JP2008168477A - Method for producing minute molding mold - Google Patents

Method for producing minute molding mold Download PDF

Info

Publication number
JP2008168477A
JP2008168477A JP2007002144A JP2007002144A JP2008168477A JP 2008168477 A JP2008168477 A JP 2008168477A JP 2007002144 A JP2007002144 A JP 2007002144A JP 2007002144 A JP2007002144 A JP 2007002144A JP 2008168477 A JP2008168477 A JP 2008168477A
Authority
JP
Japan
Prior art keywords
light
film
shielding film
molding
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007002144A
Other languages
Japanese (ja)
Inventor
Atsuo Hattori
敦夫 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2007002144A priority Critical patent/JP2008168477A/en
Publication of JP2008168477A publication Critical patent/JP2008168477A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To make the unevenness of the molding surface of a minute molding mold minute. <P>SOLUTION: In a method for producing the minute molding mold, a shading film for forming the projection of the molding surface on the surface having the unevenness of a sacrifice body is formed so that the film thickness of a part parallel with the side of the recess of the unevenness is equal to the width of a corresponding part of the projection, parts excluding the part parallel with the side of the recess of the unevenness of the shading film are removed to form a translucent substrate joined to the end face of the residual part of the shading film. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は微細成形モールドの製造方法に関する。   The present invention relates to a method for producing a fine mold.

従来、高アスペクトで微細な立体形状を低コストで成形するための技術として、微細成形モールドを用いたホットエンボスやナノインプリントなどの微細成形技術が知られている(例えば特許文献1参照)。微細成形モールドは、フォトリソグラフィを用いて成形されるマザーモールドを用いて製造することができる。   Conventionally, as a technique for forming a high-aspect and fine three-dimensional shape at a low cost, a fine forming technique such as hot embossing or nanoimprint using a fine mold is known (see, for example, Patent Document 1). The fine mold can be manufactured using a mother mold that is formed using photolithography.

特開2004―304097号公報JP 2004-304097 A

本発明は、微細成形モールドの成形面の凹凸を微細化することを目的とする。   An object of this invention is to refine | miniaturize the unevenness | corrugation of the molding surface of a fine mold.

(1)上記目的を達成するための微細成形モールドの製造方法は、犠牲体の凹凸を有する表面上に成形面の凸部を形成するための遮光性膜を前記凹凸の凹部の側面と平行な部分の膜厚が前記凸部の対応する部分の幅に等しくなるように形成し、前記遮光性膜の前記凹凸の前記凹部の側面と平行な部分以外を除去し、前記遮光性膜の残存部の端面に接合された透光性基板を形成する、ことを含む。   (1) In the method for producing a fine mold for achieving the above object, a light-shielding film for forming a convex portion of a molding surface on a surface having a concave and convex portion of a sacrificial body is parallel to a side surface of the concave portion of the concave and convex portions. The film thickness of the part is formed to be equal to the width of the corresponding part of the convex part, and the remaining part of the light-shielding film is removed by removing the part of the light-shielding film other than the part parallel to the side surface of the concave part. Forming a translucent substrate bonded to the end face of the substrate.

この方法によると、微細成形モールドの成形面の凸部の幅を遮光性膜の膜厚にまで狭くすることができる。すなわち、微細成形モールドの成形面を形成するために用いる犠牲体の表面の凹部の幅よりも狭く微細成形モールドの成形面の凸部を成形することができる。フォトリソグラフィによって犠牲体の表面の凹凸が形成され、マザーモールドとしての犠牲体の表面の凹凸を転写して微細成形モールドの成形面を形成する場合、微細成形モールドの成形面の凹凸をフォトリソグラフィの解像度限界を超えて微細化することはできない。しかし、成膜条件の調整によって遮光性膜の膜厚をフォトリソグラフィの解像度限界より薄くすることは可能であるため、本発明によると微細成形モールドの成形面の凹凸を従来より微細化することができる。   According to this method, the width of the convex portion of the molding surface of the fine mold can be reduced to the thickness of the light shielding film. That is, the convex part of the molding surface of the fine mold can be formed narrower than the width of the concave part of the surface of the sacrificial body used for forming the molding surface of the fine mold. When the concavo-convex surface of the sacrificial body is formed by photolithography and the surface of the sacrificial body as a mother mold is transferred to form the molding surface of the fine molding mold, the concavo-convex surface of the micro-molding mold is formed by photolithography. It cannot be made finer beyond the resolution limit. However, since it is possible to make the film thickness of the light-shielding film thinner than the resolution limit of photolithography by adjusting the film forming conditions, according to the present invention, the unevenness of the molding surface of the fine molding mold can be made finer than before. it can.

尚、本明細書において成形面とは成形対象物との界面となる微細成形モールドの面を意味する。また遮光性膜の「端面」とは、遮光性膜の下地面とほぼ平行になる相対的に広い面との交線と遮光性膜の下地面との交線とを輪郭に含む相対的に狭い平坦面を意味する。   In the present specification, the molding surface means the surface of a fine molding mold that serves as an interface with the molding object. In addition, the “end face” of the light-shielding film is a relative shape including an intersection line of a relatively wide surface that is substantially parallel to the lower surface of the light-shielding film and an intersection line of the lower surface of the light-shielding film. It means a narrow flat surface.

(2)上記目的を達成するための微細成形モールドにおいて、前記遮光性膜の表面上に前記凹凸の前記凹部を埋める犠牲膜を形成し、前記犠牲膜もろともに前記遮光性膜の前記凹凸の前記凹部の側面と平行な部分以外を研削および研磨の少なくともいずれか一方により除去する、ことを含んでもよい。
この場合、遮光性膜を研削および研磨の少なくともいずれか一方により除去するときに、遮光性膜が犠牲体の凹部の側面から剥離したり、遮光性膜の端面の角が荒れることを抑えることができる。
(2) In a fine mold for achieving the above object, a sacrificial film is formed on the surface of the light-shielding film so as to fill the recesses of the unevenness, and both the sacrificial film and the unevenness of the light-shielding film are formed. It may include removing other than the portion parallel to the side surface of the recess by at least one of grinding and polishing.
In this case, when removing the light-shielding film by at least one of grinding and polishing, it is possible to prevent the light-shielding film from peeling off from the side surface of the concave portion of the sacrificial body and the corners of the end face of the light-shielding film from becoming rough. it can.

(3)上記目的を達成するための微細成形モールドにおいて、前記遮光性膜の残存部の端面に前記透光性基板を接合する、ことを含んでもよい。
この場合、材料の堆積によって透光性基板を形成する場合に比べ、モールドの製造コストを低減することができる。
(3) The fine mold for achieving the above object may include bonding the light-transmitting substrate to an end surface of the remaining portion of the light-shielding film.
In this case, the manufacturing cost of the mold can be reduced as compared with the case where the translucent substrate is formed by depositing the material.

(4)上記目的を達成するための微細成形モールドにおいて、前記遮光性膜の残存部の端面に前記透光性基板を直接接合する、ことを含んでもよい。
この場合、成形面の凸部を構成する遮光性膜と透光性基板との間に接着剤が残らないし、接着剤で遮光性膜と透光性基板とを接合する場合に比べ、両者の接合強度が高まる。したがってこの場合、温度変化によって成形面の凸部の位置がずれたり、遮光性膜が透光性基板から剥離することを抑えることができる。
(4) The fine mold for achieving the above object may include directly bonding the translucent substrate to an end surface of the remaining portion of the light-shielding film.
In this case, no adhesive remains between the light-shielding film constituting the convex portion of the molding surface and the light-transmitting substrate, and compared with the case where the light-shielding film and the light-transmitting substrate are bonded with the adhesive. Bonding strength is increased. Therefore, in this case, it is possible to prevent the position of the convex portion of the molding surface from being shifted due to a temperature change, and the light shielding film from being peeled off from the light transmitting substrate.

(5)上記目的を達成するための微細成形モールドにおいて、前記遮光性膜は高融点金属または高融点金属の化合物からなってもよい。
微細成形モールドの成形面において凸部は凹部よりも損傷しやすい。高融点金属および高融点金属の化合物はCuなどの低融点金属に比べて硬度が高い。したがってこの場合、成形面の凸部を構成する遮光性膜が高融点金属または高融点金属の化合物からなるため、成形対象物に硬質な異物が混入した場合にも破損しにくい微細成形モールドになる。
(5) In the fine mold for achieving the above object, the light-shielding film may be made of a refractory metal or a compound of a refractory metal.
On the molding surface of the fine mold, the convex portion is more easily damaged than the concave portion. High melting point metals and high melting point metal compounds have higher hardness than low melting point metals such as Cu. Therefore, in this case, since the light-shielding film constituting the convex portion of the molding surface is made of a refractory metal or a compound of a refractory metal, it becomes a fine molding mold that is not easily damaged even when a hard foreign substance is mixed into the molding object. .

(6)上記目的を達成するための微細成形モールドにおいて、前記遮光性膜を湿式めっきにより形成してもよい。
湿式めっきは乾式めっきに比べて成膜速度が速い。したがってこの方法は、微細成形モールドの製造コストを低減する場合に好適である。
(6) In the fine mold for achieving the above object, the light shielding film may be formed by wet plating.
Wet plating has a higher deposition rate than dry plating. Therefore, this method is suitable for reducing the manufacturing cost of the fine mold.

尚、請求項において「〜上に」というときは、技術的な阻害要因がない限りにおいて「上に中間物を介在させずに」と「〜上に中間物を介在させて」の両方を意味する。また、請求項に記載された動作の順序は、技術的な阻害要因がない限りにおいて記載順に限定されず、同時に実行されても良いし、記載順の逆順に実行されても良いし、連続した順序で実行されなくても良い。   In the claims, “to the top” means both “without an intermediate on the top” and “with an intermediate on the top” unless there is a technical impediment. To do. Further, the order of the operations described in the claims is not limited to the order of description as long as there is no technical obstruction factor, and may be executed at the same time, may be executed in the reverse order of the description order, or may be continuous. It does not have to be executed in order.

以下、本発明の実施の形態を添付図面を参照して説明する。
(第一実施形態)
・微細成形モールドとその使用方法
図1から図4は本発明の第一実施形態に係る微細成形モールド(以下、スタンパという。)1の使用方法を示す断面図である。スタンパ1は、成形対象物としての感光性成形対象膜18を光インプリントによって成形するための型である。
Embodiments of the present invention will be described below with reference to the accompanying drawings.
(First embodiment)
Fine Mold and Method for Using the Same FIG. 1 to FIG. 4 are sectional views showing a method for using the fine mold (hereinafter referred to as a stamper) 1 according to the first embodiment of the present invention. The stamper 1 is a mold for molding a photosensitive molding target film 18 as a molding target by optical imprinting.

図1に示すように、スタンパ1は透光性基板22と遮光性膜14とからなり、成形面には遮光性膜14によって構成される凸部101を備えている。
透光性基板22は低融点ガラスからなる。透光性基板22の材料としては、感光性成形対象膜18の露光波長に対して十分な透過性を有するものであればよい。またスタンパ1の耐久性の観点からは硬度や靭性といった機械的特性に優れた材料であることが望ましい。したがって透光性基板22の材料としては、ガラス、石英、結晶化ガラス、サファイヤ、アルミナなどを選択することが好ましい。
As shown in FIG. 1, the stamper 1 includes a light-transmitting substrate 22 and a light-shielding film 14, and has a convex portion 101 formed of the light-shielding film 14 on the molding surface.
The translucent substrate 22 is made of low-melting glass. As a material of the translucent substrate 22, any material having sufficient transparency with respect to the exposure wavelength of the photosensitive molding target film 18 may be used. Further, from the viewpoint of durability of the stamper 1, it is desirable that the material has excellent mechanical properties such as hardness and toughness. Accordingly, it is preferable to select glass, quartz, crystallized glass, sapphire, alumina, or the like as the material of the translucent substrate 22.

遮光性膜14は、NiFeからなる。遮光性膜14の材料は、NiFeに限らず、感光性成形対象膜18の露光波長に対して十分な遮光性を有するものであればよい。またスタンパ1の耐久性の観点からは硬度や靭性といった機械的特性に優れた材料であることが望ましい。特に成形面の凸部は凹部底面を構成する透光性基板22よりも感光性成形対象膜18に混入した異物192、191と衝突しやすいため、透光性基板22よりも硬度や靭性といった機械的特性に優れた材料(例えば高融点金属や高融点金属の化合物)であることが望ましい。また堆積によって形成される遮光性膜14には、透光性基板22との密着性や成膜コストなどに優れた材料が選択されることが望ましい。したがって遮光性膜14の材料としては、Ta,Ti,Mo,Cu,TiN,TaN,MoN,NiWなどを選択することが望ましい。遮光性膜14の形状は、成形対象物の設計によって決まり、例えば幅2μmの溝を感光性成形対象膜18に形成するのであれば、幅2μmの立ち壁になる。遮光性膜14のパターンの微細化限界は、遮光性膜14の膜厚をどこまで薄くできるかによるため、原理的には原子レベルまでの微細化が可能である。   The light shielding film 14 is made of NiFe. The material of the light-shielding film 14 is not limited to NiFe, and any material may be used as long as it has a sufficient light-shielding property with respect to the exposure wavelength of the photosensitive molding target film 18. Further, from the viewpoint of durability of the stamper 1, it is desirable that the material has excellent mechanical properties such as hardness and toughness. In particular, since the convex portion of the molding surface is more likely to collide with foreign matter 192 and 191 mixed in the photosensitive molding target film 18 than the translucent substrate 22 constituting the bottom surface of the concave portion, the machine has higher hardness and toughness than the translucent substrate 22. It is desirable that the material has excellent physical properties (for example, a refractory metal or a compound of a refractory metal). For the light-shielding film 14 formed by deposition, it is desirable to select a material having excellent adhesion to the light-transmitting substrate 22 and film formation cost. Therefore, it is desirable to select Ta, Ti, Mo, Cu, TiN, TaN, MoN, NiW or the like as the material of the light shielding film 14. The shape of the light-shielding film 14 is determined by the design of the molding object. For example, if a groove having a width of 2 μm is formed in the photosensitive molding object film 18, it becomes a standing wall having a width of 2 μm. The miniaturization limit of the pattern of the light-shielding film 14 depends on how far the film thickness of the light-shielding film 14 can be reduced. In principle, the pattern can be miniaturized to the atomic level.

成形対象物である感光性成形対象膜18の材料には、ネガ型フォトレジスト、ネガ型感光性ポリイミドなどの光硬化性樹脂が選択される。支持基板17の表面上に塗布される感光性成形対象膜18には異物191、192が混入し得る。   As a material of the photosensitive molding target film 18 that is a molding target, a photo-curable resin such as a negative photoresist or a negative photosensitive polyimide is selected. Foreign substances 191 and 192 may be mixed in the photosensitive molding target film 18 applied on the surface of the support substrate 17.

図2に示すように感光性成形対象膜18にスタンパ1を圧着すると、異物191、192の混入位置によっては、支持基板17とスタンパ1とによって異物191、192が圧せられる。混入位置が異物191のようにスタンパ1の成形面の凹部にはまりこむ位置であれば、異物191の大きさにもよるが、スタンパ1が異物191の反力を受ける可能性は低い。逆に、異物192のようにスタンパ1の成形面の凸部直下において異物が混入しているときには異物の反力がスタンパ1に及ぶことになる。異物の反力がスタンパ1に及ぶとき、異物191、192の硬度や靭性がスタンパ1よりも高ければスタンパ1の成形面が変形し得る。本実施形態では、成形面の凸部が高融点金属の化合物であるNiFeからなるため、スタンパ1の成形面は変形しにくい。   As shown in FIG. 2, when the stamper 1 is pressure-bonded to the photosensitive molding target film 18, the foreign substances 191 and 192 are pressed by the support substrate 17 and the stamper 1 depending on the positions where the foreign substances 191 and 192 are mixed. If the mixing position is a position that fits into the concave portion of the molding surface of the stamper 1 like the foreign material 191, the stamper 1 is less likely to receive the reaction force of the foreign material 191 depending on the size of the foreign material 191. On the contrary, when the foreign matter is mixed just under the convex portion of the molding surface of the stamper 1 like the foreign matter 192, the reaction force of the foreign matter reaches the stamper 1. When the reaction force of the foreign matter reaches the stamper 1, the molding surface of the stamper 1 can be deformed if the hardness and toughness of the foreign matter 191 and 192 are higher than that of the stamper 1. In this embodiment, since the convex part of the molding surface is made of NiFe which is a compound of a refractory metal, the molding surface of the stamper 1 is not easily deformed.

スタンパ1の成形面の裏側から紫外線や可視光線などの光を照射すると、透光性基板22を透過した光によって感光性成形対象膜18が露光される。このとき、遮光性膜14の直下の領域182は遮光性膜14の影になる。すなわち、スタンパ1の成形面の裏側から露光されても、遮光性膜14の直下の領域182は感光しないため硬化しない。感光性成形対象膜18の露光された領域181は感光して硬化する。   When light such as ultraviolet rays or visible rays is irradiated from the back side of the molding surface of the stamper 1, the photosensitive molding target film 18 is exposed by the light transmitted through the translucent substrate 22. At this time, the region 182 immediately below the light shielding film 14 becomes a shadow of the light shielding film 14. That is, even if exposed from the back side of the molding surface of the stamper 1, the region 182 immediately below the light-shielding film 14 is not exposed and is not cured. The exposed region 181 of the photosensitive molding target film 18 is exposed to light and cured.

図3に示すようにスタンパ1を感光性成形対象膜18から引き離すと、スタンパ1の成形面が転写された感光性成形対象膜18の表面が現れる。ただし、未感光領域182は硬化していないため、スタンパ1の成形面が転写された感光性成形対象膜18の表面は固定的なものではない。   As shown in FIG. 3, when the stamper 1 is separated from the photosensitive molding target film 18, the surface of the photosensitive molding target film 18 to which the molding surface of the stamper 1 is transferred appears. However, since the unexposed area 182 is not cured, the surface of the photosensitive film 18 to which the molding surface of the stamper 1 is transferred is not fixed.

感光性成形対象膜18を現像すると未感光領域182が除去され、図4に示すように感光領域181だけが残存し、感光性成形対象膜18に通孔183が形成される。このとき、未感光領域182に混入していた異物192は、未感光領域182とともに除去される。このようにして成形される感光性成形対象膜18は、エッチングやリフトオフの保護膜としても、MEMSの構造体としても用いることができる。   When the photosensitive molding target film 18 is developed, the unexposed area 182 is removed, and only the photosensitive area 181 remains as shown in FIG. 4, and a through hole 183 is formed in the photosensitive molding target film 18. At this time, the foreign matter 192 mixed in the unexposed area 182 is removed together with the unexposed area 182. The photosensitive molding target film 18 thus molded can be used as an etching or lift-off protective film or as a MEMS structure.

・微細成形モールドの製造方法
はじめに図5に示すように犠牲体となる支持基板11の表面上に形成した保護膜10を用いて支持基板11を異方性エッチングし凹部110を形成する。具体的には例えばフォトレジストを支持基板11の表面上に塗布し、プリベークした後に露光・現像し、パターニングする。保護膜10のパターニングに電子ビーム露光を用いてもよい。エッチングは、例えばCF、CH、CHFのいずれかのガスを主成分とする反応性ドライエッチングによって行う。保護膜10と支持基板11とのエッチングレートが1:1に近いエッチングガスを用い、保護膜10もろとも支持基板11をエッチングして保護膜10の開口部断面形状を転写することにより凹部110をテーパー形状にしてもよい。また高精度な機械加工によって支持基板11に凹部110を形成することもできる。尚、支持基板11の材料は後続工程で形成される膜との相性や取り回しの際の機械的強度や犠牲体としての除去のしやすさを考慮して選択される。
-Manufacturing method of a fine mold First, as shown in FIG. 5, the support substrate 11 is anisotropically etched using the protective film 10 formed on the surface of the support substrate 11 used as a sacrifice body, and the recessed part 110 is formed. Specifically, for example, a photoresist is applied on the surface of the support substrate 11, pre-baked, exposed and developed, and then patterned. Electron beam exposure may be used for patterning the protective film 10. Etching is performed, for example, by reactive dry etching mainly using any gas of CF 4 , CH 2 F 2 , and CH 3 F. The etching rate between the protective film 10 and the support substrate 11 is about 1: 1, and the recess 110 is formed by etching the support substrate 11 and transferring the sectional shape of the opening of the protective film 10 together with the protective film 10. It may be tapered. Further, the recess 110 can be formed in the support substrate 11 by high-precision machining. The material of the support substrate 11 is selected in consideration of compatibility with a film formed in a subsequent process, mechanical strength during handling, and ease of removal as a sacrificial body.

次に図6に示すように支持基板11の表面上にシード層12を形成する。例えばCr、Ni、NiFeなどからなる0.5μmの厚さのシード層12をスパッタによって形成する。シード層12と支持基板11との間にTi等からなる密着層を形成してもよい。シード層12は必ずしも必要でないし、最終的に成形面の凸部を形成する膜として残存させることもできるが、シード層12を最終的には除去する本実施形態においては、シード層12と支持基板11とが成形面の凸部を構成する膜である遮光性膜14を成膜し成形するための犠牲体13を構成し、シード層12の表面が犠牲体13の表面の凹部130を構成することになる。シード層12を形成しない場合には、支持基板11の凹部110が犠牲体の表面の凹部を構成することとなる。   Next, as shown in FIG. 6, a seed layer 12 is formed on the surface of the support substrate 11. For example, a seed layer 12 having a thickness of 0.5 μm made of Cr, Ni, NiFe or the like is formed by sputtering. An adhesion layer made of Ti or the like may be formed between the seed layer 12 and the support substrate 11. The seed layer 12 is not necessarily required and can be left as a film that finally forms the convex portion of the molding surface. However, in the present embodiment in which the seed layer 12 is finally removed, the seed layer 12 and the support are supported. A sacrificial body 13 for forming and molding a light-shielding film 14 which is a film constituting the convex portion of the molding surface with the substrate 11 is constituted, and the surface of the seed layer 12 constitutes a concave portion 130 on the surface of the sacrificial body 13. Will do. When the seed layer 12 is not formed, the recess 110 of the support substrate 11 constitutes a recess on the surface of the sacrificial body.

次に図7に示すようにシード層12の表面上に遮光性膜14を形成する。遮光性膜14の成膜条件は、犠牲体13の凹部130の側面と平行な部分の膜厚Tがスタンパ1の成形面の凸部101(図1参照)の対応する部分の幅Wと等しくなるように設定される。遮光性膜14の成膜方法としては、膜厚が均一になる方法が望ましく、例えば電解めっきが望ましい。また成膜された遮光性膜14の表面はスタンパ1の成形面を構成するため、遮光性膜14の表面が平滑になる成膜方法と材料の組み合わせを採用することが望ましく、例えばNiFeを電解めっきで堆積させることによって成膜することが望ましい。電解めっきや無電解めっきで遮光性膜14を形成する場合には、CVDやPVDで形成する場合と比べてスループットがあがり、スタンパ1の製造コストを下げることが出来る。尚、CVDで遮光性膜14を形成する場合には、電解めっきに比べ、高融点金属や高融点金属化合物を成膜しやすくなり、膜厚の均一性が向上する。   Next, as shown in FIG. 7, a light shielding film 14 is formed on the surface of the seed layer 12. The film forming condition of the light-shielding film 14 is that the thickness T of the portion parallel to the side surface of the concave portion 130 of the sacrificial body 13 is equal to the width W of the corresponding portion of the convex portion 101 (see FIG. 1) of the molding surface of the stamper 1. Is set to be As a method for forming the light-shielding film 14, a method in which the film thickness is uniform is desirable, for example, electrolytic plating is desirable. Further, since the surface of the formed light-shielding film 14 constitutes the molding surface of the stamper 1, it is desirable to employ a combination of a film-forming method and a material that makes the surface of the light-shielding film 14 smooth. It is desirable to form a film by depositing by plating. When the light-shielding film 14 is formed by electrolytic plating or electroless plating, the throughput is increased compared to the case of forming by CVD or PVD, and the manufacturing cost of the stamper 1 can be reduced. When the light-shielding film 14 is formed by CVD, it becomes easier to form a refractory metal or a refractory metal compound than in the case of electrolytic plating, and the film thickness uniformity is improved.

このように形成される遮光性膜14の膜厚によって成形面の凸部の幅が決まるところ、遮光性膜14の膜厚を薄くする成膜条件の設定自体にコストが発生するわけではないため、高解像度のフォトレジストを用いたり露光波長を短くすることによって、スタンパ1を製造するためのマザーモールドである犠牲体の表面を微細化する方法に比べると低いコストで微細なスタンパ1を製造できるのである。   Since the width of the convex portion of the molding surface is determined by the film thickness of the light shielding film 14 formed in this way, there is no cost in setting the film forming conditions for reducing the film thickness of the light shielding film 14. By using a high-resolution photoresist or shortening the exposure wavelength, the fine stamper 1 can be manufactured at a lower cost than the method of miniaturizing the surface of the sacrificial body that is a mother mold for manufacturing the stamper 1. It is.

次に図8に示すように犠牲体13の凹部130を埋める犠牲膜15を形成する。犠牲膜15は犠牲膜として除去しやすく、研削または研磨に耐えられる材料であればよく、例えばCu等が選択される。犠牲膜15は電解めっき、無電解めっき、CVD、スパッタ、蒸着、もしくは犠牲体13の上面に金型が配置される状態とした上でMIM(Metal Injection Molding)などによって形成することができる。   Next, as shown in FIG. 8, a sacrificial film 15 that fills the recess 130 of the sacrificial body 13 is formed. The sacrificial film 15 may be any material that can be easily removed as a sacrificial film and can withstand grinding or polishing. For example, Cu or the like is selected. The sacrificial film 15 can be formed by electrolytic plating, electroless plating, CVD, sputtering, vapor deposition, or MIM (Metal Injection Molding) after a mold is placed on the upper surface of the sacrificial body 13.

遮光性膜14と犠牲膜15とを繰り返し積層し、犠牲体13の凹部130の内側に4層以上の遮光性膜を形成してもよい。この場合、遮光性膜と遮光性膜との間に形成される犠牲膜の膜厚が成形面の凸部間の間隔を決めることになる。すなわち、成形面の凸部間の間隔D(図1参照)も犠牲膜の膜厚によって制御可能である。
尚、後続工程での研削および研磨の少なくともいずれか一方によって遮光性膜14が犠牲体13から剥離しないほどに遮光性膜14と犠牲体13との接合強度が高ければ、犠牲膜15は必ずしも必要ではない。
The light-shielding film 14 and the sacrificial film 15 may be repeatedly stacked, and four or more light-shielding films may be formed inside the recess 130 of the sacrificial body 13. In this case, the thickness of the sacrificial film formed between the light-shielding film and the light-shielding film determines the interval between the convex portions of the molding surface. That is, the distance D (see FIG. 1) between the convex portions of the molding surface can also be controlled by the thickness of the sacrificial film.
Note that the sacrificial film 15 is necessarily required if the bonding strength between the light-shielding film 14 and the sacrificial body 13 is high enough that the light-shielding film 14 is not separated from the sacrificial body 13 by at least one of grinding and polishing in the subsequent process. is not.

次に図9に示すように犠牲体13が露出するまで犠牲膜15もろともに遮光性膜14を研削および研磨の少なくともいずれか一方により除去する。その結果、遮光性膜14の少なくとも犠牲体13の凹部130からはみ出している部分が除去される。研削または研磨する深さは、少なくとも犠牲体13が露出すればよく、シード層12の支持基板11の凹部110からはみ出している部分が残存する深さでもよいし、支持基板11の表層まで除去される深さでもよい。成形面の凸部の幅を均一にするため、犠牲体13の凹部130の内側において遮光性膜14の膜厚が均一でない部分が除去される深さまで研削および研磨の少なくともいずれか一方を実施することが望ましい。   Next, as shown in FIG. 9, the light-shielding film 14 together with the sacrificial film 15 is removed by at least one of grinding and polishing until the sacrificial body 13 is exposed. As a result, at least a portion of the light shielding film 14 that protrudes from the recess 130 of the sacrificial body 13 is removed. The depth to be ground or polished should be at least the sacrificial body 13 is exposed, may be a depth at which the portion of the seed layer 12 protruding from the concave portion 110 of the support substrate 11 remains, or is removed to the surface layer of the support substrate 11. It may be deep. In order to make the width of the convex portion of the molding surface uniform, at least one of grinding and polishing is performed to such a depth that a portion where the film thickness of the light-shielding film 14 is not uniform is removed inside the concave portion 130 of the sacrificial body 13. It is desirable.

次に図10に示すように研削および研磨の少なくともいずれか一方によって平坦化された面に透光性基板22を接合する。例えば低融点ガラスからなる透光性基板22を犠牲体13と遮光性膜14の端面140と犠牲膜15とで構成される平坦面に熱圧着する。接合強度については、遮光性膜14と透光性基板22との接合強度が高ければよく、透光性基板22と犠牲体13との接合強度は問題にならない。透光性基板22の接合には熱圧着以外の直接接合を用いてもよい。直接接合を用いることにより、透光性基板22と遮光性膜14との接合強度が高くなるため、スタンパ1の強度が向上する。また直接接合では透光性基板22と遮光性膜14との間に接着層が形成されないため、温度変化などによる成形面の変形が起こらない。
尚、透光性基板22は、犠牲体13と遮光性膜14の端面140と犠牲膜15とで構成される平坦面上に透光性材料を堆積させることによって形成してもよい。ただし、バルク材料から透光性基板22を構成した方が、残留応力や製造コストの点においては有利である。
Next, as shown in FIG. 10, a translucent substrate 22 is bonded to the surface flattened by at least one of grinding and polishing. For example, the translucent substrate 22 made of low-melting glass is thermocompression bonded to a flat surface constituted by the sacrificial body 13, the end face 140 of the light-shielding film 14, and the sacrificial film 15. As for the bonding strength, it is only necessary that the bonding strength between the light-shielding film 14 and the translucent substrate 22 is high, and the bonding strength between the translucent substrate 22 and the sacrificial body 13 is not a problem. Direct bonding other than thermocompression bonding may be used for bonding the translucent substrate 22. By using the direct bonding, the bonding strength between the translucent substrate 22 and the light-shielding film 14 is increased, so that the strength of the stamper 1 is improved. In direct bonding, an adhesive layer is not formed between the light-transmitting substrate 22 and the light-shielding film 14, so that the molding surface is not deformed due to a temperature change or the like.
The translucent substrate 22 may be formed by depositing a translucent material on a flat surface constituted by the sacrificial body 13, the end face 140 of the light-shielding film 14, and the sacrificial film 15. However, it is more advantageous in terms of residual stress and manufacturing cost to construct the translucent substrate 22 from a bulk material.

次に図11に示すように犠牲体13の裏面(すなわち遮光性膜14を形成した面の裏側)から犠牲体13を研削および研磨の少なくとも一方により除去し、遮光性膜14の犠牲体13の凹部の側面に平行な部分だけを残存させ、遮光性膜14のその他の部分を除去する。成形面の凸部の幅を均一にするため、犠牲体13の凹部の内側において遮光性膜14の膜厚が均一でない部分が除去される深さまで研削および研磨の少なくとも一方を実施することが望ましい。   Next, as shown in FIG. 11, the sacrificial body 13 is removed from at least one of grinding and polishing from the back surface of the sacrificial body 13 (that is, the back side of the surface on which the light-shielding film 14 is formed). Only the part parallel to the side surface of the recess is left, and the other part of the light-shielding film 14 is removed. In order to make the width of the convex part of the molding surface uniform, it is desirable to carry out at least one of grinding and polishing to a depth at which the non-uniform thickness of the light-shielding film 14 is removed inside the concave part of the sacrificial body 13. .

次に図12に示すように犠牲膜15の残存部を選択的に除去する。例えばCuからなる犠牲膜15をエルメックス社製のエンストリップC(登録商標)によってウェットエッチングして除去する。   Next, as shown in FIG. 12, the remaining portion of the sacrificial film 15 is selectively removed. For example, the sacrificial film 15 made of Cu is removed by wet etching using Enstrip C (registered trademark) manufactured by Elmex Corporation.

次に図13に示すように支持基板11の残存部をエッチングにより選択的に除去する。犠牲膜15と支持基板11とが同じ材料からなる場合、犠牲膜15と支持基板11とは同時に除去される。   Next, as shown in FIG. 13, the remaining portion of the support substrate 11 is selectively removed by etching. When the sacrificial film 15 and the support substrate 11 are made of the same material, the sacrificial film 15 and the support substrate 11 are removed simultaneously.

次にシード層12をエッチングにより除去すると、図1に示すスタンパ1が完成する。具体的には例えば、Crからなるシード層12を硝酸第二セリウムアンモニウムによってウェットエッチングして除去する。
尚、本実施形態ではシード層12を犠牲体として除去するが、シード層12が残存した図13に示す状態を完成状態とし、シード層12と遮光性膜14とによって成形面の凸部を構成してもよい。この場合、透光性基板22とシード層12の接合強度はより高いことが好ましい。
Next, when the seed layer 12 is removed by etching, the stamper 1 shown in FIG. 1 is completed. Specifically, for example, the seed layer 12 made of Cr is removed by wet etching with ceric ammonium nitrate.
In this embodiment, the seed layer 12 is removed as a sacrificial body, but the state shown in FIG. 13 where the seed layer 12 remains is a completed state, and the seed layer 12 and the light-shielding film 14 constitute a convex portion of the molding surface. May be. In this case, the bonding strength between the translucent substrate 22 and the seed layer 12 is preferably higher.

(第二実施形態)
図14および図15は、スタンパ1の製造方法の第二実施形態を示す断面図である。
本実施形態では、犠牲体21を図14に示すように支持基板11と犠牲膜20または図15に示すように支持基板11と犠牲膜20とシード層12によって構成する。すなわち、シード層12を除去してスタンパ1を完成させる場合には、犠牲体21の凹凸の凸部は犠牲膜20によって構成される。犠牲膜20は、フォトリソグラフィと、電解めっきまたは無電解めっきまたはエッチングとによってパターニングされるCuなどからなる。支持基板11が絶縁材料からなる場合、湿式めっきによって犠牲膜20を形成するために、犠牲膜20を形成する前に支持基板11の表面上にシード層を形成してもよい。
犠牲体21を形成した後は、第一実施形態と同じ工程を実施することによってスタンパ1を製造することが出来る。
(Second embodiment)
14 and 15 are cross-sectional views showing a second embodiment of the method for manufacturing the stamper 1.
In this embodiment, the sacrificial body 21 is constituted by the support substrate 11 and the sacrificial film 20 as shown in FIG. 14 or the support substrate 11, the sacrificial film 20 and the seed layer 12 as shown in FIG. That is, when the stamper 1 is completed by removing the seed layer 12, the uneven protrusions of the sacrificial body 21 are constituted by the sacrificial film 20. The sacrificial film 20 is made of Cu or the like patterned by photolithography and electrolytic plating, electroless plating, or etching. When the support substrate 11 is made of an insulating material, a seed layer may be formed on the surface of the support substrate 11 before forming the sacrificial film 20 in order to form the sacrificial film 20 by wet plating.
After the sacrificial body 21 is formed, the stamper 1 can be manufactured by performing the same process as in the first embodiment.

(他の実施形態)
尚、本発明は、上記した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。例えば、上記実施形態で示した材質や寸法や成膜方法やパターン転写方法はあくまで例示であるし、当業者であれば自明である工程の追加や削除や工程順序の入れ替えについては説明が省略されている。
(Other embodiments)
It should be noted that the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made without departing from the gist of the present invention. For example, the materials, dimensions, film forming methods, and pattern transfer methods shown in the above embodiments are merely examples, and descriptions of addition and deletion of processes and replacement of process orders that are obvious to those skilled in the art are omitted. ing.

本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第一実施形態にかかる断面図である。It is sectional drawing concerning 1st embodiment of this invention. 本発明の第二実施形態にかかる断面図である。It is sectional drawing concerning 2nd embodiment of this invention. 本発明の第二実施形態にかかる断面図である。It is sectional drawing concerning 2nd embodiment of this invention.

符号の説明Explanation of symbols

1:スタンパ、10:保護膜、11:支持基板、12:シード層、13:犠牲体、14:遮光性膜、15:透光性基板、15:犠牲膜、17:支持基板、18:感光性成形対象膜、20:犠牲膜、21:犠牲体、101:凸部、110:凹部、130:凹部、140:端面、181:感光領域、182:未感光領域、183:通孔、191:異物、192:異物 1: Stamper, 10: Protective film, 11: Support substrate, 12: Seed layer, 13: Sacrificial body, 14: Light-shielding film, 15: Translucent substrate, 15: Sacrificial film, 17: Support substrate, 18: Photosensitive Film: 20: sacrificial film, 21: sacrificial body, 101: convex part, 110: concave part, 130: concave part, 140: end face, 181: photosensitive area, 182: unexposed area, 183: through hole, 191: Foreign object, 192: Foreign object

Claims (6)

犠牲体の凹凸を有する表面上に成形面の凸部を形成するための遮光性膜を前記凹凸の凹部の側面と平行な部分の膜厚が前記凸部の対応する部分の幅に等しくなるように形成し、
前記遮光性膜の前記凹凸の前記凹部の側面と平行な部分以外を除去し、
前記遮光性膜の残存部の端面に接合された透光性基板を形成する、
ことを含む微細成形モールドの製造方法。
The light-shielding film for forming the convex portion of the molding surface on the surface of the sacrificial body having the unevenness is such that the film thickness of the portion parallel to the side surface of the concave portion of the unevenness is equal to the width of the corresponding portion of the convex portion. Formed into
Remove the portion of the light-shielding film other than the portion parallel to the side surface of the recess,
Forming a translucent substrate bonded to the end face of the remaining part of the light-shielding film;
The manufacturing method of the fine mold which contains this.
前記遮光性膜の表面上に前記凹凸の前記凹部を埋める犠牲膜を形成し、
前記犠牲膜もろともに前記遮光性膜の前記凹凸の前記凹部の側面と平行な部分以外を研削および研磨の少なくともいずれか一方により除去する、
ことを含む請求項1に記載の微細成形モールドの製造方法。
Forming a sacrificial film on the surface of the light-shielding film to fill the recesses of the irregularities;
Both the sacrificial film and the unevenness of the light-shielding film are removed by at least one of grinding and polishing other than the portion parallel to the side surface of the recess,
The manufacturing method of the fine shaping | molding mold of Claim 1 including this.
前記遮光性膜の残存部の端面に前記透光性基板を接合する、
ことを含む請求項1または2に記載の微細成形モールドの製造方法。
Bonding the translucent substrate to the end face of the remaining part of the light-shielding film;
The manufacturing method of the fine shaping | molding mold of Claim 1 or 2 including this.
前記遮光性膜の残存部の端面に前記透光性基板を直接接合する、
ことを含む請求項3に記載の微細成形モールドの製造方法。
Bonding the light-transmitting substrate directly to the end face of the remaining part of the light-shielding film;
The manufacturing method of the fine shaping | molding mold of Claim 3 including this.
前記遮光性膜は高融点金属または高融点金属の化合物からなる、
請求項1から4のいずれか一項に記載の微細成形モールドの製造方法。
The light-shielding film is made of a refractory metal or a refractory metal compound,
The manufacturing method of the fine mold according to any one of claims 1 to 4.
前記遮光性膜を湿式めっきにより形成する、
ことを含む請求項1から5のいずれか一項に記載の微細成形モールドの製造方法。
Forming the light-shielding film by wet plating;
The manufacturing method of the fine shaping | molding mold as described in any one of Claim 1 to 5 including this.
JP2007002144A 2007-01-10 2007-01-10 Method for producing minute molding mold Withdrawn JP2008168477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007002144A JP2008168477A (en) 2007-01-10 2007-01-10 Method for producing minute molding mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007002144A JP2008168477A (en) 2007-01-10 2007-01-10 Method for producing minute molding mold

Publications (1)

Publication Number Publication Date
JP2008168477A true JP2008168477A (en) 2008-07-24

Family

ID=39697030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007002144A Withdrawn JP2008168477A (en) 2007-01-10 2007-01-10 Method for producing minute molding mold

Country Status (1)

Country Link
JP (1) JP2008168477A (en)

Similar Documents

Publication Publication Date Title
JP4281773B2 (en) Fine molding mold and method for regenerating fine molding mold
JP2013168604A (en) Manufacturing method of mold for nanoimprint
KR20100097100A (en) Method of creating a template employing a lift-off process
JP2008126450A (en) Mold, manufacturing method therefor and magnetic recording medium
JP2010080670A (en) Microstructure and method of manufacturing the same
JP4739729B2 (en) Method for manufacturing member having antireflection structure
JP2008168465A (en) Minute molding mold and its manufacturing method
JP2006235195A (en) Method for manufacturing member with antireflective structure
JP2006317807A (en) Member equipped with antireflection structure and manufacturing method of the member
JP6241135B2 (en) Method for producing imprint mold
JP2019087678A (en) Functional substrate and method of manufacturing the same, and imprint mold
JP2008168477A (en) Method for producing minute molding mold
JP2006243633A (en) Manufacturing method of member having antireflection structure body
JP4820871B2 (en) Antireflection structure and manufacturing method thereof
JP2007219006A (en) Pattern forming method and optical device
JP6493487B2 (en) Imprint mold
JP4463775B2 (en) Mask for X-ray lithography, method for producing the same, method for producing an antireflection structure using the same, method for producing a mold for producing an optical element having an antireflection structure, and glass having an antireflection structure Manufacturing method of molded article or resin molded article
JP6819172B2 (en) Manufacturing method of uneven structure, base material for manufacturing imprint mold, and manufacturing method of imprint mold
JP5066867B2 (en) Manufacturing method of fine mold
JP6394112B2 (en) Template manufacturing method and template
JP4382392B2 (en) Manufacturing method of mold
JP2010052398A (en) Mold, method for manufacturing the same, and method for manufacturing optical element
JP6607293B2 (en) template
JP4108722B2 (en) Optical element and optical element manufacturing method
JP2007333882A (en) Method of manufacturing antireflection structural body, molding die using antireflection structural body and method of manufacturing glass formed article or resin molded article

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406