JP2008170211A - Ultrasonic flowmeter - Google Patents

Ultrasonic flowmeter Download PDF

Info

Publication number
JP2008170211A
JP2008170211A JP2007002237A JP2007002237A JP2008170211A JP 2008170211 A JP2008170211 A JP 2008170211A JP 2007002237 A JP2007002237 A JP 2007002237A JP 2007002237 A JP2007002237 A JP 2007002237A JP 2008170211 A JP2008170211 A JP 2008170211A
Authority
JP
Japan
Prior art keywords
ultrasonic
ultrasonic transducer
signal
circuit
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007002237A
Other languages
Japanese (ja)
Inventor
Yukio Takahashi
幸夫 鷹箸
Yoshitomi Sameda
芳富 鮫田
Kenji Nakano
健治 中野
Tadanori Maoka
忠則 真岡
Hiroto Uyama
浩人 宇山
Hiroshi Ishida
宏 石田
Takahito Sato
孝人 佐藤
Itsuro Hori
逸郎 堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Gas Co Ltd
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Original Assignee
Toshiba Corp
Tokyo Gas Co Ltd
Aichi Tokei Denki Co Ltd
Toho Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Gas Co Ltd, Aichi Tokei Denki Co Ltd, Toho Gas Co Ltd filed Critical Toshiba Corp
Priority to JP2007002237A priority Critical patent/JP2008170211A/en
Publication of JP2008170211A publication Critical patent/JP2008170211A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic flowmeter capable of stably measuring a flow rate over a long period by preventing mixing of electrical noise into a signal line connecting an ultrasonic transducer with an amplifier circuit. <P>SOLUTION: The ultrasonic flowmeter comprises: a pair of ultrasonic transducer circuits 22 disposed at a predetermined distance from each other on upstream and downstream sides of a passage in which a fluid to be measured flows; a time measuring means for measuring propagation time of ultrasonic signals that are transmitted and received between the pair of ultrasonic transducer circuits 22; and a flow rate measuring means for measuring a flow rate of a fluid to be measured based on propagation time measured by the time measuring means, wherein, each of the pair of ultrasonic transducer circuits 22 includes: an ultrasonic transducer 22a; a signal changeover switch 22b for switching transmission and reception signals transmitted and received between the pair of ultrasonic transducers 22a; and an amplification circuit 22c for amplifying the reception signal by a predetermined gain. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電気的ノイズの影響を防止し高精度の流量計測が可能な超音波流量計に関する。   The present invention relates to an ultrasonic flowmeter capable of measuring a flow rate with high accuracy while preventing the influence of electrical noise.

従来、流路の上流側と下流側に一定の距離をおいて一対の超音波振動子を設け、その間で相互に超音波信号の送信および受信を繰り返して行い、上流側から下流側への超音波信号の伝播積算時間と、下流側から上流側への伝搬積算時間との差に基づいて流量を求める超音波流量計が知られている。   Conventionally, a pair of ultrasonic transducers are provided at a certain distance on the upstream side and downstream side of the flow path, and the ultrasonic signal is transmitted and received between them repeatedly. 2. Description of the Related Art An ultrasonic flowmeter that obtains a flow rate based on a difference between a propagation integration time of a sound wave signal and a propagation integration time from a downstream side to an upstream side is known.

このような従来の超音波流量計測において、超音波振動子と増幅器との距離が離れているため、超音波振動子で受信した超音波信号を電気信号に変換した際に変換直後の微弱な信号に電気的ノイズが混入し、S/N比が低下して正確な伝搬時間が測定できない場合が生じるという問題があった。   In such conventional ultrasonic flow measurement, because the distance between the ultrasonic transducer and the amplifier is large, a weak signal immediately after conversion when the ultrasonic signal received by the ultrasonic transducer is converted into an electrical signal. There is a problem that electrical noise is mixed in, and the S / N ratio is lowered, and the accurate propagation time cannot be measured.

そこで、流量測定時の流速方向への伝搬時間と逆流方向への伝搬時間の平均値と、あらかじめ設定された正常計測時の流速方向の伝搬時間と逆流方向の伝搬時間の平均値を比較し、所定の大きさ以上の差があった場合を誤計測と判定する誤測定判定手段を備えることで、電気的ノイズによる誤測定で測定精度が低下することを防止する超音波流量計がある(例えば、特許文献1参照)。   Therefore, compare the average value of the propagation time in the flow velocity direction and the propagation time in the reverse flow direction at the time of flow rate measurement, and the average value of the propagation time in the flow velocity direction and the propagation time in the reverse flow direction during normal measurement set in advance, There is an ultrasonic flowmeter that includes an erroneous measurement determination means that determines that there is a difference of a predetermined size or more as erroneous measurement, thereby preventing measurement accuracy from being lowered due to erroneous measurement due to electrical noise (for example, , See Patent Document 1).

図4は、特許文献1に公開されている超音波流量計の構成図を示す。この超音波流量計は、流体の流れる測定流路1に設置した超音波振動子2と、超音波振動子2を駆動する駆動回路3と、駆動回路3にスタート信号を出力する制御部4と、超音波の伝搬時間を測定する伝搬時間測定部5と、伝搬時間測定部5から測定データを受け取る演算部6と、超音波振動子2から送信した超音波を受ける超音波振動子7と、超音波振動子7の出力を増幅するアンプ8と、アンプ8の出力と基準電圧とを比較し大小関係が反転したときに伝搬時間測定部5を停止させる受信検知回路9と、超音波の出力又は受信のいずれかに超音波振動子の動作を切り替える切り替えスイッチ10と、誤測定判定手段11とを有する。超音波振動子2及び7は、送受信可能なものを採用する。また切り替えスイッチ10を備えることにより流れ方向と逆流方向の伝搬時間を計測できる。   FIG. 4 is a configuration diagram of an ultrasonic flow meter disclosed in Patent Document 1. The ultrasonic flowmeter includes an ultrasonic transducer 2 installed in a measurement flow path 1 through which a fluid flows, a drive circuit 3 that drives the ultrasonic transducer 2, and a control unit 4 that outputs a start signal to the drive circuit 3. A propagation time measurement unit 5 that measures the propagation time of ultrasonic waves, a calculation unit 6 that receives measurement data from the propagation time measurement unit 5, an ultrasonic transducer 7 that receives ultrasonic waves transmitted from the ultrasonic transducer 2, An amplifier 8 that amplifies the output of the ultrasonic transducer 7, a reception detection circuit 9 that compares the output of the amplifier 8 with a reference voltage and stops the propagation time measurement unit 5 when the magnitude relationship is reversed, and an output of the ultrasonic wave Alternatively, a changeover switch 10 that switches the operation of the ultrasonic transducer to either reception or an erroneous measurement determination unit 11 is provided. The ultrasonic transducers 2 and 7 are capable of transmitting and receiving. Further, by providing the changeover switch 10, the propagation time in the flow direction and the reverse flow direction can be measured.

上記超音波流量計において、制御部4からスタート信号を受けた駆動回路3が超音波振動子2を一定時間パルス駆動を行うと同時に伝搬時間測定部5は制御部4からの信号によって時間を計測し始める。パルス駆動された超音波振動子2からは超音波が送信される。超音波振動子2から送信した超音波は被測定流体中を伝搬し超音波振動子7で受信される。超音波振動子7の受信出力は、アンプ8において制御部4が設定した増幅率によって増幅される。そしてアンプ8の出力を受けた受信検知回路9で超音波の受信を判定し伝搬時間測定部5を停止させる。そして制御部4では伝搬時間測定部5から得た時間情報から流速を求める。   In the ultrasonic flowmeter, the drive circuit 3 that has received the start signal from the control unit 4 performs pulse driving of the ultrasonic transducer 2 for a certain period of time, and at the same time, the propagation time measurement unit 5 measures time according to the signal from the control unit 4. Begin to. Ultrasound is transmitted from the pulse-driven ultrasonic transducer 2. The ultrasonic wave transmitted from the ultrasonic transducer 2 propagates through the fluid to be measured and is received by the ultrasonic transducer 7. The reception output of the ultrasonic transducer 7 is amplified by the amplification factor set by the control unit 4 in the amplifier 8. Then, the reception detection circuit 9 receiving the output of the amplifier 8 determines reception of the ultrasonic wave and stops the propagation time measuring unit 5. Then, the control unit 4 obtains the flow velocity from the time information obtained from the propagation time measurement unit 5.

次に、誤計測判定手段11の動作を説明する。まず伝搬時間測定部5で計測された流れ方向と逆流方向の伝搬時間の平均値を求め、あらかじめ設定された正常計測時の伝搬時間の平均値との差を求める。伝搬時間は流れの大きさによって変化するが、流速方向と逆流方向の平均値は流れの大きさに関係無く一定となる。よって平均値が著しく変化するということは計測系になんらかの異常があったと考えられることから、平均値の差が所定の値より大きい場合は誤計測と判断できる。
特開2001−183195号公報
Next, the operation of the erroneous measurement determination unit 11 will be described. First, an average value of propagation times in the flow direction and the reverse flow direction measured by the propagation time measurement unit 5 is obtained, and a difference from a preset average value of propagation times during normal measurement is obtained. Although the propagation time varies depending on the flow size, the average value in the flow velocity direction and the reverse flow direction is constant regardless of the flow size. Therefore, if the average value changes significantly, it is considered that there is some abnormality in the measurement system. Therefore, if the difference between the average values is larger than a predetermined value, it can be determined that the measurement is incorrect.
JP 2001-183195 A

しかしながら、図4に示す超音波流量計は、電気的ノイズによる誤測定を判定するが、超音波振動子と受信信号を増幅するアンプ回路とが離れているため超音波振動子とアンプ回路とを結ぶ信号線に電気的ノイズが混入し易い構造であり、S/N比が低下する問題が考えられる。   However, although the ultrasonic flowmeter shown in FIG. 4 determines erroneous measurement due to electrical noise, since the ultrasonic transducer and the amplifier circuit that amplifies the received signal are separated, the ultrasonic transducer and the amplifier circuit are separated. This is a structure in which electrical noise is likely to be mixed into the signal line to be connected, and there is a problem that the S / N ratio is lowered.

またアンプ回路と超音波振動子の伝送路長を短くするにあたって、以下のような問題点がある。超音波振動子は、超音波を出力する際に超音波振動子の前面に送信の超音波信号を出力する共に後方にも超音波信号を出力する。したがって超音波振動子の後方にアンプ回路を設置すると、後方に出力された超音波信号は、アンプ回路の回路基板等で反射し、前方の超音波振動子の振動動作に影響を与えるとともに、超音波振動子の前面に出力される。このため反射された信号は、他方の超音波振動子で受信する信号に影響を与え信号のS/N比を低下させ、ひいては伝播時間の計測精度を低下させる。   Further, there are the following problems in shortening the transmission path length of the amplifier circuit and the ultrasonic transducer. When outputting an ultrasonic wave, the ultrasonic transducer outputs an ultrasonic signal to be transmitted to the front surface of the ultrasonic transducer and outputs an ultrasonic signal to the rear. Therefore, when an amplifier circuit is installed behind the ultrasonic transducer, the ultrasonic signal output backward is reflected by the circuit board of the amplifier circuit and affects the vibration operation of the ultrasonic transducer in the front. Output to the front of the sound wave transducer. For this reason, the reflected signal affects the signal received by the other ultrasonic transducer, lowers the S / N ratio of the signal, and consequently reduces the measurement accuracy of the propagation time.

本発明は上述した従来技術の問題点を解決するもので、超音波振動子とアンプ回路を結ぶ信号線に電気的ノイズが混入するのを防止し、長期間にわたり安定した流量の計測が可能な超音波流量計を提供することを課題とする。   The present invention solves the above-mentioned problems of the prior art, and prevents electric noise from entering the signal line connecting the ultrasonic transducer and the amplifier circuit, and enables stable flow rate measurement over a long period of time. It is an object to provide an ultrasonic flowmeter.

本発明に係る超音波流量計は、上記課題を解決するために、請求項1記載の発明は、被計測流体が流れる流路の上流側と下流側に一定の距離を離して設置された一対の超音波振動子回路と、前記一対の超音波振動子回路の間で送受される超音波信号の伝播時間を計測する時間計測手段と、前記時間計測手段により計測された前記伝搬時間に基づいて前記被計測流体の流量を計測する流量計測手段とを有する超音波流量計であって、前記一対の超音波振動子回路の各々は、超音波振動子と、一対の前記超音波振動子の間で送受信される送信信号と受信信号を切り換える信号切換スイッチと、前記受信信号を所定の利得で増幅する増幅回路とを有することを特徴とする。   In order to solve the above problems, an ultrasonic flowmeter according to the present invention is a pair of the invention according to claim 1 that is installed at a certain distance from the upstream side and the downstream side of the flow path through which the fluid to be measured flows. Based on the propagation time measured by the time measuring means, the time measuring means for measuring the propagation time of the ultrasonic signal transmitted and received between the pair of ultrasonic vibrator circuits, and the time measuring means An ultrasonic flowmeter having a flow rate measuring means for measuring a flow rate of the fluid to be measured, wherein each of the pair of ultrasonic transducer circuits is between an ultrasonic transducer and the pair of ultrasonic transducers And a signal changeover switch for switching between a transmission signal and a reception signal transmitted and received, and an amplifier circuit for amplifying the reception signal with a predetermined gain.

請求項2記載の発明は、請求項1において、前記各々の超音波振動子回路は、前記超音波振動子と前記信号切換スイッチと前記増幅回路とを同一パッケージに収納した集積回路からなることを特徴とする。   According to a second aspect of the present invention, in the first aspect, each of the ultrasonic transducer circuits includes an integrated circuit in which the ultrasonic transducer, the signal changeover switch, and the amplifier circuit are housed in the same package. Features.

請求項3記載の発明は、請求項1又は請求項2において、前記各々の超音波振動子回路は、前記時間計測手段及び前記流量計測手段から独立した回路基板からなることを特徴とする。   According to a third aspect of the present invention, in the first or second aspect, each of the ultrasonic transducer circuits includes a circuit board independent of the time measuring unit and the flow rate measuring unit.

請求項4記載の発明は、請求項1乃至請求項3のいずれか1項において、前記各々の超音波振動子回路は、前記超音波振動子と前記信号切換スイッチ及び前記増幅回路との間に、前記信号切換スイッチ側へ伝搬する超音波を吸収する吸音材を備えることを特徴とする。   According to a fourth aspect of the present invention, in any one of the first to third aspects, each of the ultrasonic transducer circuits is provided between the ultrasonic transducer, the signal changeover switch, and the amplifier circuit. A sound absorbing material that absorbs ultrasonic waves propagating to the signal changeover switch side is provided.

請求項5記載の発明は、請求項4において、前記吸音材は、繊維状の材料により構成されていることを特徴とする。   A fifth aspect of the present invention is characterized in that, in the fourth aspect, the sound absorbing material is made of a fibrous material.

請求項6記載の発明は、請求項4又は請求項5において、前記吸音材は、表面に凹凸の形状を有することを特徴とする。   A sixth aspect of the present invention is characterized in that, in the fourth or fifth aspect, the sound absorbing material has an uneven shape on the surface.

本発明の請求項1記載の発明によれば、超音波振動子回路が超音波振動子と増幅回路とを内蔵するため、両者を結ぶ信号線の伝送路長が短くなり、電気的なノイズが混入するのを防止することができる。その結果、S/N比の向上を図ることができ、ノイズによるばらつきが低減できるため、高精度な伝搬時間計測及び流量計測が可能となる。また送信側の超音波振動子に印加するパルス信号振幅を小さくすることができ、消費電力を低減できる。   According to the first aspect of the present invention, since the ultrasonic transducer circuit includes the ultrasonic transducer and the amplifier circuit, the transmission line length of the signal line connecting the two is shortened, and electrical noise is generated. Mixing can be prevented. As a result, the S / N ratio can be improved, and variations due to noise can be reduced. Therefore, highly accurate propagation time measurement and flow rate measurement are possible. Further, the amplitude of the pulse signal applied to the ultrasonic transducer on the transmission side can be reduced, and the power consumption can be reduced.

本発明の請求項2記載の発明によれば、超音波振動子、信号切換スイッチ、及び増幅回路を同一パッケージの集積回路で構築することで、信号のやり取りを集積回路の内部で行い、信号の伝送路長を短くでき、外乱を受け難くするのでS/N比の向上を図ることができる。   According to the second aspect of the present invention, by constructing the ultrasonic transducer, the signal changeover switch, and the amplifier circuit with an integrated circuit of the same package, signals are exchanged inside the integrated circuit, Since the transmission path length can be shortened and it is difficult to receive disturbance, the S / N ratio can be improved.

本発明の請求項3記載の発明によれば、超音波振動子回路を独立した回路基板とするため、受信信号にデジタルノイズが混入するのを防止することができる。   According to the third aspect of the present invention, since the ultrasonic transducer circuit is an independent circuit board, it is possible to prevent digital noise from being mixed into the received signal.

本発明の請求項4記載の発明によれば、信号切換スイッチ側へ伝搬する超音波を吸収する吸音材を備えるので、超音波信号の反射を防止し、計測精度の低下を防ぐことができる。   According to the fourth aspect of the present invention, since the sound absorbing material that absorbs the ultrasonic wave propagating to the signal changeover switch side is provided, the reflection of the ultrasonic signal can be prevented and the measurement accuracy can be prevented from being lowered.

本発明の請求項5記載の発明によれば、吸音材が繊維状の材料により構成されているため、超音波振動子から出力された超音波信号のエネルギーを繊維の振動として吸収することができる。   According to the fifth aspect of the present invention, since the sound absorbing material is made of a fibrous material, the energy of the ultrasonic signal output from the ultrasonic transducer can be absorbed as the vibration of the fiber. .

本発明の請求項6記載の発明によれば、吸音材が表面に凹凸の形状を有しているので、吸音効果を高めることができる。   According to the sixth aspect of the present invention, since the sound absorbing material has an uneven shape on the surface, the sound absorbing effect can be enhanced.

以下、本発明の超音波流量計の実施の形態を、図面に基づいて詳細に説明する。   Hereinafter, embodiments of the ultrasonic flowmeter of the present invention will be described in detail with reference to the drawings.

以下、本発明の実施例について図面を参照しながら説明する。図1は本発明の実施例1の超音波振動子回路の内部構成を示すブロック図、図2は超音波流量計全体の構成を示すブロック図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a block diagram showing the internal configuration of the ultrasonic transducer circuit according to the first embodiment of the present invention, and FIG. 2 is a block diagram showing the overall configuration of the ultrasonic flowmeter.

まず、本実施の形態の構成を説明すると、本実施の形態に係る超音波流量計の超音波振動子回路22は、図1に示すように、超音波振動子22a、切換スイッチ22b、増幅回路22cで構成されている。図2に示す超音波振動子回路24の構成も超音波振動子回路22と同様である。また超音波振動子回路22は、超音波振動子22aと切換スイッチ22bと増幅回路22cとを同一パッケージに収納した集積回路からなる。   First, the configuration of the present embodiment will be described. As shown in FIG. 1, the ultrasonic transducer circuit 22 of the ultrasonic flowmeter according to the present embodiment includes an ultrasonic transducer 22a, a changeover switch 22b, and an amplification circuit. 22c. The configuration of the ultrasonic transducer circuit 24 shown in FIG. 2 is the same as that of the ultrasonic transducer circuit 22. The ultrasonic transducer circuit 22 includes an integrated circuit in which the ultrasonic transducer 22a, the changeover switch 22b, and the amplifier circuit 22c are housed in the same package.

切換スイッチ22bは、本発明の信号切換スイッチに対応し、一対の超音波振動子22aの間で送受信される送信信号と受信信号を切り換える。増幅回路22cは、切換スイッチ22bを介して超音波振動子22aから送られてくる受信信号を所定の利得で増幅する。   The changeover switch 22b corresponds to the signal changeover switch of the present invention, and switches between a transmission signal and a reception signal transmitted and received between the pair of ultrasonic transducers 22a. The amplification circuit 22c amplifies the reception signal sent from the ultrasonic transducer 22a via the changeover switch 22b with a predetermined gain.

また本実施の形態に係る超音波流量計全体の構成は、図2に示すように、流路20、超音波振動子回路22、超音波振動子回路24、発信回路26、繰返し回路28、コンパレータ回路30、伝播時間計測部32、流量計測部34、発振回路36、タイミング生成回路38で構成されている。   Further, as shown in FIG. 2, the entire configuration of the ultrasonic flowmeter according to the present embodiment includes a flow path 20, an ultrasonic transducer circuit 22, an ultrasonic transducer circuit 24, a transmission circuit 26, a repetition circuit 28, and a comparator. The circuit 30 includes a propagation time measurement unit 32, a flow rate measurement unit 34, an oscillation circuit 36, and a timing generation circuit 38.

流路20は、空気やガス等の被計測流体が流れる。超音波振動子回路22と超音波振動子回路24は、被計測流体が流れる流路20の上流側と下流側に一定の距離を離して設置されている。超音波振動子回路22と超音波振動子回路24との間で、流体の流れの順方向および逆方向に相互に超音波を送受信する動作が繰り返し行なわれ、各方向における超音波の伝播積算時間の差に基づき流量が算出される。また超音波振動子回路22及び超音波振動子回路24は、伝搬時間計測部32や流量計測部34等の他の構成要素からは独立した回路基板からなる。   A fluid to be measured such as air or gas flows through the flow path 20. The ultrasonic transducer circuit 22 and the ultrasonic transducer circuit 24 are installed at a certain distance on the upstream side and the downstream side of the flow path 20 through which the fluid to be measured flows. Between the ultrasonic transducer circuit 22 and the ultrasonic transducer circuit 24, the operation of transmitting and receiving ultrasonic waves to and from each other in the forward direction and the reverse direction of the fluid flow is repeatedly performed. The flow rate is calculated based on the difference. The ultrasonic transducer circuit 22 and the ultrasonic transducer circuit 24 are formed of a circuit board independent of other components such as the propagation time measuring unit 32 and the flow rate measuring unit 34.

発信回路26は、超音波振動子回路22及び超音波振動子回路24に接続され、超音波振動子回路22又は24を駆動するパルス信号を生成する。繰返し回路28は、発信回路26及び伝播時間計測部32に接続され、超音波振動子回路22又は24から超音波信号を繰返し発信する回数を設定する。   The transmission circuit 26 is connected to the ultrasonic transducer circuit 22 and the ultrasonic transducer circuit 24 and generates a pulse signal that drives the ultrasonic transducer circuit 22 or 24. The repetition circuit 28 is connected to the transmission circuit 26 and the propagation time measurement unit 32, and sets the number of times that an ultrasonic signal is repeatedly transmitted from the ultrasonic transducer circuit 22 or 24.

コンパレータ回路30は、超音波振動子回路22、超音波振動子回路24、及び伝播時間計測部32に接続され、アナログ信号をデジタル信号に変換する。   The comparator circuit 30 is connected to the ultrasonic transducer circuit 22, the ultrasonic transducer circuit 24, and the propagation time measuring unit 32, and converts an analog signal into a digital signal.

伝播時間計測部32は、本発明の時間計測手段に対応し、コンパレータ回路30の出力信号に基づき超音波振動子回路22と超音波振動子回路24との間で送受される超音波信号の伝搬時間を計測する。   The propagation time measuring unit 32 corresponds to the time measuring means of the present invention, and propagates ultrasonic signals transmitted and received between the ultrasonic transducer circuit 22 and the ultrasonic transducer circuit 24 based on the output signal of the comparator circuit 30. Measure time.

流量計測部34は、本発明の流量計測手段に対応し、伝搬時間計測部32により計測された伝搬時間に基づいて被計測流体の流量を計測する。   The flow rate measurement unit 34 corresponds to the flow rate measurement unit of the present invention, and measures the flow rate of the fluid to be measured based on the propagation time measured by the propagation time measurement unit 32.

発振回路36は、伝搬時間計測部32の信号処理やタイミング生成回路38で用いるクロック信号を生成する。   The oscillation circuit 36 generates a clock signal used in the signal processing of the propagation time measurement unit 32 and the timing generation circuit 38.

タイミング生成回路38は、超音波振動子回路22、超音波振動子回路24、及び繰返し回路28に接続され、切換信号を出力して切換スイッチ22bの切換のタイミングを制御する。   The timing generation circuit 38 is connected to the ultrasonic transducer circuit 22, the ultrasonic transducer circuit 24, and the repetition circuit 28, and outputs a switching signal to control the switching timing of the selector switch 22b.

次に実施例1に係る超音波流量計の動作を説明する。超音波信号を送信する場合には、発信回路103は、パルス信号を生成して超音波振動子回路22(又は超音波振動子回路24)に出力する。生成されたパルス信号は、送信信号として超音波振動子回路22内部の切換スイッチ22bを介して超音波振動子22aに加えられる。超音波振動子22aは、印加されたパルス信号の強度に応じた超音波信号を他方の超音波振動子(ここでは超音波振動子回路24内部の超音波振動子)に向けて出力する。   Next, the operation of the ultrasonic flowmeter according to the first embodiment will be described. When transmitting an ultrasonic signal, the transmission circuit 103 generates a pulse signal and outputs the pulse signal to the ultrasonic transducer circuit 22 (or the ultrasonic transducer circuit 24). The generated pulse signal is applied as a transmission signal to the ultrasonic transducer 22a via the changeover switch 22b in the ultrasonic transducer circuit 22. The ultrasonic transducer 22a outputs an ultrasonic signal corresponding to the intensity of the applied pulse signal toward the other ultrasonic transducer (here, the ultrasonic transducer inside the ultrasonic transducer circuit 24).

出力された超音波信号を受信する場合には、超音波振動子22aは、受信した超音波信号を電気信号に変換して出力する。出力された電気信号は、切換スイッチ22bを介して増幅回路22cに入力される。増幅回路22cは、入力された電気信号を所定の利得で増幅して受信信号として出力する。出力された受信信号は、コンパレータ回路30に入力され、デジタル信号に変換される。さらにコンパレータ回路30は、変換されたデジタル信号を伝搬時間計測部32に出力する。伝搬時間計測部32は、コンパレータ回路30から出力された信号に基づき超音波振動子回路22と超音波振動子回路24との間で送受される超音波信号の伝搬時間を計測し、計測結果を流量計測部34に出力する。流量計測部34は、伝搬時間計測部32により計測された上流下流間の双方向の伝搬時間に基づいて被計測流体の流量を計測する。   When receiving the output ultrasonic signal, the ultrasonic transducer 22a converts the received ultrasonic signal into an electric signal and outputs the electric signal. The output electrical signal is input to the amplifier circuit 22c via the changeover switch 22b. The amplifier circuit 22c amplifies the input electric signal with a predetermined gain and outputs it as a received signal. The output reception signal is input to the comparator circuit 30 and converted into a digital signal. Further, the comparator circuit 30 outputs the converted digital signal to the propagation time measuring unit 32. The propagation time measuring unit 32 measures the propagation time of the ultrasonic signal transmitted / received between the ultrasonic transducer circuit 22 and the ultrasonic transducer circuit 24 based on the signal output from the comparator circuit 30, and displays the measurement result. Output to the flow rate measuring unit 34. The flow rate measuring unit 34 measures the flow rate of the fluid to be measured based on the bidirectional propagation time between the upstream and downstream measured by the propagation time measuring unit 32.

上述のとおり、本発明の実施例1の形態に係る超音波流量計によれば、超音波振動子回路22は、超音波を受信する超音波振動子22aと増幅回路22cとを内蔵するので、超音波振動子22aと増幅回路22cとを結ぶ信号線の伝送路長を短くすることができ、微弱な超音波受信信号の信号線に電気的なノイズが混入するのを防止することができる。また増幅回路22cは、受信信号を増幅後にコンパレータ回路30に出力するので、S/N比の向上が図れ、コンパレータ回路30から出力された信号に対するノイズによるバラツキが低減でき、ひいては高精度な伝搬時間計測及び流量計測が可能となる。   As described above, according to the ultrasonic flowmeter of the first embodiment of the present invention, the ultrasonic transducer circuit 22 includes the ultrasonic transducer 22a that receives the ultrasonic wave and the amplification circuit 22c. The transmission line length of the signal line connecting the ultrasonic transducer 22a and the amplifier circuit 22c can be shortened, and electrical noise can be prevented from being mixed into the signal line of the weak ultrasonic reception signal. In addition, since the amplification circuit 22c amplifies the received signal and outputs it to the comparator circuit 30, it is possible to improve the S / N ratio, reduce variation due to noise with respect to the signal output from the comparator circuit 30, and consequently high-accuracy propagation time. Measurement and flow rate measurement are possible.

またS/N比の向上が図れることから、送信側の超音波振動子22aに印加するパルス信号振幅を小さくすることができ、消費電力を低減できる。   Further, since the S / N ratio can be improved, the amplitude of the pulse signal applied to the ultrasonic transducer 22a on the transmission side can be reduced, and the power consumption can be reduced.

さらに、超音波振動子22a、切換えスイッチ22b及び増幅回路22cを同一パッケージの集積回路で構築することで、信号のやり取りを集積回路の内部で行い、信号の伝送路長を短くでき、外乱を受け難くするので、信号とノイズのS/N比の向上を図ることができる。また上述した理由により消費電力を低減できる。   Furthermore, by constructing the ultrasonic transducer 22a, the changeover switch 22b and the amplifier circuit 22c with an integrated circuit of the same package, signals can be exchanged inside the integrated circuit, the signal transmission path length can be shortened, and disturbances can be received. Therefore, the S / N ratio of the signal and noise can be improved. Moreover, power consumption can be reduced for the reasons described above.

また、超音波振動子回路22を独立した回路基板とし、他の発信回路26、コンパレータ回路30、伝搬時間計測部32、流量計測部34等とは別回路の基板で構成することで、微弱な超音波受信信号にデジタルノイズが混入するのを防止することができる。   In addition, the ultrasonic transducer circuit 22 is an independent circuit board, and is configured by a circuit board separate from the other transmission circuit 26, the comparator circuit 30, the propagation time measurement unit 32, the flow rate measurement unit 34, and the like. It is possible to prevent digital noise from being mixed into the ultrasonic reception signal.

次に、図3は本発明の実施例2の超音波振動子回路の内部構成を示すブロック図である。実施例1の構成と異なる点としては、超音波振動子22aと切換スイッチ22bとの間に吸音材22dを新たに備えている点である。吸音材22dは、超音波振動子22aから切換スイッチ22b側へ伝搬する超音波を吸収する。また吸音材22dは、グラスファイバ、セラミックファイバ、カーボンファイバ等の繊維状の材料により構成されている。さらに、吸音材22dは、超音波信号を受ける側の表面に凹凸の形状を有する。   FIG. 3 is a block diagram showing the internal configuration of the ultrasonic transducer circuit according to the second embodiment of the present invention. The difference from the configuration of the first embodiment is that a sound absorbing material 22d is newly provided between the ultrasonic transducer 22a and the changeover switch 22b. The sound absorbing material 22d absorbs ultrasonic waves propagating from the ultrasonic transducer 22a to the changeover switch 22b side. The sound absorbing material 22d is made of a fibrous material such as glass fiber, ceramic fiber, or carbon fiber. Furthermore, the sound absorbing material 22d has a concavo-convex shape on the surface on the side receiving the ultrasonic signal.

次に、実施例2の形態に係る超音波流量計の動作を説明する。基本的な動作は実施例1で説明した超音波流量計と同様である。ただし超音波振動子22aは、超音波を出力する際には超音波振動子22aの前面に送信の超音波信号を出力する共に後方にも超音波信号を出力する。吸音材22dは、後方に出力された超音波信号を吸収して、超音波信号の反射を防止する。   Next, the operation of the ultrasonic flowmeter according to the embodiment 2 will be described. The basic operation is the same as that of the ultrasonic flowmeter described in the first embodiment. However, when outputting ultrasonic waves, the ultrasonic transducer 22a outputs an ultrasonic signal to be transmitted to the front surface of the ultrasonic transducer 22a and outputs an ultrasonic signal to the rear. The sound absorbing material 22d absorbs the ultrasonic signal output rearward and prevents reflection of the ultrasonic signal.

上述のとおり、本発明の実施例2の形態に係る超音波流量計によれば、吸音材22dを備えることにより、超音波の反射を防止して、超音波振動子22aの振動動作および超音波振動子22aの前面に出力した超音波信号に影響を与えるのを防止することができる。また、吸音材22dは、グラスファイバ、セラミックファイバ、カーボンファイバ等の繊維状の材料により構成されているため、超音波振動子22aから出力された超音波信号のエネルギーを繊維の振動として吸収することができる。さらに、吸音材22dが超音波信号を受ける側の表面に凹凸の形状を有しているので、吸音効果を高めることができる。   As described above, according to the ultrasonic flow meter according to the second embodiment of the present invention, the sound absorbing material 22d is provided to prevent the reflection of the ultrasonic wave, and the vibration operation and the ultrasonic wave of the ultrasonic vibrator 22a. It is possible to prevent the ultrasonic signal output to the front surface of the transducer 22a from being affected. Moreover, since the sound absorbing material 22d is made of a fibrous material such as glass fiber, ceramic fiber, or carbon fiber, the energy of the ultrasonic signal output from the ultrasonic transducer 22a is absorbed as fiber vibration. Can do. Furthermore, since the sound absorbing material 22d has an uneven shape on the surface receiving the ultrasonic signal, the sound absorbing effect can be enhanced.

本発明に係る超音波流量計は、ガス流量を計測することができる超音波ガスメータ等の超音波流量計に利用可能である。   The ultrasonic flow meter according to the present invention can be used for an ultrasonic flow meter such as an ultrasonic gas meter capable of measuring a gas flow rate.

本発明の実施例1の超音波振動子回路の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the ultrasonic transducer circuit of Example 1 of this invention. 本発明の実施例1の形態の超音波流量計全体の構成を示すブロック図である。It is a block diagram which shows the structure of the whole ultrasonic flowmeter of the form of Example 1 of this invention. 本発明の実施例2の超音波振動子回路の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the ultrasonic transducer circuit of Example 2 of this invention. 従来の超音波流量計の構成を示すブロック図である。It is a block diagram which shows the structure of the conventional ultrasonic flowmeter.

符号の説明Explanation of symbols

1 測定流路
2 超音波振動子
3 駆動回路
4 制御部
5 伝播時間測定部
6 演算部
7 超音波振動子
8 アンプ
9 受信検知回路
10 切り替えスイッチ
11 誤測定判定手段
20 流路
22 超音波振動子回路
22a 超音波振動子
22b 切換スイッチ
22c 増幅回路
22d 吸音材
24 超音波振動子回路
26 発信回路
28 繰返し回路
30 コンパレータ回路
32 伝播時間計測部
34 流量計測部
36 発振回路
38 タイミング生成回路
DESCRIPTION OF SYMBOLS 1 Measurement flow path 2 Ultrasonic vibrator 3 Drive circuit 4 Control part 5 Propagation time measurement part 6 Calculation part 7 Ultrasonic vibrator 8 Amplifier 9 Reception detection circuit 10 Changeover switch 11 Incorrect measurement determination means 20 Flow path 22 Ultrasonic vibrator Circuit 22a Ultrasonic vibrator 22b Changeover switch 22c Amplifying circuit 22d Sound absorbing material 24 Ultrasonic vibrator circuit 26 Transmission circuit 28 Repeat circuit 30 Comparator circuit 32 Propagation time measurement unit 34 Flow rate measurement unit 36 Oscillation circuit 38 Timing generation circuit

Claims (6)

被計測流体が流れる流路の上流側と下流側に一定の距離を離して設置された一対の超音波振動子回路と、
前記一対の超音波振動子回路の間で送受される超音波信号の伝播時間を計測する時間計測手段と、
前記時間計測手段により計測された前記伝搬時間に基づいて前記被計測流体の流量を計測する流量計測手段とを有する超音波流量計であって、
前記一対の超音波振動子回路の各々は、
超音波振動子と、
一対の前記超音波振動子の間で送受信される送信信号と受信信号を切り換える信号切換スイッチと、
前記受信信号を所定の利得で増幅する増幅回路と、
を有することを特徴とする超音波流量計。
A pair of ultrasonic transducer circuits installed at a certain distance from the upstream side and the downstream side of the flow path through which the fluid to be measured flows;
Time measuring means for measuring the propagation time of an ultrasonic signal transmitted and received between the pair of ultrasonic transducer circuits;
An ultrasonic flowmeter having flow measurement means for measuring the flow rate of the fluid to be measured based on the propagation time measured by the time measurement means,
Each of the pair of ultrasonic transducer circuits includes:
An ultrasonic transducer,
A signal changeover switch for switching between a transmission signal and a reception signal transmitted and received between the pair of ultrasonic transducers;
An amplifying circuit for amplifying the received signal with a predetermined gain;
An ultrasonic flowmeter characterized by comprising:
前記各々の超音波振動子回路は、前記超音波振動子と前記信号切換スイッチと前記増幅回路とを同一パッケージに収納した集積回路からなることを特徴とする請求項1記載の超音波流量計。   2. The ultrasonic flowmeter according to claim 1, wherein each of the ultrasonic transducer circuits comprises an integrated circuit in which the ultrasonic transducer, the signal changeover switch, and the amplifier circuit are housed in the same package. 前記各々の超音波振動子回路は、前記時間計測手段及び前記流量計測手段から独立した回路基板からなることを特徴とする請求項1又は請求項2記載の超音波流量計。   3. The ultrasonic flowmeter according to claim 1, wherein each of the ultrasonic transducer circuits includes a circuit board independent of the time measuring unit and the flow rate measuring unit. 前記各々の超音波振動子回路は、前記超音波振動子と前記信号切換スイッチ及び前記増幅回路との間に、前記信号切換スイッチ側へ伝搬する超音波を吸収する吸音材を備えることを特徴とする請求項1乃至請求項3のいずれか1項記載の超音波流量計。   Each of the ultrasonic transducer circuits includes a sound absorbing material that absorbs ultrasonic waves propagating to the signal changeover switch side between the ultrasonic transducer, the signal changeover switch, and the amplification circuit. The ultrasonic flowmeter according to any one of claims 1 to 3. 前記吸音材は、繊維状の材料により構成されていることを特徴とする請求項4記載の超音波流量計。   The ultrasonic flowmeter according to claim 4, wherein the sound absorbing material is made of a fibrous material. 前記吸音材は、表面に凹凸の形状を有することを特徴とする請求項4又は請求項5記載の超音波流量計。   6. The ultrasonic flowmeter according to claim 4, wherein the sound absorbing material has an uneven shape on a surface.
JP2007002237A 2007-01-10 2007-01-10 Ultrasonic flowmeter Pending JP2008170211A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002237A JP2008170211A (en) 2007-01-10 2007-01-10 Ultrasonic flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002237A JP2008170211A (en) 2007-01-10 2007-01-10 Ultrasonic flowmeter

Publications (1)

Publication Number Publication Date
JP2008170211A true JP2008170211A (en) 2008-07-24

Family

ID=39698457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002237A Pending JP2008170211A (en) 2007-01-10 2007-01-10 Ultrasonic flowmeter

Country Status (1)

Country Link
JP (1) JP2008170211A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137229U (en) * 1985-02-16 1986-08-26
JPH08178942A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Ultrasonic type flow velocity and rate measuring device
JP2004104521A (en) * 2002-09-10 2004-04-02 Murata Mfg Co Ltd Ultrasonic sensor
JP2004325169A (en) * 2003-04-23 2004-11-18 Matsushita Electric Ind Co Ltd Device for measuring fluid flow

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61137229U (en) * 1985-02-16 1986-08-26
JPH08178942A (en) * 1994-12-26 1996-07-12 Murata Mfg Co Ltd Ultrasonic type flow velocity and rate measuring device
JP2004104521A (en) * 2002-09-10 2004-04-02 Murata Mfg Co Ltd Ultrasonic sensor
JP2004325169A (en) * 2003-04-23 2004-11-18 Matsushita Electric Ind Co Ltd Device for measuring fluid flow

Similar Documents

Publication Publication Date Title
US11333676B2 (en) Beam shaping acoustic signal travel time flow meter
JPWO2005083370A1 (en) Ultrasonic flow meter and ultrasonic flow measuring method
US7806003B2 (en) Doppler type ultrasonic flow meter
JP2007187506A (en) Ultrasonic flowmeter
JP4561088B2 (en) Ultrasonic flow meter
JP5326697B2 (en) Ultrasonic measuring instrument
JP2008170211A (en) Ultrasonic flowmeter
JP2010223855A (en) Ultrasonic flowmeter
JP4797515B2 (en) Ultrasonic flow measuring device
JP4661714B2 (en) Ultrasonic anemometer
JP3624743B2 (en) Ultrasonic flow meter
JP2007322186A (en) Ultrasonic flow meter
JP4409838B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP4836176B2 (en) Ultrasonic flow meter
JP2005300244A (en) Ultrasonic flow meter
JP7203352B2 (en) ultrasonic flow meter
KR20100007215A (en) Ultrasonic transducer control method of a ultrasonic flowmeter and ultrasonic flowmeter to applying the method
JP4485641B2 (en) Ultrasonic flow meter
JP4789182B2 (en) Ultrasonic flow meter
JP2008180566A (en) Flow velocity or flow rate measuring device, and program therefor
JP2012002625A (en) Flow rate measuring apparatus
JP2003130697A (en) Ultrasonic method of measuring flow rate and ultrasonic flowmeter using the same
JP2005189147A (en) Ultrasonic flowmeter
JP5287628B2 (en) Fluid flow measuring device
JP3915831B2 (en) Ultrasonic current meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120508