JP2008164571A - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
JP2008164571A
JP2008164571A JP2007000601A JP2007000601A JP2008164571A JP 2008164571 A JP2008164571 A JP 2008164571A JP 2007000601 A JP2007000601 A JP 2007000601A JP 2007000601 A JP2007000601 A JP 2007000601A JP 2008164571 A JP2008164571 A JP 2008164571A
Authority
JP
Japan
Prior art keywords
unit
measured
light
measurement
dimensional shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007000601A
Other languages
Japanese (ja)
Inventor
Hiroshi Aoki
洋 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2007000601A priority Critical patent/JP2008164571A/en
Publication of JP2008164571A publication Critical patent/JP2008164571A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve the problems that in the moire method of conventional technology for obtaining the contour lines from the moire pattern, it is necessary to perform complicated operations, and moreover to obtain at once the contour lines of a body having level difference, errors are generated depending on the level difference. <P>SOLUTION: The measurement device is provided with: a light transmission part for transmitting the light to a first direction; a rotation part for making an object to be measured and a light transmission part rotate relatively while centering the axis perpendicularly intersecting with the first direction; a detection part for detecting the light reflected by the object to be measured; and a shape measurement part for measuring the shape of the object to be measured based on the detection results of the detection part. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、物体の三次元形状を測定する測定装置に関する。   The present invention relates to a measuring apparatus for measuring a three-dimensional shape of an object.

従来、等高線を利用して物体の三次元形状を測定する方法として、モアレ法が知られている。モアレ法は、照明装置から縞パターンを物体に投影し、さらに別の縞パターンを介して観測されるモアレパターンから、物体形状に沿った等高線を求め、物体の三次元形状を得る方法である(例えば、特許文献1参照)。
特開平10−206130号公報
Conventionally, a moire method is known as a method for measuring the three-dimensional shape of an object using contour lines. The moire method is a method of obtaining a three-dimensional shape of an object by projecting a fringe pattern from an illumination device onto an object and obtaining contour lines along the object shape from a moire pattern observed through another stripe pattern ( For example, see Patent Document 1).
JP-A-10-206130

従来技術によるモアレ法は、モアレパターンから等高線を求めるために複雑な演算を行う必要があった。さらに、高低差のある物体の等高線を一度に求めるため、物体の高低差によって誤差が生じるという問題があった。
本発明の目的は、簡易な構成で複雑な演算を行うことなく、誤差の少ない高精度な測定ができる測定装置を提供することである。
The moire method according to the prior art has to perform a complicated calculation in order to obtain a contour line from a moire pattern. Furthermore, since the contour lines of an object having a height difference are obtained at a time, there is a problem that an error occurs due to the height difference of the object.
An object of the present invention is to provide a measuring apparatus that can perform high-accuracy measurement with few errors without performing complicated calculations with a simple configuration.

本発明に係る測定装置は、立体状の被測定物の形状を測定する測定装置であって、第1の方向に光を送光する送光部と、前記第1の方向と略直交する軸を中心に被測定物と前記送光部とを相対的に回転させる回転部と、前記被測定物で反射した前記光を検出する検出部と、前記検出部の検出結果に基づいて、前記被測定物の形状を測定する形状測定部とを備えることを特徴とする。   A measuring apparatus according to the present invention is a measuring apparatus that measures the shape of a three-dimensional object to be measured, and a light transmitting unit that transmits light in a first direction, and an axis that is substantially orthogonal to the first direction. A rotating unit that relatively rotates the object to be measured and the light transmitting unit around the object, a detection unit that detects the light reflected by the object to be measured, and a detection result of the detection unit, And a shape measuring unit that measures the shape of the object to be measured.

さらに、前記被測定物と前記送光部とを前記第1の方向と略直交する方向に相対移動させる移動部をさらに備え、前記形状測定部は、前記被測定物と前記送光部との相対位置を変化させた時の前記検出部の検出結果に基づいて、前記被測定物の3次元形状を測定することを特徴とする。
特に、前記回転部は、前記送光部を固定して、前記被測定物を回転することを特徴とする。
Furthermore, the apparatus further includes a moving unit that relatively moves the object to be measured and the light transmitting unit in a direction substantially orthogonal to the first direction, and the shape measuring unit includes the object to be measured and the light transmitting unit. The three-dimensional shape of the object to be measured is measured based on the detection result of the detection unit when the relative position is changed.
In particular, the rotating unit fixes the light transmitting unit and rotates the object to be measured.

また、前記移動部は、前記被測定物を固定して、前記送光部を移動することを特徴とする。
或いは、前記移動部は、前記送光部を固定して、前記被測定物を移動することを特徴とする。
または、前記移動部は、前記被測定物を固定して、前記送光部を移動することを特徴とする。
The moving unit may move the light transmitting unit while fixing the object to be measured.
Alternatively, the moving unit fixes the light transmitting unit and moves the object to be measured.
Alternatively, the moving unit fixes the object to be measured and moves the light transmitting unit.

或いは、前記移動部は、前記送光部を固定して、前記被測定物を移動することを特徴とする。   Alternatively, the moving unit fixes the light transmitting unit and moves the object to be measured.

本発明によれば、簡易な構成で複雑な演算を行うことなく、物体の三次元形状を高精度に測定することができる。   According to the present invention, it is possible to measure the three-dimensional shape of an object with high accuracy without performing complicated calculations with a simple configuration.

以下、図面を参照して本発明の各実施形態について詳しく説明する。
(第1の実施形態)
図1は第1の実施形態に係る三次元形状測定装置101のブロック図である。三次元形状測定装置101は、立体状の物体の外側形状を所定の高さ毎に測定して等高線を求め、求めた等高線を合成することによって物体の三次元形状を構築する装置で、投光部102と、投光移動部103と、投光固定部104と、回転ステージ105と、ステージ固定部106と、被測定物108を載せる測定台107と、撮像部109と、画像処理部110と、パソコン111とで構成される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a block diagram of a three-dimensional shape measuring apparatus 101 according to the first embodiment. The three-dimensional shape measuring apparatus 101 is an apparatus that constructs a three-dimensional shape of an object by measuring the outer shape of a three-dimensional object at every predetermined height to obtain contour lines and combining the obtained contour lines. Unit 102, light projecting / moving unit 103, light projecting / fixing unit 104, rotation stage 105, stage fixing unit 106, measurement platform 107 on which the object 108 is to be measured, imaging unit 109, and image processing unit 110. And a personal computer 111.

投光部102は、被測定物108に目印となる光の像を投影する。目印になればどんな形状の像を投影してもかまわないが、撮像部109で撮影した画像の中で認識し易い丸などの基本形状が好ましい。また、被測定物108の形状が様々であるため、被測定物108上の投影位置までの距離が変化しても、投影される像は可能な限り焦点が合っていることが望ましい。つまり、投影される像側の焦点深度が深い方が好ましく、光学系のNA(Numerical Aperture:開口数)は小さい方が有利である。このような理由から、特別な光学系を準備する必要がないレーザビームの使用が好ましく、装置構成がコンパクトになる。   The light projecting unit 102 projects an image of light serving as a mark on the measurement object 108. An image of any shape may be projected as a mark, but a basic shape such as a circle that is easy to recognize in an image captured by the imaging unit 109 is preferable. Further, since the shape of the object to be measured 108 is various, it is desirable that the projected image is focused as much as possible even if the distance to the projection position on the object to be measured 108 changes. That is, it is preferable that the depth of focus on the projected image side is deep, and it is advantageous that the NA (Numerical Aperture) of the optical system is small. For these reasons, it is preferable to use a laser beam that does not require the preparation of a special optical system, and the apparatus configuration is compact.

投光移動部103と投光固定部104は、画像処理部110からの制御に基づいて、投光移動部103の上端に固定された投光部102を上下に移動する。
回転ステージ105とステージ固定部106は、画像処理部110からの制御に基づいて、ステージ固定部106上の回転ステージ105を回転させる。つまり、回転ステージ105の上に固定されている投光固定部104および投光移動部103を介して、投光部102は測定台107の上に載せた被測定物108の周囲を同じ高さで回転する。
The light projecting / moving unit 103 and the light projecting / fixing unit 104 move the light projecting unit 102 fixed to the upper end of the light projecting / moving unit 103 up and down based on control from the image processing unit 110.
The rotation stage 105 and the stage fixing unit 106 rotate the rotation stage 105 on the stage fixing unit 106 based on control from the image processing unit 110. In other words, the light projecting unit 102 has the same height around the object 108 to be measured placed on the measurement table 107 via the light projecting fixing unit 104 and the light projecting / moving unit 103 fixed on the rotary stage 105. Rotate with.

例えば、投光移動部103をある高さに移動した状態で、投光部102から照射された光151は、被測定物108に当たって点像を作る。被測定物108上に投影された点像は、撮像部109の受光面で結像される。尚、撮像部109の被測定物108側には、図面では省略されているが撮影用の光学系が配置され、被測定物108の移動範囲において、撮像部109の受光面に結像するように予め調整されている。   For example, the light 151 emitted from the light projecting unit 102 in a state where the light projecting / moving unit 103 is moved to a certain height hits the object to be measured 108 to form a point image. The point image projected on the DUT 108 is formed on the light receiving surface of the imaging unit 109. Although not shown in the drawing, an imaging optical system is disposed on the object 108 side of the imaging unit 109 so that an image is formed on the light receiving surface of the imaging unit 109 in the moving range of the object 108 to be measured. Is adjusted in advance.

撮像部109の受光面に結像された光は画像データに変換され、ケーブル112を介して画像処理部110に出力される。
画像処理部110は、撮像部109から画像データを受け取ると共に、ケーブル113を介して接続されている投光固定部104に指令を送り、投光部102を載せた投光移動部103を撮像部109方向に所定ピッチで上下させる。つまり、被測定物108と投光部102との相対位置を変化させる。そして、投光移動部103を所定ピッチで上下させ、被測定物108の所定の高さ毎に撮像部109から画像データを入力する。この時、所定の高さ毎に、画像処理部110はケーブル114を介してステージ固定部106に指令を送り、回転ステージ105を所定の回転ピッチで1回転させる。画像処理部110は回転ステージ105の所定角度毎に撮像部109から画像データを入力する。つまり、回転ステージ105が1回転する間に、撮像部109は所定の角度毎に画像を撮影し、画像データを画像処理部110に出力する。画像処理部110は、入力した1回転分の画像データを処理して、所定の高さにおける被測定物108の外側形状を求める。尚、外側形状の求め方については、後で詳しく説明する。
The light imaged on the light receiving surface of the imaging unit 109 is converted into image data and output to the image processing unit 110 via the cable 112.
The image processing unit 110 receives the image data from the imaging unit 109 and sends a command to the light projecting fixing unit 104 connected via the cable 113, so that the light projecting moving unit 103 on which the light projecting unit 102 is mounted is captured by the imaging unit. Move up and down at a predetermined pitch in the 109 direction. That is, the relative position between the DUT 108 and the light projecting unit 102 is changed. Then, the light projection moving unit 103 is moved up and down at a predetermined pitch, and image data is input from the imaging unit 109 at every predetermined height of the object to be measured 108. At this time, at every predetermined height, the image processing unit 110 sends a command to the stage fixing unit 106 via the cable 114 to rotate the rotary stage 105 once at a predetermined rotation pitch. The image processing unit 110 inputs image data from the imaging unit 109 at every predetermined angle of the rotary stage 105. In other words, the imaging unit 109 captures an image at a predetermined angle and outputs the image data to the image processing unit 110 while the rotation stage 105 rotates once. The image processing unit 110 processes the input image data for one rotation, and obtains the outer shape of the DUT 108 at a predetermined height. The method for obtaining the outer shape will be described in detail later.

ここで、被測定物108を載せている測定台107の上面と、回転ステージ105の上面と、投光部102が回転する面とは、互いに平行な面になるように設置されているので、投光部102が同じ高さで1回転して被測定物108に投光した光の軌跡は、被測定物108の等高線を示していることになる。
次に、三次元形状測定装置101の測定の流れについて、図2のフローチャートを用いて詳しく説明する。
(ステップS201)先ず、被測定物108を測定台107にセットする。
(ステップS202)次に、投光移動部103の測定レンジ(移動範囲)や測定ピッチ(移動ピッチ)などの測定仕様をパソコン111から入力する。パソコン111で入力された測定仕様は、ケーブル115を介して画像処理部110に出力され、画像処理部110はケーブル113を介して投光固定部104に投光移動部103を初期位置に移動するよう指令する。例えば、図3(a)の測定台107の上面からh1の高さに投光部102の光が投光される位置に投光移動部103を移動する。同時に、画像処理部110はステージ固定部106に回転ステージ105を初期位置に移動するよう指令する。以降、回転ステージ105は1回転する毎に初期位置に戻る。
(ステップS203)投光移動部103の現在位置で投光部102から被測定物108に光を投光する。
(ステップS204)被測定物108に投光された光の像を撮像部109で撮影し、画像処理部110に出力する。
(ステップS205)回転ステージ105を現在位置から所定角度だけ回転させる。
(ステップS206)回転ステージ105が1回転したか否か、つまり初期位置に戻ってきたか否かを判別する。回転ステージ105が1回転していない場合は、ステップS203に戻り、1回転終了した場合は、ステップS207へ進む。
(ステップS207)回転ステージ105が1回転したら、画像処理部110は1回転分の画像データからポインタの軌跡を合成して、その高さでの被測定物108の外側形状、つまり等高線を求める。例えば、図3(b)は同図(a)のh1の高さにおいて、回転ステージ105を1回転した時の画像を合成した様子を示しており、各点は所定角度毎に撮影した投光部102の投光した光の点を示し、これらの点を結んだ線がその高さでの等高線g1となる。
(ステップS208)測定仕様に従って、測定が完了したか否かを判断する。例えば、投光移動部103が移動範囲の終了位置に達していない場合はステップS209に進み、終了位置に達している場合はステップS210に進む。
(ステップS209)投光移動部103を設定された測定ピッチに従って、次の測定位置まで移動する。例えば、図3(a)の測定台107の上面からh2の高さに投光部102の光が投光される位置に投光移動部103を移動する。移動後、再び、ステップS203に戻り、その高さでの等高線を求める。例えば、図3(b)で説明したように、同図(c)では測定台107上に置かれた被測定物108の高さh2での等高線g2が求められ、同図(d)では高さh3での等高線g3が求められる。
(ステップS210)移動ステージ110が移動範囲の終了位置に達して測定を終了した場合は、画像処理部110がステップS207で求めた高さ毎の等高線を合成して、三次元形状データを作成する。例えば、図3(a)に示すように、ステップS207において、測定台107上に置かれた被測定物108の高さh1,h2およびh3の位置での各等高線g1,g2およびg3が求められているので、これらの等高線g1,g2およびg3を合成して、図3(e)に示すような等高線画像が得られる。
(ステップS211)ステップS210で求めた等高線画像を高さ情報と合わせて三次元形状データを求める。これを三次元表示すると、例えば、図3(f)に示すような被測定物108の三次元形状108aがパソコン111の画面に表示される。尚、本フローチャートの説明では、分かり易いように、等高線g1,g2およびg3の3つの等高線だけで説明したが、実際には図3(f)の点線で示したように、細かいピッチで投光移動部103を上下させて、各高さでの等高線を求めることによって、高精度な被測定物108の三次元形状108aを構築することができる。
(ステップS212)必要に応じて、パソコン111では、キーボードやマウスを操作して、画面に表示されている被測定物108の任意の位置を指定して、画像処理部110から受け取った被測定物108の三次元形状データから各部の大きさや長さを求めて表示する。
(ステップS213)全ての計測を終了する。
Here, the upper surface of the measurement table 107 on which the object 108 to be measured 108 is placed, the upper surface of the rotary stage 105, and the surface on which the light projecting unit 102 rotates are installed so as to be parallel to each other. The trajectory of the light that the light projecting unit 102 makes one turn at the same height and projects onto the measurement object 108 indicates the contour lines of the measurement object 108.
Next, the measurement flow of the three-dimensional shape measuring apparatus 101 will be described in detail with reference to the flowchart of FIG.
(Step S201) First, the object to be measured 108 is set on the measurement table 107.
(Step S202) Next, measurement specifications such as a measurement range (movement range) and a measurement pitch (movement pitch) of the light projecting movement unit 103 are input from the personal computer 111. The measurement specification input by the personal computer 111 is output to the image processing unit 110 via the cable 115, and the image processing unit 110 moves the light projecting moving unit 103 to the initial position via the cable 113 to the light projecting fixing unit 104. Command. For example, the light projection moving unit 103 is moved to a position where the light of the light projecting unit 102 is projected to a height h1 from the upper surface of the measurement table 107 in FIG. At the same time, the image processing unit 110 instructs the stage fixing unit 106 to move the rotary stage 105 to the initial position. Thereafter, the rotating stage 105 returns to the initial position every time it makes one rotation.
(Step S <b> 203) Light is projected from the light projecting unit 102 to the object 108 to be measured at the current position of the light projecting / moving unit 103.
(Step S <b> 204) An image of light projected on the DUT 108 is captured by the imaging unit 109 and output to the image processing unit 110.
(Step S205) The rotary stage 105 is rotated by a predetermined angle from the current position.
(Step S206) It is determined whether or not the rotation stage 105 has made one rotation, that is, whether or not the rotation stage 105 has returned to the initial position. If the rotation stage 105 has not made one rotation, the process returns to step S203, and if one rotation has been completed, the process proceeds to step S207.
(Step S207) When the rotation stage 105 makes one rotation, the image processing unit 110 synthesizes the locus of the pointer from the image data for one rotation, and obtains the outer shape of the object to be measured 108 at that height, that is, the contour line. For example, FIG. 3B shows a state in which the images when the rotary stage 105 is rotated once at the height of h1 in FIG. 3A are combined, and each point is a light projection taken at a predetermined angle. The point of the light which the part 102 projected is shown, and the line which connected these points turns into the contour line g1 in the height.
(Step S208) It is determined whether the measurement is completed according to the measurement specification. For example, if the light projecting / moving unit 103 has not reached the end position of the movement range, the process proceeds to step S209, and if it has reached the end position, the process proceeds to step S210.
(Step S209) The light projection moving unit 103 is moved to the next measurement position according to the set measurement pitch. For example, the light projecting / moving unit 103 is moved to a position where light from the light projecting unit 102 is projected to a height h2 from the upper surface of the measurement table 107 in FIG. After the movement, the process returns to step S203 again, and a contour line at that height is obtained. For example, as described in FIG. 3B, the contour line g2 at the height h2 of the DUT 108 placed on the measurement table 107 is obtained in FIG. A contour line g3 at h3 is obtained.
(Step S210) When the moving stage 110 reaches the end position of the moving range and ends the measurement, the image processing unit 110 combines the contour lines for each height obtained in Step S207 to create three-dimensional shape data. . For example, as shown in FIG. 3A, in step S207, the contour lines g1, g2, and g3 at the positions of the heights h1, h2, and h3 of the object 108 placed on the measuring table 107 are obtained. Therefore, these contour lines g1, g2, and g3 are synthesized to obtain a contour image as shown in FIG.
(Step S211) Three-dimensional shape data is obtained by combining the contour image obtained in Step S210 with height information. When this is displayed three-dimensionally, for example, a three-dimensional shape 108a of the object 108 to be measured as shown in FIG. In the description of this flowchart, only the three contour lines g1, g2, and g3 have been described for the sake of clarity. However, actually, as shown by the dotted lines in FIG. By moving the moving unit 103 up and down to obtain contour lines at each height, a highly accurate three-dimensional shape 108a of the object 108 to be measured can be constructed.
(Step S212) If necessary, the personal computer 111 operates the keyboard or mouse to specify an arbitrary position of the device 108 displayed on the screen, and the device under test received from the image processing unit 110. The size and length of each part are obtained from the three-dimensional shape data 108 and displayed.
(Step S213) All measurements are finished.

このようにして、所定ピッチで投光移動部103を上下させ、同時に回転ステージ105を回転させて、被測定物108に光が当たっている部分の外側形状を抽出し、これらを所定位置毎の等高線として合成することによって、被測定物108の三次元形状データを測定することができる。測定した被測定物108の三次元形状データは、ケーブル115を介してパソコン111に送られ、パソコン111で被測定物108の三次元形状を表示することができる。   In this way, the light projection moving unit 103 is moved up and down at a predetermined pitch, and at the same time, the rotary stage 105 is rotated to extract the outer shape of the portion where the light hits the object to be measured 108, and these are extracted for each predetermined position. By combining them as contour lines, the three-dimensional shape data of the object to be measured 108 can be measured. The measured three-dimensional shape data of the measured object 108 is sent to the personal computer 111 via the cable 115, and the personal computer 111 can display the three-dimensional shape of the measured object 108.

尚、本実施形態では、画像処理を行う画像処理部110と、三次元形状測定装置101全体の操作や測定結果の表示を行うパソコン111とを別々に設けたが、パソコン111に画像処理部110のハードウェアおよびソフトウェアを内蔵するようにしても構わない。或いは、逆に画像処理部110に操作部や表示部を設けて、三次元形状測定装置101専用の制御部としても構わない。   In this embodiment, the image processing unit 110 that performs image processing and the personal computer 111 that displays the operation of the entire three-dimensional shape measurement apparatus 101 and the display of measurement results are separately provided. The hardware and software may be built in. Or, conversely, an operation unit or a display unit may be provided in the image processing unit 110 to be a control unit dedicated to the three-dimensional shape measuring apparatus 101.

このように、本実施形態に係る三次元形状測定装置101は、立体状の物体の所定の高さ毎に外側形状を測定して等高線を求め、高さを可変しながら測定した所定位置毎の等高線を合成することによって物体の三次元形状を構築することができるので、簡易な構成で複雑な演算を行うことなく、誤差の少ない高精度な三次元形状測定装置およびその方法を提供することができる。特に、一度に全ての等高線を得るモアレ法は、物体の高低差によって誤差が大きくなるという問題があったが、本実施形態による三次元形状測定装置および測定方法では、等高線毎に画像を得ることができるので、物体の高低差に依らず高精度な測定が可能になる。   As described above, the three-dimensional shape measuring apparatus 101 according to the present embodiment measures the outer shape for each predetermined height of the three-dimensional object to obtain contour lines, and measures the predetermined position measured while changing the height. Since it is possible to construct a three-dimensional shape of an object by synthesizing contour lines, it is possible to provide a highly accurate three-dimensional shape measuring apparatus and method therefor with a simple structure and without performing complicated calculations, it can. In particular, the moire method that obtains all the contour lines at once has a problem that the error becomes large due to the difference in height of the object, but the 3D shape measuring apparatus and the measuring method according to the present embodiment obtain an image for each contour line. Therefore, highly accurate measurement is possible regardless of the height difference of the object.

(第2の実施形態)
次に、第2の実施形態に係る三次元形状測定装置201について図4を用いて説明する。三次元形状測定装置201は、第1の実施形態の三次元形状測定装置101と基本的な構成は同じであるが、投光固定部104と投光移動部103がなく、回転ステージ105の所定の位置に投光部102を固定する固定部204が設けられている。さらに、被測定物108を載せる測定台107の代わりに移動測定台202と移動測定台202を画像処理部205の指令によって上下に移動させる固定測定台203が設けられている。
(Second Embodiment)
Next, a three-dimensional shape measuring apparatus 201 according to the second embodiment will be described with reference to FIG. The three-dimensional shape measuring apparatus 201 has the same basic configuration as that of the three-dimensional shape measuring apparatus 101 of the first embodiment, but does not have the light projection fixing unit 104 and the light projection moving unit 103, and has a predetermined rotation stage 105. A fixing portion 204 for fixing the light projecting portion 102 is provided at the position. Furthermore, instead of the measurement table 107 on which the object to be measured 108 is placed, a movable measurement table 202 and a fixed measurement table 203 for moving the movement measurement table 202 up and down by an instruction from the image processing unit 205 are provided.

また、画像処理部205は、第1の実施形態の画像処理部110と基本的に同じ画像処理を行うが、図2のフローチャートにおいて、投光移動部103の処理が移動測定台202に置き換えられる。つまり、第1の実施形態では、投光移動部103の先端に取り付けられている投光部102を上下することによって、被測定物108に投光する光の高さを可変したが、本実施形態では、移動測定台202に載せられた被測定物108を上下することによって、被測定物108に投光する光の高さを可変する。   Further, the image processing unit 205 performs basically the same image processing as the image processing unit 110 of the first embodiment, but the process of the light projecting and moving unit 103 is replaced with the movement measurement table 202 in the flowchart of FIG. . That is, in the first embodiment, the height of the light projected on the measurement object 108 is varied by moving the light projecting unit 102 attached to the tip of the light projecting moving unit 103 up and down. In the embodiment, the height of light projected on the measurement object 108 is varied by moving the measurement object 108 placed on the movable measurement table 202 up and down.

上記の点以外は、第1の実施形態と同様に、被測定物108に光が当たっている部分の外側形状を抽出し、これらを所定位置毎の等高線として合成することによって、被測定物108の三次元形状データを測定する。測定した被測定物108の三次元形状データは、ケーブル115を介してパソコン111に送られ、パソコン111で被測定物108の三次元形状を表示する。   Except for the above points, as in the first embodiment, the outer shape of the portion where light hits the object to be measured 108 is extracted, and these are synthesized as contour lines for each predetermined position, thereby the object 108 to be measured. 3D shape data is measured. The measured three-dimensional shape data of the measured object 108 is sent to the personal computer 111 via the cable 115, and the personal computer 111 displays the three-dimensional shape of the measured object 108.

このように、本実施形態に係る三次元形状測定装置201は、立体状の物体の所定の高さ毎に外側形状を測定して等高線を求め、高さを可変しながら測定した所定位置毎の等高線を合成することによって物体の三次元形状を構築することができるので、簡易な構成で複雑な演算を行うことなく、誤差の少ない高精度な三次元形状測定装置およびその方法を提供することができる。   As described above, the three-dimensional shape measuring apparatus 201 according to the present embodiment obtains contour lines by measuring the outer shape for each predetermined height of the three-dimensional object, and determines the contour for each predetermined position measured while varying the height. Since it is possible to construct a three-dimensional shape of an object by synthesizing contour lines, it is possible to provide a highly accurate three-dimensional shape measuring apparatus and method therefor with a simple structure and without performing complicated calculations, it can.

(第3の実施形態)
次に、第3の実施形態に係る三次元形状測定装置301について図5を用いて説明する。三次元形状測定装置301は、第1の実施形態の三次元形状測定装置101と基本的な構成は同じであるが、ステージ固定部106と回転ステージ105がなく、投光固定部104は固定ステージ302に取り付けられている。さらに、被測定物108を載せる測定台107は、測定回転ステージ303に固定され、測定回転ステージ303は画像処理部305の指令によって測定ステージ固定部304の上で回転するようになっている。
(Third embodiment)
Next, a three-dimensional shape measuring apparatus 301 according to the third embodiment will be described with reference to FIG. The three-dimensional shape measuring apparatus 301 has the same basic configuration as the three-dimensional shape measuring apparatus 101 of the first embodiment, but does not include the stage fixing unit 106 and the rotating stage 105, and the light projection fixing unit 104 is a fixed stage. 302 is attached. Further, the measurement table 107 on which the object to be measured 108 is placed is fixed to the measurement rotation stage 303, and the measurement rotation stage 303 is rotated on the measurement stage fixing unit 304 in response to an instruction from the image processing unit 305.

また、画像処理部305は、第1の実施形態の画像処理部110と基本的に同じ画像処理を行うが、図2のフローチャートにおいて、回転ステージ105の処理が測定回転ステージ303の処理に置き換えられる。つまり、第1の実施形態では、回転ステージ105に投光固定部104および投光移動部103を介して取り付けられている投光部102が被測定物108の周囲を回転することによって、被測定物108の等高線を求めたが、本実施形態では、測定台107に載せられた被測定物108を測定回転ステージ303で回転することによって、被測定物108の等高線を求める。   The image processing unit 305 performs basically the same image processing as the image processing unit 110 of the first embodiment, but the processing of the rotary stage 105 is replaced with the processing of the measurement rotary stage 303 in the flowchart of FIG. . In other words, in the first embodiment, the light projecting unit 102 attached to the rotary stage 105 via the light projecting fixing unit 104 and the light projecting moving unit 103 rotates around the object 108 to be measured. Although the contour line of the object 108 is obtained, in this embodiment, the contour line of the object 108 to be measured is obtained by rotating the object 108 placed on the measurement table 107 on the measurement rotation stage 303.

上記の点以外は、第1の実施形態と同様に、被測定物108に光が当たっている部分の外側形状を抽出し、これらを所定の高さ毎の等高線として合成することによって、被測定物108の三次元形状データを測定する。測定した被測定物108の三次元形状データは、ケーブル115を介してパソコン111に送られ、パソコン111で被測定物108の三次元形状を表示する。   Except for the above points, as in the first embodiment, the outer shape of the portion of the object to be measured 108 that is exposed to light is extracted, and these are combined as contour lines for each predetermined height to be measured. The three-dimensional shape data of the object 108 is measured. The measured three-dimensional shape data of the measured object 108 is sent to the personal computer 111 via the cable 115, and the personal computer 111 displays the three-dimensional shape of the measured object 108.

このように、本実施形態に係る三次元形状測定装置301は、立体状の物体の所定の高さ毎に外側形状を測定して等高線を求め、高さを可変しながら測定した所定位置毎の等高線を合成することによって物体の三次元形状を構築することができるので、簡易な構成で複雑な演算を行うことなく、誤差の少ない高精度な三次元形状測定装置およびその方法を提供することができる。   As described above, the three-dimensional shape measuring apparatus 301 according to the present embodiment measures the outer shape for each predetermined height of the three-dimensional object to obtain the contour line, and measures the predetermined position measured while varying the height. Since it is possible to construct a three-dimensional shape of an object by synthesizing contour lines, it is possible to provide a highly accurate three-dimensional shape measuring apparatus and method therefor with a simple structure and without performing complicated calculations, it can.

尚、第1の実施形態では投光部102を上下に移動させると共に回転させる構造とし、第2の実施形態では投光部102の高さを固定にして回転させると共に被測定物108を上下に移動させる構造とした。また、第3の実施形態では投光部102を上下に移動させると共に被測定物108を回転させる構造とした。これ以外にも、第2および第3の実施形態を組み合わせて、投光部102の高さと回転位置を固定にして、被測定物108を上下に移動させると共に回転させる構造としても同様に実現することができる。   In the first embodiment, the light projecting unit 102 is moved up and down and rotated. In the second embodiment, the height of the light projecting unit 102 is fixed and rotated, and the object 108 is moved up and down. The structure was moved. In the third embodiment, the light projecting unit 102 is moved up and down and the measured object 108 is rotated. In addition to this, the second and third embodiments can be combined to realize a structure in which the height and rotation position of the light projecting unit 102 are fixed, and the measured object 108 is moved up and down and rotated. be able to.

第1の実施形態に係る三次元形状測定装置101の構成図である。It is a lineblock diagram of three-dimensional shape measuring device 101 concerning a 1st embodiment. 三次元形状測定装置101の測定手順を示すフローチャートである。3 is a flowchart showing a measurement procedure of the three-dimensional shape measuring apparatus 101. 三次元形状の構築を説明するための補助図である。It is an auxiliary figure for explaining construction of a three-dimensional shape. 第2の実施形態に係る三次元形状測定装置201の構成図である。It is a block diagram of the three-dimensional shape measuring apparatus 201 which concerns on 2nd Embodiment. 第3の実施形態に係る三次元形状測定装置301の構成図である。It is a block diagram of the three-dimensional shape measuring apparatus 301 which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

101,201,301・・・三次元形状測定装置;102・・・投光部;103・・・投光移動部;104・・・投光固定部;105・・・回転ステージ;106・・・ステージ固定部;107・・・測定台;108・・・被測定物;109・・・撮像部;110,205,305・・・画像処理部;111・・・パソコン;202・・・移動測定台;203・・・固定測定台;204・・・固定部;302・・・固定ステージ;303・・・測定回転ステージ;304・・・測定ステージ固定部
101, 201, 301 ... Three-dimensional shape measuring apparatus; 102 ... Projection unit; 103 ... Projection movement unit; 104 ... Projection fixing unit; 105 ... Rotation stage; Stage fixing unit 107 107 Measuring table 108 Object to be measured 109 Imaging unit 110, 205, 305 Image processing unit 111 Personal computer 202 Moving Measurement stage; 203 ... Fixed measurement stage; 204 ... Fixed part; 302 ... Fixed stage; 303 ... Measurement rotary stage; 304 ... Measurement stage fixed part

Claims (7)

立体状の被測定物の形状を測定する測定装置であって、
第1の方向に光を送光する送光部と、
前記第1の方向と略直交する軸を中心に被測定物と前記送光部とを相対的に回転させる回転部と、
前記被測定物で反射した前記光を検出する検出部と、
前記検出部の検出結果に基づいて、前記被測定物の形状を測定する形状測定部と
を備えることを特徴とする測定装置。
A measuring device for measuring the shape of a three-dimensional object to be measured,
A light transmitting section for transmitting light in a first direction;
A rotating unit that relatively rotates the object to be measured and the light transmitting unit about an axis substantially orthogonal to the first direction;
A detector for detecting the light reflected by the object to be measured;
A measuring apparatus comprising: a shape measuring unit that measures the shape of the object to be measured based on a detection result of the detecting unit.
請求項1に記載の測定装置において、
前記被測定物と前記送光部とを前記第1の方向と略直交する方向に相対移動させる移動部をさらに備え、
前記形状測定部は、前記被測定物と前記送光部との相対位置を変化させた時の前記検出部の検出結果に基づいて、前記被測定物の3次元形状を測定すること
を特徴とする測定装置。
The measuring apparatus according to claim 1,
A moving unit that relatively moves the object to be measured and the light transmitting unit in a direction substantially orthogonal to the first direction;
The shape measuring unit measures a three-dimensional shape of the measured object based on a detection result of the detecting unit when a relative position between the measured object and the light transmitting unit is changed. Measuring device.
請求項2に記載の測定装置において、
前記回転部は、前記送光部を固定して、前記被測定物を回転すること
を特徴とする測定装置。
The measuring apparatus according to claim 2,
The rotating unit fixes the light transmitting unit and rotates the object to be measured.
請求項2に記載の測定装置において、
前記移動部は、前記被測定物を固定して、前記送光部を移動すること
を特徴とする測定装置。
The measuring apparatus according to claim 2,
The moving unit fixes the object to be measured and moves the light transmitting unit.
請求項2に記載の測定装置において、
前記移動部は、前記送光部を固定して、前記被測定物を移動すること
を特徴とする測定装置。
The measuring apparatus according to claim 2,
The moving device fixes the light transmitting unit and moves the object to be measured.
請求項3に記載の測定装置において、
前記移動部は、前記被測定物を固定して、前記送光部を移動すること
を特徴とする測定装置。
The measuring device according to claim 3,
The moving unit fixes the object to be measured and moves the light transmitting unit.
請求項3に記載の測定装置において、
前記移動部は、前記送光部を固定して、前記被測定物を移動すること
を特徴とする測定装置。
The measuring device according to claim 3,
The moving device fixes the light transmitting unit and moves the object to be measured.
JP2007000601A 2007-01-05 2007-01-05 Measurement device Pending JP2008164571A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007000601A JP2008164571A (en) 2007-01-05 2007-01-05 Measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007000601A JP2008164571A (en) 2007-01-05 2007-01-05 Measurement device

Publications (1)

Publication Number Publication Date
JP2008164571A true JP2008164571A (en) 2008-07-17

Family

ID=39694262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007000601A Pending JP2008164571A (en) 2007-01-05 2007-01-05 Measurement device

Country Status (1)

Country Link
JP (1) JP2008164571A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005624A (en) * 2000-06-27 2002-01-09 Roland Dg Corp Method and apparatus for measuring distance
JP2002328013A (en) * 2001-04-27 2002-11-15 Minolta Co Ltd System for measuring three-dimensional shape, data calibrating method and program of system for measuring three-dimensional shape
JP2005189205A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Three-dimensional shape measuring apparatus and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002005624A (en) * 2000-06-27 2002-01-09 Roland Dg Corp Method and apparatus for measuring distance
JP2002328013A (en) * 2001-04-27 2002-11-15 Minolta Co Ltd System for measuring three-dimensional shape, data calibrating method and program of system for measuring three-dimensional shape
JP2005189205A (en) * 2003-12-26 2005-07-14 Fuji Xerox Co Ltd Three-dimensional shape measuring apparatus and method

Similar Documents

Publication Publication Date Title
KR101629545B1 (en) Shape measuring device, shape measuring method, structure manufacturing method, and program
JP6113963B2 (en) Shape measuring method and shape measuring apparatus
US20120246899A1 (en) Profile measuring apparatus, method for measuring profile, and method for manufacturing structure
JP2004257927A (en) Three-dimensional profile measuring system and method for measuring the same
JP3923945B2 (en) Non-contact surface shape measurement method
JP2006301991A (en) Correction method of coordinate transformation function
JPH1183438A (en) Position calibration method for optical measuring device
JP2015114326A (en) Hole measurement apparatus and method using non-rotating cps pen
JP4255865B2 (en) Non-contact three-dimensional shape measuring method and apparatus
EP2138803A1 (en) Jig for measuring an object shape and method for measuring a three-dimensional shape
JP2007170851A (en) Method and system for measuring road surface shape
CN107796718A (en) Brineling system and method
JP5242940B2 (en) Non-contact shape measuring device
JP2015072197A (en) Shape measurement device, structure manufacturing system, shape measurement method, structure manufacturing method, and shape measurement program
JP2010032330A (en) Image measuring device and computer program
JP2005147715A (en) Light wave interference measuring method for winding surface, and interferometer device for winding surface measurement
JP5309542B2 (en) Measuring apparatus and method
JP2019164008A (en) Measurement x-ray ct measurement plan generation method and device
JP2000205821A (en) Instrument and method for three-dimensional shape measurement
JP2021050937A (en) Calibration method of x-ray ct scanner for measurement, measurement method, and x-ray ct scanner for measurement
JPH11351840A (en) Noncontact type three-dimensional measuring method
JP2008164571A (en) Measurement device
JP4791568B2 (en) 3D measuring device
JP2014190800A (en) Three-dimensional measuring method and three-dimensional measuring system
JP2005172610A (en) Three-dimensional measurement apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111227