22. Yes.

コンタクタフレーム182において仕切り段差302より上方の円筒上方開口の深さは、固体撮像装置ウエハ22の外部接続電極132の最下面から透明部材152の上面までの高さと同等もしくはそれ以上の深さが好ましい。   The depth of the cylindrical upper opening above the partition step 302 in the contactor frame 182 is preferably equal to or greater than the height from the lowermost surface of the external connection electrode 132 of the solid-state imaging device wafer 22 to the upper surface of the transparent member 152. .

円筒上方開口の直径は、検査対象とする固体撮像装置ウエハ22の直径より所定値だけ大きく形成されており、その所定値は0.5mmから2mmの範囲にあり、好ましくは1mmである。仕切り段差302より下方の円筒下方開口の直径は、例えば円筒上方開口の直径と同等であってもよく、それ以上の直径であってもよい。さらに仕切り段差302の開口側面には孔が形成されており、この孔はコンタクタフレーム182の外部側面の減圧口232に繋がっている。コンタクタフレーム182には、例えば樹脂、鋳鉄、アルミニウム等を用いることができ、円筒上方開口や円筒下方開口の内壁面はテフロン(登録商標)系樹脂で被膜加工を施してもよい。   The diameter of the cylindrical upper opening is formed to be larger than the diameter of the solid-state imaging device wafer 22 to be inspected by a predetermined value, and the predetermined value is in the range of 0.5 mm to 2 mm, preferably 1 mm. The diameter of the cylindrical lower opening below the partition step 302 may be, for example, equal to or larger than the diameter of the cylindrical upper opening. Further, a hole is formed in the opening side surface of the partition step 302, and this hole is connected to the decompression port 232 on the outer side surface of the contactor frame 182. For the contactor frame 182, for example, resin, cast iron, aluminum or the like can be used, and the inner wall surface of the cylindrical upper opening or the cylindrical lower opening may be coated with a Teflon (registered trademark) resin.

シート用フレーム222は円環状をなし、外径は円筒下方開口の直径より所定値だけ小さく形成されており、その所定値は0.5mmから3mmの範囲にあり、好ましくは0.5mmである。シート用フレーム222はその中心部に固体撮像装置ウエハ22の有効パターン面積と同等もしくはそれ以上の直径を有する開口が形成されている。また、シート用フレーム222は、例えば樹脂、鋳鉄、アルミニウム等を用いることができる。   The seat frame 222 has an annular shape, and the outer diameter is smaller than the diameter of the cylindrical lower opening by a predetermined value, and the predetermined value is in the range of 0.5 mm to 3 mm, preferably 0.5 mm. An opening having a diameter equal to or larger than the effective pattern area of the solid-state imaging device wafer 22 is formed at the center of the sheet frame 222. The seat frame 222 may be made of, for example, resin, cast iron, aluminum, or the like.

フレキシブル基板192は円板状をなし、シート用フレーム222の外径と同等もしくはそれ以上の大きさをなし、厚みは0.05mmから1.5mmの範囲にあり、好ましくは1.0mmであり、例えばポリイミド樹脂、ポリアミド樹脂等からなる。   The flexible substrate 192 has a disk shape, is equal to or larger than the outer diameter of the seat frame 222, and has a thickness in the range of 0.05 mm to 1.5 mm, preferably 1.0 mm. For example, it consists of a polyimide resin, a polyamide resin, or the like.

フレキシブル基板192のシート上面には導電端子202のパターンが形成されており、導電端子202は固体撮像装置ウエハ22の複数の外部接続電極132のそれぞれに対応する位置に形成されている。導電端子202は、その表面に化学的に安定な良導体の箔またはメッキ層の被膜を積層するのが好ましく、例えば電解メッキと無電解メッキを併用して形成でした後に、所定のパターンにエッチング加工することにより形成され、ニッケルと金もしくは銅と金等の積層膜を用いることができる。   A pattern of conductive terminals 202 is formed on the upper surface of the flexible substrate 192, and the conductive terminals 202 are formed at positions corresponding to the plurality of external connection electrodes 132 of the solid-state imaging device wafer 22. The conductive terminal 202 is preferably formed by laminating a chemically stable good conductor foil or a plating layer coating on the surface. For example, the conductive terminal 202 is formed by using both electrolytic plating and electroless plating, and then etched into a predetermined pattern. Thus, a laminated film of nickel and gold or copper and gold can be used.

異方導電性部材212は垂直方向に電気的導通を有し、水平方向は絶縁されており、且つ弾性を備えた電気的接続部材である。
第1シールリング162と第2シールリング172は、コンタクタフレーム182の仕切り段差302の上面と下面にそれぞれ載置しうる直径を有し、例えばシリコンゴムやバイトン等で構成されている。
The anisotropic conductive member 212 is an electrical connection member having electrical conduction in the vertical direction, insulated in the horizontal direction, and having elasticity.
The first seal ring 162 and the second seal ring 172 have diameters that can be respectively placed on the upper and lower surfaces of the partition step 302 of the contactor frame 182 and are made of, for example, silicon rubber or Viton.

固体撮像装置ウエハ22はウエハ領域内に複数の固体撮像装置12を有し、固体撮像装置12は主面側に撮像領域42を覆って透明部材152が接着されており、裏面側には複数のランド122および各ランド122に接合する外部接続電極132を有しており、各ランド122は主面側の導体パターン92と電気的に接続されている。なお、固体撮像装置12の詳細説明は第1の実施の形態の図3、図4で記述した内容と同様で詳細な説明を省略する。   The solid-state image pickup device wafer 22 has a plurality of solid-state image pickup devices 12 in the wafer region. The solid-state image pickup device 12 has a transparent member 152 bonded to the main surface side so as to cover the image pickup region 42, and a plurality of solid-state image pickup devices 12 on the back surface side. The land 122 and the external connection electrode 132 joined to each land 122 are provided, and each land 122 is electrically connected to the conductor pattern 92 on the main surface side. Note that the detailed description of the solid-state imaging device 12 is the same as that described in FIGS. 3 and 4 of the first embodiment, and a detailed description thereof will be omitted.

本実施の形態の固体撮像装置ウエハ22はコンタクタフレーム182の仕切り段差302の段差上面に載置した第1シールリング162を覆って積載されており、仕切り段差302の段差下面には第2シールリング172を覆ってフレキシブル基板192が配置してあり、フレキシブル基板192は導電端子202の上に異方導電性部材212を備えており、フレキシブル基板192にシート用フレーム222を固定している。   The solid-state imaging device wafer 22 according to the present embodiment is loaded so as to cover the first seal ring 162 placed on the upper surface of the partition step 302 of the contactor frame 182, and the second seal ring is mounted on the lower surface of the partition step 302. A flexible substrate 192 is disposed so as to cover 172, and the flexible substrate 192 includes an anisotropic conductive member 212 on the conductive terminal 202, and the sheet frame 222 is fixed to the flexible substrate 192.

この構成により、コンタクタフレーム182で囲まれた固体撮像装置ウエハ22とフレキシブル基板192との間の空間を減圧することで、コンタクタフレーム182の段差上面へ固体撮像装置ウエハ22を固定し、段差下面へシート用フレーム222を固定し、外部接続電極132と異方導電性部材212を圧接することを可能とする。   With this configuration, the space between the solid-state imaging device wafer 22 surrounded by the contactor frame 182 and the flexible substrate 192 is decompressed, so that the solid-state imaging device wafer 22 is fixed to the upper surface of the step of the contactor frame 182 and the lower surface of the step is lowered. The sheet frame 222 is fixed, and the external connection electrode 132 and the anisotropic conductive member 212 can be pressed.

格子状遮光部材252は固体撮像装置ウエハ22の主面上に載置し、固体撮像装置ウエハ22の隣接し合う固体撮像装置12間の境界線上に格子状遮光部材252の仕切り板262の中心線を合わせる。検査光は格子状遮光部材252の上方から照射する。   The grid-shaped light shielding member 252 is placed on the main surface of the solid-state imaging device wafer 22, and the center line of the partition plate 262 of the grid-shaped light shielding member 252 on the boundary line between the adjacent solid-state imaging devices 12 of the solid-state imaging device wafer 22. Adjust. The inspection light is irradiated from above the lattice-shaped light shielding member 252.

フレキシブル基板192は一方の面に、導電端子202と、接続系に接続される接続端子および接続端子と導電端子202を接続する導体配線を有しており、導電端子202は固体撮像装置ウエハ22の外部接続電極132に対応する位置に配置されている。フレキシブル基板192の導電端子202と異方導電性部材212は、異方導電性部材212の片側の端面をフレキシブル基板192の導電端子202の上に異方導電性接着剤で接着して電気的接続する。   The flexible substrate 192 has a conductive terminal 202, a connection terminal connected to the connection system, and a conductor wiring connecting the connection terminal and the conductive terminal 202 on one surface. The conductive terminal 202 is connected to the solid-state imaging device wafer 22. It is arranged at a position corresponding to the external connection electrode 132. The conductive terminal 202 of the flexible substrate 192 and the anisotropic conductive member 212 are electrically connected by adhering one end face of the anisotropic conductive member 212 to the conductive terminal 202 of the flexible substrate 192 with an anisotropic conductive adhesive. To do.

次に、本実施の形態の固体撮像装置ウエハ22の検査方法を以下に説明する。本実施の形態の検査方法は、固体撮像装置ウエハ22を準備するステップと、コンタクタ242のコンタクタフレーム182の上方から第1シールリング162を介して固体撮像装置ウエハ22を仕切り段差302に載置するステップと、シート用フレーム222が固定されたフレキシブル基板192の上に第2シールリング172を載置して、コンタクタ242のコンタクタフレーム222の下方からフレキシブル基板192を挿入し、導電端子202と固体撮像装置ウエハ22の外部接続電極132とを位置あわせするステップと、異方導電性部材212と固体撮像装置ウエハ22の外部接続電極132を接触させるステップと、コンタクタフレーム182の内部を排気して減圧し、異方導電性部材212と外部接続電極132を圧接させるステップと、固体撮像装置ウエハ22の上方の所定位置に格子状遮光部材252を配置するステップと、固体撮像装置ウエハ22の上の格子状遮光部材252の上方から所定光量の検査光を照射するステップと、検査光を照射しながら固体撮像装置12の光学的電気的特性を測定するステップとで構成される。   Next, a method for inspecting the solid-state imaging device wafer 22 according to the present embodiment will be described below. In the inspection method of the present embodiment, the step of preparing the solid-state imaging device wafer 22 and the solid-state imaging device wafer 22 are placed on the partition step 302 from above the contactor frame 182 of the contactor 242 via the first seal ring 162. Step, the second seal ring 172 is placed on the flexible substrate 192 to which the seat frame 222 is fixed, the flexible substrate 192 is inserted from below the contactor frame 222 of the contactor 242, and the conductive terminal 202 and the solid-state imaging A step of aligning the external connection electrode 132 of the device wafer 22, a step of bringing the anisotropic conductive member 212 and the external connection electrode 132 of the solid-state imaging device wafer 22 into contact, and exhausting and depressurizing the inside of the contactor frame 182. The anisotropic conductive member 212 and the external connection electrode 132 are pressed against each other. A step of disposing a lattice-shaped light shielding member 252 at a predetermined position above the solid-state imaging device wafer 22, and irradiating a predetermined amount of inspection light from above the lattice-shaped light shielding member 252 on the solid-state imaging device wafer 22. And a step of measuring the optical and electrical characteristics of the solid-state imaging device 12 while irradiating the inspection light.

格子状遮光部材252はコンタクタフレーム182の上面や固体撮像装置ウエハ22の主面に直接載置してもよいし、検査光源と固体撮像装置ウエハ22の主面との空間に支持器具で支持固定してもよいし、検査光源の筐体に取り付けてもよい。   The grid-shaped light shielding member 252 may be placed directly on the upper surface of the contactor frame 182 or the main surface of the solid-state imaging device wafer 22, or is supported and fixed by a support device in the space between the inspection light source and the main surface of the solid-state imaging device wafer 22. Alternatively, it may be attached to the casing of the inspection light source.

上述の格子状遮光部材252を用いて固体撮像装置ウエハ22を検査することで、固体撮像装置12に検査光を照射しながら測定を実施する場合、測定中の迷光や反射光によるフレヤやスミアを防止することができて検査歩留りが向上する。また、先の実施の形態と同様に、固体撮像装置12の小型薄型化が図れるとともに、検査時に検査針を使用しないので固体撮像装置12の外部接続電極132にキズや変形が発生することを防止でき、検査後の外観歩留りが向上する。さらに、ウエハ状態で複数の固体撮像装置12を同時に測定することができるので検査時間の短縮と工程コストの低減が図れる。
(第3の実施の形態)
図7は、本発明の第3の実施の形態にかかる固体撮像装置の検査方法を説明するための図である。
When the solid-state imaging device wafer 22 is inspected by using the lattice-shaped light shielding member 252 described above, when measurement is performed while irradiating the solid-state imaging device 12 with inspection light, flare and smear due to stray light or reflected light during measurement are eliminated. This can be prevented and the inspection yield is improved. Further, similarly to the previous embodiment, the solid-state imaging device 12 can be reduced in size and thickness, and the inspection needle is not used at the time of inspection, so that the external connection electrode 132 of the solid-state imaging device 12 is prevented from being scratched or deformed. This improves the appearance yield after inspection. Furthermore, since a plurality of solid-state imaging devices 12 can be measured simultaneously in the wafer state, the inspection time can be shortened and the process cost can be reduced.
(Third embodiment)
FIG. 7 is a diagram for explaining the inspection method for the solid-state imaging device according to the third embodiment of the present invention.

本実施の形態の検査方法では、コンタクタ243のコンタクタフレーム183に固体撮像装置ウエハ23を装着し、固体撮像装置ウエハ23の装着側を下方にし、シート用フレーム223の側を上方にした状態で測定を行う。このため、検査光源はコンタクタ243の下側に配置して検査光を上方の固体撮像装置ウエハ23の主面に向けて照射する。   In the inspection method of the present embodiment, measurement is performed with the solid-state imaging device wafer 23 mounted on the contactor frame 183 of the contactor 243, the mounting side of the solid-state imaging device wafer 23 facing down, and the sheet frame 223 side facing up. I do. For this reason, the inspection light source is disposed below the contactor 243 and irradiates the inspection light toward the main surface of the upper solid-state imaging device wafer 23.

この方法では、上述したように、はじめから固体撮像装置ウエハ23の主面が下になるような検査系であってもよいし、コンタクタ243と検査光源を一体化しておき、コンタクタ243へ固体撮像装置ウエハ23を着脱する時は、コンタクタ243を180°回転させて固体撮像装置ウエハ23の主面が上になるようにして行い、測定時は固体撮像装置ウエハ23の主面が下になるように戻して測定するものであってもよい。   In this method, as described above, the inspection system may be such that the main surface of the solid-state imaging device wafer 23 is at the bottom, or the contactor 243 and the inspection light source are integrated, and the contactor 243 is solid-state imaged. When attaching or detaching the apparatus wafer 23, the contactor 243 is rotated by 180 ° so that the main surface of the solid-state image pickup device wafer 23 is up, and during measurement, the main surface of the solid-state image pickup device wafer 23 is down. You may return to and measure.

また、本実施の形態の検査に使用される固体撮像装置ウエハ23、コンタクタ243を構成するコンタクタフレーム183とシート用フレーム223は、第1の実施の形態および第2の実施の形態と同様でありここでの詳細な説明は省略する。   Further, the solid-state imaging device wafer 23 used in the inspection of the present embodiment, the contactor frame 183 and the sheet frame 223 constituting the contactor 243 are the same as those in the first embodiment and the second embodiment. Detailed description here is omitted.

上述のようにコンタクタ243と検査光源を備えた検査系とすることにより、検査の途中における撮像領域上の塵埃の付着を防止することができるので検査速度や検査歩留まりの改善が図れる。
(第4の実施の形態)
図8は、本発明の第4の実施の形態にかかる固体撮像装置ウエハの検査装置にかかる構成ブロック図である。
By using the inspection system including the contactor 243 and the inspection light source as described above, it is possible to prevent dust from adhering to the imaging region during the inspection, so that the inspection speed and the inspection yield can be improved.
(Fourth embodiment)
FIG. 8 is a block diagram showing a configuration of a solid-state imaging device wafer inspection apparatus according to the fourth embodiment of the present invention.

本実施の形態の固体撮像装置ウエハ23の検査装置は、本発明の第1の実施の形態から第3の実施の形態までのいずれにおいても使用可能なものであり、以下ではウエハ検査装置という。   The inspection apparatus for the solid-state imaging device wafer 23 of the present embodiment can be used in any of the first to third embodiments of the present invention, and is hereinafter referred to as a wafer inspection apparatus.

ウエハ検査装置の構成は、信号生成、演算、制御、比較、入出力の各機能を備えるテスター274と、固体撮像装置ウエハ内の全ての外部接続電極と電気的接触を形成するためのコンタクタ244と、テスター274とコンタクタ244との間を電気的に接続する複数のケーブルで構成される接続系284と、コンタクタ244に装着された複数の固体撮像装置に検査光を照射するための光源114とで構成されている。   The configuration of the wafer inspection apparatus includes a tester 274 having signal generation, calculation, control, comparison, and input / output functions, and a contactor 244 for making electrical contact with all external connection electrodes in the solid-state imaging device wafer. A connection system 284 composed of a plurality of cables that electrically connect the tester 274 and the contactor 244, and a light source 114 for irradiating the plurality of solid-state imaging devices mounted on the contactor 244 with inspection light. It is configured.

コンタクタ244は先に第1の実施の形態から第3の実施の形態で説明したものに相当し、本装置に適用されるテスター274は固体撮像装置を検査することができる汎用機能に加えて同時測定が可能な機能を備えており、コンタクタ244はそのフレキシブル基板上の外部端子がテスター274と接続するケーブルに繋がれる。固体撮像装置ウエハに検査光を照射するための光源114は、例えば白熱電球やエレクトロルミネッセンスのような光源を使用してもよい。   The contactor 244 corresponds to that previously described in the first to third embodiments, and the tester 274 applied to this apparatus is a simultaneous function in addition to the general-purpose function capable of inspecting the solid-state imaging device. The contactor 244 is connected to a cable that connects an external terminal on the flexible board to the tester 274. As the light source 114 for irradiating the inspection light onto the solid-state imaging device wafer, a light source such as an incandescent light bulb or electroluminescence may be used.

上述の固体撮像装置ウエハ検査装置の構成とすることで、固体撮像装置ウエハを正確且つ効率的に測定することができるとともに、薄型小型の固体撮像装置を低コストで提供することができる。   With the above-described configuration of the solid-state imaging device wafer inspection device, the solid-state imaging device wafer can be measured accurately and efficiently, and a thin and small-sized solid-state imaging device can be provided at low cost.

本発明はコンタクタによるプローブレス同時複数検査方法を採用し、予備検査における合格品の固体撮像装置のみを対象として透明部材直貼りや各遮光部材の使用や付加を行なう構成とすることで、安価で高性能且つ小型薄型の固体撮像装置が得られるので、小型薄型の電子機器への適用に有用である。   The present invention adopts a probeless simultaneous multiple inspection method using a contactor, and is configured to perform direct attachment of a transparent member and use or addition of each light shielding member only for a solid-state imaging device that has passed in preliminary inspection. Since a high-performance, small and thin solid-state imaging device can be obtained, it is useful for application to small and thin electronic devices.

本発明の第1の実施の形態にかかる固体撮像装置の検査方法を示す断面図Sectional drawing which shows the inspection method of the solid-state imaging device concerning the 1st Embodiment of this invention 本発明の第1の実施の形態にかかる固体撮像装置の検査工程の断面図Sectional drawing of the test process of the solid-state imaging device concerning the 1st Embodiment of this invention (a)は本発明の第1の実施の形態の検査方法に用いる固体撮像装置を示す概略斜視図、(b)は(a)のA−A矢視断面図(A) is a schematic perspective view which shows the solid-state imaging device used for the inspection method of the 1st Embodiment of this invention, (b) is AA arrow sectional drawing of (a). (a)は本発明の第1の実施の形態の検査方法に用いる固体撮像装置ウエハの概略斜視図、(b)は概略平面図、(c)は(b)のB−B矢視断面図(A) is a schematic perspective view of the solid-state imaging device wafer used for the inspection method of the first embodiment of the present invention, (b) is a schematic plan view, and (c) is a cross-sectional view taken along line BB in (b). 本発明の第2の実施の形態にかかる検査方法を示す断面図Sectional drawing which shows the inspection method concerning the 2nd Embodiment of this invention (a)は本発明の第2の実施の形態の検査方法に用いる格子状遮光部材の概略斜視図、(b)は(a)のC−C矢視断面図(A) is a schematic perspective view of the grid | lattice-like light shielding member used for the inspection method of the 2nd Embodiment of this invention, (b) is CC sectional view taken on the line of (a). 本発明の第3の実施の形態にかかる検査方法を示す断面図Sectional drawing which shows the inspection method concerning the 3rd Embodiment of this invention 本発明の第4の実施の形態にかかる固体撮像装置ウエハの検査装置を示すブロック図FIG. 6 is a block diagram showing a solid-state imaging device wafer inspection apparatus according to a fourth embodiment of the present invention;

符号の説明Explanation of symbols

11,12 固体撮像装置
21,22,23 固体撮像装置ウエハ
41,42 撮像領域
51 マイクロレンズ
71 裏面絶縁膜
81 内壁絶縁膜
91,92 導体パターン
101 貫通導体
114 光源
121 ランド
131,132 外部接続電極
141 透明接着剤
151,152 透明部材
161,162 第1シールリング
171,172 第2シールリング
181,182,183 コンタクタフレーム
191,192 フレキシブル基板(基材)
201,202 導電端子
211,212 異方導電性部材
221,222,223 シート用フレーム
231,232 減圧口
241,242,243,244 コンタクタ
252 格子状遮光部材
262 仕切り板
274 テスター
284 接続系
291 シリコン基板
301,302 仕切り段差
DESCRIPTION OF SYMBOLS 11,12 Solid-state imaging device 21,22,23 Solid-state imaging device wafer 41,42 Imaging area 51 Micro lens 71 Back surface insulating film 81 Inner wall insulating film 91,92 Conductor pattern 101 Through-conductor 114 Light source 121 Land 131,132 External connection electrode 141 Transparent adhesive 151,152 Transparent member 161,162 First seal ring 171,172 Second seal ring 181,182,183 Contactor frame 191,192 Flexible substrate (base material)
201, 202 Conductive terminal 211, 212 Anisotropic conductive member 221, 222, 223 Seat frame 231, 232 Pressure reducing port 241, 242, 243, 244 Contactor 252 Grid-shaped light shielding member 262 Partition plate 274 Tester 284 Connection system 291 Silicon substrate 301,302 Dividing step

Claims (9)

複数の固体撮像装置を有し、主面側に前記固体撮像装置のぞれぞれの撮像領域を有し、裏面側に前記固体撮像装置のそれぞれの複数の外部接続電極を備える半導体ウエハの検査を行うものであって、
コンタクタの端子部に前記固体撮像装置のそれぞれの前記外部接続電極を電気的に接続させるステップと、前記半導体ウエハの主面側から所定の検査光を照射しながら前記固体撮像装置の光学的または電気的特性を同時または順次に測定するステップとを含むことを特徴とする固体撮像装置の検査方法。
Inspection of a semiconductor wafer having a plurality of solid-state imaging devices, having an imaging region of each of the solid-state imaging devices on the main surface side, and each having a plurality of external connection electrodes of the solid-state imaging device on the back surface side Which performs
Electrically connecting each external connection electrode of the solid-state imaging device to a terminal portion of the contactor; and optical or electrical of the solid-state imaging device while irradiating predetermined inspection light from the main surface side of the semiconductor wafer And a step of measuring the physical characteristics simultaneously or sequentially.
前記コンタクタは、所定の複数個所に形成した導電端子と前記導電端子上に配置した異方導電性部材とからなる端子部を有するフレキシブル基板と、
前記フレキシブル基板に固定したシート用フレームを備えることを特徴とする請求項1に記載の固体撮像装置の検査方法。
The contactor includes a flexible substrate having a terminal portion formed of a conductive terminal formed at a predetermined plurality of locations and an anisotropic conductive member disposed on the conductive terminal;
The inspection method for a solid-state imaging device according to claim 1, further comprising a sheet frame fixed to the flexible substrate.
前記半導体ウエハの裏面との間に形成する前記コンタクタの空間を減圧し、前記固体撮像装置の前記外部接続電極と前記コンタクタの端子部とを圧接させることを特徴とする請求項1または請求項2に記載の固体撮像装置の検査方法。 The space of the contactor formed between the back surface of the semiconductor wafer is decompressed, and the external connection electrode of the solid-state image pickup device and the terminal portion of the contactor are brought into pressure contact with each other. 2. A method for inspecting a solid-state imaging device according to 1. 前記半導体ウエハに形成した前記固体撮像装置のそれぞれの前記撮像領域に対応する位置に前記撮像領域の大きさ以上の開口を有する格子状遮光部材を、前記半導体ウエハ上または検査光源と前記半導体ウエハとの間に配置して検査することを特徴とする請求項1から請求項3のいずれか1項に記載の固体撮像装置の検査方法。 A lattice-shaped light shielding member having an opening larger than the size of the imaging region at a position corresponding to the imaging region of each of the solid-state imaging devices formed on the semiconductor wafer, the inspection light source and the semiconductor wafer on the semiconductor wafer 4. The method for inspecting a solid-state imaging device according to claim 1, wherein the inspection is performed by arranging between the two. 前記半導体ウエハが下方側に位置するように前記コンタクタを支持して検査することを特徴とする請求項1から請求項4のいずれか1項に記載の固体撮像装置の検査方法。 5. The inspection method for a solid-state imaging device according to claim 1, wherein the inspection is performed while supporting the contactor so that the semiconductor wafer is positioned on a lower side. 前記検査光の光量を段階的に変化させながらが測定することを特徴とする請求項1から請求項5のいずれか1項に記載の固体撮像装置の検査方法。 The solid-state imaging device inspection method according to claim 1, wherein the measurement is performed while changing the amount of the inspection light stepwise. 前記半導体ウエハの主面の全面に前記検査光を照射しながら測定することを特徴とする請求項1から請求項6のいずれか1項に記載の固体撮像装置の検査方法。 The solid-state imaging device inspection method according to claim 1, wherein the measurement is performed while irradiating the entire surface of the main surface of the semiconductor wafer with the inspection light. 検査対象の前記固体撮像装置を含む前記半導体ウエハの主面の一部に前記検査光を照射しながら測定することを特徴とする請求項1から請求項6のいずれか1項に記載の固体撮像装置の検査方法。 The solid-state imaging according to claim 1, wherein the measurement is performed while irradiating the inspection light onto a part of a main surface of the semiconductor wafer including the solid-state imaging device to be inspected. Device inspection method. 複数の固体撮像装置を有し、主面側に前記固体撮像装置のぞれぞれの撮像領域を有し、裏面側に前記固体撮像装置のそれぞれの複数の外部接続電極を備える半導体ウエハの検査を行うものであって、
前記半導体ウエハを装着してコンタクタユニットを形成し、前記半導体ウエハの裏面の外部接続電極に圧接する端子部を有するフレキシブル配線基板を備えたコンタクタと、前記半導体ウエハの主面の前記固体撮像装置に検査光を照射する検査光源と、電気信号の発生と測定結果を判定するためのテスターと、前記コンタクタユニットと前記テスターの間で発生信号や測定結果の電気信号を伝送する接続系とを備えたことを特徴とする固体撮像装置の検査装置。
Inspection of a semiconductor wafer having a plurality of solid-state imaging devices, having an imaging region of each of the solid-state imaging devices on the main surface side, and each having a plurality of external connection electrodes of the solid-state imaging device on the back surface side Which performs
A contactor including a flexible wiring substrate having a terminal portion that is mounted on the semiconductor wafer to form a contactor unit and press-contacts to an external connection electrode on the back surface of the semiconductor wafer; and the solid-state imaging device on the main surface of the semiconductor wafer. An inspection light source for irradiating inspection light, a tester for determining the generation of electric signals and measurement results, and a connection system for transmitting generated signals and electric signals of measurement results between the contactor unit and the tester An inspection apparatus for a solid-state imaging device.
JP2007001882A 2007-01-10 2007-01-10 Method and device of inspecting solid-state imaging device Pending JP2008171905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007001882A JP2008171905A (en) 2007-01-10 2007-01-10 Method and device of inspecting solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007001882A JP2008171905A (en) 2007-01-10 2007-01-10 Method and device of inspecting solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2008171905A true JP2008171905A (en) 2008-07-24

Family

ID=39699746

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007001882A Pending JP2008171905A (en) 2007-01-10 2007-01-10 Method and device of inspecting solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2008171905A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145233A (en) * 2012-01-13 2013-07-25 Raytheon Co High resolution thermography

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013145233A (en) * 2012-01-13 2013-07-25 Raytheon Co High resolution thermography
US8912493B2 (en) 2012-01-13 2014-12-16 Raytheon Company High resolution thermography

Similar Documents

Publication Publication Date Title
US7582944B2 (en) Optical apparatus and optical module using the same
KR100846962B1 (en) Covers for microelectronic imagers and methods for wafer-level packaging of microelectronic imagers
US7868469B2 (en) Adapter board and method for manufacturing same, probe card, method for inspecting semiconductor wafer, and method for manufacturing semiconductor device
CN107256849B (en) The manufacturing method of semiconductor device and semiconductor device
US20190244912A1 (en) Semiconductor device and method of inspecting the same
CN107170769B (en) Packaging structure and packaging method of image sensing chip
US20050248011A1 (en) Flip chip semiconductor package for testing bump and method of fabricating the same
US20150185254A1 (en) Manufacturing method of probing device
US20150137349A1 (en) Semiconductor device and manufacturing method thereof
US7782070B2 (en) Probing device
KR101051136B1 (en) Space transducer, probe card including space transducer and method of manufacturing space transducer
US11049899B2 (en) Encapsulation structure of image sensing chip, and encapsulation method therefor
US9673141B2 (en) Mounting member, electronic component, and method for manufacturing module
JP2008171905A (en) Method and device of inspecting solid-state imaging device
JP2012159359A (en) Checkup device and checkup method
JP3921163B2 (en) Spiral contactor, manufacturing method thereof, semiconductor inspection apparatus using the same, and electronic component
KR101421048B1 (en) Device For Testing Semiconductor On Mounted Active Element Chip
CN109148357B (en) Test interface board assembly and manufacturing method thereof
KR102026733B1 (en) Measurment sensor for plasma process and method thereof
JP2000164655A (en) Method and device for alignment
JP2009188074A (en) Semiconductor module and tester
US20140167804A1 (en) Assembly for optical backside failure analysis of flip-chips during electrical testing
JPH11111889A (en) Burn-in socket
JPH11153620A (en) Probe card for wafer batch type measurement inspection
JP5933047B2 (en) Semiconductor device manufacturing method, semiconductor device inspection method, and semiconductor device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080430