JP2008164983A - Liquid crystal display element - Google Patents

Liquid crystal display element Download PDF

Info

Publication number
JP2008164983A
JP2008164983A JP2006354997A JP2006354997A JP2008164983A JP 2008164983 A JP2008164983 A JP 2008164983A JP 2006354997 A JP2006354997 A JP 2006354997A JP 2006354997 A JP2006354997 A JP 2006354997A JP 2008164983 A JP2008164983 A JP 2008164983A
Authority
JP
Japan
Prior art keywords
electrode
liquid crystal
alignment
pixel
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006354997A
Other languages
Japanese (ja)
Other versions
JP4902345B2 (en
Inventor
Yuji Hayata
祐二 早田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Display Corp
Original Assignee
Kyocera Display Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Display Corp filed Critical Kyocera Display Corp
Priority to JP2006354997A priority Critical patent/JP4902345B2/en
Publication of JP2008164983A publication Critical patent/JP2008164983A/en
Application granted granted Critical
Publication of JP4902345B2 publication Critical patent/JP4902345B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13373Disclination line; Reverse tilt
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Geometry (AREA)
  • Spectroscopy & Molecular Physics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a VA type liquid crystal display element wherein arrangement of a liquid crystal can be made more uniform by reducing alignment disorder upon voltage application and luminance in a pixel can be enhanced. <P>SOLUTION: In each F electrode 121, a slit 121A having a width b is formed in a direction orthogonal to a longitudinal direction of the F electrode 121. In each F electrode 121, a region 121B having a width c protruding from a pixel region (a part region where the F electrode 121 and an R electrode 141 are superposed on each other) exists on an alignment treatment direction side of the pixel region. Since the region 121B exists, the width b of the slit 121A is made narrower than an interline width a. In the R electrode 141 whose longitudinal direction is orthogonal to the alignment treatment direction, a slit 141A having a width d equal to the interline width a is formed in a direction orthogonal to the longitudinal direction of the R electrode 141. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、液晶の初期配向が垂直配向である液晶表示素子に関し、特に、配向乱れを減少させることができる液晶表示素子に関する。   The present invention relates to a liquid crystal display element in which the initial alignment of liquid crystal is vertical alignment, and more particularly to a liquid crystal display element that can reduce alignment disorder.

液晶表示素子として、電圧が印加されないときの液晶層における液晶(液晶分子)の配向(初期配向)が基板面に対して略垂直である垂直配向(VA:Vertical Alignment )である液晶表示素子(VA型の液晶表示素子)がある。VA型の液晶表示素子では、誘電異方性が負である液晶が用いられる。そして、液晶層に電圧を印加することによって、液晶を、寝た状態(基板面に対して水平に近づく状態)にさせる(例えば、特許文献1参照。)。VA型の液晶表示素子は、TN(Twisted Nematic )型の液晶表示素子やSTN(Super Twisted Nematic )型の液晶表示素子と比較すると、応答性が高まり、高コントラストの表示を実現できる(例えば、特許文献2参照。)。   As a liquid crystal display element, a liquid crystal display element (VA) in which the alignment (initial alignment) of liquid crystals (liquid crystal molecules) in the liquid crystal layer when no voltage is applied is substantially vertical to the substrate surface (VA: Vertical Alignment). Type liquid crystal display element). In the VA liquid crystal display element, a liquid crystal having negative dielectric anisotropy is used. Then, by applying a voltage to the liquid crystal layer, the liquid crystal is brought into a lying state (a state in which the liquid crystal layer is almost horizontal with respect to the substrate surface) (see, for example, Patent Document 1). The VA type liquid crystal display element has higher responsiveness and can realize a high contrast display compared with a TN (Twisted Nematic) type liquid crystal display element or an STN (Super Twisted Nematic) type liquid crystal display element (for example, patents). Reference 2).

電圧が印加されないときの液晶の配向が基板に対して完全に垂直である場合には、電圧が印加されたときの液晶が傾く方向を規定することができない。その結果、液晶の配向が一様にならず表示品位が低下する。よって、何らかの方法で、プレチルトを付けるか、電極形状を工夫して液晶が傾く方向を規定する必要がある。プレチルトを付ける方法または電極形状を工夫して液晶が傾く方向を規定する方法として、印加電圧による電界方向を基板面に対して斜めにする斜め電界法、電極等にリブ構造を設けるリブ法、酸化珪素(SiO)を基板に斜めに蒸着する斜め蒸着法等がある。また、垂直配向製の配向膜にラビング処理を施すことによって液晶の配向方向を規定することもできる。 When the orientation of the liquid crystal when no voltage is applied is completely perpendicular to the substrate, the direction in which the liquid crystal tilts when the voltage is applied cannot be defined. As a result, the alignment of the liquid crystal is not uniform and the display quality is lowered. Therefore, it is necessary to define the direction in which the liquid crystal tilts by applying a pretilt by some method or by devising the electrode shape. As a method of pre-tilting or devising the electrode shape to define the direction in which the liquid crystal tilts, the oblique electric field method in which the electric field direction by the applied voltage is oblique to the substrate surface, the rib method in which a rib structure is provided on the electrode, etc., oxidation There is an oblique deposition method in which silicon (SiO 2 ) is obliquely deposited on a substrate. In addition, the alignment direction of the liquid crystal can be defined by performing a rubbing treatment on the alignment film made of vertical alignment.

また、液晶の配向方向を規定する方法として、電極にスリットを形成する方法がある(例えば、特許文献3参照。)。   As a method for defining the alignment direction of the liquid crystal, there is a method of forming a slit in an electrode (see, for example, Patent Document 3).

特開2003−207782号公報(段落0002−0004)JP 2003-207782 A (paragraphs 0002-0004) 特開2006−11362号公報(段落0014)JP 2006-11362 A (paragraph 0014) 特開2005−115143号公報(段落0004,0010)Japanese Patent Laying-Open No. 2005-115143 (paragraphs 0004 and 0010)

図18(A)は、一般的なVA型の液晶表示素子の構成例を示す分解斜視図である。液晶表示素子1は、ガラス等の2枚の基板(図示せず)間に形成され、視認側(前側)から前側(F)偏光板11、多数の電極からなるF電極部12、液晶層13、多数の電極からなる後側(R)電極部14およびR偏光板15が積層された構造を有する。   FIG. 18A is an exploded perspective view illustrating a configuration example of a general VA liquid crystal display element. The liquid crystal display element 1 is formed between two substrates (not shown) such as glass, and is viewed from the front side (front side) to the front side (F) polarizing plate 11, an F electrode portion 12 composed of a large number of electrodes, and a liquid crystal layer 13. The rear (R) electrode portion 14 and the R polarizing plate 15 made of a large number of electrodes are laminated.

図18(B)は、F電極部12およびR電極部14のみを前側から眺めた場合の平面図である。図18(B)に示すように、F電極部12における複数のF電極121とR電極部14における複数のR電極141とが交差するように配されている。なお、図18(B)に示す例では、F電極121は横方向に伸び、R電極141は縦方向に伸びている。また、液晶表示素子1は、TFT(Thin Film Transistor)などの能動素子を有していないパッシブ型の液晶表示素子である。   FIG. 18B is a plan view when only the F electrode portion 12 and the R electrode portion 14 are viewed from the front side. As shown in FIG. 18B, the plurality of F electrodes 121 in the F electrode portion 12 and the plurality of R electrodes 141 in the R electrode portion 14 are arranged to intersect each other. In the example shown in FIG. 18B, the F electrode 121 extends in the horizontal direction, and the R electrode 141 extends in the vertical direction. The liquid crystal display element 1 is a passive liquid crystal display element that does not have an active element such as a TFT (Thin Film Transistor).

図19は、液晶層13においてF電極121とR電極部14とが交差する領域に形成される1つの画素を示す平面図である。以下、基板の平面に直交する方向をZ方向とし、F電極121が伸びる方向すなわちF電極121の長手方向をX方向とし、R電極141が伸びる方向すなわちR電極141の長手方向をY方向とする。図19には、電圧非印加時には、液晶層13における液晶が垂直配向していることが示されている。F偏光板11とR偏光板15とは、各偏光板の吸収軸のそれぞれが直交するように配置されているので、図19に示す状態では、黒表示が視認される。   FIG. 19 is a plan view showing one pixel formed in a region where the F electrode 121 and the R electrode portion 14 intersect in the liquid crystal layer 13. Hereinafter, the direction orthogonal to the plane of the substrate is the Z direction, the direction in which the F electrode 121 extends, that is, the longitudinal direction of the F electrode 121 is the X direction, and the direction in which the R electrode 141 extends, that is, the longitudinal direction of the R electrode 141 is the Y direction. . FIG. 19 shows that the liquid crystal in the liquid crystal layer 13 is vertically aligned when no voltage is applied. Since the F polarizing plate 11 and the R polarizing plate 15 are arranged so that the absorption axes of the respective polarizing plates are orthogonal to each other, black display is visually recognized in the state shown in FIG.

液晶層13に電圧を印加すると液晶は傾斜し、液晶の複屈折性により透過率が上昇する。液晶層13への電圧印加時に液晶の配列を均一にさせるように液晶層13に斜め電界を生じさせるのであるが、上記の特許文献1にも記載されているように(特許文献1の段落0004−0005参照)、斜め電界によって全体としては均一な配列が得られるが、局所的に配向の不均一(配向乱れ)が生ずることが知られている。配向乱れが生じている部分では透過率が低下する。   When a voltage is applied to the liquid crystal layer 13, the liquid crystal is tilted, and the transmittance increases due to the birefringence of the liquid crystal. An oblique electric field is generated in the liquid crystal layer 13 so as to make the alignment of the liquid crystal uniform when a voltage is applied to the liquid crystal layer 13, but as described in the above-mentioned Patent Document 1 (paragraph 0004 of Patent Document 1). -0005), it is known that a uniform arrangement as a whole can be obtained by an oblique electric field, but locally non-uniform alignment (alignment disorder) occurs. The transmittance is lowered at the portion where the alignment is disturbed.

図20は、電圧印加時の配向乱れを説明するための画素の模式図である。図20(A)には、液晶層13のZ方向における中央部における基板面と平行な面での1画素内の液晶の配列方向の例が示されている。図20において、白抜きの矢印の向きが、液晶の配向方向を示している。図20(B)には、1画素のY方向の断面における液晶の配列方向の例が示されている。図20(B)における右側が、図20(A)における上側に相当する。図20(C)には、1画素のX方向の断面における液晶の配列方向の例が示されている。以下、図20(A)に示されたものをZ断面、図20(B)に示されたものをY断面、図20(C)に示されたものをX断面という。   FIG. 20 is a schematic diagram of a pixel for explaining alignment disturbance at the time of voltage application. FIG. 20A shows an example of the alignment direction of liquid crystals in one pixel on a plane parallel to the substrate surface in the central portion of the liquid crystal layer 13 in the Z direction. In FIG. 20, the direction of the white arrow indicates the alignment direction of the liquid crystal. FIG. 20B shows an example of the alignment direction of the liquid crystals in the cross section of one pixel in the Y direction. The right side in FIG. 20B corresponds to the upper side in FIG. FIG. 20C shows an example of the alignment direction of the liquid crystals in the cross section of one pixel in the X direction. Hereinafter, what is shown in FIG. 20A is called a Z cross section, what is shown in FIG. 20B is a Y cross section, and what is shown in FIG. 20C is an X cross section.

Z断面において、図20(A)における上側、下側および右側において、配向乱れが生じている(図20(D)参照)。特に、液晶層13のZ方向の中央部において、画素における上側部分および下側部分(画素内の上側部分および下側部分)では、液晶は、R電極141の斜め電界の影響を受けて、R電極部14の方向に傾こうとする配向乱れを生じ、偏光板の吸収軸またはそれに直交する方向に近づくので透過率が低下する。図20において、破線は、電圧非印加時の透過率に対する、電圧印加時の液晶表示素子1の画素内の相対的な透過率を示す。   In the Z cross section, alignment disorder occurs on the upper side, the lower side, and the right side in FIG. 20A (see FIG. 20D). In particular, in the central portion of the liquid crystal layer 13 in the Z direction, the liquid crystal is affected by the oblique electric field of the R electrode 141 in the upper and lower portions (upper and lower portions in the pixel) of the pixel, and R An alignment disorder that tends to incline in the direction of the electrode portion 14 occurs, and the transmittance decreases because it approaches the absorption axis of the polarizing plate or a direction perpendicular thereto. In FIG. 20, a broken line indicates a relative transmittance in the pixel of the liquid crystal display element 1 when a voltage is applied with respect to a transmittance when no voltage is applied.

また、画素における右側部分(画素内の右側部分)では、液晶は、F電極121の斜め電界の影響を受けて、液晶が本来傾くべき方向とは逆方向に傾こうとする配向乱れを生じて透過率が低下する。なお、本明細書では、液晶が逆方向に傾いている領域をドメインという。また、配向乱れが生じている領域には、ドメイン(この例では、右側部分)と、傾きの程度が周囲とは異なる領域(この例では、上側部分および下側部分)とがある。   Further, in the right part of the pixel (the right part in the pixel), the liquid crystal is affected by the oblique electric field of the F electrode 121, and alignment disorder is caused to tilt in the direction opposite to the direction in which the liquid crystal should originally tilt. The transmittance decreases. In this specification, a region where the liquid crystal is inclined in the reverse direction is referred to as a domain. In addition, the region in which the alignment is disturbed includes a domain (in this example, the right portion) and a region (in this example, an upper portion and a lower portion) in which the degree of inclination is different from the surroundings.

以上のように、VA型の液晶表示素子では、斜め電界によって局所的に配向乱れが生じ、配向乱れが生じた領域では透過率が低下するので、コントラストが低下するという課題がある。   As described above, the VA liquid crystal display element has a problem that the alignment is locally disturbed by the oblique electric field, and the transmittance is lowered in the region where the alignment is disturbed, so that the contrast is lowered.

そこで、本発明は、電圧印加時の配向乱れを低減して液晶の配列をより均一にでき、画素内の明るさを向上させることができるVA型の液晶表示素子を提供することを目的とする。   Accordingly, an object of the present invention is to provide a VA-type liquid crystal display element capable of reducing alignment disorder when a voltage is applied, making liquid crystal alignment more uniform, and improving the brightness in a pixel. .

本発明による液晶表示素子は、表示領域における横方向に配置された複数の第1電極と、第1電極と交差するように表示領域における縦方向に配置された複数の第2電極と、第1電極と第2電極との間に設けられ電圧無印加時の液晶の配向が垂直配向である液晶層とを備えた液晶表示素子であって、第1電極と第2電極とのうち、長手方向が配向処理方向と直交する電極に、電極間距離と同じ幅のスリットが形成され、第1電極と第2電極とのうち、長手方向が配向処理方向と同じである電極に、電極間距離よりも狭い幅のスリットが形成されていることを特徴とする。なお、同じ幅とは、許容寸法を含んだ同等の幅のことである。   The liquid crystal display element according to the present invention includes a plurality of first electrodes arranged in the horizontal direction in the display area, a plurality of second electrodes arranged in the vertical direction in the display area so as to intersect the first electrode, A liquid crystal display element comprising a liquid crystal layer provided between an electrode and a second electrode and having a vertical alignment of liquid crystal when no voltage is applied, the longitudinal direction of the first electrode and the second electrode A slit having the same width as the inter-electrode distance is formed in the electrode orthogonal to the alignment treatment direction. Of the first electrode and the second electrode, the electrode having the same longitudinal direction as the alignment treatment direction is Also, a narrow slit is formed. Note that the same width means an equivalent width including allowable dimensions.

複数の第1電極上に形成された配向膜と複数の第2電極上に形成された配向膜とに、反平行ラビング処理が施されていることが好ましい。   It is preferable that anti-parallel rubbing treatment is performed on the alignment film formed on the plurality of first electrodes and the alignment film formed on the plurality of second electrodes.

配向処理方向は、第1電極の長手方向または第2電極の長手方向と同じであることが好ましい。   The alignment treatment direction is preferably the same as the longitudinal direction of the first electrode or the longitudinal direction of the second electrode.

電極間距離よりも狭い幅のスリットが形成されている電極における配向処理方向側が、他方の電極(例えば、F電極121に対するR電極141)との重複領域に対して突出するように形成されていることが好ましい。   The alignment treatment direction side of the electrode in which the slit having a width narrower than the distance between the electrodes is formed is formed so as to protrude from the overlapping region with the other electrode (for example, the R electrode 141 with respect to the F electrode 121). It is preferable.

本発明によれば、VA型の液晶表示素子において、斜め電界に起因する配向乱れを低減して液晶の配向をより均一にすることができ、画素の明るさが向上して表示品位を向上させることができる。   According to the present invention, in the VA type liquid crystal display element, the alignment disorder caused by the oblique electric field can be reduced and the alignment of the liquid crystal can be made more uniform, and the brightness of the pixel is improved and the display quality is improved. be able to.

以下、本発明の実施の形態を図面を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明による液晶表示素子の全体的な構成は、図18(A)に示された構成と同じである。すなわち、液晶表示素子1は、ガラス等の2枚の基板間に形成され、視認側(前側)から前側(F)偏光板11、F電極部12、液晶層13、後側(R)電極部14およびR偏光板15が積層された構造である。図18(A)では、基板は記載省略されている。   The overall configuration of the liquid crystal display element according to the present invention is the same as the configuration shown in FIG. That is, the liquid crystal display element 1 is formed between two substrates, such as glass, from the viewing side (front side) to the front side (F) polarizing plate 11, F electrode part 12, liquid crystal layer 13, and rear side (R) electrode part. 14 and the R polarizing plate 15 are laminated. In FIG. 18A, the substrate is not shown.

図1(A)は、本発明による液晶表示素子におけるF電極部12を示す平面図である。F電極部12には、横方向に伸びる短冊状の複数のF電極121が設けられているが、図1(A)には、F電極部12における3つのF電極121の一部が示されている。実際には、それぞれのF電極121は、図1(A)における左右方向にさらに伸びている。各F電極121の間(線間)の幅すなわち電極間距離はaである。以下、電極間距離を、単に「線間」ということがある。図1(B)は、本発明による液晶表示素子におけるR電極部14を示す平面図である。図1(B)には、R電極部14における3つのR電極141の一部が示されている。実際には、それぞれのR電極141は、図1(B)における上下方向にさらに伸びている。各R電極141の線間は、各F電極121の線間と同じaである。   FIG. 1A is a plan view showing the F electrode portion 12 in the liquid crystal display element according to the present invention. The F electrode portion 12 is provided with a plurality of strip-shaped F electrodes 121 extending in the horizontal direction. FIG. 1A shows a part of the three F electrodes 121 in the F electrode portion 12. ing. Actually, each F electrode 121 further extends in the left-right direction in FIG. The width between the F electrodes 121 (between lines), that is, the distance between the electrodes is a. Hereinafter, the distance between the electrodes may be simply referred to as “between lines”. FIG. 1B is a plan view showing the R electrode portion 14 in the liquid crystal display element according to the present invention. FIG. 1B shows a part of the three R electrodes 141 in the R electrode portion 14. Actually, each R electrode 141 further extends in the vertical direction in FIG. The distance between the lines of each R electrode 141 is the same as the distance between the lines of each F electrode 121.

また、F電極部12の液晶層13側およびR電極部14の液晶層13側に垂直性の配向膜が形成され、F側の配向膜には、図1(A)においてF電極部12の長手方向で左側から右側に向かう方向にラビング処理(配向処理)が施されている。また、R側の配向膜には、図1(A)においてF電極部12の長手方向で右側から左側に向かう方向にラビング処理(配向処理)が施されている。すなわち、F側の配向膜およびR側の配向膜に対して一方向にアンチパラレル(反平行)ラビング処理が施されている。また、液晶は、図1において、電圧印加時に左側から右側に倒れるような処理(例えば、プレチルトの形成)が施されている。   In addition, a vertical alignment film is formed on the liquid crystal layer 13 side of the F electrode portion 12 and the liquid crystal layer 13 side of the R electrode portion 14, and the F-side alignment film has the F electrode portion 12 in FIG. A rubbing process (orientation process) is performed in the longitudinal direction from the left side to the right side. In addition, the R-side alignment film is subjected to a rubbing process (alignment process) in a direction from the right side to the left side in the longitudinal direction of the F electrode portion 12 in FIG. That is, the anti-parallel (anti-parallel) rubbing process is applied to the F-side alignment film and the R-side alignment film in one direction. Further, in FIG. 1, the liquid crystal is subjected to processing (for example, formation of a pretilt) so as to tilt from the left side to the right side when a voltage is applied.

図1(C)は、F電極部12およびR電極部14のみを前側から眺めた場合の平面図である。表示領域(視認可能な領域)において、図1(C)に示すように、複数のF電極121と複数のR電極141とは交差するように配されている。なお、液晶表示素子1は、TFTなどの能動素子を有していないパッシブ型の液晶表示素子であり、例えば、F電極部12を信号電極としR電極を走査電極として線順次に駆動される。液晶表示素子1を透過型の液晶表示パネルに適用する場合には、例えば、R偏光板15の裏面(後側)にバックライトが設置される。   FIG. 1C is a plan view when only the F electrode portion 12 and the R electrode portion 14 are viewed from the front side. In the display area (viewable area), as shown in FIG. 1C, the plurality of F electrodes 121 and the plurality of R electrodes 141 are arranged to intersect each other. The liquid crystal display element 1 is a passive liquid crystal display element that does not have an active element such as a TFT, and is driven line-sequentially using, for example, the F electrode portion 12 as a signal electrode and the R electrode as a scanning electrode. When the liquid crystal display element 1 is applied to a transmissive liquid crystal display panel, for example, a backlight is installed on the back surface (rear side) of the R polarizing plate 15.

図1に示すように、それぞれのF電極121には、F電極121の長手方向に直交する方向に、幅bのスリット121Aが形成されている。また、F電極121は、画素(F電極121とR電極141とが重なる部分)領域の配向処理方向側(図1(A)において、左側)には、画素領域を越える幅cの領域(以下、画素超過領域という。)121Bが存在する。画素超過領域121Bが存在することによって、スリット121Aの幅bは、線間aよりも小さくなる。   As shown in FIG. 1, a slit 121 </ b> A having a width b is formed in each F electrode 121 in a direction orthogonal to the longitudinal direction of the F electrode 121. In addition, the F electrode 121 is a region (hereinafter, referred to as a width c) exceeding the pixel region on the alignment processing direction side (left side in FIG. 1A) of the pixel (a portion where the F electrode 121 and the R electrode 141 overlap). , Referred to as an over-pixel region) 121B exists. Due to the existence of the pixel excess region 121B, the width b of the slit 121A is smaller than the line a.

長手方向が配向処理方向と直交するR電極141には、R電極141の長手方向に直交する方向に、線間aと同じ幅(詳しくは、許容寸法を含む同等の幅)dのスリット141Aが形成されている。   The R electrode 141 whose longitudinal direction is orthogonal to the alignment treatment direction has a slit 141A having the same width as the line a (specifically, an equivalent width including allowable dimensions) d in the direction orthogonal to the longitudinal direction of the R electrode 141. Is formed.

F電極121とR電極141とに、上記のようなスリット121Aおよび141Aを設ける理由を、以下に説明する。   The reason why the slits 121A and 141A as described above are provided in the F electrode 121 and the R electrode 141 will be described below.

図2は、F電極121およびR電極141の線幅が180μmであって線間を20μmとし(図2(D)参照)、液晶層13に3.0Vの電圧(駆動電圧)を印加した場合の1つの画素における液晶の配列方向を示す模式図である。図2(A)には、液晶層13のZ断面が示され、図2(B)にY断面が示され、図2(C)にはX断面が示されている。図2において、破線は、電圧非印加時の透過率に対する、電圧印加時の液晶表示素子1の相対的な透過率を示す。なお、液晶層13の物性値等は、後述する実施例における物性値等と同じである。   FIG. 2 shows the case where the line width of the F electrode 121 and the R electrode 141 is 180 μm, the line spacing is 20 μm (see FIG. 2D), and a voltage of 3.0 V (driving voltage) is applied to the liquid crystal layer 13. It is a schematic diagram which shows the arrangement direction of the liquid crystal in one pixel. 2A shows a Z cross section of the liquid crystal layer 13, FIG. 2B shows a Y cross section, and FIG. 2C shows an X cross section. In FIG. 2, the broken line indicates the relative transmittance of the liquid crystal display element 1 when a voltage is applied to the transmittance when no voltage is applied. In addition, the physical property value etc. of the liquid crystal layer 13 are the same as the physical property value etc. in the Example mentioned later.

図2に示すように、画素の右側部分においてドメインが生じている。その結果、図2(C)の右側において、透過率が大きく低下する部分が生ずる。また、画素の上側部分および下側部分において配向乱れが生じている。その結果、図2(B)の左右両側において、透過率が大きく低下する部分が生ずる。なお、図2の模式図に示す様子は、配向膜のラビング方向を0°(F電極121の長手方向と同じ方向)にした場合に得られたものである。   As shown in FIG. 2, a domain occurs in the right part of the pixel. As a result, on the right side of FIG. In addition, alignment disorder occurs in the upper and lower portions of the pixel. As a result, there are portions where the transmittance is greatly reduced on both the left and right sides in FIG. The state shown in the schematic diagram of FIG. 2 is obtained when the rubbing direction of the alignment film is 0 ° (the same direction as the longitudinal direction of the F electrode 121).

図3は、F電極121およびR電極141にスリット121A,141Aを設け、液晶層13に3.0Vの電圧(駆動電圧)を印加した場合の1つの画素における液晶の配列方向を示す模式図である。横方向に伸びるF電極121には、図3(D)に示すように、上下の両側から切れ込むように幅20μmのスリット121Aが形成されている。図3(D)には、1つのF電極121における1画素に相当する部分のみが示されているので10μmと記載されているが、隣接画素部分を含めると、スリット121Aの幅は20μmである。   FIG. 3 is a schematic diagram showing the alignment direction of the liquid crystal in one pixel when slits 121A and 141A are provided in the F electrode 121 and the R electrode 141, and a voltage (drive voltage) of 3.0 V is applied to the liquid crystal layer 13. is there. As shown in FIG. 3D, a slit 121A having a width of 20 μm is formed in the F electrode 121 extending in the lateral direction so as to cut from both the upper and lower sides. In FIG. 3D, only a portion corresponding to one pixel in one F electrode 121 is shown, so that it is described as 10 μm. However, when the adjacent pixel portion is included, the width of the slit 121A is 20 μm. .

また、縦方向に伸びるR電極141には、左右の両側から切れ込むように幅20μmのスリット141Aが形成されている。図3(D)には、1つのR電極141における1画素に相当する部分のみが示されているので10μmと記載されているが、隣接画素部分を含めると、スリット141Aの幅は20μmである。なお、図3(D)において、画素内の実線の矢印はF電極側の配向膜の配向処理方向を示し、破線の矢印はR電極側の配向膜の配向処理方向を示す。   In addition, a slit 141A having a width of 20 μm is formed in the R electrode 141 extending in the vertical direction so as to cut from both the left and right sides. In FIG. 3D, only a portion corresponding to one pixel in one R electrode 141 is shown, so it is described as 10 μm. However, including the adjacent pixel portion, the width of the slit 141A is 20 μm. . In FIG. 3D, a solid line arrow in the pixel indicates the alignment process direction of the alignment film on the F electrode side, and a broken line arrow indicates the alignment process direction of the alignment film on the R electrode side.

図3(D)に示すように電極を形成し、液晶層13に3.0Vの電圧を印加すると、図3(A),(B)に示すように、図2に示す場合に比べて、画素の右側部分のドメインは改善される。すなわち、ドメインの領域は小さくなる。また、画素の上側部分および下側部分の配向乱れも改善される、すなわち、配向乱れの程度が軽減される。しかし、画素の左側部分において、新たな配向乱れが生ずる。   When an electrode is formed as shown in FIG. 3D and a voltage of 3.0 V is applied to the liquid crystal layer 13, as shown in FIGS. 3A and 3B, compared to the case shown in FIG. The domain of the right part of the pixel is improved. That is, the domain area becomes smaller. Also, the alignment disturbance of the upper and lower portions of the pixel is improved, that is, the degree of alignment disturbance is reduced. However, a new alignment disorder occurs in the left part of the pixel.

図4は、画素の左側部分における配向乱れを改善するために、F電極121およびR電極141にスリット121A,141Aを設けた上に、F電極121に画素超過領域121Bを設け、液晶層13に3.0Vの電圧(駆動電圧)を印加した場合の1つの画素における液晶の配列方向を示す模式図である。なお、画素超過領域121Bの幅は、線間20μmの1/2の10μmである。隣接画素における画素超過領域121Bを考慮すると、横方向に伸びるF電極121には、上下の両側から切れ込むように幅10μmのスリット121Aが形成されていることになる。画素超過領域121Bでは、斜め電界を有効に利用することができる。   In FIG. 4, in order to improve the alignment disorder in the left part of the pixel, slits 121 </ b> A and 141 </ b> A are provided in the F electrode 121 and the R electrode 141, and an excess pixel region 121 </ b> B is provided in the F electrode 121. It is a schematic diagram which shows the arrangement direction of the liquid crystal in one pixel at the time of applying the voltage (drive voltage) of 3.0V. The width of the pixel excess region 121B is 10 μm, which is 1/2 of 20 μm between lines. Considering the pixel excess region 121B in the adjacent pixel, the F electrode 121 extending in the horizontal direction is formed with a slit 121A having a width of 10 μm so as to cut from both the upper and lower sides. In the pixel excess region 121B, an oblique electric field can be used effectively.

また、縦方向に伸びるR電極141には、右側から切れ込む幅20μmのスリット141Aが形成されている。図4(D)には、1つのR電極141における1画素に相当する部分のみが示されているので10μmと記載されているが、隣接画素部分を含めると、スリット141Aの幅は20μmである。なお、図4(D)において、画素内の実線の矢印はF電極側の配向膜の配向処理方向を示し、破線の矢印はR電極側の配向膜の配向処理方向を示す。   In addition, a slit 141A having a width of 20 μm cut from the right side is formed in the R electrode 141 extending in the vertical direction. In FIG. 4D, only a portion corresponding to one pixel in one R electrode 141 is shown, so it is described as 10 μm. However, including the adjacent pixel portion, the width of the slit 141A is 20 μm. . In FIG. 4D, a solid line arrow in the pixel indicates the alignment process direction of the alignment film on the F electrode side, and a broken line arrow indicates the alignment process direction of the alignment film on the R electrode side.

図4(D)に示すように電極を形成し、液晶層13に3.0Vの電圧を印加すると、図4(A),(B)に示すように、図3に示す場合に比べて、画素の左側部分のドメインは改善される。すなわち、ドメインの領域は小さくなる。しかし、画素の右側部分における配向乱れの程度は、図3に示す場合に比べて大きくなる。   When an electrode is formed as shown in FIG. 4D and a voltage of 3.0 V is applied to the liquid crystal layer 13, as shown in FIGS. 4A and 4B, compared to the case shown in FIG. The domain of the left part of the pixel is improved. That is, the domain area becomes smaller. However, the degree of alignment disturbance in the right side portion of the pixel is larger than that shown in FIG.

図5は、図4に示す場合に比べて、F電極121に画素超過領域121Bの幅を5μmと小さくして、液晶層13に3.0Vの電圧(駆動電圧)を印加した場合の1つの画素における液晶の配列方向を示す模式図である。画素超過領域121Bの幅が5μmであるから、スリット121Aの幅は、隣接画素における画素超過領域121Bを考慮すると、15μmである。なお、図5(D)において、画素内の実線の矢印はF電極側の配向膜の配向処理方向を示し、破線の矢印はR電極側の配向膜の配向処理方向を示す。   FIG. 5 shows a case where the width of the pixel excess region 121B is reduced to 5 μm to the F electrode 121 and a voltage (drive voltage) of 3.0 V is applied to the liquid crystal layer 13 as compared with the case shown in FIG. It is a schematic diagram which shows the arrangement direction of the liquid crystal in a pixel. Since the width of the pixel excess area 121B is 5 μm, the width of the slit 121A is 15 μm in consideration of the pixel excess area 121B in the adjacent pixel. In FIG. 5D, a solid line arrow in the pixel indicates the alignment processing direction of the alignment film on the F electrode side, and a broken line arrow indicates the alignment processing direction of the alignment film on the R electrode side.

電極を図5(D)に示すように形成した場合には、液晶の配列方向はほぼ揃っている。また、ドメインは発生していない。その結果、電圧印加時の画素内の透過率の変化の程度は、図2等に示された場合に比べて小さくなっている。具体的には、画素の上側部分、下側部分および右側部分において、透過率は、図2等に示された場合に比べると、さほど低下しない。   When the electrodes are formed as shown in FIG. 5D, the liquid crystal alignment directions are substantially aligned. Also, no domain has occurred. As a result, the degree of change in the transmittance within the pixel when a voltage is applied is smaller than in the case shown in FIG. Specifically, in the upper part, the lower part, and the right part of the pixel, the transmittance does not decrease much compared to the case shown in FIG.

以上の結果から、スリット121A,141Aの形成位置等を示す図6に示すように、長手方向が配向処理方向と直交するR電極141におけるF電極121の線間に相当する部分において、線間aと同じ幅のスリット141Aを設け(図6(B)参照)、長手方向が配向処理方向と一致するF電極121において、液晶が倒れる方向側(図6において右側)のR電極141の線間に相当する部分に、線間aよりも幅が狭いスリット121Aを設け、また、液晶が倒れる方向と反対側(図6において左側)のR電極141の線間に相当する部分では、スリット121Aに対して電極超過部分121Bを設けることによって、液晶の配向乱れを低減させることができる。   From the above results, as shown in FIG. 6 showing the formation positions and the like of the slits 121A and 141A, in the portion corresponding to the line between the F electrodes 121 in the R electrode 141 whose longitudinal direction is orthogonal to the alignment treatment direction, the line a 141A (see FIG. 6B), and in the F electrode 121 whose longitudinal direction coincides with the alignment treatment direction, between the lines of the R electrode 141 on the side where the liquid crystal falls (right side in FIG. 6) A slit 121A having a width narrower than the line a is provided in the corresponding portion, and a portion corresponding to the space between the lines of the R electrode 141 on the opposite side (left side in FIG. 6) to the direction in which the liquid crystal is tilted is formed with respect to the slit 121A. By providing the electrode excess portion 121B, the alignment disorder of the liquid crystal can be reduced.

なお、図6(B)には、図5(B)に示されたものが2画素分示され、図6(C)には、図5(C)に示されたものが2画素分示されている。また、図6(C)において、画素内の実線の矢印はF電極側の配向膜の配向処理方向を示し、破線の矢印はR電極側の配向膜の配向処理方向を示す。   6B shows two pixels shown in FIG. 5B, and FIG. 6C shows two pixels shown in FIG. 5C. Has been. In FIG. 6C, a solid line arrow in the pixel indicates the alignment process direction of the alignment film on the F electrode side, and a broken line arrow indicates the alignment process direction of the alignment film on the R electrode side.

以下、具体的な実施例を説明する。   Hereinafter, specific examples will be described.

(実施例1)
F側(視認側、前側)のガラス基板に、線幅が180μmで線間が20μmになり、図6に示されたような位置に15μmのスリット121Aが形成されるようにF電極121をパターンニングし、R側(反視認側、後側)のガラス基板に線幅が180μmで線間が20μmになり、図6に示されたような位置に20μmのスリット141Aが形成されるようにR電極141をパターンニングした。線間aよりも狭い幅のスリット121Aが形成されているF電極121における配向処理方向側には画素超過領域121Bが存在するので、F電極121は、R電極141との重複領域に対して突出するように形成されている。
(Example 1)
The F electrode 121 is patterned on the glass substrate on the F side (viewing side, front side) so that the line width is 180 μm and the space between the lines is 20 μm, and a slit 121A of 15 μm is formed at the position shown in FIG. The R side (anti-viewing side, rear side) glass substrate has a line width of 180 μm and a line spacing of 20 μm, and a slit of 141 μm of 20 μm is formed at a position as shown in FIG. The electrode 141 was patterned. Since the pixel excess region 121B exists on the alignment processing direction side in the F electrode 121 in which the slit 121A having a width narrower than the line a is formed, the F electrode 121 protrudes from the overlapping region with the R electrode 141. It is formed to do.

次いで、垂直性の配向膜をF側およびR側に成膜し、図7(B)に示すように、F側の配向膜およびR側の配向膜に対して一方向にアンチパラレル(反平行)ラビング処理を施して、図8(A)に示すように、プレチルト角を89.6゜、リタデーションΔn・dを538nmにした。なお、液晶分子が完全に垂直状態にあるときの角度が90゜である。液晶材料として、図8(B)に示すように、屈折率異方性(Δn)が0.0896、誘電異方性(Δε)が−5.6のものを用いた。図8(A)に示すように、セルギャップを6.0μmとした。   Next, vertical alignment films are formed on the F side and the R side, and as shown in FIG. 7B, antiparallel (antiparallel) to the F side alignment film and the R side alignment film. ) A rubbing treatment was performed to set the pretilt angle to 89.6 ° and the retardation Δn · d to 538 nm as shown in FIG. The angle when the liquid crystal molecules are in a completely vertical state is 90 °. As the liquid crystal material, as shown in FIG. 8B, a material having a refractive index anisotropy (Δn) of 0.0896 and a dielectric anisotropy (Δε) of −5.6 was used. As shown in FIG. 8 (A), the cell gap was set to 6.0 μm.

偏光板11,15として、日東電工株式会社製のNPF−SEG1224DUを用いた。図7(A),(C)に示すように、F側の配向膜の配向処理方向を基準軸として、視認側から見たときの基準軸からF偏光板(第1偏光板)11の吸収軸までの反時計回りの角度をθとした場合、θ=45゜になるようにし、R偏光板(第2偏光板)15の吸収軸までの反時計回りの角度をθとした場合、θ=135゜になるようにした。ここでは、偏光板11,15の吸収軸が直交するようにしたが、偏光軸が直交するようにしてもよい。 As the polarizing plates 11 and 15, NPF-SEG1224DU manufactured by Nitto Denko Corporation was used. As shown in FIGS. 7A and 7C, the F polarizing plate (first polarizing plate) 11 absorbs from the reference axis when viewed from the viewing side, with the alignment treatment direction of the F side alignment film as the reference axis. When the counterclockwise angle to the axis is θ 1 , θ 1 = 45 °, and the counterclockwise angle to the absorption axis of the R polarizing plate (second polarizing plate) 15 is θ 2 . In this case, θ 2 = 135 °. Although the absorption axes of the polarizing plates 11 and 15 are orthogonal to each other here, the polarization axes may be orthogonal to each other.

図9(A)は、視認側から見た本実施例のF電極121の形状を示す平面図であり、図9(B)は、本実施例のR電極141の形状を示す平面図である。図9(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。図9において、「a」はF電極121およびR電極141の線間を示し、「b」はスリット121Aの幅を示し、「c」は画素超過領域の幅を示し、「d」はスリット141Aの幅を示す。   FIG. 9A is a plan view showing the shape of the F electrode 121 of this embodiment as viewed from the viewing side, and FIG. 9B is a plan view showing the shape of the R electrode 141 of this embodiment. . FIG. 9C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side. In FIG. 9, “a” indicates the space between the F electrode 121 and the R electrode 141, “b” indicates the width of the slit 121A, “c” indicates the width of the over-pixel region, and “d” indicates the slit 141A. Indicates the width.

なお、本実施例では、長手方向が配向処理方向と直交するR電極141に線間aと同じ幅(20μm)のスリット141Aが形成され、長手方向が配向処理方向と同じであるF電極121に、線間aよりも狭いスリット121Aが形成され、画素の左側部分ではF電極121が画素よりも5μm広くなっている。   In this embodiment, a slit 141A having the same width (20 μm) as the line a is formed in the R electrode 141 whose longitudinal direction is orthogonal to the alignment treatment direction, and the F electrode 121 whose longitudinal direction is the same as the alignment treatment direction. A slit 121A narrower than the line a is formed, and the F electrode 121 is 5 μm wider than the pixel on the left side of the pixel.

以上のように作製した液晶表示素子1を、デューティ比1/32で駆動したところ、良好な視認性が得られた。すなわち電圧非印加時やオフ(OFF)時には良好な黒色表示が得られ、オン(ON)の電圧印加時には明るい白色表示が得られた。   When the liquid crystal display element 1 produced as described above was driven at a duty ratio of 1/32, good visibility was obtained. That is, a good black display was obtained when no voltage was applied or when the voltage was off (OFF), and a bright white display was obtained when the voltage was turned on (ON).

(比較例1)
図10(A)は、第1の比較例(比較例1)の視認側から見たF電極121の形状を示す平面図であり、図10(B)は、第1の比較例のR電極141の形状を示す平面図である。図10(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。
(Comparative Example 1)
FIG. 10A is a plan view showing the shape of the F electrode 121 viewed from the viewing side of the first comparative example (comparative example 1), and FIG. 10B is the R electrode of the first comparative example. It is a top view which shows the shape of 141. FIG. FIG. 10C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side.

第1の比較例では、電極にスリット121A,141Aを形成せず、F側のガラス基板に線幅が180μmで線間が20μmになるようにF電極121をパターンニングし、R側のガラス基板に線幅が180μmで線間が20μmになるようにR電極141をパターンニングした。その他は、第1の実施例(実施例1)の場合と同様にし、デューティ比1/32で駆動した。   In the first comparative example, slits 121A and 141A are not formed in the electrodes, and the F electrode 121 is patterned on the F side glass substrate so that the line width is 180 μm and the line spacing is 20 μm, and the R side glass substrate is formed. The R electrode 141 was patterned so that the line width was 180 μm and the line spacing was 20 μm. Others were the same as in the case of the first example (Example 1), and were driven with a duty ratio of 1/32.

第1の比較例では、オン時(オンの電圧印加時)の明るさが低下し、第1の実施例の場合に比べて視認性が低下した。その理由は、上記のように、液晶層13のZ方向の中央部において、画素における上側部分および下側部分では、液晶は、R電極141の斜め電界の影響を受けて、R電極部14の方向に傾こうとする配向乱れを生じ、偏光板の吸収軸またはそれに直交する方向に近づくので透過率が低下するからである。また、画素における右側部分では、液晶は、F電極121の斜め電界の影響を受けて、液晶が本来傾くべき方向とは逆方向に傾こうとする配向乱れを生じて透過率が低下するからである。換言すれば、第1の比較例と比較すると、第1の実施例では、画素における上側部分、下側部分および右側部分において、電圧が印加された時の斜め電界の影響が少なくなり、画素における液晶層13の中央部分の液晶配向の乱れが少なくなって、オン時の画素内の明るさが向上する。   In the first comparative example, the brightness at the time of turning on (when applying the on voltage) was lowered, and the visibility was lowered as compared with the case of the first example. The reason is that, as described above, in the central portion in the Z direction of the liquid crystal layer 13, the liquid crystal is affected by the oblique electric field of the R electrode 141 in the upper and lower portions of the pixel, and the R electrode portion 14 This is because an alignment disorder that tends to tilt in the direction occurs, and the transmittance decreases because it approaches the absorption axis of the polarizing plate or a direction perpendicular thereto. Further, in the right part of the pixel, the liquid crystal is affected by the oblique electric field of the F electrode 121, causing an alignment disorder in which the liquid crystal tends to tilt in a direction opposite to the direction in which the liquid crystal should originally tilt, and the transmittance is lowered. is there. In other words, compared with the first comparative example, in the first embodiment, the influence of the oblique electric field when a voltage is applied is reduced in the upper part, the lower part and the right part of the pixel. The disturbance of the liquid crystal alignment in the central portion of the liquid crystal layer 13 is reduced, and the brightness in the pixel at the on time is improved.

(比較例2)
図11(A)は、第2の比較例(比較例2)の視認側から見たF電極121の形状を示す平面図であり、図11(B)は、第2の比較例のR電極141の形状を示す平面図である。図11(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。
(Comparative Example 2)
FIG. 11A is a plan view showing the shape of the F electrode 121 viewed from the viewing side of the second comparative example (comparative example 2), and FIG. 11B is the R electrode of the second comparative example. It is a top view which shows the shape of 141. FIG. FIG. 11C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side.

第2の比較例では、F側のガラス基板に、F電極121にスリットが形成され、線幅が180μmで線間が20μmになるようにF電極121をパターンニングし、R側のガラス基板に、R電極141にスリットが形成され、線幅が180μmで線間が20μmになるようにR電極141をパターンニングした。その他は、第1の実施例(実施例1)の場合と同様にし、デューティ比1/32で駆動した。   In the second comparative example, a slit is formed in the F electrode 121 on the F side glass substrate, the F electrode 121 is patterned so that the line width is 180 μm and the line spacing is 20 μm, and the R side glass substrate is formed. The R electrodes 141 were patterned so that slits were formed in the R electrodes 141, the line width was 180 μm, and the line spacing was 20 μm. Others were the same as in the case of the first example (Example 1), and were driven with a duty ratio of 1/32.

第1の比較例と比較すると、画素における上側部分および下側部分において電圧が印加された時の斜め電界の影響が少なくなり、画素における液晶層13の中央部分の液晶の配向乱れが少なくなって、オン時の画素内の明るさが向上した。しかし、画素における左側部分に液晶の配向乱れが生じ、第1の実施例と比較すると、オン時の画素内の明るさが低下して視認性が低下した。   Compared with the first comparative example, the influence of an oblique electric field when a voltage is applied to the upper part and the lower part of the pixel is reduced, and the alignment disorder of the liquid crystal in the central part of the liquid crystal layer 13 in the pixel is reduced. , The brightness in the pixel when on was improved. However, the liquid crystal alignment disorder occurred in the left part of the pixel, and the brightness in the pixel at the time of ON was lowered and the visibility was lowered as compared with the first example.

(実施例2)
F側のガラス基板に、線幅が180μmで線間が20μmになり、20μmのスリット121Aが形成されるようにF電極121をパターンニングし、R側のガラス基板に線幅が180μmで線間が20μmになり、15μmのスリット141Aが形成されるようにR電極141をパターンニングした。線間aよりも狭い幅のスリット141Aが形成されているR電極141における配向処理方向側には画素超過領域141Bが存在するので、R電極141は、F電極121との重複領域に対して突出するように形成されている。
(Example 2)
The F electrode 121 is patterned on the F side glass substrate so that the line width is 180 μm and the line spacing is 20 μm, and the slit 121A of 20 μm is formed, and the line width is 180 μm on the R side glass substrate. The R electrode 141 was patterned so that a slit 141A of 15 μm was formed. Since the pixel excess region 141B exists on the alignment processing direction side in the R electrode 141 in which the slit 141A having a width narrower than the line spacing a is formed, the R electrode 141 protrudes from the overlapping region with the F electrode 121. It is formed to do.

次いで、垂直性の配向膜をF側およびR側に成膜し、図12(B)に示すように、F側の配向膜およびR側の配向膜に対して一方向にアンチパラレル(反平行)ラビング処理を施して、プレチルト角を89.6゜、リタデーションΔn・dを538nmにした。液晶材料として、屈折率異方性(Δn)が0.0896、誘電異方性(Δε)が−5.6のものを用いた。また、セルギャップを6.0μmとした。   Next, vertical alignment films are formed on the F side and the R side, and as shown in FIG. 12B, antiparallel (antiparallel) to the F side alignment film and the R side alignment film. ) A rubbing treatment was performed so that the pretilt angle was 89.6 ° and the retardation Δn · d was 538 nm. A liquid crystal material having a refractive index anisotropy (Δn) of 0.0896 and a dielectric anisotropy (Δε) of −5.6 was used. The cell gap was 6.0 μm.

偏光板11,15として、日東電工株式会社製のNPF−SEG1224DUを用いた。図12(A),(C)に示すように、F側の配向膜の配向処理方向を基準軸として、視認側から見たときの基準軸からF偏光板(第1偏光板)11の吸収軸までの反時計回りの角度をθとした場合、θ=45゜になるようにし、R偏光板(第2偏光板)15の吸収軸までの反時計回りの角度をθとした場合、θ=135゜になるようにした。ここでは、偏光板11,15の吸収軸が直交するようにしたが、偏光軸が直交するようにしてもよい。 As the polarizing plates 11 and 15, NPF-SEG1224DU manufactured by Nitto Denko Corporation was used. As shown in FIGS. 12A and 12C, the F polarizing plate (first polarizing plate) 11 absorbs from the reference axis when viewed from the viewing side, with the alignment treatment direction of the F side alignment film as the reference axis. When the counterclockwise angle to the axis is θ 1 , θ 1 = 45 °, and the counterclockwise angle to the absorption axis of the R polarizing plate (second polarizing plate) 15 is θ 2 . In this case, θ 2 = 135 °. Although the absorption axes of the polarizing plates 11 and 15 are orthogonal to each other here, the polarization axes may be orthogonal to each other.

図13(A)は、視認側から見た本実施例のF電極121の形状を示す平面図であり、図13(B)は、本実施例のR電極141の形状を示す平面図である。図13(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。図13において、「a」はF電極121およびR電極141の線間を示し、「b」はスリット121Aの幅を示し、「d」はスリット141Aの幅を示し、「e」はR電極141における画素超過領域141Bの幅を示す。   FIG. 13A is a plan view showing the shape of the F electrode 121 of this embodiment as viewed from the viewing side, and FIG. 13B is a plan view showing the shape of the R electrode 141 of this embodiment. . FIG. 13C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side. In FIG. 13, “a” indicates the space between the F electrode 121 and the R electrode 141, “b” indicates the width of the slit 121 A, “d” indicates the width of the slit 141 A, and “e” indicates the R electrode 141. The width of the pixel excess area 141B in FIG.

なお、本実施例では、長手方向が配向処理方向と直交するF電極121に線間aと同じ幅(20μm)のスリット121Aが形成され、長手方向が配向処理方向と同じであるR電極141に、線間aよりも狭いスリット141Aが形成され、画素の上側部分ではR電極141が画素よりも5μm広くなっている。つまり、第1の実施例の構成に対して、F電極121の形状とR電極141の形状とを逆にした構成になっている。   In this embodiment, the slit 121A having the same width (20 μm) as the line a is formed in the F electrode 121 whose longitudinal direction is orthogonal to the alignment treatment direction, and the longitudinal direction is the same as the alignment treatment direction in the R electrode 141. A slit 141A narrower than the line a is formed, and the R electrode 141 is 5 μm wider than the pixel in the upper part of the pixel. That is, the configuration of the F electrode 121 and the shape of the R electrode 141 are reversed with respect to the configuration of the first embodiment.

以上のように作製した液晶表示素子1を、デューティ比1/32で駆動したところ、良好な視認性が得られた。すなわち電圧非印加時やオフ(OFF)時には良好な黒色表示が得られ、オン(ON)の電圧印加時には明るい白色表示が得られた。   When the liquid crystal display element 1 produced as described above was driven at a duty ratio of 1/32, good visibility was obtained. That is, a good black display was obtained when no voltage was applied or when the voltage was off (OFF), and a bright white display was obtained when the voltage was turned on (ON).

(比較例3)
図14(A)は、第3の比較例(比較例3)の視認側から見たF電極121の形状を示す平面図であり、図14(B)は、第3の比較例のR電極141の形状を示す平面図である。図14(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。
(Comparative Example 3)
FIG. 14A is a plan view showing the shape of the F electrode 121 viewed from the viewing side of the third comparative example (comparative example 3), and FIG. 14B is the R electrode of the third comparative example. It is a top view which shows the shape of 141. FIG. FIG. 14C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side.

第3の比較例では、電極にスリット121A,141Aを形成せず、F側のガラス基板に線幅が180μmで線間が20μmになるようにF電極121をパターンニングし、R側のガラス基板に線幅が180μmで線間が20μmになるようにR電極141をパターンニングした。その他は、第2の実施例(実施例2)の場合と同様にし、デューティ比1/32で駆動した。   In the third comparative example, slits 121A and 141A are not formed in the electrodes, and the F electrode 121 is patterned on the F side glass substrate so that the line width is 180 μm and the line spacing is 20 μm, and the R side glass substrate is formed. The R electrode 141 was patterned so that the line width was 180 μm and the line spacing was 20 μm. Others were the same as in the case of the second example (Example 2), and were driven with a duty ratio of 1/32.

第3の比較例では、オン時の明るさが低下し、第2の実施例の場合に比べて視認性が低下した。その理由は、液晶層13のZ方向の中央部において、画素における右側部分および左側部分では、液晶は、F電極121の斜め電界の影響を受けて、F電極部12の方向に傾こうとする配向乱れを生じ、偏光板の吸収軸またはそれに直交する方向に近づくので透過率が低下するからである。また、画素における下側部分では、液晶は、R電極141の斜め電界の影響を受けて、液晶が本来傾くべき方向とは逆方向に傾こうとする配向乱れを生じて透過率が低下するからである。換言すれば、第3の比較例と比較すると、第2の実施例では、画素における右側部分、左側部分および下側部分において、電圧が印加された時の斜め電界の影響が少なくなり、画素における液晶層13の中央部分の液晶配向の乱れが少なくなって、オン時の画素内の明るさが向上する。   In the 3rd comparative example, the brightness at the time of ON fell, and visibility fell compared with the case of the 2nd example. The reason is that in the central portion in the Z direction of the liquid crystal layer 13, the liquid crystal tends to tilt toward the F electrode portion 12 due to the influence of the oblique electric field of the F electrode 121 in the right and left portions of the pixel. This is because the alignment is disturbed and the transmittance decreases because it approaches the absorption axis of the polarizing plate or a direction perpendicular thereto. In the lower part of the pixel, the liquid crystal is affected by the oblique electric field of the R electrode 141, causing an alignment disorder in which the liquid crystal tends to tilt in a direction opposite to the direction in which the liquid crystal should originally tilt, and the transmittance decreases. It is. In other words, compared with the third comparative example, in the second embodiment, the influence of the oblique electric field when a voltage is applied is reduced in the right side portion, the left side portion, and the lower side portion of the pixel. The disturbance of the liquid crystal alignment in the central portion of the liquid crystal layer 13 is reduced, and the brightness in the pixel at the on time is improved.

(実施例3)
F側のガラス基板に、線幅が180μmで線間が20μmになり、20μmのスリット121Aが形成されるようにF電極121をパターンニングし、R側のガラス基板に線幅が180μmで線間が20μmになり、15μmのスリット141Aが形成されるようにR電極141をパターンニングした。線間aよりも狭い幅のスリット141Aが形成されているR電極141における配向処理方向側には画素超過領域141Bが存在するので、R電極141は、F電極121との重複領域に対して突出するように形成されている。
(Example 3)
The F electrode 121 is patterned on the F side glass substrate so that the line width is 180 μm and the line spacing is 20 μm, and the slit 121A of 20 μm is formed, and the line width is 180 μm on the R side glass substrate. The R electrode 141 was patterned so that a slit 141A of 15 μm was formed. Since the pixel excess region 141B exists on the alignment processing direction side in the R electrode 141 in which the slit 141A having a width narrower than the line spacing a is formed, the R electrode 141 protrudes from the overlapping region with the F electrode 121. It is formed to do.

次いで、垂直性の配向膜をF側およびR側に成膜し、図7(B)に示すように、F側の配向膜およびR側の配向膜に対して一方向にアンチパラレル(反平行)ラビング処理を施して、プレチルト角を89.6゜、リタデーションΔn・dを538nmにした。液晶材料として、屈折率異方性(Δn)が0.0896、誘電異方性(Δε)が−5.6のものを用いた。また、セルギャップを6.0μmとした。   Next, vertical alignment films are formed on the F side and the R side, and as shown in FIG. 7B, antiparallel (antiparallel) to the F side alignment film and the R side alignment film. ) A rubbing treatment was performed so that the pretilt angle was 89.6 ° and the retardation Δn · d was 538 nm. A liquid crystal material having a refractive index anisotropy (Δn) of 0.0896 and a dielectric anisotropy (Δε) of −5.6 was used. The cell gap was 6.0 μm.

偏光板11,15として、日東電工株式会社製のNPF−SEG1224DUを用いた。図7(A),(C)に示すように、F側の配向膜の配向処理方向を基準軸として、視認側から見たときの基準軸からF偏光板(第1偏光板)11の吸収軸までの反時計回りの角度をθとした場合、θ=45゜になるようにし、R偏光板(第2偏光板)15の吸収軸までの反時計回りの角度をθとした場合、θ=135゜になるようにした。ここでは、偏光板11,15の吸収軸が直交するようにしたが、偏光軸が直交するようにしてもよい。 As the polarizing plates 11 and 15, NPF-SEG1224DU manufactured by Nitto Denko Corporation was used. As shown in FIGS. 7A and 7C, the F polarizing plate (first polarizing plate) 11 absorbs from the reference axis when viewed from the viewing side, with the alignment treatment direction of the F side alignment film as the reference axis. When the counterclockwise angle to the axis is θ 1 , θ 1 = 45 °, and the counterclockwise angle to the absorption axis of the R polarizing plate (second polarizing plate) 15 is θ 2 . In this case, θ 2 = 135 °. Although the absorption axes of the polarizing plates 11 and 15 are orthogonal to each other here, the polarization axes may be orthogonal to each other.

図15(A)は、視認側から見た本実施例のF電極121の形状を示す平面図であり、図15(B)は、本実施例のR電極141の形状を示す平面図である。図15(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。図15において、「a」はF電極121およびR電極141の線間を示し、「b」はスリット121Aの幅を示し、「d」はスリット141Aの幅を示し、「e」はR電極141における画素超過領域141Bの幅を示す。   FIG. 15A is a plan view showing the shape of the F electrode 121 of this embodiment as viewed from the viewing side, and FIG. 15B is a plan view showing the shape of the R electrode 141 of this embodiment. . FIG. 15C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side. In FIG. 15, “a” indicates the space between the F electrode 121 and the R electrode 141, “b” indicates the width of the slit 121 A, “d” indicates the width of the slit 141 A, and “e” indicates the R electrode 141. The width of the pixel excess area 141B in FIG.

なお、本実施例では、長手方向が配向処理方向と直交するF電極121に線間aと同じ幅(20μm)のスリット121Aが形成され、長手方向が配向処理方向と同じであるR電極141に、線間aよりも狭いスリット141Aが形成され、画素の右側部分ではR電極141が画素よりも5μm広くなっている。   In this embodiment, the slit 121A having the same width (20 μm) as the line a is formed in the F electrode 121 whose longitudinal direction is orthogonal to the alignment treatment direction, and the longitudinal direction is the same as the alignment treatment direction in the R electrode 141. A slit 141A narrower than the line a is formed, and the R electrode 141 is 5 μm wider than the pixel in the right portion of the pixel.

以上のように作製した液晶表示素子1を、デューティ比1/32で駆動したところ、良好な視認性が得られた。すなわち電圧非印加時やオフ(OFF)時には良好な黒色表示が得られ、オン(ON)の電圧印加時には明るい白色表示が得られた。   When the liquid crystal display element 1 produced as described above was driven at a duty ratio of 1/32, good visibility was obtained. That is, a good black display was obtained when no voltage was applied or when the voltage was off (OFF), and a bright white display was obtained when the voltage was turned on (ON).

(比較例4)
図16(A)は、第4の比較例(比較例4)の視認側から見たF電極121の形状を示す平面図であり、図16(B)は、第4の比較例のR電極141の形状を示す平面図である。図16(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。
(Comparative Example 4)
FIG. 16A is a plan view showing the shape of the F electrode 121 viewed from the viewing side of the fourth comparative example (Comparative Example 4), and FIG. 16B is the R electrode of the fourth comparative example. It is a top view which shows the shape of 141. FIG. FIG. 16C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side.

第4の比較例では、電極にスリット121A,141Aを形成せず、F側のガラス基板に線幅が180μmで線間が20μmになるようにF電極121をパターンニングし、R側のガラス基板に線幅が180μmで線間が20μmになるようにR電極141をパターンニングした。その他は、第3の実施例(実施例3)の場合と同様にし、デューティ比1/32で駆動した。   In the fourth comparative example, slits 121A and 141A are not formed in the electrode, and the F electrode 121 is patterned on the F side glass substrate so that the line width is 180 μm and the line spacing is 20 μm, and the R side glass substrate is formed. The R electrode 141 was patterned so that the line width was 180 μm and the line spacing was 20 μm. Others were the same as in the case of the third example (Example 3), and were driven with a duty ratio of 1/32.

第4の比較例では、オン時の明るさが低下し、第3の実施例の場合に比べて視認性が低下した。その理由は、液晶層13のZ方向の中央部において、画素における上側部分および下側部分では、液晶は、F電極121の斜め電界の影響を受けて、F電極部12の方向に傾こうとする配向乱れを生じ、偏光板の吸収軸またはそれに直交する方向に近づくので透過率が低下するからである。また、画素における左側部分では、液晶は、R電極121の斜め電界の影響を受けて、液晶が本来傾くべき方向とは逆方向に傾こうとする配向乱れを生じて透過率が低下するからである。換言すれば、第4の比較例と比較すると、第3の実施例では、画素における上側部分、下側部分および左側部分において、電圧が印加された時の斜め電界の影響が少なくなり、画素における液晶層13の中央部分の液晶配向の乱れが少なくなって、オン時の画素内の明るさが向上する。   In the 4th comparative example, the brightness at the time of ON fell, and the visibility fell compared with the case of the 3rd example. The reason is that in the central portion of the liquid crystal layer 13 in the Z direction, the liquid crystal is inclined in the direction of the F electrode portion 12 due to the influence of the oblique electric field of the F electrode 121 in the upper and lower portions of the pixel. This is because the alignment is disturbed and approaches the absorption axis of the polarizing plate or a direction perpendicular thereto, and thus the transmittance decreases. Further, in the left part of the pixel, the liquid crystal is affected by the oblique electric field of the R electrode 121, causing an alignment disorder in which the liquid crystal tends to tilt in a direction opposite to the direction in which the liquid crystal should originally tilt, and the transmittance is lowered. is there. In other words, compared with the fourth comparative example, in the third embodiment, the influence of the oblique electric field when a voltage is applied is reduced in the upper part, the lower part, and the left part of the pixel. The disturbance of the liquid crystal alignment in the central portion of the liquid crystal layer 13 is reduced, and the brightness in the pixel at the on time is improved.

(実施例4)
第1〜第3の実施例では、全てのスリット121Aは、F電極121の長手方向と直交する方向において、片側から切れ込むように形成されていた。また、全てのスリット141Aは、R電極141の長手方向と直交する方向において、片側から切れ込むように形成されていた。しかし、図17に示すように、両側から切れ込むように形成してもよい。
Example 4
In the first to third embodiments, all the slits 121 </ b> A are formed so as to cut from one side in a direction orthogonal to the longitudinal direction of the F electrode 121. Further, all the slits 141 </ b> A were formed so as to cut from one side in a direction orthogonal to the longitudinal direction of the R electrode 141. However, as shown in FIG. 17, it may be formed so as to cut from both sides.

図17(A)は、第4の実施例(実施例4)の視認側から見たF電極121の形状を示す平面図であり、図17(B)は、第4の実施例のR電極141の形状を示す平面図である。図17(C)は、視認側からF電極121およびR電極141を見た場合の平面図である。スリット121A,141Aの幅は、第1の実施例の場合と同じである。   FIG. 17A is a plan view showing the shape of the F electrode 121 viewed from the viewing side of the fourth embodiment (embodiment 4), and FIG. 17B is the R electrode of the fourth embodiment. It is a top view which shows the shape of 141. FIG. FIG. 17C is a plan view when the F electrode 121 and the R electrode 141 are viewed from the viewing side. The widths of the slits 121A and 141A are the same as those in the first embodiment.

本実施例でも、良好な視認性が得られた。すなわち、電圧非印加時やオフ(OFF)時には良好な黒色表示が得られ、オン(ON)の電圧印加時には明るい白色表示が得られた。   Also in this example, good visibility was obtained. That is, a good black display was obtained when no voltage was applied or when the voltage was off (OFF), and a bright white display was obtained when the voltage was turned on (ON).

なお、本実施例では、全てのスリット121A,141Aを両側から切れ込むように形成したが、スリット121Aを、F電極121の長手方向において、交互に、両側から切れ込むように形成してもよいし、R電極141の長手方向において、交互に、両側から切れ込むように形成してもよい   In this embodiment, all the slits 121A and 141A are formed so as to cut from both sides, but the slits 121A may be formed so as to cut alternately from both sides in the longitudinal direction of the F electrode 121. In the longitudinal direction of the R electrode 141, it may be formed so as to cut alternately from both sides.

なお、液晶層13のΔn・dは、200〜1000nmであることが好ましい。200nmより小さい場合にはオン(ON)の電圧印加時の明るさが低下してコントラストが低下し、1000nmよりも大きい場合にはオンの電圧印加時に着色して白黒表示が難しくなるからである。また、液晶のプレチルト角は85〜89.8゜であることが好ましい。85゜よりも小さい場合には電圧非印加時やオフ(OFF)時の明るさが明るくなってコントラストが低下し、89.8゜よりも大きくなると、電圧印加時の液晶が傾く方向が一様にならず配向乱れが生ずるからである。   In addition, it is preferable that (DELTA) n * d of the liquid crystal layer 13 is 200-1000 nm. This is because when the voltage is smaller than 200 nm, the brightness when the on-state voltage is applied is lowered and the contrast is lowered, and when it is larger than 1000 nm, the color is colored when the on-voltage is applied and it becomes difficult to display black and white. The pretilt angle of the liquid crystal is preferably 85 to 89.8 °. When the angle is smaller than 85 °, the brightness is reduced when no voltage is applied or when the voltage is off (OFF) and the contrast is lowered. When the voltage is larger than 89.8 °, the direction in which the liquid crystal tilts when the voltage is applied is uniform. This is because the alignment is disturbed.

また、配向処理方向は、各実施例に示されたように、F電極121の長手方向とR電極141の長手方向とのいずれかと同じ方向であることが好ましい。そのようにすれば、液晶の配向乱れが低減するからである。   Further, the alignment treatment direction is preferably the same direction as either the longitudinal direction of the F electrode 121 or the longitudinal direction of the R electrode 141, as shown in each example. This is because the alignment disorder of the liquid crystal is reduced.

上記の各実施例では、線間を20μmにしたが、線間が20〜40μmである場合に、長手方向が配向処理方向と直交する電極には線間と同じ幅のスリットを形成し、長手方向が配向処理方向と同じである電極には幅が15〜35μmのスリットを形成すればよい。すなわち、[長手方向が配向処理方向と直交する電極に設けられたスリットの幅>長手方向が配向処理方向と同じである電極に設けられたスリットの幅]にすればよい。なお、「同じ幅」には、全く同じである場合だけでなく、製造誤差等に起因する程度の差がある場合も含まれる。   In each of the above embodiments, the line spacing is 20 μm, but when the line spacing is 20 to 40 μm, a slit having the same width as the line is formed on the electrode whose longitudinal direction is orthogonal to the alignment treatment direction. A slit having a width of 15 to 35 μm may be formed on the electrode whose direction is the same as the alignment treatment direction. That is, [width of slit provided in electrode whose longitudinal direction is orthogonal to alignment treatment direction> width of slit provided in electrode whose longitudinal direction is the same as the alignment treatment direction. The “same width” includes not only the case where they are exactly the same but also the case where there is a difference due to a manufacturing error or the like.

本発明は、VA型の液晶表示素子において、表示品位を向上させるために適用可能である。   The present invention can be applied to improve display quality in a VA liquid crystal display element.

本発明による液晶表示素子におけるF電極部およびR電極部を前側から眺めた場合の平面図。The top view at the time of seeing the F electrode part and R electrode part in the liquid crystal display element by this invention from the front side. 電極の線幅が180μmで線間が20μmで、印加される電圧が3.0Vである場合の液晶の配列方向を示す模式図。The schematic diagram which shows the arrangement direction of a liquid crystal in case the line | wire width of an electrode is 180 micrometers, line | wire spacing is 20 micrometers, and the applied voltage is 3.0V. F電極およびR電極にスリットを設けた例における電圧印加時の液晶の配列方向を示す模式図。The schematic diagram which shows the arrangement direction of the liquid crystal at the time of the voltage application in the example which provided the slit in F electrode and R electrode. F電極およびR電極にスリットを設けた他の例における電圧印加時の液晶の配列方向を示す模式図。The schematic diagram which shows the arrangement direction of the liquid crystal at the time of the voltage application in the other example which provided the slit in F electrode and R electrode. F電極およびR電極にスリットを設けたさらに他の例における電圧印加時の液晶の配列方向を示す模式図。The schematic diagram which shows the arrangement direction of the liquid crystal at the time of the voltage application in the further another example which provided the slit in F electrode and R electrode. スリットの形成位置等を示す説明図。Explanatory drawing which shows the formation position etc. of a slit. 偏光板の吸収軸方向および配向膜の配向処理方向を示す説明図。Explanatory drawing which shows the absorption-axis direction of a polarizing plate, and the orientation process direction of an orientation film. パネル仕様および液晶物性値を示す説明図。Explanatory drawing which shows a panel specification and a liquid-crystal physical property value. 第1の実施例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode and R electrode of a 1st Example. 第1の比較例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode and R electrode of a 1st comparative example. 第2の比較例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode and R electrode of a 2nd comparative example. 偏光板の吸収軸方向および配向膜の配向処理方向を示す説明図。Explanatory drawing which shows the absorption-axis direction of a polarizing plate, and the orientation process direction of an orientation film. 第2の実施例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode of a 2nd Example, and R electrode. 第3の比較例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode of the 3rd comparative example, and R electrode. 第3の実施例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode and R electrode of a 3rd Example. 第4の比較例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode and R electrode of a 4th comparative example. 第4の実施例のF電極およびR電極の形状を示す平面図。The top view which shows the shape of F electrode and R electrode of a 4th Example. (A)は一般的なVA型の液晶表示素子の構成例を示す分解斜視図、(B)はF電極部およびR電極部を前側から眺めた場合の平面図。(A) is an exploded perspective view showing a configuration example of a general VA liquid crystal display element, and (B) is a plan view when the F electrode portion and the R electrode portion are viewed from the front side. 1つの画素を示す平面図。The top view which shows one pixel. 電圧印加時の配向乱れを説明するための画素の模式図。The schematic diagram of the pixel for demonstrating the alignment disorder at the time of a voltage application.

符号の説明Explanation of symbols

1 液晶表示素子
11 F偏光板
12 F電極部
13 液晶層
14 R電極部
15 R偏光板
121 F電極
121A スリット
121B 画素超過領域
141 R電極
141A スリット
141B 画素超過領域
DESCRIPTION OF SYMBOLS 1 Liquid crystal display element 11 F polarizing plate 12 F electrode part 13 Liquid crystal layer 14 R electrode part 15 R polarizing plate 121 F electrode 121A Slit 121B Excess pixel area 141 R electrode 141A Slit 141B Excess pixel area

Claims (4)

表示領域における横方向に配置された複数の第1電極と、第1電極と交差するように表示領域における縦方向に配置された複数の第2電極と、第1電極と第2電極との間に設けられ電圧無印加時の液晶の配向が垂直配向である液晶層とを備えた液晶表示素子において、
第1電極と第2電極とのうち、長手方向が配向処理方向と直交する電極に、電極間距離と同じ幅のスリットが形成され、
第1電極と第2電極とのうち、長手方向が配向処理方向と同じである電極に、電極間距離よりも狭い幅のスリットが形成されている
ことを特徴とする液晶表示素子。
Between a plurality of first electrodes arranged in the horizontal direction in the display area, a plurality of second electrodes arranged in the vertical direction in the display area so as to intersect the first electrode, and between the first electrode and the second electrode In a liquid crystal display element provided with a liquid crystal layer in which the alignment of liquid crystal when no voltage is applied is a vertical alignment,
Of the first electrode and the second electrode, a slit having the same width as the inter-electrode distance is formed on the electrode whose longitudinal direction is orthogonal to the alignment treatment direction.
A liquid crystal display element, wherein a slit having a width smaller than an inter-electrode distance is formed in an electrode having a longitudinal direction the same as an alignment treatment direction of the first electrode and the second electrode.
複数の第1電極上に形成された配向膜と複数の第2電極上に形成された配向膜とに、反平行ラビング処理が施されている
請求項1記載の液晶表示素子。
The liquid crystal display element according to claim 1, wherein an anti-parallel rubbing treatment is performed on the alignment film formed on the plurality of first electrodes and the alignment film formed on the plurality of second electrodes.
配向処理方向は、第1電極の長手方向または第2電極の長手方向と同じである
請求項1または請求項2記載の液晶表示素子。
The liquid crystal display element according to claim 1, wherein the alignment treatment direction is the same as the longitudinal direction of the first electrode or the longitudinal direction of the second electrode.
電極間距離よりも狭い幅のスリットが形成されている電極における配向処理方向側が、他方の電極との重複領域に対して突出するように形成されている
請求項1から請求項3のうちのいずれか1項に記載の液晶表示素子。
The alignment treatment direction side of the electrode in which the slit having a width narrower than the distance between the electrodes is formed so as to protrude with respect to the overlapping region with the other electrode. 2. A liquid crystal display device according to item 1.
JP2006354997A 2006-12-28 2006-12-28 Liquid crystal display element Expired - Fee Related JP4902345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354997A JP4902345B2 (en) 2006-12-28 2006-12-28 Liquid crystal display element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354997A JP4902345B2 (en) 2006-12-28 2006-12-28 Liquid crystal display element

Publications (2)

Publication Number Publication Date
JP2008164983A true JP2008164983A (en) 2008-07-17
JP4902345B2 JP4902345B2 (en) 2012-03-21

Family

ID=39694571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354997A Expired - Fee Related JP4902345B2 (en) 2006-12-28 2006-12-28 Liquid crystal display element

Country Status (1)

Country Link
JP (1) JP4902345B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145594A (en) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd Method for driving simple matrix homeotropic alignment mode liquid crystal panel, and simple matrix homeotropic alignment type liquid crystal display device
JP2010224233A (en) * 2009-03-24 2010-10-07 Stanley Electric Co Ltd Liquid crystal display element
JP2010230863A (en) * 2009-03-26 2010-10-14 Stanley Electric Co Ltd Liquid crystal display device
JP2011118247A (en) * 2009-12-04 2011-06-16 Stanley Electric Co Ltd Liquid crystal display device
JP2011191567A (en) * 2010-03-15 2011-09-29 Stanley Electric Co Ltd Liquid crystal display device
JP2011203650A (en) * 2010-03-26 2011-10-13 Stanley Electric Co Ltd Liquid crystal display device
EP2431797A1 (en) * 2010-09-17 2012-03-21 Optrex Corporation Liquid crystal display element
JP2012108335A (en) * 2010-11-18 2012-06-07 Stanley Electric Co Ltd Liquid crystal display element
JP2014146033A (en) * 2014-02-26 2014-08-14 Stanley Electric Co Ltd Liquid crystal display device
EP2458429B1 (en) * 2009-03-24 2016-11-23 Stanley Electric Co., Ltd. Liquid crystal display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200330A (en) * 1986-02-28 1987-09-04 Fujitsu Ltd Phase transition type liquid crystal display device
JPH04261522A (en) * 1990-11-02 1992-09-17 Stanley Electric Co Ltd Liquid crystal display device
JPH09230360A (en) * 1996-02-27 1997-09-05 Stanley Electric Co Ltd Liquid crystal display element
JP2005234254A (en) * 2004-02-20 2005-09-02 Stanley Electric Co Ltd Liquid crystal display device and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62200330A (en) * 1986-02-28 1987-09-04 Fujitsu Ltd Phase transition type liquid crystal display device
JPH04261522A (en) * 1990-11-02 1992-09-17 Stanley Electric Co Ltd Liquid crystal display device
JPH09230360A (en) * 1996-02-27 1997-09-05 Stanley Electric Co Ltd Liquid crystal display element
JP2005234254A (en) * 2004-02-20 2005-09-02 Stanley Electric Co Ltd Liquid crystal display device and method for manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145594A (en) * 2008-12-17 2010-07-01 Stanley Electric Co Ltd Method for driving simple matrix homeotropic alignment mode liquid crystal panel, and simple matrix homeotropic alignment type liquid crystal display device
JP2010224233A (en) * 2009-03-24 2010-10-07 Stanley Electric Co Ltd Liquid crystal display element
EP2458429B1 (en) * 2009-03-24 2016-11-23 Stanley Electric Co., Ltd. Liquid crystal display device
JP2010230863A (en) * 2009-03-26 2010-10-14 Stanley Electric Co Ltd Liquid crystal display device
JP2011118247A (en) * 2009-12-04 2011-06-16 Stanley Electric Co Ltd Liquid crystal display device
JP2011191567A (en) * 2010-03-15 2011-09-29 Stanley Electric Co Ltd Liquid crystal display device
JP2011203650A (en) * 2010-03-26 2011-10-13 Stanley Electric Co Ltd Liquid crystal display device
EP2431797A1 (en) * 2010-09-17 2012-03-21 Optrex Corporation Liquid crystal display element
US8593607B2 (en) 2010-09-17 2013-11-26 Optrex Corporation Liquid crystal display element
JP2012108335A (en) * 2010-11-18 2012-06-07 Stanley Electric Co Ltd Liquid crystal display element
JP2014146033A (en) * 2014-02-26 2014-08-14 Stanley Electric Co Ltd Liquid crystal display device

Also Published As

Publication number Publication date
JP4902345B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP4902345B2 (en) Liquid crystal display element
JP3826217B2 (en) Fringe field switching mode liquid crystal display
JP4107978B2 (en) Liquid crystal display element
JP3108768B2 (en) TN liquid crystal display device
JP4863102B2 (en) Liquid crystal drive electrode, liquid crystal display device, and manufacturing method thereof
US8593607B2 (en) Liquid crystal display element
JP5101268B2 (en) Liquid crystal display element
JP5093714B2 (en) Liquid crystal display
US8599345B2 (en) Liquid crystal display device
JP5417003B2 (en) Liquid crystal display element
JP2005043696A (en) Liquid crystal display element
JP5210677B2 (en) Liquid crystal display
JP2013148624A (en) Liquid crystal display device
JP2007187826A (en) Liquid crystal display element
US7414689B2 (en) Continuous domain in-plane switching liquid crystal display
KR100675935B1 (en) Fringe field switching liquid crystal display
JP2004163746A (en) Liquid crystal display
JP2008164982A (en) Liquid crystal display element
WO2011129247A1 (en) Liquid crystal display device
JP2013238784A (en) Liquid crystal display element
JP6063275B2 (en) Liquid crystal display element
KR20020022450A (en) Liquid crystal display
KR100372578B1 (en) In Plane Switching mode Liquid crystal display device
KR102263883B1 (en) Liquid crystal display device
JP2014077844A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111228

R150 Certificate of patent or registration of utility model

Ref document number: 4902345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees