JP2008169835A - ガスタービン・エンジンの燃焼状態監視装置 - Google Patents

ガスタービン・エンジンの燃焼状態監視装置 Download PDF

Info

Publication number
JP2008169835A
JP2008169835A JP2007335635A JP2007335635A JP2008169835A JP 2008169835 A JP2008169835 A JP 2008169835A JP 2007335635 A JP2007335635 A JP 2007335635A JP 2007335635 A JP2007335635 A JP 2007335635A JP 2008169835 A JP2008169835 A JP 2008169835A
Authority
JP
Japan
Prior art keywords
gas turbine
fuel injector
turbine combustor
photodiode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007335635A
Other languages
English (en)
Inventor
Douglas C Myhre
マイアー,ダグラス・シー.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rosemount Aerospace Inc
Original Assignee
Rosemount Aerospace Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rosemount Aerospace Inc filed Critical Rosemount Aerospace Inc
Publication of JP2008169835A publication Critical patent/JP2008169835A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M11/00Safety arrangements
    • F23M11/04Means for supervising combustion, e.g. windows
    • F23M11/045Means for supervising combustion, e.g. windows by observing the flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/02Arrangement of sensing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/26Control of fuel supply
    • F02C9/28Regulating systems responsive to plant or ambient parameters, e.g. temperature, pressure, rotor speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/02Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium
    • F23N5/08Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements
    • F23N5/082Systems for controlling combustion using devices responsive to thermal changes or to thermal expansion of a medium using light-sensitive elements using electronic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0088Radiation pyrometry, e.g. infrared or optical thermometry in turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D21/00Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for
    • F01D21/14Shutting-down of machines or engines, e.g. in emergency; Regulating, controlling, or safety means not otherwise provided for responsive to other specific conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/80Diagnostics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/08Purpose of the control system to produce clean exhaust gases
    • F05D2270/083Purpose of the control system to produce clean exhaust gases by monitoring combustion conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/04Flame sensors sensitive to the colour of flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2229/00Flame sensors
    • F23N2229/08Flame sensors detecting flame flicker
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2241/00Applications
    • F23N2241/20Gas turbines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Control Of Combustion (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

【課題】視覚範囲を広く保ち、センサ保護のために冷却手段を使用しないで燃焼器火炎の特性を監視する燃料噴射器を提供する。
【解決手段】ガスタービン用燃料噴射器が開示される。燃料噴射器は燃焼のため燃料を燃焼器に噴射する燃料ノズル200と、OH化学発光ピークを表わす火炎放射光に応答している、少なくとも1個の光検出器210と、CH化学発光ピークを表わす火炎放射光に応答している、少なくとも1個のフォトダイオードとを備える。
【選択図】図10

Description

本発明はガスタービン・エンジン用光学センサ、特に燃焼不安定性および類似現象を表わす状態をリアルタイムで監視するためガスタービン・エンジンの燃焼室火炎のスペクトルおよび熱特性を監視する装置および方法に向けられる。
なお、本出願は2004年5月7日に出願された米国特許出願第10/841,765号の一部継続出願である、2005年8月23日に出願された米国特許出願第11/210,095号の一部継続出願である。
燃焼不安定性はガスタービン、ボイラ、加熱器、火炉における排出物の抑制および高性能燃焼室の設計に重要な問題である。燃焼不安定性は、一般には燃焼室での燃焼プロセスの乱れと大きい容積エネルギの解放との結果として生じる高い圧力脈動として理解されている。燃焼不安定性はエンジン性能を低下させ、圧力脈動で生じる振動は燃焼室を含む、エンジンの構成要素を損傷させる可能性がある。
ガスタービンの燃焼室で生じる燃焼不安定性を増進する多くの要因がある。これらの要因は、たとえば燃料含有量、燃料および/または空気の噴射速度、あるいは入口圧力、燃/空濃度/比、燃焼室内の温度変動、火炎安定性、混合に悪影響を及ぼすコヒーレントな流動構造(すなわち渦の離脱)、燃焼器共鳴周波数で起こる音響圧力波の燃焼発熱との結合および/または低火炎温度で生じる消火/再点火現象ならびに高燃焼圧力を含む。
従来、燃焼不安定性を修正するために、たとえば燃料噴射分布パターンを改善すること、あるいは燃焼室の形状または容量を変更することを含む、パッシブ制御方法が使用されていた。パッシブ制御の採用は高価になることが多く、燃焼性能を制限する不利がある。より最近では、燃焼不安定性を修正するために検出された不安定状態に応じて系内圧力を増減し、および/または燃焼器に供給する燃料または空気量を調節する方法を用いるアクティブ制御が使用されている。アクティブ制御の一例はニューメイアーらに与えられた米国特許第5,784,300号明細書に開示されている。
燃焼器火炎の直接監視が燃焼不安定性をアクティブ制御方法で制御するのに使用できる情報を与えることが実験を通して測定された。たとえば、燃焼に伴う圧力脈動は火炎の動きと火炎強度の変化と監視することによって検出することができる。さらに、火炎温度または他の火炎特性に影響を及ぼす燃焼副生成物および排出物を表わすスペクトル放射を監視してもよい。これらの監視結果はガスタービンの燃焼室に流れる燃料量を調節し、あるいは燃焼のための燃/空比を調節し、これによって燃焼プロセスを安定させるためにアクティブ燃焼制御装置によって分析され、使用される。
従来技術として燃焼プロセスを監視する光学センサは知られているが、これらは多くの点で制限がある。たとえば、ホイーラーに与えられた米国特許第3,689,773号明細書は火炎をバーナの一面からから観察する、火炉用火炎監視装置について記述する。火炎正面はバーナ内部の主燃焼域が静止していないので、火炎センサの視覚範囲から外れて動く。これは監視装置が不正確に測定する結果を招く。ヤマグチらに与えられた米国特許第4,709,155号明細書は強制空気冷却装置によって高熱による損傷から保護される光ファイバを備える、ボイラで使用する光学火炎検出器について記述する。このような装置はボイラが呈する温度と比べて運転温度の格段に高いガスタービン燃焼器に適用するには制限がある。
明らかに、この技術分野では、従来技術の光学センサの不備を克服する、アクティブ燃焼制御で使用できる光学火炎センサに対する要望がある。さらに、この技術分野では、燃焼火炎が燃焼プロセス中の全時間センサの視覚輪郭内に留まるように広い視覚範囲を有し、燃焼室内での運転ために冷却手段を必要としないガスタービン・エンジンの燃焼室で使用できる光学火炎センサに対する要望がある。
本発明はガスタービン・エンジンの燃焼室内部の状態を監視する装置に向けられる。特に、本発明は、とりわけ燃焼器火炎の特性を監視する光学センサ手段を備える、新規で、有用なガスタービン・エンジン用燃料噴射器に向けられる。特に、この光学センサ手段は燃焼プロセスを不安定にするスペクトルおよび熱状態を検出するように構成される。
本発明の燃料噴射器は燃料噴射器を燃焼器の内壁またはライナに固定するフランジのような燃焼器内に噴射器を取り付ける手段を有する、細長い供給アームを備える。燃料噴射器はさらに燃焼のために霧化燃料を燃焼室に噴射し、そうでなければ流出させる、供給アームに吊る燃料ノズルまたはノズル本体を備える。本発明の好ましい実施例に従って、燃料ノズルよりも下流で燃焼室内部の燃焼状態を監視するために光学センサ手段が燃料ノズル内部に備えられる。
本発明の好ましい実施例に従って、燃料ノズルは先端を有する外側空気スワーラーを備える。この外側空気スワーラーの先端に周方向に間隔をおいて並ぶ複数の視覚ポートが形成される。たとえば、外側空気スワーラーの先端はお互いの間に等距離を保って配置される3個ないしそれ以上の視覚ポートを備える。好ましくは、本発明の光学センサ手段は複数の光ファイバ束を備え、この光ファイバ束が外側空気スワーラーに形成される各視覚ポート内に収容される。これに加えて、光学センサ手段はさらに燃料ノズルの中心軸に沿ってホルダ内部に装着される、そうでなければ支持される1本ないしそれ以上の光ファイバを備える。
本発明は埋め込み光ファイバ束がファイバ軸に対して約14°から30°の範囲の(ファイバの開口数によって決まる)視界を有することを予め見通す。各光ファイバ束は、好ましくは複数の光ファイバを備え、これらの光ファイバは燃料ノズルの中心軸と実質的に平行に延在するように向けられる。光ファイバは、好ましくは燃焼室の運転温度に耐えるように処理される。たとえば、光ファイバは熱保護に好都合である金または別の貴金属のような金属コーティング材で被覆される。
各光ファイバ束は、好ましくは耐熱性案内管内部に配置される。たとえば、光ファイバ束はステンレス鋼製の案内管内部に配置される。好ましくは、各ステンレス鋼案内管の末端は熱膨張・収縮を許容する方法で燃料ノズルの外側空気スワーラーに形成される、対応する視覚ポート内部に接合される。これはエンジン運転サイクルの大部分を通じて装置の構造的一体性をを維持するのに役立つ。
本発明はさらに燃焼室内部の状態を監視することによってガスタービン・エンジンの燃焼を安定させるシステムに向けられる。このシステムは、とりわけ燃焼室内部の状態を監視する、好ましくは各燃料噴射器に埋め込まれる光学センサ手段と、光学センサ手段によって監視される状態に基づいて燃焼不安定性を検出する手段と、検出された燃焼不安定性を減少させ、そうでなければ燃焼を安定させるために燃焼室への燃料量を調節する手段とを備える。
本発明の好ましい実施例に従って、燃焼不安定性を検出する手段は熱およびスペクトル状態を含む、燃焼器火炎特性に関係する情報を分析し、処理するように適応され、構成される。たとえば、燃焼不安定性を検出する手段は火炎不安定性を表わすレベルで火炎強度の変化を検出する手段を備える。
これに代えて、燃焼不安定性を検出する手段は化学量論的不安定性を表わすスペクトル放射を検出する手段を備えてもよい。本発明の一実施例では、この検出手段は火炎温度、NOx、CO、燃/空比および当量比に影響を及ぼす化学排出物を表わすスペクトル放射を検出し、分析するように構成される。たとえば、スペクトル放射を検出する手段は火炎から出る放射光を検出する、少なくとも1個のフォトダイオードまたは光電子増倍管を備える。
この検出手段はまた天然ガスを燃料に利用するガスタービン・エンジンで使用することを予め見通す。この例では、検出手段は燃料発熱量に悪影響を及ぼす天然ガス成分の可変性を検出するように構成される。たとえば、検出手段はエタン、プロパン、二酸化窒素および二酸化炭素に関係するスペクトル変化を検出するように構成される。このシステムはまた高温エンジン部品に腐食を生じさせる、ナトリウムのような天然ガス汚染物質の存在を検出するように構成される。
本発明はまたガスタービン・エンジンの安定した燃焼を促進する方法に向けられる。この方法は燃焼不安定性に悪影響を及ぼす、1ないしそれ以上の状態を表わすスペクトル特性を検出するため火炎よりも上流位置で燃焼器火炎を監視し、続いて燃焼安定性に影響を及ぼすある指示された状態に基づいて燃焼を安定させるようにエンジンを調整する過程を含む。本発明の一実施例では、燃焼火炎を監視する過程は火炎不安定性を表わすスペクトル強度の変化を検出する過程を含む。本発明の別の実施例では、燃焼器火炎を監視する過程は化学量論的不安定性を表わすスペクトル放射ピークまたは排出物を検出する過程を含む。当業者は燃焼を安定させるためにエンジンを調整する過程が燃焼のために燃焼室への燃料量および/または空気量、そうでなければ燃/空比を調節することを含むことを容易に理解する。
本発明はまたガスタービン・エンジンの燃焼室内部の火炎への露出と関わる温度に耐える能力を有する材料から形成される光ロッドを備える光学センサを有する燃料噴射器に向けられる。この光ロッドはその表面ですすの堆積物を酸化させるのに十分な火炎に対する露出を得る方法で位置決めされた光学面を備える。好ましくは、光ロッドは燃料ノズルに形成される視覚ポート内部に少なくとも部分的に配置される光学的に透明なサファイア・ロッドである。光ロッドは光ロッドの光学面が燃焼器火炎に極接近するように燃料ノズルの外面から十分な距離に延在する。これは光ロッドの光学面ですす堆積物の酸化を促進するのに力を貸す。本発明はまた光ロッドの光学面がすすの酸化を促し、そうでなければ進める触媒で被覆され、さらに光ロッドの光学面が燃焼火炎から出る放射光入射角度を増大し、そうでなければ光学センサの視界を広げるためにディフューザとして働く、つや消し面であることを予め見通す。
類似する符号が本発明の類似する特徴または様相を表わす図面を参照すると、図1には本発明の好ましい実施例に従って構成される、符号10で表わすアクティブ燃焼制御装置が示される。このアクティブ燃焼制御装置10はガスタービン・エンジンの燃焼室内部の熱音響燃焼不安定性を減少するように設計される。燃焼制御装置10はエンジン排出物を低減し、エンジン動力を改善し、運転効率を最大にすることを意図する。本発明のアクティブ燃焼制御装置10は、たとえばNOxを減少するために希薄予混合燃焼を使用する、工業用ガスタービン・エンジンおよび部分的に濃厚燃焼を利用する、高出力推力増強軍用航空機エンジン(アフタバーナ)のような本来的に不安定である燃焼システムで使用するのに特によく適合する。
図1を参照すると、アクティブ燃焼制御装置10は以下に詳細に説明されるある調節流量でガスタービン・エンジンの燃焼室に霧化燃料を供給する複数の燃料噴射器20を備える。2種類の主要な形式の霧化燃料噴射器があり、本発明の装置と共にいずれかの形式の噴射器が使用される。これらの噴射器は燃料圧力から霧化エネルギを生じさせる旋回圧力噴霧器と、高速の圧縮機空気に基づいて霧化エネルギを生じさせるエア・ブラスト噴霧器とを含む。霧化燃料噴射器の例はブレッツに与えられた米国特許第6,688,534号明細書に開示される。この明細書の開示は参照してここにその全体を取り入れる。
燃料噴射器20は、たとえば燃焼器火炎の、たとえば熱およびスペクトル安定性のようなガスタービン・エンジンの燃焼室内部の状態を監視する、アレイ形態の複数の光学センサ30を備える。これらの光学センサ30は燃料噴射器20に埋め込まれ、そうでなければ燃料噴射器20と一体であり、以下により詳細に説明されるように、激しい腐食、高温環境にあるガスタービン・エンジン内部の長時間にわたる監視データ・サービスのために適応される。
本発明のアクティブ燃焼制御装置10はさらに信号処理器40を備える。この信号処理器40は各燃料噴射器20と結ばれる光学センサ・アレイ30から与えられる、そうでなければ伝送されるリアルタイム光学データを分析し、処理するように適応され、構成される。このリアルタイム光学データはスペクトルおよび/または熱安定性に関係する状態を含む、ガスタービン・エンジンの燃焼室内部の燃焼不安定性を検出するために主に使用される。
好ましくは、信号処理器40は光学センサ・アレイ30から与えられる光学データに基づいて出力信号を発生する信号発生器45を備える。この信号発生器45は、好ましくは特定の化学種またはラジカルから出る放射光に関係する狭いスペクトル帯のエネルギを取得するように周波数帯を通過させる。これに代えて、信号発生器が特定の化学種またはラジカルから出る放射光にそれぞれ関係する複数の特定のスペクトル帯であるエネルギを取得する方法で周波数帯を通過させてもよい。
本発明の一実施例では、信号発生器40は光信号を電子的に増幅する、1個ないしそれ以上の光電子増倍管(PMT)を備える。たとえば、信号処理器40は8個のフィルタ増幅形PMTを備える。これに代えて、信号処理器40は各々一体の演算増幅器を備えた1個ないしそれ以上のフィルタ増幅形シリコン・フォトダイオードを備えてもよい。
フォトダイオードは光を検出し、それに応じてシリコンのドープ層同士に電量を生じる。比較すれば、PMTの感光性は調節され、フォトダイオードよりも素早く応答する。さらに、PMTはフォトダイオードと比べて比較的弱い信号を検出するように設計される。しかしながら、フォトダイオードはPMTと比べてより安価で、より故障が少なく、広範な波長で利用できる利点がある。それにもかかわらず、これらの形式の信号発生器は交換可能で、しかも燃焼安定性に影響を及ぼす状態を検出する、信頼できる出力信号を与えるために考慮される。使用されるこの形式の信号発生器は検出信号の強さと波長とコストとによって決定される。
信号処理器40で発生した出力信号は燃焼不安定性の素因としてその根源となるスペクトルおよび/または熱不安定性を生じる状態を検出するために分析される。この分析は信号処理器40と機能的に結ばれるコンピュータ制御のスペクトロメータを用いてなし遂げる。適するスペクトロメータは、好ましくは180〜800nmの範囲の波長を検出でき、燃料不純物、燃料成分および化学排出物またはラジカルの存在と同時に、火炎安定性および火炎温度のような燃焼安定性に関係する火炎の特性に関するパラメータを導き出すためプログラムされ、そうでなければ構成される。
本発明の一実施例では、信号処理器40とスペクトロメータとは火炎強度の変化を検出し、分析するようにプログラムされ、そうでなければ構成される。これらの変化はガスタービン・エンジンの燃焼不安定性を引き起こす、燃焼圧力の振動を表わす。本発明は光学センサ・アレイ30および/または信号処理器40が不安定性強度の変化に対する光強度または光信号振幅の変化を較正値に基づいて評価するように正常なエンジン運転状態のもとで較正されることを予め見通す。本発明の光学センサ・アレイ30で生じるスペクトル・スキャンと、燃/空比の変化に従って現われるスペクトル強度の変化とを記録したものが図2に示される。不安定な運転状態を表わすスペクトル強度の変化を検出すると同時に、燃焼を安定させるために燃料流量が調節され、または調整される。
本発明の別の実施例では、信号処理器40とスペクトロメータとは燃焼安定性に影響を及ぼす化学排出物を表わすスペクトル放射を検出するように構成される。特に、信号処理器40は、図2に示されるように、光学センサ・アレイ30で監視されるOH化学発光ピーク(約310nmで発生する)と、CH化学発光ピーク(約430nmで発生する)とを検出し、分析するようにプログラムされる。この情報は次いで火炎温度、NOx、CO、燃/空比または当量比と相互に関係付けられる。この放出物フィードバック情報は次いで燃焼のために燃料量、空気量および/または燃/空比を調節することによって安定した運転状態になるようにエンジンを調整するため使用される。
本発明のさらに別の実施例では、信号処理器40とスペクトロメータとは燃料発熱量に悪影響を及ぼす燃料汚染物質または不純物を表わすスペクトル放射を検出し、分析するようにプログラムされ、そうでなければ構成される。これは天然ガスが典型的には不純物を含む燃料であるので、天然ガスで運転するガスタービン・エンジンでは、特に重要である。天然ガス成分の不安定性は燃料発熱量に悪影響を及ぼすことがよく知られている。たとえば、エタン、プロパン、二酸化窒素および二酸化炭素の変化は発熱量を変化させる。天然ガス中に含まれるナトリウムが燃焼器自身およびガスタービン翼のような高温エンジン部品を腐食させることもよく知られている。燃料発熱量の変化は天然ガスで運転するガスタービン・エンジンを不調に陥らせると同時に、燃焼プロセスの安定性を危険にさらす。一定の燃料汚染物質または不純物の存在を表わすスペクトル放射またはラジカルを検出すると同時にエンジンが安定した運転になるように調整される。
続いて、図1を参照すると、信号処理器40は燃料噴射器コントローラ50と機能的に結ばれ、そうでなければ交信している。この燃料噴射器コントローラ50は信号処理器40から与えられる条件付き信号を入力するように適応され、構成される。燃料噴射器コントローラ50はこの信号に基づいて燃焼安定性に影響を及ぼす検出状態を軽減し、そうでなければ修正するように各燃料噴射器20に対して燃料量を指令し、そうでなければ制御する。たとえば、燃料噴射器コントローラ50は燃焼を安定させるためにパルス信号を発生させ、または調節された燃料量を燃料噴射器に指令として与える。これに代えて、燃料噴射器コントローラ50は燃焼のために燃/空比または濃度を調節するようにしてもよい。
図3および図4を参照すると、本発明の燃料噴射器20は従来方法を用いてガスタービン・エンジンの燃焼室60内部に装着され、そうでなければ支持される。特に、各燃料噴射器20は燃焼室60内部に燃料噴射器を取り付ける支持フランジ24を有する細長い供給アーム22を備える。この支持フランジ24は特に従来の固定具を用いて燃焼室の内壁またはライナに固定するように適応される。燃料噴射器20はさらに望ましい流量を保って燃料ポンプから供給される燃料を受け入れる入口ポート25を備える。定量または可変容量ベーンポンプが使用される。供給アーム22の末端には燃料ノズル26を吊り、この燃料ノズル26は霧化燃料を燃焼室60に噴射し、そうでなければ流出するように設計される。先に述べたように、燃料噴射器20は圧力噴霧器またはエア・ブラスト噴霧器の形態を取ることができる。どちらの形態でも、燃料ノズル26はノズル本体を通過する空気にある角度の速度成分を与えるように構成される外側空気スワーラー28を備える。
図5および図6を参照すると、本発明の好ましい実施例に従って、簡単に先に説明した燃料ノズルよりも下流のガスタービン70の燃焼室60内部の状態を監視する、光学センサ30が燃料ノズル26の外側空気スワーラー28内部に配置され、そうでなければ埋め込まれる。光学センサ30を目立たない方法で収容するために外側空気スワーラー28の先端32に周方向に間隔をおいて並ぶ複数の視覚ポートが形成され、光学センサ・アレイを形づくる。たとえば、図4に最もよく示されるように、外側空気スワーラー28の先端32は、好ましくは互いに等距離(たとえば、約120°間隔)を保って配置される3個の視覚ポート34を備え、それぞれ視覚ポート34内部に光学センサ30が収容される。
当業者は燃料ノズル26の外側空気スワーラー28に形成される視覚ポートの数がノズル形式および/またはエンジン形式に応じて変えることができることを容易に理解する。本発明に従って、ノズル本体には、たとえば互いに90°の間隔をおいて4個の視覚ポートを設けることができる。当業者はここに開示される光学センサが本発明の本質と範囲とから離れることなく、外側空気スワーラー以外ではノズル本体の他の部分に埋め込むことができることを容易に理解する。すなわち、ノズル本体の形式および構造によって埋め込まれる光学センサの位置は燃料ノズルがノズル自身よりも下流に適当な視界を有し、燃料ノズルの全体性能に悪影響を及ぼさないという、目立たない存在に留まる限り、変えることができる。
実験を通して、燃焼火炎が視線または視界内に留まり、火炎域の正確な表示マップを与えるので、燃料ノズル26の先端32に光学センサ30を配置することが有利であることが見出された。また、燃料ノズル26の先端32周りに間隔をおいて複数の光学センサ30を位置決めし、これにより光学センサ・アレイを形成することが燃焼不安定性の特定の状態を監視でき、測定できることも見出された。この特定の形態の燃焼不安定性を知ることにより一段と効果的に制御を果たすことができる。
光学センサ30は光ファイバ束36によって関連部分が形成される。光ファイバ束36は各々独立した複数の光ファイバ38からなる。これは一部光ファイバに故障が発生した場合でも信号処理器40に対して効果的にエネルギを伝達するために冗長性を与え、燃焼器火炎に対する視界をより広くすることができる。さらに、光ファイバ束は燃料ノズルの形状に倣って容易に曲げることができる。
図6に最もよく示されるように、本発明は各光ファイバ束36がファイバ軸に対して約14°から30°の間の角度θで定まる視界を有することを予め見通す。各光ファイバ束内の個々の光ファイバがファイバ自身の視界内で異なるスペクトル波長を監視するために光ファイバ束36は分割され、そうでなければ構成されることも予め見通す。
本発明の一実施例では、各光ファイバ束36は3本の光ファイバ38を備える。この光ファイバ38は、図4および図5に最もよく示されるように、燃料ノズル26の中心軸と平行になるように位置を定め、そうでなければ向けられる。このような向きが燃焼器火炎に関して最も広い視界を与えることが測定されている。しかしながら、当業者は光ファイバ束の特定の向きが、たとえば燃料ノズルの形状によって変えることができることを容易に理解する。
光ファイバ束を形成している光ファイバ38は100μのシリカ・ファイバ(強UV)またはそれと同様なものからなる。この光ファイバ38は、好ましくは燃焼室60の運転温度に耐えるために被覆され、そうでなければ処理される。これらの温度は500°Cを超える。たとえば、光ファイバ38は熱保護に適する金または類似する貴金属のようなコーティング材で被覆される。高温に耐える他のコーティング材を使用してもよい。
各光ファイバ束36は熱保護ために追加して用いられる耐熱性案内管42内部に配置される。たとえば、光ファイバ束36はステンレス鋼製の案内管または類似する保護構造体内部に配置される。各案内管42の末端はそこに光ファイバを固定するために先細に加工され、熱膨張および収縮に順応する方法で対応する視覚ポート34内部に接合される。たとえば、視覚ポート34内部に各案内管42の末端を固定するためにセラミック・セメントが使用される。これはエンジン運転サイクルの大部分を通じて光ファイバ束の一体性を保証する。案内管42は、好ましくは燃料噴射器20の供給アーム22に埋め込まれ、そうでなければ装着される。たとえば、案内管は燃料ノズル26の供給アーム22に形成される溝に位置決めされる。各光ファイバ束36の基部端は信号処理器40による受信に適する、従来の光コネクタ(図示せず)と接続し、燃焼室60の外部位置で終わる。
図5を参照すると、装置の全視界と実用性とを増すために燃料ノズル26の外側空気スワーラー28に形成される視覚ポート34内部に位置決めされる光ファイバ束36に加えて、複数の光学センサ80が燃料ノズル26の中心軸に沿って装着される。この光学センサ80は被覆される1本ないしそれ以上の光ファイバからなる。たとえば、光学センサ80は金を用いて被覆される400μのシリカ・ファイバ(強UV)またはそれに類似するものからなる。
本発明の一実施例では、光学センサ80は内側空気スワーラー(図示せず)と連結した支持取り付け装置によって燃料ノズル26内部に軸方向に沿って装着される。この位置決めでは、光学センサ80は化学量論的安定性を表わすスペクトル比の変化を検出するために利用される。特に、この実施例では、光学センサ80は信号処理器40の信号発生器である時間期間を通じて発生するOH出力に対するCH出力のスペクトル比の変化を検出するために並べて軸方向に位置決めされる2本の光ファイバ82a、82bを備える。たとえば、図7のスペクトル・スキャンに示されるように、信号発生器40のPMTで測定時間を通じて発生するOH出力信号に対するCH出力信号の関係が燃/空比の変化として相互に関係付けられる。この情報に基づいてエンジンは燃焼を安定させるように調整される。本発明の別の実施例では、この軸方向に装着される光学センサはそれぞれ金で被覆される耐熱温度700°C、200μの4本のシリカ・ファイバを有する、2本の光ファイバ束を備える。
本発明の別の実施例に従って、燃料噴射器20の光学センサ・アレイ30は赤外線のスペクトル放射を検出するために適応され、構成される。この場合、光学センサ・アレイは先に説明され、開示されたものと同様な方法で燃料ノズル26内部に埋め込まれるが、使用する光ファイバ38のうち、1本ないしそれ以上は強UVに代えて強IRを使用する。一実施例では、強IR光ファイバ38は1.7μから2.1μの間のスペクトル放射を検出するように適応され、構成される。これは排ガス温度に相関する。対照的に、排ガス温度は先に述べたUV波長範囲の化学発光出力には相関しない。
スペクトル放射1.7μから2.1μの範囲内に燃焼プロセスで生じた水分の蒸発に有利な吸収/発光帯があることが判明した。本発明は赤外線センサ・アレイから与えられる出力が光学高温計に類似する方法で火炎温度を得るために使用できることを予め見通す。赤外線センサ・アレイから与えられる出力が視界内にあるとき、タービン入口翼温度を得るために使用できることも予め見通す。
図8aないし図8cを参照すると、視覚ポート34内部に配置されるステンレス鋼製の案内管42内部に光ファイバ束36を形成する、光ファイバ38の末端を終了させる、異なる3種類の方法が示される。図8aに示される一実施例では、光ファイバ38は案内管42の末端からある間隔おいた位置で終了している。フレーム92内部に支持される成形レンズ90は案内管42の末端と連結される。このレンズ90はサファイアのような材料から作製され、光ファイバ38の視界の焦点を合わせ、そうでなければ修正するために使用される。本発明はレンズ90の露出面が保護用コーティングを備えることを予め見通す。たとえば、レンズ90はメゾムに与えられた米国特許第4,521,088号明細書に開示されるようなすすの酸化を促進する触媒として働き、かつレンズの汚れを減少させる酸化プラチナ−アルミニウム混合物の蒸着層を備える。この明細書の開示は参照してここにその全体を取り入れる。
図8bに示される別の実施例では、光ファイバ38は案内管42の末端からある間隔をおいた位置で終了し、フレーム96内部に支持される窓94が案内管42の末端と連結される。この窓94はサファイアまたは類似する透明な材料から作製され、光ファイバを劣化させる、汚染物質および燃焼副生成物の侵入に備えて案内管の末端を密封するように働く。本発明は窓94が光沢を消し、そうでなければ処理され、光ファイバ束の視界を広くするディフューザとして使用されることを予め見通す。
図8cに示される別の実施例では、光ファイバ束36の各光ファイバ38の末端38aは各ファイバの末端38aが光ファイバ束36の軸心に対して異なる方向に向けられ、または方向付けされるように外側に広げられ、そうでなければ開かれる。これは光ファイバがより広角に、または広域から光を集めることができる。光ファイバ38の末端38aを被覆する保護用コーティングが使用される。
当業者は、たとえば図5および図8cに示されるように、本発明の燃料噴射器内部に装着されるむき出しの光ファイバが図8aのレンズ90および図8bの窓94も含めて、たとえば2、3時間という、比較的短い時間で成長するすすで黒ずみ、光を通さなくなることを容易に理解する。したがって、これら光学センサで得られる信号は時間が経つに従い使用できなくなる。
ガスタービン燃焼室では、知見として、すすが約450°Cの温度で酸化し、そうでなければ燃え始めることが知られている。しかしながら、光ファイバ束36の光ファイバ38が製作される材料はこの燃焼温度に簡単には耐えることができない。したがって、本発明に従って、燃焼温度に簡単に耐え、火炎にさらすことのできる光学的に透明なサファイア・ロッドが光ファイバ束36の前部に合わせて燃料ノズル26の各視覚ポート34内部にノズル外面から外方向に延ばして位置決めされる。この設置条件に(すなわち、燃焼火炎に極接近して)置かれたとき、サファイア・ロッドの光学面に付着し、そうでなければ堆積したすすは燃焼火炎にさらされたとき、酸化し、または燃え尽きる。
図9を参照すると、各サファイア・ロッド194は燃料ノズル26の外側空気スワーラー面32に形成される視覚ポート34から延在し、囲いフレーム196内部に封じられている。このサファイア・ロッド194は比較的浅い角度で空気スワーラー面32から延ばしてもよい。しかしながら、サファイア・ロッド194は燃料ノズル26の中心軸に対して比較的深い角度で向けることは好ましい。したがって、各サファイア・ロッド194の末端は燃料ノズル26から流出する空気流内部にノズル外面から離れてその末端が燃焼火炎に比較的近づくように十分な距離に延在する。結果として、サファイア・ロッド194の光学面194aに付着するすすは火炎の強い熱によって酸化し、または燃え尽きる。各サファイア・ロッド194は視覚ポート34内部に配置された光ファイバ束36と光路を通じている光沢のある基部端を有する。
本発明の実施例では、火炎にさらされ、そうでなければ火炎に極接近して位置決めされるサファイ・ロッド194の光学面194aはすすの酸化を促進する触媒で被覆される。すなわち、この触媒はロッドの光学面がさらされる温度以下まで酸化が発生する温度を下げることによってすすの酸化を促す。このような触媒は酸化プラチナ−アルミニウムからなる。
本発明の一実施例では、各サファイア・ロッド194の光学面194aは燃焼火炎からの放射光入射角度を増大するためにディフューザとして働くように構成される。好ましくは、各サファイア・ロッド194の光学面194aは、たとえば光学面を研削し、または光を散乱させるように働く適当な面を作製する、他のいずれかの公知技術によって形成されるつや消し面である。したがって、光学面194aは実質的に半球状の視界を有する。これは上述した他の光学センサによる場合よりも光がより多く捉えられ、光ファイバ束36に送られるように光または放射光を様々な角度からサファイア・ロッド194に入射させることができる。結果として、ここに開示されたむき出しの光ファイバ束で監視する火炎部分と比べて、燃焼火炎をより広域にわたって光学センサで監視することができる。これは全体としての火炎強度制御信号をより増大することができる。これに代えて、各サファイア・ロッドの末端は光学面の視界を広げるために多面体として加工してもよい。
図10を参照すると、本発明の好ましい実施例に従って構成される、符号200で表わす燃料噴射ノズルの別の実施例が示される。この燃料噴射ノズル200は燃焼器火炎のあるスペクトル領域を支配する放射光信号または化学排出物を監視するように適応され、構成される、1個ないしそれ以上の光学センサ210を備える。これらの信号は火炎強度の変化を検出するため使用され、好ましくは燃焼安定性を維持するためにここに説明される制御装置に対する可変入力信号である。
燃料噴射ノズル200の光学センサ210は本発明の上述した実施例で説明された光ファイバ38および光ロッド194をさらに改良して構成し、全設計的見地からより実用的で、しかもアクティブ燃焼制御装置により正確な入力信号を与えるものである。これらの改良は光検出器(たとえば、フォトダイオード)を各光学センサ210と組み合わせて達成される。フォトダイオードの使用は燃料噴射器本体内を貫いて、または外面に装着して光ファイバを引き回す必要性を取り除き、燃料ノズル自身の内部で光信号を電気信号に変換することができる。したがって、この変換された電気信号はファイバ導波路よりも噴射器を通してより簡単に引き回し、燃焼室で生じる厳しい環境により簡単に適合するワイヤによって信号処理器に伝送することができる。
本発明の好ましい実施例に従って、燃料ノズル200の光学センサ210は注目度の高い領域である、約300から400nmの間の波長範囲で発生する燃焼火炎(すなわち、火炎発光)から出る放射光に応答している。特に、燃料ノズル200はジェット燃料のOH化学発光ピーク(すなわち、約310nmの波長で発生する放射光)を表わす火炎放射光に応答するフォトダイオードを備える、少なくとも1個の光学センサ210を有する。燃焼器火炎がより薄くなると、OH化学発光ピークは成長し、火炎が発生する他の化学発光ピークと比べてより強い放射光信号を与える。ジェット燃料を可能な限り希薄に保って燃焼させることはエンジン設計者の一つの目標であるので、OH化学発光ピークはNOxおよびCO排出量を減少するため監視対象として重要な信号である。
燃料ノズル200はさらにジェット燃料のCH化学発光ピーク(すなわち、約430nmの波長で生じる放射光)を表わす火炎放射光に応答するフォトダイオードを備える、少なくとも1個の光学センサ210を有する。このCH化学発光ピークもエンジン排出物を減少する目的で監視される。
図11を参照すると、光学センサ210はノズル本体200内部に形成される孔212内に収容され、これはステンレス鋼、金または白金のような適する耐熱性金属から製作された保護シースまたは保護管214内に収容されている。図12に最もよく示されるように、各光学センサ210の保護構造体214内には導波手段または導波管216と、フォトダイオード2198と、フォトダイオード218で発生した信号を増幅するため使用される演算増幅器220とが設けられる。
フォトダイオードの出力信号をより限定するため帯域フィルタまたは低域フィルタが使用できることは予め見通す。導波手段216は、たとえば水晶またはサファイアのような光波伝播材から形成される。図に示されるように、導波手段は、好ましくは可能な限り短くするが、より好ましくはフォトダイオード218を保護し、そうでなければ覆うために単にレンズとして働く。
本発明に従って、フォトダイオード218は燃焼中の温度上昇でも故障せず、運転するのによく適する。好ましくは、これは青色強調シリコン(Si)フォトダイオード、炭化ケイ素(SiC)フォトダイオード、窒化ガリウム(GaN)フォトダイオードまたはヒ化リン化ガリウム(GaAsP)フォトダイオードのいずれかである。燃料ノズル200で使用される、この特殊なフォトダイオードはこのアクティブ燃焼制御装置の応答性を大きく左右する。
図13に示されるように、たとえばSiCおよびGaNフォトダイオードは約310nmの波長で生じる、OH化学発光ピークに対して応答する。対照的に、SiおよびGaAsPフォトダイオードは約430nmの波長で生じる、CH化学発光ピークに対して応答する。上記したフォトダイオードに代えて、光電子増倍管(PMT)も高ゲイン、低信号ノイズを理由に検出器として利用することが可能であり、本開示の範囲に含まれる。PMTはOH化学発光ピークおよびCH化学発光ピークの双方に対して応答性をもたらす。当業者は燃料ノズル200の光学センサ210の数および/または位置が単に模範例を示すだけで、エンジン用途および燃料ノズル設計の要求に応じて変えられることを容易に理解する。
要するに、本発明のファイバ光学機器装備燃料噴射器は、たとえば燃焼不安定性の検出によるエンジン制御、スペクトルの分析による燃/空比の安定性、火炎温度に相関させるタービン入口温度の取得、スペクトル異常に基づく燃料不純物の検出、航空機増強火炎の検出、光学高温計によるタービン入口翼温度の取得および希薄による燃焼休止状態の先行警告または予測を含む、多様な目的のために使用することができる。
本発明の装置、システムおよび方法が好ましい実施例について説明されたが、当業者は添付の請求の範囲によって定義されるような本発明の本質と範囲とから離れることなく、変更および変形をなし得ることを容易に理解する。
図1は本発明の好ましい実施例に従って構成されたガスタービン・エンジン用アクティブ燃焼制御装置のブロック図である。 図2は本発明の光学センサ・アレイを利用するガスタービン・エンジンの燃焼器内部の状態を監視して得られる光学データを用いてスペクトロメータで発生したスペクトル・スキャンを示すグラフである。 図3は本発明の光学センサ・アレイを有する燃料噴射器を備える、従来のガスタービン・エンジンの燃焼器の断面図である。 図4はガスタービンの燃焼器内部に配置される、本発明の好ましい実施例に従って構成された燃料噴射器の斜視図である。 図5は燃焼器内部の状態を視る光ファイバ束を示すため噴射器から外された外側空気スワーラーと共に示す、図4の燃料噴射器の一部を形成する燃料ノズルの拡大斜視図である。 図6は燃料ノズル内部に埋め込まれた光ファイバ束の視界を表わす、図4の燃料噴射器の端部を示す側面図である。 図7は本発明の燃料ノズル内部に配置された一対の光ファイバで得られる光学データを用いてスペクトロメータで発生したスペクトル比スキャンを示すグラフである。 図8aは本発明に従う光ファイバ束の端部を終了させる方法を示す斜視図である。 図8bは本発明に従う光ファイバ束の端部を終了させる方法を示す斜視図である。 図8cは本発明に従う光ファイバ束の端部を終了させる方法を示す斜視図である。 図9は光学センサがディフューザとして働き、付着するすす堆積物の酸化を促進するため燃焼火炎に極接近して配置されるつや消し面を有する光ロッドを備える、本発明の燃料ノズルの一部を示す斜視図である。 図10は光学センサが燃焼火炎から出る放射光を検出するフォトダイオードを備える、本発明の燃料噴射ノズルの好ましい実施例の斜視図である。 図11は導波手段およびフォトダイオードを有する光学センサ・パッケージを示すため部分的に切断された図10の燃料噴射ノズルの拡大斜視図である。 図12は図11に示される光学センサの構成要素を示す、図11の12−12線に沿う断面図である。 図13は燃料噴射ノズルと共に使用される異なる4種類のフォトダイオードおよび光電子増倍管の火炎スペクトルに対するフォトダイオード応答性を示すグラフである。
符号の説明
20… 燃料噴射器
22… 供給アーム
26、200… 燃料ノズル
30、210… 光学センサ
34… 視覚ポート
36… 光ファイバ束
38… 光ファイバ
40… 信号処理器
42… 案内管
50… 燃料噴射器コントローラ
90… レンズ
94… 窓
194… サファイア・ロッド
216… 導波手段
218… フォトダイオード
220… 演算増幅器

Claims (22)

  1. a)燃焼のため燃料をガスタービン燃焼器に噴射する燃料ノズルと、
    b)前記燃料ノズルと組み合わされ、火炎から出る放射光を検出する、少なくとも1個の光検出器と、
    を備えるガスタービン燃焼器用燃料噴射器。
  2. さらに、前記少なくとも1個の光検出器よりも下流に配置された導波手段を備える請求項1記載のガスタービン燃焼器用燃料噴射器。
  3. 前記導波手段が前記少なくとも1個の光検出器のためのレンズを形成するように十分な軸長を備える請求項2記載のガスタービン燃焼器用燃料噴射器。
  4. 前記少なくとも1個の光検出器が約300から440nmの間の波長範囲で発生する放射光に応答している請求項1記載のガスタービン燃焼器用燃料噴射器。
  5. 前記少なくとも1個の光検出器が約310nmの波長で発生する放射光に応答している請求項1記載のガスタービン燃焼器用燃料噴射器。
  6. 前記少なくとも1個の光検出器が約430nmの波長で発生する放射光に応答している請求項1記載のガスタービン燃焼器用燃料噴射器。
  7. 前記光検出器がフォトダイオードである請求項6記載のガスタービン燃焼器用燃料噴射器。
  8. 前記フォトダイオードが次の光検出器からなる群から選ばれる請求項7記載のガスタービン燃焼器用燃料噴射器。
    Siフォトダイオード、SiCフォトダイオード、GaAsPフォトダイオード、GaNフォトダイオード
  9. 前記光検出器が光電子増倍管である請求項6記載のガスタービン燃焼器用燃料噴射器。
  10. 前記導波手段が水晶およびサファイアからなる群から選ばれる光波伝播材から形成される請求項2記載のガスタービン燃焼器用燃料噴射器。
  11. フィルタが前記少なくとも1個の光検出器と組み合わされる請求項1記載のガスタービン燃焼器用燃料噴射器。
  12. 前記フィルタが帯域フィルタおよび低域フィルタからなる群から選ばれる請求項1記載のガスタービン燃焼器用燃料噴射器。
  13. 演算増幅器が前記光検出器と組み合わされる請求項1記載のガスタービン燃焼器用燃料噴射器。
  14. a)燃焼のため燃料をガスタービン燃焼器に噴射する燃料ノズルと、
    b)前記燃料ノズルと組み合わされ、OH化学発光ピークを表わす火炎放射光に応答している、少なくとも1個のフォトダイオードと、
    c)前記燃料ノズルと組み合わされ、CH化学発光ピークを表わす火炎放射光に応答している、少なくとも1個のフォトダイオードと、
    を備えるガスタービン燃焼器用燃料噴射器。
  15. 各フォトダイオードが導波手段に隠れて配置される請求項14記載のガスタービン燃焼器用燃料噴射器。
  16. 各導波手段が導波手段と組み合わされる前記フォトダイオードのためのレンズを形成するように十分な軸長を備える請求項15記載のガスタービン燃焼器用燃料噴射器。
  17. CH化学発光ピークを表わす火炎放射光に応答している、少なくとも1個のフォトダイオードが次の光検出器の群から選ばれる請求項14記載のガスタービン燃焼器用燃料噴射器。
    Siフォトダイオード、GaAsPフォトダイオード
  18. OH化学発光ピークを表わす火炎放射光に応答している、少なくとも1個のフォトダイオードが次の光検出器の群から選ばれる請求項14記載のガスタービン燃焼器用燃料噴射器。
    SiCフォトダイオード、GaNフォトダイオード
  19. 各導波手段が水晶およびサファイアからなる群から選ばれる光波伝播材から形成される請求項15記載のガスタービン燃焼器用燃料噴射器。
  20. フィルタが各フォトダイオードと組み合わされる請求項13記載のガスタービン燃焼器用燃料噴射器。
  21. 前記フィルタが帯域フィルタおよび低域フィルタからなる群から選ばれる請求項20記載のガスタービン燃焼器用燃料噴射器。
  22. 演算増幅器が各フォトダイオードと組み合わされる請求項14記載のガスタービン燃焼器用燃料噴射器。
JP2007335635A 2007-01-12 2007-12-27 ガスタービン・エンジンの燃焼状態監視装置 Pending JP2008169835A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/652,718 US7966834B2 (en) 2004-05-07 2007-01-12 Apparatus for observing combustion conditions in a gas turbine engine

Publications (1)

Publication Number Publication Date
JP2008169835A true JP2008169835A (ja) 2008-07-24

Family

ID=39232640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007335635A Pending JP2008169835A (ja) 2007-01-12 2007-12-27 ガスタービン・エンジンの燃焼状態監視装置

Country Status (3)

Country Link
US (1) US7966834B2 (ja)
EP (1) EP1944546B1 (ja)
JP (1) JP2008169835A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101615A (ja) * 2008-10-23 2010-05-06 General Electric Co <Ge> 三次元光センサと燃焼検出及び制御システム
JP2010164296A (ja) * 2009-01-15 2010-07-29 General Electric Co <Ge> 光学的に保炎および逆火を検出すること
JP2011122817A (ja) * 2009-12-11 2011-06-23 General Electric Co <Ge> 燃焼器システムにおける不純物検出
JP2012103246A (ja) * 2010-11-02 2012-05-31 Rosemount Aerospace Inc 受動光学式気体状排出物センサ
JP2014163383A (ja) * 2013-02-26 2014-09-08 General Electric Co <Ge> 燃料ウォッベ指数を迅速に検知するための方法および装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8200410B2 (en) 2008-03-12 2012-06-12 Delavan Inc Active pattern factor control for gas turbine engines
US8746050B2 (en) * 2008-09-19 2014-06-10 Omar Cueto Fuel injection feedback system and method
US7987712B2 (en) * 2008-12-10 2011-08-02 Rosemount Aerospace Inc. High temperature seal assembly for optical sensor
US8437941B2 (en) 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US9354618B2 (en) 2009-05-08 2016-05-31 Gas Turbine Efficiency Sweden Ab Automated tuning of multiple fuel gas turbine combustion systems
US9671797B2 (en) 2009-05-08 2017-06-06 Gas Turbine Efficiency Sweden Ab Optimization of gas turbine combustion systems low load performance on simple cycle and heat recovery steam generator applications
US9267443B2 (en) 2009-05-08 2016-02-23 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
US20110008737A1 (en) * 2009-06-15 2011-01-13 General Electric Company Optical sensors for combustion control
US8434310B2 (en) * 2009-12-03 2013-05-07 Delavan Inc Trim valves for modulating fluid flow
US20130040254A1 (en) * 2011-08-08 2013-02-14 General Electric Company System and method for monitoring a combustor
CN102506444B (zh) * 2011-11-04 2014-04-02 国电南京自动化股份有限公司 基于智能控制的计算机视觉技术的炉膛火焰检测方法
US20130247576A1 (en) 2012-03-23 2013-09-26 Delavan Inc Apparatus, system and method for observing combustor flames in a gas turbine engine
US8925323B2 (en) 2012-04-30 2015-01-06 General Electric Company Fuel/air premixing system for turbine engine
US9435690B2 (en) * 2012-06-05 2016-09-06 General Electric Company Ultra-violet flame detector with high temperature remote sensing element
US10392959B2 (en) * 2012-06-05 2019-08-27 General Electric Company High temperature flame sensor
US9366189B2 (en) 2012-06-29 2016-06-14 General Electric Company System and method for reducing pressure oscillations within a gas turbine engine
US9765702B2 (en) * 2013-03-15 2017-09-19 Ansaldo Energia Ip Uk Limited Ensuring non-excessive variation of gradients in auto-tuning a gas turbine engine
US20150075170A1 (en) * 2013-09-17 2015-03-19 General Electric Company Method and system for augmenting the detection reliability of secondary flame detectors in a gas turbine
US9773584B2 (en) 2014-11-24 2017-09-26 General Electric Company Triaxial mineral insulated cable in flame sensing applications
US9909507B2 (en) 2015-01-27 2018-03-06 General Electric Company Control system for can-to-can variation in combustor system and related method
US9976745B2 (en) * 2015-08-07 2018-05-22 Delavan Inc. Image conduit for fuel nozzle assemblies
US10768059B2 (en) * 2018-02-16 2020-09-08 Raytheon Technologies Corporation Embedded optical probe for gas turbine engine
GB201804814D0 (en) 2018-03-26 2018-05-09 Rolls Royce Plc A fuel injector, a combustion chamber comprising a fuel injector and a method of detecting coking in a combustion chamber fuel injector
GB201901320D0 (en) * 2019-01-31 2019-03-20 Rolls Royce Plc Gas turbine engine
CN115199407A (zh) * 2022-06-08 2022-10-18 惠州深能源丰达电力有限公司 自动加热消除燃机火焰闪烁隐患方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63263427A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd ガスタ−ビン燃焼器の火炎検知装置
JPH0697187B2 (ja) * 1984-11-30 1994-11-30 バブコツク日立株式会社 光ファイバを用いた火炎監視装置
JPH1082526A (ja) * 1996-06-24 1998-03-31 General Electric Co <Ge> 予混合燃焼器システムにおけるフラッシュバックの発生を検出する装置
JPH1082701A (ja) * 1996-07-18 1998-03-31 Abb Res Ltd 温度測定装置
JPH10148330A (ja) * 1996-11-12 1998-06-02 Westinghouse Electric Corp <We> 燃焼器及び同燃焼器における逆火抑制方法
JP2001329862A (ja) * 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd ガスタービンの火炎検出装置
JP2001343280A (ja) * 2000-06-02 2001-12-14 Yamatake Corp 火炎検出装置
JP2006058165A (ja) * 2004-08-20 2006-03-02 Babcock Hitachi Kk 火炎検出器

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2975785A (en) 1957-09-26 1961-03-21 Bausch & Lomb Optical viewing instrument
US3689773A (en) 1971-02-01 1972-09-05 Bailey Miters & Controls Ltd Flame monitor system and method using multiple radiation sensors
DE3321028A1 (de) 1982-06-17 1983-12-22 Smiths Industries Public Ltd. Co., London Optisches bauteil
US4709155A (en) 1984-11-22 1987-11-24 Babcock-Hitachi Kabushiki Kaisha Flame detector for use with a burner
FR2628667A1 (fr) 1988-03-21 1989-09-22 Donze Michel Chalumeau a gaz equipe d'un dispositif d'observation visuelle
US4896965A (en) * 1988-09-14 1990-01-30 The United States Of America As Represented By The United States Department Of Energy Real-time alkali monitoring system
US5257496A (en) 1992-05-05 1993-11-02 General Electric Company Combustion control for producing low NOx emissions through use of flame spectroscopy
US5499497A (en) 1993-08-06 1996-03-19 Simmonds Precision Engine Systems Temperature detector and control for an igniter
US5450727A (en) 1994-05-27 1995-09-19 Hughes Aircraft Company Thermoelectric cooler controller, thermal reference source and detector
US5719791A (en) 1995-03-17 1998-02-17 Georgia Tech Research Corporation Methods, apparatus and systems for real time identification and control of modes of oscillation
US5608515A (en) 1995-04-20 1997-03-04 General Electric Company Double window for protecting optical sensors from hazardous environments
US6071114A (en) 1996-06-19 2000-06-06 Meggitt Avionics, Inc. Method and apparatus for characterizing a combustion flame
US5828797A (en) 1996-06-19 1998-10-27 Meggitt Avionics, Inc. Fiber optic linked flame sensor
US5978525A (en) * 1996-06-24 1999-11-02 General Electric Company Fiber optic sensors for gas turbine control
US5961314A (en) 1997-05-06 1999-10-05 Rosemount Aerospace Inc. Apparatus for detecting flame conditions in combustion systems
US6599028B1 (en) 1997-06-17 2003-07-29 General Electric Company Fiber optic sensors for gas turbine control
US6784430B2 (en) * 1999-02-08 2004-08-31 General Electric Company Interdigitated flame sensor, system and method
US6688534B2 (en) 2001-03-07 2004-02-10 Delavan Inc Air assist fuel nozzle
US6640548B2 (en) 2001-09-26 2003-11-04 Siemens Westinghouse Power Corporation Apparatus and method for combusting low quality fuel
GB2427269B (en) * 2002-06-03 2007-03-21 Vibro Meter Inc Method and apparatus for detecting the presence of flame in the exhaust path of a gas turbine engine
US7454892B2 (en) * 2002-10-30 2008-11-25 Georgia Tech Research Corporation Systems and methods for detection and control of blowout precursors in combustors using acoustical and optical sensing
US7484369B2 (en) 2004-05-07 2009-02-03 Rosemount Aerospace Inc. Apparatus for observing combustion conditions in a gas turbine engine
US7334413B2 (en) 2004-05-07 2008-02-26 Rosemount Aerospace Inc. Apparatus, system and method for observing combustion conditions in a gas turbine engine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697187B2 (ja) * 1984-11-30 1994-11-30 バブコツク日立株式会社 光ファイバを用いた火炎監視装置
JPS63263427A (ja) * 1987-04-22 1988-10-31 Hitachi Ltd ガスタ−ビン燃焼器の火炎検知装置
JPH1082526A (ja) * 1996-06-24 1998-03-31 General Electric Co <Ge> 予混合燃焼器システムにおけるフラッシュバックの発生を検出する装置
JPH1082701A (ja) * 1996-07-18 1998-03-31 Abb Res Ltd 温度測定装置
JPH10148330A (ja) * 1996-11-12 1998-06-02 Westinghouse Electric Corp <We> 燃焼器及び同燃焼器における逆火抑制方法
JP2001329862A (ja) * 2000-05-19 2001-11-30 Mitsubishi Heavy Ind Ltd ガスタービンの火炎検出装置
JP2001343280A (ja) * 2000-06-02 2001-12-14 Yamatake Corp 火炎検出装置
JP2006058165A (ja) * 2004-08-20 2006-03-02 Babcock Hitachi Kk 火炎検出器

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010101615A (ja) * 2008-10-23 2010-05-06 General Electric Co <Ge> 三次元光センサと燃焼検出及び制御システム
JP2010164296A (ja) * 2009-01-15 2010-07-29 General Electric Co <Ge> 光学的に保炎および逆火を検出すること
US8752362B2 (en) 2009-01-15 2014-06-17 General Electric Company Optical flame holding and flashback detection
JP2011122817A (ja) * 2009-12-11 2011-06-23 General Electric Co <Ge> 燃焼器システムにおける不純物検出
JP2012103246A (ja) * 2010-11-02 2012-05-31 Rosemount Aerospace Inc 受動光学式気体状排出物センサ
JP2014163383A (ja) * 2013-02-26 2014-09-08 General Electric Co <Ge> 燃料ウォッベ指数を迅速に検知するための方法および装置

Also Published As

Publication number Publication date
US20100071375A1 (en) 2010-03-25
US7966834B2 (en) 2011-06-28
EP1944546B1 (en) 2017-01-04
EP1944546A2 (en) 2008-07-16
EP1944546A3 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP4630247B2 (ja) ガスタービン・エンジンの燃焼状態監視装置
JP2008169835A (ja) ガスタービン・エンジンの燃焼状態監視装置
US7334413B2 (en) Apparatus, system and method for observing combustion conditions in a gas turbine engine
EP2372246A2 (en) Fibre optic microphones for active combustion control
US6071114A (en) Method and apparatus for characterizing a combustion flame
JP4112043B2 (ja) 温度測定装置
US6135760A (en) Method and apparatus for characterizing a combustion flame
US8456634B2 (en) Optical interrogation sensors for combustion control
JP6139202B2 (ja) ガスタービンエンジンにおける燃焼器火炎を観測するための装置、システムおよび方法
US9335216B2 (en) System and method for on-line optical monitoring and control of a gas turbine engine
GB2473700A (en) Controlling combustion emission parameters using a photodetector
CN104583738A (zh) 对燃气轮机的燃烧器篮和过渡部分进行远程振动检测的系统
JP6018378B2 (ja) 光学燃焼器プローブシステム
Bandaru et al. Sensors for measuring primary zone equivalence ratio in gas turbine combustors
CN107228017B (zh) 设置有热声不稳定检测的燃气轮机设备和控制其的方法
Pagliaroli et al. Combustion acoustic coupling in trapped vortex combustor
CN107228382A (zh) 带有光学探头的燃气轮机燃烧器组件
Woodruff Optical diagnostics in gas turbine combustors
Markham et al. Turbine engine augmentor screech and rumble sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121120

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326