JP2008164249A - Melting and retaining furnace - Google Patents

Melting and retaining furnace Download PDF

Info

Publication number
JP2008164249A
JP2008164249A JP2006356246A JP2006356246A JP2008164249A JP 2008164249 A JP2008164249 A JP 2008164249A JP 2006356246 A JP2006356246 A JP 2006356246A JP 2006356246 A JP2006356246 A JP 2006356246A JP 2008164249 A JP2008164249 A JP 2008164249A
Authority
JP
Japan
Prior art keywords
melting
molten metal
holding furnace
refractory material
stirring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006356246A
Other languages
Japanese (ja)
Inventor
Yukihiro Miyate
幸裕 宮手
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2006356246A priority Critical patent/JP2008164249A/en
Publication of JP2008164249A publication Critical patent/JP2008164249A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a melting and retaining furnace capable of effectively applying molten metal stirring force when using a permanent magnet type molten metal stirring device. <P>SOLUTION: In the melting and retaining furnace 1, the permanent magnet type molten metal stirring device 10 is arranged below a hearth member 2. The hearth member 2 has a structure comprised by laminating a silicon nitride sheet with relatively superior high temperature strength than an inner side refractory material layer 23, and outer side refractory material layers 21, 2 comprised of at least one type of a silicon carbide sheet on top faces and bottom faces of one layer or plural layers of the inner side refractory material layer 23. Or, an opening is provided on a bottom plate 3 of the melting and retaining furnace to suppress magnetic force shielding of a permanent magnet of the molten metal stirring device 10. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、アルミニウム等の金属の溶解炉等として用いられる溶解・保持炉、特に溶湯を撹拌するための永久磁石が下方に配置される溶解・保持炉に関する。   The present invention relates to a melting / holding furnace used as a melting furnace for metals such as aluminum, and more particularly to a melting / holding furnace in which a permanent magnet for stirring molten metal is disposed below.

例えばアルミニウム溶湯を保持する溶解・保持炉には、省エネルギや成分分析値のバラツキ防止のため、溶湯を撹拌する攪拌装置が一般に併設されている。溶湯撹拌の方法は、機械的撹拌や溶湯中へのガス投入による撹拌、さらには真空ポンプによる吸引吐出の利用、電磁撹拌装置による磁力の応用など様々な方法が考案・実施されている。   For example, in a melting / holding furnace for holding molten aluminum, an agitator for stirring the molten metal is generally provided in order to save energy and prevent variation in component analysis values. As a method for stirring the molten metal, various methods have been devised and implemented, such as mechanical stirring, stirring by introducing gas into the molten metal, utilization of suction and discharge by a vacuum pump, and application of magnetic force by an electromagnetic stirring device.

各方法とも、効果、設備費、ランニングコスト、安全性や作業性に特徴がある。   Each method is characterized by effects, equipment costs, running costs, safety and workability.

そこで、昨今、設備費が安価で、驚くほどコンパクトな装置で、制御・メンテも簡便でランニングコストも非常に安価な永久磁石式の溶湯攪拌装置が提案されるに至ってきた(例えば特許文献1参照)。   Therefore, recently, a permanent magnet-type molten metal stirring device has been proposed that has a low equipment cost, is surprisingly compact, is easy to control and maintain, and has a very low running cost (see, for example, Patent Document 1). ).

しかし、永久磁石式では設備設計時の磁石の強さが攪拌能力を決定し、磁石の磁力が固定され稼動中に変化させることができないため、その磁力を十分に発揮させるためには、撹拌装置だけでなく、溶解・保持炉側にも工夫が必要となる。   However, in the permanent magnet type, the strength of the magnet at the time of equipment design determines the stirring capacity, and the magnetic force of the magnet is fixed and cannot be changed during operation. In addition to this, it is necessary to devise the melting / holding furnace side.

永久磁石式による攪拌力を十分に得るためには
(a)磁石と溶湯金属との距離をできるだけ近づけること。
In order to obtain sufficient stirring force by the permanent magnet type (a) The distance between the magnet and the molten metal should be as close as possible.

(b)磁石と溶湯金属の間に磁性体などの磁力遮蔽物がないこと
が望まれる。
特開平10−146650号公報
(B) It is desirable that there is no magnetic shielding material such as a magnetic material between the magnet and the molten metal.
JP-A-10-146650

しかるに、従来一般のアルミニウムニウム等の金属の溶解・保持炉では、
・保持炉の底部を構成する炉床部材は数百ミリ厚の耐火材・断熱材で構成される、
・炉床部材の下面は鉄板(電磁攪拌の場合はSUS)等の鉄系材料からなる底板で覆われている、
などの構成になっており、磁力を遮蔽する構造になっている。このため、永久磁石による溶湯攪拌力を十分に作用させることができなかった。
However, in conventional melting and holding furnaces for metals such as aluminum,
-The hearth member that forms the bottom of the holding furnace is composed of several hundreds of millimeters of refractory material and heat insulating material.
The bottom surface of the hearth member is covered with a bottom plate made of an iron-based material such as an iron plate (SUS in the case of electromagnetic stirring).
The structure is such that the magnetic force is shielded. For this reason, the molten metal stirring force by a permanent magnet could not fully be acted on.

この発明は、このような技術的背景に鑑みてなされたものであって、永久磁石式の溶湯撹拌装置が用いられる場合に、その溶湯攪拌力を有効に作用させることができる溶解・保持炉の提供を目的とする。   The present invention has been made in view of such a technical background, and when a permanent magnet type molten metal stirring device is used, a melting and holding furnace capable of effectively acting the molten metal stirring force. For the purpose of provision.

本発明者らは、永久磁石式溶湯攪拌装置の攪拌力を十分に得るために
・磁石と溶湯との距離をできるだけ近づけること、
・磁石と溶湯の間に磁性体などの磁力遮蔽物がないこと、
を可能とする溶解・保持炉の構造について、鋭意研究した結果、従来からの一般的な耐火材構造の常識を覆し、新たな考えの耐火材構造を発明した。
In order to sufficiently obtain the stirring force of the permanent magnet type molten metal stirring apparatus, the present inventors make the distance between the magnet and the molten metal as close as possible,
-There should be no magnetic shielding such as magnetic material between the magnet and the molten metal.
As a result of diligent research on the structure of melting and holding furnaces that enable this, the conventional common refractory structure was overturned, and a new refractory structure was invented.

また、保持炉構造体そのものにも注目し、上記の耐火材構成と併用することで課題解決を達成した。  In addition, attention was paid to the holding furnace structure itself, and the problem was solved by using it in combination with the above refractory material structure.

即ち、上記課題は以下の手段によって解決される。
(1)保持炉の底部を構成する炉床部材の下方に永久磁石式の溶湯撹拌装置が配置される溶解・保持炉であって、前記炉床部材が、1層または複数層の内側耐火材層の上面及び下面に、前記内側耐火材層よりも相対的に高温強度に優れた窒化珪素板、炭化珪素板の少なくとも1種から構成される外側耐火材層が積層されてなる構造を有するものであることを特徴とする溶解・保持炉。
(2)保持炉の底部を構成する炉床部材の下面に鉄系材料からなる底板が配置され、前記底板の下方に永久磁石式の溶湯撹拌装置が配置される溶解・保持炉であって、前記底板に、前記溶湯撹拌装置の上方位置において開口部が設けられ、前記開口部を介して前記炉床部材が露出していることを特徴とする溶解・保持炉。
(3)保持炉の底部を構成する炉床部材の下面が鉄系材料からなる底板で被覆され、前記底板の下方に永久磁石式の溶湯撹拌装置が配置される溶解・保持炉であって、前記炉床部材が、1層または複数層の内側耐火材層の上面及び下面に、前記内側耐火材層よりも相対的に高温強度に優れた窒化珪素板、炭化珪素板の少なくとも1種から構成される外側耐火材層が積層されてなる構造を有するものであり、前記底板に、前記溶湯撹拌装置の上方位置において開口部が設けられ、前記開口部を介して前記炉床部材が露出していることを特徴とする溶解・保持炉。
(4)前記内側耐火材層が、ハイアルミナ煉瓦、アルミナセメントキャスタブル、シャモット煉瓦、軽量断熱キャスタブル、断熱ボードの少なくとも1種から構成される前項1または3に記載の溶解・保持炉。
(5)前記開口部の開口比率が30%以上である前項2または3に記載の溶解・保持炉。
(6)溶湯撹拌装置との隙間に、冷却媒体が供給される前項1〜3のいずれかに記載の溶解・保持炉。
That is, the said subject is solved by the following means.
(1) A melting / holding furnace in which a permanent magnet type molten metal stirring device is disposed below a hearth member constituting the bottom of the holding furnace, wherein the hearth member is an inner refractory material having one or more layers. A structure in which an outer refractory material layer composed of at least one of a silicon nitride plate and a silicon carbide plate having relatively higher high-temperature strength than the inner refractory material layer is laminated on the upper and lower surfaces of the layer. A melting / holding furnace.
(2) A melting / holding furnace in which a bottom plate made of an iron-based material is arranged on the bottom surface of a hearth member constituting the bottom of the holding furnace, and a permanent magnet type molten metal stirring device is arranged below the bottom plate, The melting / holding furnace, wherein the bottom plate is provided with an opening at a position above the molten metal stirring device, and the hearth member is exposed through the opening.
(3) A melting and holding furnace in which the bottom surface of the hearth member constituting the bottom of the holding furnace is covered with a bottom plate made of an iron-based material, and a permanent magnet type molten metal stirring device is disposed below the bottom plate, The hearth member is composed of at least one of a silicon nitride plate and a silicon carbide plate which are relatively superior in high-temperature strength to the upper and lower surfaces of one or more inner refractory material layers than the inner refractory material layer. The outer refractory material layer is laminated, and the bottom plate is provided with an opening at a position above the molten metal stirring device, and the hearth member is exposed through the opening. A melting and holding furnace characterized by having
(4) The melting / holding furnace according to item 1 or 3, wherein the inner refractory material layer is composed of at least one of high alumina brick, alumina cement castable, chamotte brick, lightweight heat insulating castable, and heat insulating board.
(5) The melting / holding furnace according to item 2 or 3, wherein the opening ratio of the opening is 30% or more.
(6) The melting / holding furnace according to any one of items 1 to 3, wherein a cooling medium is supplied to a gap between the molten metal stirring device.

前項(1)に記載の発明によれば、炉床部材が、1層または複数層の内側耐火材層の上面及び下面に、前記内側耐火材層よりも相対的に高温強度に優れた窒化珪素板、炭化珪素板の少なくとも1種から構成される外側耐火材層が積層されてなるものであるから、炉床部材の耐火性能を低下させることなく、その厚みを薄くすることができる。そのため、永久磁石式の溶湯撹拌装置と溶湯との距離を短縮することができ、永久磁石により溶湯に作用する磁力を大きくすることができる。   According to the invention described in the preceding item (1), the hearth member is formed on the upper surface and the lower surface of one or a plurality of inner refractory material layers, and has a relatively high temperature strength compared to the inner refractory material layer. Since the outer refractory material layer composed of at least one of a plate and a silicon carbide plate is laminated, the thickness can be reduced without reducing the fire resistance of the hearth member. Therefore, the distance between the molten metal stirring device of the permanent magnet type and the molten metal can be shortened, and the magnetic force acting on the molten metal by the permanent magnet can be increased.

前項(2)に記載の発明によれば、炉床部材の下面に鉄系材料からなる底板が配置され、その底板に、前記溶湯撹拌装置の上方位置において開口部が設けられ、前記開口部を介して前記炉床部材が露出しているから、溶湯撹拌装置の永久磁石により溶湯に作用する磁力が底板によって遮蔽されるのが抑制され、大きな磁力を溶湯に作用させることができる。   According to the invention described in the preceding item (2), the bottom plate made of iron-based material is disposed on the bottom surface of the hearth member, and the bottom plate is provided with an opening at a position above the molten metal stirring device, and the opening is Therefore, the magnetic force acting on the molten metal is suppressed from being shielded by the bottom plate by the permanent magnet of the molten metal stirring device, and a large magnetic force can be applied to the molten metal.

前項(3)に記載の発明によれば、炉床部材の構造と底板開口部の両方の存在により、大きな磁力を溶湯に作用させることができる。   According to the invention described in item (3), a large magnetic force can be applied to the molten metal due to the presence of both the structure of the hearth member and the opening of the bottom plate.

前項(4)に記載の発明によれば、内側耐火材層として、ハイアルミナ煉瓦、アルミナセメントキャスタブル、シャモット煉瓦、軽量断熱キャスタブル、断熱ボードの少なくとも1種を用いることができる。   According to the invention described in item (4), at least one of high alumina brick, alumina cement castable, chamotte brick, lightweight insulating castable, and insulating board can be used as the inner refractory material layer.

前項(5)に記載の発明によれば、底板の開口部の開口比率が30%以上であるから、大きな磁力を確実に溶湯に作用させることができる。   According to the invention described in item (5) above, since the opening ratio of the opening of the bottom plate is 30% or more, a large magnetic force can be reliably applied to the molten metal.

前項(6)に記載の発明によれば、溶湯撹拌装置との隙間に、冷却媒体が供給されるから、炉床部材の温度上昇による溶湯撹拌装置の永久磁石の高温劣化を抑制することができるとともに、溶湯撹拌装置と底板との距離を短くでき、さらに大きな磁力を溶湯に作用させることができる。   According to the invention described in the preceding item (6), since the cooling medium is supplied to the gap between the molten metal stirring device, the high temperature deterioration of the permanent magnet of the molten metal stirring device due to the temperature rise of the hearth member can be suppressed. At the same time, the distance between the molten metal stirring device and the bottom plate can be shortened, and a larger magnetic force can be applied to the molten metal.

図1は、この発明の一実施形態に係るアルミニウム溶解・保持炉の概略構成を示す縦断面図、図2は底面図である。   FIG. 1 is a longitudinal sectional view showing a schematic configuration of an aluminum melting / holding furnace according to an embodiment of the present invention, and FIG. 2 is a bottom view.

発明者らは、まず、市販の高磁力が得られるNd−Fe系磁石などを用いた永久磁石式アルミニウム溶湯攪拌装置10によって、その磁力がどの程度の攪拌力を得られるか精査し、攪拌力を最大にする要件をまとめた。   The inventors first scrutinized how much stirring force can be obtained by the permanent magnet type aluminum molten metal stirring device 10 using a commercially available Nd-Fe magnet that can obtain high magnetic force, and stirring force. The requirements for maximizing are summarized.

その結果、
(a)永久磁石式アルミニウム攪拌装置10の上面(永久磁石面)から溶融アルミニウムニウム(溶湯)20までの距離を400mm以下にする。
(b)永久磁石式アルミニウム溶湯攪拌装置10の上面から保持炉1の底部を構成する炉床部材2までの距離を50mm以下にする。
as a result,
(A) The distance from the upper surface (permanent magnet surface) of the permanent magnet type aluminum stirring device 10 to the molten aluminum (molten metal) 20 is set to 400 mm or less.
(B) The distance from the upper surface of the permanent magnet type aluminum melt stirring apparatus 10 to the hearth member 2 constituting the bottom of the holding furnace 1 is set to 50 mm or less.

(c)攪拌を呼び起こす磁力が横切るエリアにあたる部分において、炉床部材2の下面を被覆する鉄系材料からなる底板板は無い方がよい。
との結論を得た。
(C) It is better that there is no bottom plate made of an iron-based material that covers the lower surface of the hearth member 2 in a portion corresponding to an area where a magnetic force that causes stirring is crossed.
The conclusion was obtained.

しかし、背景技術の項目でも述べたように、従来一般の保持炉はこれらを阻害する構造を有している。そこで、まず、炉の耐火材構造に注目した。   However, as described in the background art section, a conventional holding furnace has a structure that obstructs them. Therefore, we first focused on the refractory structure of the furnace.

従来一般の炉における炉床部材2は、溶融アルミニウムニウム側から、第1層として、耐火度の高い、耐火煉瓦やキャスタブルが施工される。その厚みは煉瓦なら230mm程度からキャスタブル施工で300〜400mmにもなる。また、第2層には、第1層よりは耐火度は落ちるが、適度な耐火度に断熱性を持った煉瓦やキャスタブルが用いられ、その厚みは100から200mmに施工される。第3層には、断熱性能に優れた煉瓦または軽量キャスタブルが施工される。その厚みはやはり100〜200mmである。   The hearth member 2 in a conventional general furnace is constructed with fire bricks and castables having high fire resistance as the first layer from the molten aluminum side. The thickness of brick is about 230mm, and it can be 300 ~ 400mm by castable construction. In addition, the second layer is made of brick or castable having an appropriate fire resistance and heat insulation, although its fire resistance is lower than that of the first layer, and its thickness is set to 100 to 200 mm. Brick or lightweight castable with excellent heat insulation performance is applied to the third layer. The thickness is also 100 to 200 mm.

第4層には、非常に断熱性のよい25〜50mmの断熱ボードが採用されることが多い。その下方のケーシング材としての底板3と断熱ボードの間に、耐熱繊維が敷かれることもある(厚さ10mm程度)。   As the fourth layer, a 25 to 50 mm heat insulating board having a very good heat insulating property is often adopted. A heat-resistant fiber may be laid between the bottom plate 3 as the casing material below and the heat insulating board (thickness of about 10 mm).

また、前記底板3には厚み3〜9mm程度のSS鋼やSUS鋼等の鉄系材料が用いられている。   The bottom plate 3 is made of an iron-based material such as SS steel or SUS steel having a thickness of about 3 to 9 mm.

このような構成によって、炉床部材2の厚みは、薄くても450mmを超える炉が多い。   With such a configuration, there are many furnaces exceeding 450 mm even if the thickness of the hearth member 2 is thin.

また、ルツボ4を使用した炉では、耐火材構造は一般的な反射炉に比べると薄くは設計するものの、同様な耐火材構造に加え、ルツボ4そのものの厚み(50mm程度)やルツボ台(高さ30〜80mm)と呼ばれる固定台を用いるのが一般的である。   Moreover, in the furnace using the crucible 4, although the refractory material structure is designed to be thinner than a general reflection furnace, in addition to the similar refractory material structure, the thickness of the crucible 4 itself (about 50 mm) and the crucible base (high It is common to use a fixed base called 30 to 80 mm).

そこで、この実施形態では、上記のような従来の構造を、根本から見直した。つまり、
[1]溶融アルミニウムニウム(溶湯)側の最上層には、耐火度の高い耐火物を用いる。しかも煉瓦状のものではなく板状の耐火材が必要となる。
[2]その下は一般的に用いられている、ハイアルミナ煉瓦、シャモット煉瓦等の耐火材や断熱材を用いるが、例えば煉瓦なら長片を用いず、短片側などを用いることで厚みを抑える。
[3]断熱ボードなども用いても良いが、厚みを抑えるため、従来の半分程度におさえる。
[4]最下層が[2]や[3]のままでは、煉瓦が崩れたり、ボードが割れたりし、耐火材が維持できなくなる可能性が高い。従って、最下層には熱に強く、高強度な材質で板形状の耐火材が必要とされる。
Therefore, in this embodiment, the conventional structure as described above has been fundamentally reviewed. That means
[1] For the uppermost layer on the side of the molten aluminum (molten metal), a refractory having a high fire resistance is used. Moreover, a plate-like refractory material is required instead of a brick-like one.
[2] Below that, refractory materials and heat insulating materials such as high alumina bricks and chamotte bricks are used, but for example, bricks do not use long pieces, but use the short piece side to suppress the thickness. .
[3] A heat insulating board or the like may be used, but in order to suppress the thickness, it is reduced to about half of the conventional one.
[4] If the lowermost layer is left as [2] or [3], there is a high possibility that the brick will collapse or the board will break, making it impossible to maintain the refractory material. Therefore, a plate-like refractory material that is strong and resistant to heat is required for the lowermost layer.

そこで、これらを総合的に鑑みながら設計を行なったところ、炉床部材2の最上層(溶融アルミニウムニウム側)と最下層(底板側)には、窒化珪素や炭化珪素の板材が適していることがわかった。このため、炉床部材2の耐火材構成は、これら20〜60mm程度の外側耐火材層21、22としての上下の窒化珪素板または炭化珪素板により、内側耐火材層23をサンドウィッチする構造とした。ただし、このサンドウィッチ構造は、炉床部材2の少なくとも一部に含まれていればよく、サンドウィッチ構造の外側耐火材層21、22のさらに外側に、別の耐火材が配置されることを排除するものではない。   Therefore, when the design was made in consideration of these comprehensively, it was found that silicon nitride or silicon carbide plate material is suitable for the uppermost layer (molten aluminum side) and the lowermost layer (bottom plate side) of the hearth member 2. I understood. For this reason, the refractory material structure of the hearth member 2 has a structure in which the inner refractory material layer 23 is sandwiched by upper and lower silicon nitride plates or silicon carbide plates as the outer refractory material layers 21 and 22 of about 20 to 60 mm. . However, this sandwich structure only needs to be included in at least a part of the hearth member 2, and it is excluded that another refractory material is disposed further outside the outer refractory material layers 21 and 22 of the sandwich structure. It is not a thing.

この構造において、永久磁石式アルミニウム攪拌装置10の上面(永久磁石面)から溶融アルミニウムニウム(溶湯)20までの距離を400mm以下にすることが可能となった。   In this structure, the distance from the upper surface (permanent magnet surface) of the permanent magnet type aluminum stirring device 10 to the molten aluminum (molten metal) 20 can be made 400 mm or less.

理想的には、20〜40mm程度の窒化珪素板からなる上下の外側耐火材層21、22の間に、内側耐火材層23として、耐火材(煉瓦又はキャスタブル)を100mm以下、断熱材(煉瓦またはキャスタブル又は断熱ボード)を100mm以下にして挟み込み、総厚で250mm以下にすることが望ましい。   Ideally, a refractory material (brick or castable) is 100 mm or less as an inner refractory material layer 23 between upper and lower outer refractory material layers 21 and 22 made of a silicon nitride plate of about 20 to 40 mm. Alternatively, it is preferable that the castable or heat insulating board is sandwiched to 100 mm or less and the total thickness is 250 mm or less.

なお、上記構造では、炉床部材裏面(最下層の耐火材表面)の温度が150〜250℃近くまで上昇し、このままでは溶湯撹拌装置10における永久磁石の劣化が心配されるため、攪拌装置10の上面から炉床部材2の下面までの距離を50mm以下にすることが困難となる場合がある。   In the above structure, the temperature of the bottom surface of the hearth member (the refractory material surface of the lowermost layer) rises to near 150 to 250 ° C., and there is a concern about deterioration of the permanent magnet in the molten metal stirring device 10. It may be difficult to set the distance from the upper surface of the furnace floor to the lower surface of the hearth member 2 to 50 mm or less.

そこで、永久磁石式アルミニウム溶湯攪拌装置10の本体内に磁石保護のための装置内冷却機構を設けることと併せて、あるいは単独で、永久磁石の高温劣化を防ぐ目的で、攪拌装置10と保持炉1との隙間に冷媒を供給するための冷媒供給手段を設けることが推奨される。   Therefore, the stirrer 10 and the holding furnace are used for the purpose of preventing the permanent magnet from being deteriorated at a high temperature in combination with the provision of an in-device cooling mechanism for protecting the magnet in the main body of the permanent magnet type aluminum melt stirrer 10. It is recommended that a refrigerant supply means for supplying the refrigerant is provided in the gap with 1.

攪拌装置10と底板3との隙間5の大きさLは10〜15mmであり、その隙間5に冷却媒体を流し、永久磁石の温度上昇を抑制する。冷却媒体の種類は特には規定しないが、エアーで十分であり、その流量は6〜15L/min程度でよい。   The size L of the gap 5 between the stirring device 10 and the bottom plate 3 is 10 to 15 mm, and a cooling medium is passed through the gap 5 to suppress the temperature rise of the permanent magnet. The type of the cooling medium is not particularly defined, but air is sufficient, and the flow rate thereof may be about 6 to 15 L / min.

次に、炉床部材2の下面に配置される鉄製の板状ケーシング材(底板3)について説明する。   Next, an iron plate-like casing material (bottom plate 3) disposed on the lower surface of the hearth member 2 will be described.

一般に、保持炉1は鉄またはSUS板などの鉄系材料からなる板材で底部と側面部をケーシングし、その中に耐火材を組みあげて製作される。ルツボ炉はさらにその中にルツボ4を配置する。   Generally, the holding furnace 1 is manufactured by casing a bottom part and a side part with a plate material made of an iron-based material such as iron or a SUS plate, and assembling a refractory material therein. The crucible furnace further has a crucible 4 disposed therein.

しかし、その構造では永久磁石式アルミニウム溶湯攪拌装置10と炉床部材2(ひいてはその上部に位置するアルミニウム溶湯20)との間に、ケーシングの底板3で隔壁を設けることになる。つまりは磁力の通過が底板3によって阻害されることとなる。   However, in that structure, a partition wall is provided on the bottom plate 3 of the casing between the permanent magnet type aluminum molten agitator 10 and the hearth member 2 (and thus the molten aluminum 20 located on the upper part thereof). That is, the passage of magnetic force is inhibited by the bottom plate 3.

本実施形態では、溶湯20の攪拌を生じさせる磁力が横切るエリア、換言すれば撹拌装置10の上方位置において、図2に示すように底板3に開口部6が形成されており、炉床部材2がむき出しに見える状態にすることによって、底板3により磁力が遮蔽される影響を少なくするものとなされている。   In the present embodiment, an opening 6 is formed in the bottom plate 3 as shown in FIG. 2 in the area where the magnetic force causing stirring of the molten metal 20 crosses, in other words, in the upper position of the stirring device 10, and the hearth member 2 By making the surface appear to be exposed, the influence of the magnetic force shielded by the bottom plate 3 is reduced.

ただし、底板3に単に開口部6を形成しただけでは構造体としての強度不足や炉床部材2が脱落するなどの不具合が予想される。開口部6の比率について調査を重ねたところ、開口部比率が30%以上から遮蔽の影響を少なくする効果が見られた。なお、開口部比率とは、撹拌装置10の永久磁石が回転するときに永久磁石の最外端部で形成される円に対向する部分の底板3の面積(永久磁石の磁力が横切るエリアの総面積)のうち、底板3によって遮蔽されていない面積の比率をいう。   However, simply forming the opening 6 in the bottom plate 3 is expected to cause problems such as insufficient strength as a structure and dropping of the hearth member 2. As a result of repeated investigations on the ratio of the opening 6, an effect of reducing the influence of shielding from the opening ratio of 30% or more was found. The opening ratio is the area of the bottom plate 3 facing the circle formed at the outermost end of the permanent magnet when the permanent magnet of the stirring device 10 rotates (the total area where the magnetic force of the permanent magnet crosses). The ratio of the area which is not shielded by the bottom plate 3 in the area).

前述したサンドウィッチ構造の炉床部材2と、前記開口された底板3を同時に備えたものに構成しても良いし、少なくとも一方のみを備えても良いが、同時に備えさせることにより、底板3の開口部比率を上げることが可能となり、理想的には60〜75%の開口比率を実現することができる。   The sandwich-structured hearth member 2 and the opened bottom plate 3 may be provided at the same time, or at least one of them may be provided at the same time. It is possible to increase the part ratio, and ideally, an opening ratio of 60 to 75% can be realized.

また、開口部6からの炉床部材の脱落を防止するために、開口部6を横断する十字プレート31で補強する方法や、開口部6をスリット状に形成する方法、パンチングメタルのような元板が連続体でないもので底板3を構成しても良い。   In addition, in order to prevent the hearth member from falling off from the opening 6, a method of reinforcing with a cross plate 31 crossing the opening 6, a method of forming the opening 6 in a slit shape, an original material such as punching metal, etc. The bottom plate 3 may be formed of a plate that is not a continuous body.

次にこの発明の実施例を説明する。   Next, examples of the present invention will be described.

図1に示したような、るつぼ式の円形溶解・保持炉1を製作した。るつぼ4は黒鉛製のものとした。   A crucible-type circular melting / holding furnace 1 as shown in FIG. 1 was manufactured. The crucible 4 was made of graphite.

また、炉床部材2については、上層から市販のハイアルミナ煉瓦からなる耐火材24、市販のB1煉瓦からなる断熱材25、断熱ボード26の三層構造からなる内側耐火材層23を、本実施品例1では窒化珪素板から構成される上下の外側耐火材層21、22で挟んだサンドウィッチ構造とした。また本発明実施品例2及び比較品例1では、上下の外側耐火材層21、22を設けることなく、内側耐火材層23のみとした。   Further, for the hearth member 2, the refractory material 24 made of commercial high alumina bricks from the upper layer, the heat insulation material 25 made of commercially available B1 brick, and the inner refractory material layer 23 made of a three-layer structure of the heat insulation board 26 are implemented. In Product Example 1, a sandwich structure sandwiched between upper and lower outer refractory material layers 21 and 22 made of a silicon nitride plate was used. In the product example 2 of the present invention and the comparative product example 1, only the inner refractory material layer 23 is provided without providing the upper and lower outer refractory material layers 21 and 22.

炉床部材2の下面に位置するケーシングとしての底板3はSUS製とし、本発明実施品例1、2では底板3に開口部6を設けた。また、前記炉床部材2の下方に永久磁石式の溶湯撹拌装置10を配置した。なお、図1に示す符号7は溶解保持炉1を支持する支持脚部である。   The bottom plate 3 as a casing located on the lower surface of the hearth member 2 is made of SUS, and in the first and second embodiment examples of the present invention, the opening 6 is provided in the bottom plate 3. In addition, a permanent magnet type molten metal stirring device 10 is disposed below the hearth member 2. Reference numeral 7 shown in FIG. 1 is a support leg for supporting the melting and holding furnace 1.

また、本発明実施品例1では、溶湯撹拌装置10と底板3との隙間5に、流量10L/minで冷却用のエアーを供給した。   In the product example 1 of the present invention, cooling air was supplied to the gap 5 between the molten metal stirring device 10 and the bottom plate 3 at a flow rate of 10 L / min.

以上の構成の溶解・保持炉1において、各構成部分の寸法、底板3の開口部比率、アルミニウム溶湯20の重量等を表1のように設定するとともに、溶湯撹拌装置10の永久磁石を一定回転で回転させた。   In the melting / holding furnace 1 having the above configuration, the dimensions of each component, the opening ratio of the bottom plate 3, the weight of the molten aluminum 20, etc. are set as shown in Table 1, and the permanent magnet of the molten metal stirring device 10 is rotated at a constant speed. It was rotated with.

そのときのアルミニウム溶湯20の回転数を調査した。   The rotational speed of the molten aluminum 20 at that time was investigated.

その結果を表1に併せて示す。   The results are also shown in Table 1.

Figure 2008164249
Figure 2008164249

表1の結果から理解されるように、比較品例1では、溶湯撹拌装置10と溶湯20との距離が大きく、かつ開口部6のないSUS製の底板3によって磁力が遮蔽されるため、溶湯回転数が少なかった。   As understood from the results of Table 1, in Comparative Product Example 1, the distance between the molten metal stirring device 10 and the molten metal 20 is large, and the magnetic force is shielded by the bottom plate 3 made of SUS without the opening 6. The rotation speed was low.

これに対し、底板3に開口部6を設けた実施品例2では、溶湯撹拌装置10と溶湯20との距離は同じであるものの、底板3の開口部6の存在によって永久磁石が遮蔽されるのが抑制されるため、比較品例1に比べて溶湯回転数が大きかった。   On the other hand, in the product example 2 in which the opening 6 is provided in the bottom plate 3, the distance between the molten metal stirring device 10 and the molten metal 20 is the same, but the permanent magnet is shielded by the presence of the opening 6 in the bottom plate 3. Therefore, the melt rotation speed was larger than that of Comparative Product Example 1.

また、内側耐火材層23の上下を窒化珪素板で被覆し、かつ底板3に開口部6を設けた実施品例1では、溶湯撹拌装置10と溶湯20との距離が短く、また底板3の開口部6の存在によって永久磁石の磁力が遮蔽されるのが抑制されるため、実施品例2に比べて溶湯回転数が一段と大きくなった。   In the product example 1 in which the upper and lower sides of the inner refractory material layer 23 are covered with silicon nitride plates and the opening 6 is provided in the bottom plate 3, the distance between the molten metal stirring device 10 and the molten metal 20 is short. Since the magnetic force of the permanent magnet is prevented from being shielded by the presence of the opening 6, the melt rotational speed is further increased as compared with the product example 2.

また、外側耐火材層21、22を窒化珪素板から炭化珪素板に代えて、同一の試験を行ったところ、同様の結果が得られた。   Further, when the same test was performed by replacing the outer refractory material layers 21 and 22 from the silicon nitride plate to the silicon carbide plate, similar results were obtained.

この発明の一実施形態に係る溶解・保持炉の概略構成を示す盾断面図である。It is a shield sectional view showing a schematic structure of a melting and holding furnace concerning one embodiment of this invention. 図1の溶解・保持炉の底面図である。FIG. 2 is a bottom view of the melting / holding furnace of FIG. 1.

符号の説明Explanation of symbols

1 溶解・保持炉
2 炉床部材
3 底板
5 隙間
6 開口部
21、22 外側耐火材層
23 内側耐火材層
1 melting / holding furnace 2 hearth member 3 bottom plate 5 gap 6 opening 21, 22 outer refractory material layer 23 inner refractory material layer

Claims (6)

保持炉の底部を構成する炉床部材の下方に永久磁石式の溶湯撹拌装置が配置される溶解・保持炉であって、
前記炉床部材が、1層または複数層の内側耐火材層の上面及び下面に、前記内側耐火材層よりも相対的に高温強度に優れた窒化珪素板、炭化珪素板の少なくとも1種から構成される外側耐火材層が積層されてなる構造を有するものであることを特徴とする溶解・保持炉。
A melting and holding furnace in which a permanent magnet type molten metal stirring device is disposed below a hearth member constituting the bottom of the holding furnace,
The hearth member is composed of at least one of a silicon nitride plate and a silicon carbide plate which are relatively superior in high-temperature strength to the upper and lower surfaces of one or more inner refractory material layers than the inner refractory material layer. A melting / holding furnace having a structure in which an outer refractory material layer is laminated.
保持炉の底部を構成する炉床部材の下面に鉄系材料からなる底板が配置され、前記底板の下方に永久磁石式の溶湯撹拌装置が配置される溶解・保持炉であって、
前記底板に、前記溶湯撹拌装置の上方位置において開口部が設けられ、前記開口部を介して前記炉床部材が露出していることを特徴とする溶解・保持炉。
A melting / holding furnace in which a bottom plate made of an iron-based material is arranged on the lower surface of a hearth member constituting the bottom of the holding furnace, and a permanent magnet type molten metal stirring device is arranged below the bottom plate,
The melting / holding furnace, wherein the bottom plate is provided with an opening at a position above the molten metal stirring device, and the hearth member is exposed through the opening.
保持炉の底部を構成する炉床部材の下面が鉄系材料からなる底板で被覆され、前記底板の下方に永久磁石式の溶湯撹拌装置が配置される溶解・保持炉であって、
前記炉床部材が、1層または複数層の内側耐火材層の上面及び下面に、前記内側耐火材層よりも相対的に高温強度に優れた窒化珪素板、炭化珪素板の少なくとも1種から構成される外側耐火材層が積層されてなる構造を有するものであり、
前記底板に、前記溶湯撹拌装置の上方位置において開口部が設けられ、前記開口部を介して前記炉床部材が露出していることを特徴とする溶解・保持炉。
A melting / holding furnace in which the bottom surface of the hearth member constituting the bottom of the holding furnace is covered with a bottom plate made of an iron-based material, and a permanent magnet type molten metal stirring device is disposed below the bottom plate,
The hearth member is composed of at least one of a silicon nitride plate and a silicon carbide plate which are relatively superior in high-temperature strength to the upper and lower surfaces of one or more inner refractory material layers than the inner refractory material layer. The outer refractory material layer to be laminated,
The melting / holding furnace, wherein the bottom plate is provided with an opening at a position above the molten metal stirring device, and the hearth member is exposed through the opening.
前記内側耐火材層が、ハイアルミナ煉瓦、アルミナセメントキャスタブル、シャモット煉瓦、軽量断熱キャスタブル、断熱ボードの少なくとも1種から構成される請求項1または3に記載の溶解・保持炉。   The melting / holding furnace according to claim 1 or 3, wherein the inner refractory material layer is composed of at least one of high alumina brick, alumina cement castable, chamotte brick, lightweight heat insulation castable, and heat insulation board. 前記開口部の開口比率が30%以上である請求項2または3に記載の溶解・保持炉。   The melting / holding furnace according to claim 2 or 3, wherein an opening ratio of the opening is 30% or more. 溶湯撹拌装置との隙間に冷却媒体が供給される請求項1〜3のいずれかに記載の溶解・保持炉。   The melting / holding furnace according to claim 1, wherein a cooling medium is supplied to a gap between the molten metal stirring device.
JP2006356246A 2006-12-28 2006-12-28 Melting and retaining furnace Pending JP2008164249A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006356246A JP2008164249A (en) 2006-12-28 2006-12-28 Melting and retaining furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006356246A JP2008164249A (en) 2006-12-28 2006-12-28 Melting and retaining furnace

Publications (1)

Publication Number Publication Date
JP2008164249A true JP2008164249A (en) 2008-07-17

Family

ID=39693970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006356246A Pending JP2008164249A (en) 2006-12-28 2006-12-28 Melting and retaining furnace

Country Status (1)

Country Link
JP (1) JP2008164249A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050182A1 (en) 2008-10-29 2010-05-06 トヨタ自動車株式会社 Agitation device, melting apparatus and melting method
ITUB20159618A1 (en) * 2015-12-22 2017-06-22 Presezzi Extrusion S P A MAGNETIC AGITATOR DEVICE FOR OVEN CONTAINING MOLTEN METAL AND OVEN PRESENTING THIS DEVICE
JP7339098B2 (en) 2019-09-25 2023-09-05 大亜真空株式会社 Arc melting furnace apparatus and arc melting method for meltable material

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050182A1 (en) 2008-10-29 2010-05-06 トヨタ自動車株式会社 Agitation device, melting apparatus and melting method
EP2821162A2 (en) 2008-10-29 2015-01-07 Toyota Jidosha Kabushiki Kaisha Agitation device, melting apparatus and melting method
EP2821161A2 (en) 2008-10-29 2015-01-07 Toyota Jidosha Kabushiki Kaisha Agitation device, melting apparatus and melting method
ITUB20159618A1 (en) * 2015-12-22 2017-06-22 Presezzi Extrusion S P A MAGNETIC AGITATOR DEVICE FOR OVEN CONTAINING MOLTEN METAL AND OVEN PRESENTING THIS DEVICE
WO2017109668A1 (en) * 2015-12-22 2017-06-29 Presezzi Extrusion S.P.A. Magnetic stirrer for furnace containing molten metal and furnace provided with such a stirrer
JP7339098B2 (en) 2019-09-25 2023-09-05 大亜真空株式会社 Arc melting furnace apparatus and arc melting method for meltable material

Similar Documents

Publication Publication Date Title
KR102297314B1 (en) Alloy melting and holding furnace
EP2818816B1 (en) Multilayer cooling panel and electric arc furnace
Fu et al. Enhanced corrosion resistance through the introduction of fine pores: role of nano-sized intracrystalline pores
JP2008164249A (en) Melting and retaining furnace
JP4482276B2 (en) Cooling element
Zou et al. Slag corrosion mechanism of lightweight Al2O3–MgO castable in different atmospheric conditions
JP4762172B2 (en) Furnace body water cooling structure of flash furnace
Ding et al. Effect of andalusite aggregates on oxidation resistance of Al2O3–SiC–C castables
JP2009014227A (en) Heat treatment furnace
CN202621906U (en) Hot metal ladle
JP4187752B2 (en) Furnace body water cooling structure of flash furnace
Fatmi et al. Investigation of The Effect of Corundum Layer on The Heat Transfer of SiC Slab
JPH0826374B2 (en) Groove type structure for pouring a gun
JP5445744B2 (en) Three-phase AC electrode type circular electric furnace and its cooling method
RU2003133461A (en) COOLING ELEMENT FOR COOLING A METALLURGICAL FURNACE
JP2010236740A (en) Furnace structure
JP2011144451A5 (en) Steel container
CN207907692U (en) A kind of nonferrous metal smelting furnace
JP2018534516A (en) melting furnace
JP2827375B2 (en) Coating method for kiln interior
CN102887717A (en) Metal composite low-carbon magnesium-carbon composite material
JP2006104520A (en) Dip tube for vacuum degassing treatment
RU2746655C1 (en) Plasma furnace for corundum production
JP2018177570A (en) Anchor brick
Gregurek et al. Refractory Corrosion Mechanisms in a Novel High Carbon Ferromanganese Production Furnace