JP2008161913A - Sn-Au ALLOY SOLDER PASTE HAVING REDUCED PRODUCTION OF VOID - Google Patents

Sn-Au ALLOY SOLDER PASTE HAVING REDUCED PRODUCTION OF VOID Download PDF

Info

Publication number
JP2008161913A
JP2008161913A JP2006354116A JP2006354116A JP2008161913A JP 2008161913 A JP2008161913 A JP 2008161913A JP 2006354116 A JP2006354116 A JP 2006354116A JP 2006354116 A JP2006354116 A JP 2006354116A JP 2008161913 A JP2008161913 A JP 2008161913A
Authority
JP
Japan
Prior art keywords
alloy solder
mass
alloy
flux
solder paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006354116A
Other languages
Japanese (ja)
Other versions
JP4811663B2 (en
Inventor
Masayuki Ishikawa
石川  雅之
Masayoshi Obinata
正好 小日向
Terushi Mishima
昭史 三島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006354116A priority Critical patent/JP4811663B2/en
Publication of JP2008161913A publication Critical patent/JP2008161913A/en
Application granted granted Critical
Publication of JP4811663B2 publication Critical patent/JP4811663B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide Sn-Au alloy solder paste having reduced production of voids. <P>SOLUTION: The Sn-Au alloy solder paste is composed of the mixture of Sn-Au alloy solder powder having a componential composition comprising, by mass, 5 to 15% Au, and further comprising any element selected from 0.1 to 10% Bi, 0.1 to 10% In and 0.1 to 10% Sb, and the balance Sn with inevitable impurities, and flux. The mixture has a blended composition composed of 5 to 25% flux, and the balance above Sn-Au alloy solder powder. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、ボイド発生の少ないSn−Au合金はんだペーストに関するものである。   The present invention relates to an Sn—Au alloy solder paste that generates less voids.

一般に、GaAs光素子、GaAs高周波素子、熱伝素子などの半導体素子と基板との接合、微細かつ高気密性が要求されるSAWフィルター、水晶発振子などのパッケージ封止などにはAu−Sn合金はんだペーストが使用されている。このAu−Sn合金はんだペーストに含まれるAu−Sn合金粉末は、Sn:20質量%を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn共晶合金粉末であることが知られており、このAu−Sn共晶合金粉末は、通常、ガスアトマイズして得られることも知られている。このSn:20質量%を含有し、残りがAuおよび不可避不純物からなる組成を有するAu−Sn共晶合金は、共晶点が280℃であって、高融点用途としてよく用いられている。   In general, an Au-Sn alloy is used for bonding a semiconductor element such as a GaAs optical element, a GaAs high frequency element, and a heat transfer element to a substrate, a SAW filter that requires fine and high airtightness, a package sealing for a crystal oscillator, and the like. Solder paste is used. It is known that the Au—Sn alloy powder contained in this Au—Sn alloy solder paste is an Au—Sn eutectic alloy powder containing Sn: 20% by mass, and the remainder having a composition composed of Au and inevitable impurities. It is also known that this Au—Sn eutectic alloy powder is usually obtained by gas atomization. The Au—Sn eutectic alloy containing 20% by mass of Sn and having the remainder composed of Au and inevitable impurities has a eutectic point of 280 ° C. and is often used for high melting point applications.

一方で、より低融点のはんだを必要とする用途もあり、近年、Au:10質量%を含有し、残部がSnおよび不可避不純物からなる組成を有するSn−Au共晶合金が注目され始めている。このAu:10質量%を含有し、残部がSnおよび不可避不純物からなる組成を有するSn−Au共晶合金からなるはんだは、Au含有量が少ないために価格が安く、さらにその共晶点が210℃であって、Sn:20質量%を含有し、残りがAuおよび不可避不純物からなる組成を有するSn−Au共晶合金よりも融点が70℃も低く、高分子樹脂などの有機系材料からなるパッケージを用いた素子の接合や封止にはその耐熱性を考慮してこの低温のAu:10質量%を含有し、残部がSnおよび不可避不純物からなる組成を有するSn−Au共晶合金からなるはんだを用いることが最適であるとされている。そしてこのAu:10質量%を含有し、残部がSnおよび不可避不純物からなる組成を有するSn−Au共晶合金からなるはんだを使用して接合する方法として、
(イ)Auめっき層とSnめっき層を接合してリフロー処理することにより接合する方法、
(ロ)Au粉末、Sn粉末およびフラックスの混合体からなるペーストを塗布した後リフロー処理することにより接合する方法、
(ハ)Au:10〜40質量%を含有し、残部がSnおよび不可避不純物からなる組成を有するSn−Au共晶合金粉末とフラックスの混合体からなるペーストを塗布した後リフロー処理することにより接合する方法、などがあることが知られている(特許文献1参照)。
特開平6−260579号公報
On the other hand, there is an application that requires a solder having a lower melting point. In recent years, an Sn—Au eutectic alloy containing 10% by mass of Au and having the balance of Sn and inevitable impurities has begun to attract attention. A solder made of a Sn—Au eutectic alloy containing 10% by mass of Au and the balance being composed of Sn and inevitable impurities is low in price because of its low Au content, and its eutectic point is 210. The melting point is 70 ° C. lower than that of a Sn—Au eutectic alloy containing 20% by mass of Sn and the remainder consisting of Au and inevitable impurities, and is made of an organic material such as a polymer resin. For bonding and sealing of the element using the package, in consideration of its heat resistance, this low-temperature Au: 10% by mass is contained, and the balance is made of a Sn—Au eutectic alloy having a composition composed of Sn and inevitable impurities. It is considered optimal to use solder. And as a method of joining by using a solder composed of Sn-Au eutectic alloy containing this Au: 10% by mass, the balance being composed of Sn and inevitable impurities,
(A) A method of joining by reflow treatment by joining the Au plating layer and the Sn plating layer,
(B) A method of joining by applying a paste made of a mixture of Au powder, Sn powder and flux, followed by reflow treatment,
(C) Bonding by applying a reflow treatment after applying a paste made of a mixture of Sn—Au eutectic alloy powder and flux containing Au: 10 to 40% by mass with the balance being Sn and inevitable impurities. It is known that there is a method to do so (see Patent Document 1).
JP-A-6-260579

しかし、前記Au:10質量%を含有し、残りがSnおよび不可避不純物からなる組成のSn−Au共晶合金粉末からなるSn−Au合金はんだ粉末とフラックスとの混合体からなるSn−Au合金はんだペーストは、これをリフロー処理して得られた接合部にボイドが残留し、この接合部に残留した多くのボイドがクラックの起点となることから信頼性のあるSn−Au合金はんだ接合部が得られないという欠点があった。したがって、なお一層ボイド発生の少ないSn−Au合金はんだペーストが求められていた。   However, Sn: Au alloy solder comprising a mixture of Sn—Au alloy solder powder comprising Sn—Au eutectic alloy powder having a composition comprising Au and the remainder consisting of Sn and inevitable impurities and a flux. In the paste, voids remain in the joint obtained by reflowing the paste, and many voids remaining in the joint serve as starting points of cracks, so that a reliable Sn—Au alloy solder joint is obtained. There was a disadvantage that it was not possible. Therefore, an Sn—Au alloy solder paste with less void generation has been demanded.

そこで、本発明者らは、ボイド発生の一層少ないSn−Au合金はんだペーストを得るべく研究を行った。その結果、
(イ)Au含有量が5〜15質量%を含有し、さらにBi:0.1〜10質量%、In:0.1〜10質量%およびSb:0.1〜10質量%の内のいずれか一種を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末と一般のフラックスとを配合し混合して得られたSn−Au合金はんだペーストを使用してリフロー処理することにより得られた接合部にはボイドの発生が一層少なくなる、
(ロ)前記(イ)記載のSn−Au合金はんだ粉末に配合するフラックスは、一般のフラックスであってよいが、ノンハロゲンフラックスまたは低残渣フラックスであることが一層好ましく、その配合量は5〜25質量%の範囲内にあれば良く、この範囲は通常知られている範囲である、などの研究結果が得られたのである。
Therefore, the present inventors have studied to obtain a Sn—Au alloy solder paste with less void generation. as a result,
(I) Au content is 5 to 15% by mass, Bi: 0.1 to 10% by mass, In: 0.1 to 10% by mass, and Sb: 0.1 to 10% by mass Reflow treatment using Sn—Au alloy solder paste obtained by blending and mixing Sn—Au alloy solder powder having a component composition consisting of Sn and inevitable impurities and a general flux. In the joint obtained by doing so, the occurrence of voids is further reduced,
(B) The flux to be blended with the Sn—Au alloy solder powder described in (a) above may be a general flux, but is more preferably a non-halogen flux or a low residue flux, and the blending amount is 5 to 25. As long as it is within the range of mass%, this result is a generally known range, and the research results were obtained.

この発明は、かかる研究結果にもとづいてなされたものであって、
(1)Au:5〜15質量%、Bi:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体からなるボイド発生の少ないSn−Au合金はんだペースト、
(2)前記(1)記載の混合体は、フラックス:5〜25質量%含有し、残部が前記(1)記載のSn−Au合金はんだ粉末からなる配合組成を有する混合体であるボイド発生の少ないSn−Au合金はんだペースト、
(3)Au:5〜15質量%、In:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体からなるボイド発生の少ないSn−Au合金はんだペースト、
(4)前記(3)記載の混合体は、フラックス:5〜25質量%含有し、残部が前記(3)記載のSn−Au合金はんだ粉末からなる配合組成を有する混合体であるボイド発生の少ないSn−Au合金はんだペースト、
(5)Au:5〜15質量%、Sb:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体からなるボイド発生の少ないSn−Au合金はんだペースト、
(6)前記(5)記載の混合体は、フラックス:5〜25質量%含有し、残部が前記(5)記載のSn−Au合金はんだ粉末からなる配合組成を有する混合体であるボイド発生の少ないSn−Au合金はんだペースト、
(7)前記(1)、(2)、(3)、(4)、(5)または(6)記載のフラックスは、ノンハロゲンフラックスまたは低残渣フラックスであるボイド発生の少ないSn−Au合金はんだペースト、に特徴を有するものである。
This invention was made based on the results of such research,
(1) Au: 5 to 15% by mass, Bi: 0.1 to 10% by mass, and the remainder is composed of a mixture of Sn—Au alloy solder powder having a component composition composed of Sn and inevitable impurities and a flux. Sn-Au alloy solder paste with less void generation,
(2) The mixture described in (1) above contains flux: 5 to 25% by mass, and the remainder is a mixture having a blend composition composed of the Sn—Au alloy solder powder described in (1). Less Sn-Au alloy solder paste,
(3) Au: 5 to 15% by mass, In: 0.1 to 10% by mass, and the remainder is composed of a mixture of Sn—Au alloy solder powder having a component composition composed of Sn and inevitable impurities and a flux. Sn-Au alloy solder paste with less void generation,
(4) The mixture described in (3) above contains flux: 5 to 25% by mass, and the remainder is a mixture having a blend composition composed of the Sn—Au alloy solder powder described in (3). Less Sn-Au alloy solder paste,
(5) Au: 5 to 15% by mass, Sb: 0.1 to 10% by mass, and the balance is composed of a mixture of Sn—Au alloy solder powder having a component composition composed of Sn and inevitable impurities and a flux. Sn-Au alloy solder paste with less void generation,
(6) The mixture described in (5) above contains flux: 5 to 25% by mass, and the remainder is a mixture having a blend composition comprising the Sn—Au alloy solder powder described in (5) above. Less Sn-Au alloy solder paste,
(7) The flux described in (1), (2), (3), (4), (5) or (6) is a non-halogen flux or a low residual flux Sn-Au alloy solder paste with little void generation , Has characteristics.

この発明のボイド発生の少ないSn−Au合金はんだは下記の方法で作製する。まず、Au:5〜15質量%、Bi:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金、Au:5〜15質量%、In:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金、Au:5〜15質量%、Sb:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金をそれぞれ溶解し、得られた溶湯を温度:600℃〜1000℃に保持し、機械撹拌しながらまたは機械撹拌したのちこの撹拌された溶湯を圧力:300〜800kPaで加圧しながら噴射圧力:5000〜8000kPaの圧力で直径:1〜2mmを有する小径ノズルからノズルギャップ:0.3mm以下で不活性ガスを噴射して製造する。   The Sn—Au alloy solder with less void generation according to the present invention is manufactured by the following method. First, an Sn: Au alloy containing Au: 5 to 15% by mass, Bi: 0.1 to 10% by mass, and the remainder composed of Sn and inevitable impurities, Au: 5 to 15% by mass, In: Sn—Au alloy having a composition of 0.1 to 10% by mass, the remainder comprising Sn and inevitable impurities, Au: 5 to 15% by mass, Sb: 0.1 to 10% by mass, and the rest Sn—Au alloy having a component composition consisting of Sn and inevitable impurities is melted, and the obtained molten metal is maintained at a temperature of 600 ° C. to 1000 ° C. and stirred or after mechanical stirring. The pressure is 300 to 800 kPa, while the injection pressure is 5000 to 8000 kPa and the diameter is 1 to 2 mm, and the nozzle gap is 0.3 mm or less from the small diameter nozzle. Shines is prepared.

前記撹拌は機械撹拌であることが好ましく、機械撹拌の内でもプロペラ撹拌が一層好ましい。前記機械撹拌に電磁撹拌のような電気的撹拌を併用してもよく、機械撹拌に電磁撹拌を併用することもできる。前記機械撹拌の回転速度は特に限定されるものではないが、60〜100r.p.mで3〜10分間プロペラ撹拌することが好ましい。このようにして得られたSn−Au合金粉末を分級して粒度調整したのち一般のロジン、活性剤、溶剤および増粘剤からなるフラックス、ノンハロゲンフラックスまたは低残渣フラックスと混合してSn−Au合金はんだペーストを作製する。このときSn−Au合金はんだ粉末に配合するフラックスの量は、5〜25質量%の範囲内にあり、この配合量は一般に知られている量である。 The stirring is preferably mechanical stirring, and propeller stirring is more preferable among mechanical stirring. Electric stirring such as electromagnetic stirring may be used in combination with the mechanical stirring, and electromagnetic stirring may be used in combination with mechanical stirring. The rotational speed of the mechanical stirring is not particularly limited, but is 60 to 100 r. p. It is preferable to stir the propeller at m for 3 to 10 minutes. The Sn—Au alloy powder thus obtained is classified to adjust the particle size, and then mixed with a flux composed of a general rosin, an activator, a solvent and a thickener, a non-halogen flux or a low residue flux, and then Sn—Au alloy. Make a solder paste. At this time, the amount of the flux to be blended with the Sn—Au alloy solder powder is in the range of 5 to 25 mass%, and this blending amount is a generally known amount.

次に、この発明のボイド発生の少ないSn−Au合金はんだペーストに含まれるSn−Au合金はんだ粉末の成分組成の限定理由を説明する。   Next, the reason for limiting the component composition of the Sn—Au alloy solder powder contained in the Sn—Au alloy solder paste with less void generation according to the present invention will be described.

Sn:
Snは、5質量%未満含有してもまた15質量%を越えて含有しても合金の液相線温度が著しく上昇し、搭載する素子をリフロー処理して接合する際の溶融温度が素子の耐熱限界温度を越え、さらに溶融合金の表面張力が上昇することから濡れ性が悪くなるので好ましくない。したがって、この発明のSn−Au合金はんだペーストに含まれるSn−Au合金はんだ粉末に含まれるSnは5〜15質量%に定めた。
Sn:
Even if Sn is contained in an amount of less than 5% by mass or more than 15% by mass, the liquidus temperature of the alloy is remarkably increased, and the melting temperature at the time of joining by reflowing the mounted element is the element temperature. This is not preferable because the wettability is deteriorated because the surface tension of the molten alloy is further increased because the heat resistance limit temperature is exceeded. Therefore, Sn contained in the Sn—Au alloy solder powder contained in the Sn—Au alloy solder paste of the present invention was set to 5 to 15 mass%.

Bi:
Biは、Sn−Au合金の表面張力を一層低めるために添加するが、その含有量が0.1質量%未満では所望の効果が得られず、一方、10質量%を越えて含有すると、Sn−Au合金の融点を上昇させてしまうので好ましくない。したがって、Biの含有量を0.1〜10質量%に定めた。一層好ましい範囲は1.0〜5.0質量%である。
Bi:
Bi is added to further reduce the surface tension of the Sn—Au alloy. However, if the content is less than 0.1% by mass, the desired effect cannot be obtained. On the other hand, if the content exceeds 10% by mass, Sn is added. -It is not preferable because the melting point of the Au alloy is raised. Therefore, the Bi content is set to 0.1 to 10% by mass. A more preferable range is 1.0 to 5.0% by mass.

In:
Inは、Sn−Au合金の表面張力を一層低めるために添加するが、その含有量が0.1質量%未満では所望の効果が得られず、一方、10質量%を越えて含有すると、Sn−Au合金の融点を上昇させてしまうので好ましくない。したがって、Inの含有量を0.1〜10質量%に定めた。一層好ましい範囲は0.5〜3質量%である。
In:
In is added in order to further reduce the surface tension of the Sn—Au alloy. However, if the content is less than 0.1% by mass, a desired effect cannot be obtained, while if it exceeds 10% by mass, Sn is added. -It is not preferable because the melting point of the Au alloy is raised. Therefore, the content of In is set to 0.1 to 10% by mass. A more preferable range is 0.5 to 3% by mass.

Sb:
Sbは、Sn−Au合金の表面張力を一層低めるために添加するが、その含有量が0.1質量%未満では所望の効果が得られず、一方、10質量%を越えて含有すると、Sn−Au合金の融点を上昇させてしまうので好ましくない。したがって、Biの含有量を0.1〜10質量%に定めた。一層好ましい範囲は0.1〜1.0質量%である。
Sb:
Sb is added to further reduce the surface tension of the Sn—Au alloy. However, when the content is less than 0.1% by mass, the desired effect cannot be obtained. On the other hand, when the content exceeds 10% by mass, Sn is added. -It is not preferable because the melting point of the Au alloy is raised. Therefore, the Bi content is set to 0.1 to 10% by mass. A more preferable range is 0.1 to 1.0% by mass.

この発明のSn−Au合金はんだペーストはボイドの発生が一層少ないことから、従来のSn−Au合金はんだペーストに比べて接合部の信頼性が優れており、半導体装置の不良品発生率も減少してコストを低減することができ、産業上優れた効果をもたらすものである。   Since the Sn—Au alloy solder paste of the present invention generates less voids, the reliability of the joint is superior to that of the conventional Sn—Au alloy solder paste, and the defect rate of defective semiconductor devices is also reduced. Thus, the cost can be reduced and an excellent industrial effect can be obtained.

実施例1
高周波溶解炉により溶解して得られたSn−Au合金を溶湯を温度:800℃に保持しながら、回転数:800回転で3時間プロペラを回転させて溶湯を機械撹拌したのち、溶湯に圧力:500kPaをかけ、高周波溶解炉の底部に設けられたノズルから溶湯を落下させ、同時にノズルの周囲にノズルギャップ:0.2mmとなるように設けられた直径:1.5mmのガスノズルから落下する溶湯に向かってArガスを噴射圧力:6000kPaで噴射させることによりガスアトマイズ粉末を作製し、このガスアトマイズ粉末を風力分級装置を用いて分級することにより平均粒径:10μmを有し表1に示される成分組成を有するSn−Au合金はんだ粉末A〜Kを作製した。
Example 1
The Sn—Au alloy obtained by melting in a high-frequency melting furnace was mechanically stirred for 3 hours by rotating the propeller at a rotational speed of 800 rpm while maintaining the molten metal at a temperature of 800 ° C., and then pressure on the molten metal: 500 kPa is applied, the molten metal is dropped from the nozzle provided at the bottom of the high-frequency melting furnace, and at the same time, the molten metal is dropped from the gas nozzle having a diameter of 1.5 mm provided so that the nozzle gap is 0.2 mm around the nozzle. A gas atomized powder was produced by injecting Ar gas at an injection pressure of 6000 kPa, and this gas atomized powder was classified using an air classifier, so that the component composition shown in Table 1 having an average particle size of 10 μm was obtained. Sn-Au alloy solder powders AK were prepared.

これら表1のSn−Au合金はんだ粉末A〜Kに一般のフラックスであるRMAフラックス(三菱マテリアル株式会社製)を表2に示されるフラックス比率となるように混合して本発明Sn−Au合金はんだペースト1〜9、比較Sn−Au合金はんだペースト1〜2および従来Sn−Au合金はんだペースト1を作製した。   The Sn-Au alloy solder powders A to K in Table 1 are mixed with RMA flux (manufactured by Mitsubishi Materials Corporation), which is a general flux, so as to have the flux ratio shown in Table 2, and the Sn-Au alloy solder of the present invention. Pastes 1 to 9, comparative Sn—Au alloy solder pastes 1 to 2 and conventional Sn—Au alloy solder paste 1 were prepared.

一方、無酸素銅板の表面に厚さ:5μmのNiめっきを施したのち、厚さ:1.0μmのAuめっきを施し、めっきCu基板を作製し用意した。このめっきCu基板上に、ニードル内径:250μmを有するディスペンス装置を用いて本発明Sn−Au合金はんだペースト1〜9、比較Sn−Au合金はんだペースト1〜2および従来Sn−Au合金はんだペースト1を塗布し、この塗布したペーストの上に、900μm角の搭載素子に見たてたダミーチップ(Si基板にNiメッキ/Auメッキ処理を施したもの)をマウンタを用いて搭載し、窒素ガス吹き付けのホットプレートにて150℃に60秒間保持し、引き続いて265℃に30秒間保持するリフロー処理した。
このとき発生した種々のサイズのボイドの総面積を透過X線装置および画像処理ソフトを用いて算出し、ダミーチップの接合面の面積に対するボイドの総面積をボイド率として求め、それらの測定結果を表2に示した。
On the other hand, the surface of the oxygen-free copper plate was subjected to Ni plating with a thickness of 5 μm, and then subjected to Au plating with a thickness of 1.0 μm to prepare and prepare a plated Cu substrate. On this plated Cu substrate, the present invention Sn—Au alloy solder pastes 1 to 9, comparative Sn—Au alloy solder pastes 1 to 2 and the conventional Sn—Au alloy solder paste 1 are used using a dispensing device having a needle inner diameter of 250 μm. Apply a dummy chip (Ni substrate / Ni plating applied to Si substrate) as seen on a 900 μm square mounting element on this applied paste using a mounter, and blow nitrogen gas Reflow treatment was performed by holding at 150 ° C. for 60 seconds on a hot plate, and subsequently holding at 265 ° C. for 30 seconds.
The total area of voids of various sizes generated at this time was calculated using a transmission X-ray apparatus and image processing software, and the total area of voids with respect to the area of the bonding surface of the dummy chip was obtained as the void ratio. It is shown in Table 2.

Figure 2008161913
Figure 2008161913

Figure 2008161913
Figure 2008161913

表1〜2に示される結果から、本発明Sn−Au合金はんだ1〜9は従来Sn−Au合金はんだ1に比べてボイド率が少ないことから、本発明Sn−Au合金はんだ1〜9は従来Sn−Au合金はんだ1に比べてボイドの発生が少ないことが分かる。しかし、この発明の範囲から外れた比較Sn−Au合金はんだ1〜2はボイドの発生がやや多くなることがわかる。 From the results shown in Tables 1 and 2, the Sn-Au alloy solders 1 to 9 of the present invention have a lower void ratio than the conventional Sn-Au alloy solder 1, so that the Sn-Au alloy solders 1 to 9 of the present invention are conventional. It can be seen that the generation of voids is less than that of the Sn—Au alloy solder 1. However, it can be seen that the comparative Sn—Au alloy solders 1 and 2 deviating from the scope of the present invention have slightly increased voids.

実施例2
高周波溶解炉により溶解して得られたSn−Au合金を溶湯を温度:800℃に保持しながら、回転数:800回転で3時間プロペラを回転させて溶湯を機械撹拌したのち、溶湯に圧力:500kPaをかけ、高周波溶解炉の底部に設けられたノズルから溶湯を落下させ、同時にノズルの周囲にノズルギャップ:0.2mmとなるように設けられた直径:1.5mmのガスノズルから落下する溶湯に向かってArガスを噴射圧力:6000kPaで噴射させることによりガスアトマイズ粉末を作製し、このガスアトマイズ粉末を風力分級装置を用いて分級することにより平均粒径:10μmを有し表3に示される成分組成のSn−Au合金はんだ粉末a〜kを作製した。
Example 2
The Sn—Au alloy obtained by melting in a high-frequency melting furnace was mechanically stirred for 3 hours by rotating the propeller at a rotational speed of 800 rpm while maintaining the molten metal at a temperature of 800 ° C., and then pressure on the molten metal: 500 kPa is applied, the molten metal is dropped from the nozzle provided at the bottom of the high-frequency melting furnace, and at the same time, the molten metal is dropped from the gas nozzle having a diameter of 1.5 mm provided so that the nozzle gap is 0.2 mm around the nozzle. A gas atomized powder was prepared by injecting Ar gas at an injection pressure of 6000 kPa, and the gas atomized powder was classified using an air classifier. Sn-Au alloy solder powders a to k were prepared.

これら表3のSn−Au合金はんだ粉末a〜kに一般のフラックスであるRMAフラックス(三菱マテリアル株式会社製)を表4に示されるフラックス比率となるように混合して本発明Sn−Au合金はんだペースト10〜18および比較Sn−Au合金はんだペースト3〜4を作製した。   The Sn-Au alloy solder powders a to k in Table 3 are mixed with RMA flux (manufactured by Mitsubishi Materials Corporation) as a general flux so as to have the flux ratio shown in Table 4, and the Sn-Au alloy solder of the present invention. Pastes 10 to 18 and comparative Sn—Au alloy solder pastes 3 to 4 were prepared.

実施例1で用意しためっきCu基板上に、ニードル内径:250μmを有するディスペンス装置を用いて本発明Sn−Au合金はんだペースト10〜18および比較Sn−Au合金はんだペースト3〜4を塗布し、この塗布したペーストの上に、900μm角の搭載素子に見たてたダミーチップ(Si基板にNiメッキ/Auメッキ処理を施したもの)をマウンタを用いて搭載し、窒素ガス吹き付けのホットプレートにて150℃に60秒間保持し、引き続いて265℃に30秒間保持するリフロー処理した。
このとき発生した種々のサイズのボイドの総面積を透過X線装置および画像処理ソフトを用いて算出し、ダミーチップの接合面の面積に対するボイドの総面積をボイド率として求め、それらの測定結果を表4に示した。
The Sn-Au alloy solder paste 10-18 of the present invention and the comparative Sn-Au alloy solder pastes 3-4 were applied on the plated Cu substrate prepared in Example 1 using a dispensing apparatus having a needle inner diameter: 250 μm. On the applied paste, mount a dummy chip (Ni substrate / Au plating treatment on a Si substrate) seen as a 900 μm square mounting element using a mounter, and use a hot plate sprayed with nitrogen gas Reflow treatment was performed at 150 ° C. for 60 seconds, and subsequently at 265 ° C. for 30 seconds.
The total area of voids of various sizes generated at this time was calculated using a transmission X-ray apparatus and image processing software, and the total area of voids with respect to the area of the bonding surface of the dummy chip was obtained as the void ratio. It is shown in Table 4.

Figure 2008161913
Figure 2008161913

Figure 2008161913
Figure 2008161913

表3〜4に示される結果から、本発明Sn−Au合金はんだ10〜18は、実施例1で作製した従来Sn−Au合金はんだ1に比べてボイド率が少ないことから、本発明Sn−Au合金はんだ10〜18は従来Sn−Au合金はんだ1に比べてボイドの発生が少ないことが分かる。しかし、この発明の範囲から外れた比較Sn−Au合金はんだ3〜4はボイドの発生が多くなり、好ましくないことがわかる。 From the results shown in Tables 3 to 4, the Sn—Au alloy solders 10 to 18 of the present invention have a lower void ratio than the conventional Sn—Au alloy solder 1 manufactured in Example 1, and thus the Sn—Au of the present invention. It can be seen that the alloy solders 10 to 18 generate less voids than the conventional Sn—Au alloy solder 1. However, it can be seen that the comparative Sn—Au alloy solders 3 to 4 which are out of the scope of the present invention are not preferable because the generation of voids increases.

実施例3
高周波溶解炉により溶解して得られたSn−Au合金を溶湯を温度:800℃に保持しながら、回転数:800回転で3時間プロペラを回転させて溶湯を機械撹拌したのち、溶湯に圧力:500kPaをかけ、高周波溶解炉の底部に設けられたノズルから溶湯を落下させ、同時にノズルの周囲にノズルギャップ:0.2mmとなるように設けられた直径:1.5mmのガスノズルから落下する溶湯に向かってArガスを噴射圧力:6000kPaで噴射させることによりガスアトマイズ粉末を作製し、このガスアトマイズ粉末を風力分級装置を用いて分級することにより平均粒径:10μmを有し表5に示される成分組成を有するSn−Au合金はんだ粉末イ〜ルを作製した。
Example 3
The Sn—Au alloy obtained by melting in a high-frequency melting furnace was mechanically stirred for 3 hours by rotating the propeller at a rotational speed of 800 rpm while maintaining the molten metal at a temperature of 800 ° C., and then pressure on the molten metal: 500 kPa is applied, the molten metal is dropped from the nozzle provided at the bottom of the high-frequency melting furnace, and at the same time, the molten metal is dropped from the gas nozzle having a diameter of 1.5 mm provided so that the nozzle gap is 0.2 mm around the nozzle. A gas atomized powder was prepared by injecting Ar gas at an injection pressure of 6000 kPa, and the gas atomized powder was classified using an air classifier to have an average particle size of 10 μm and the component composition shown in Table 5 A Sn—Au alloy solder powder Yl was prepared.

これらSn−Au合金はんだ粉末イ〜ルに一般のフラックスであるRMAフラックス(三菱マテリアル株式会社製)を表6に示されるフラックス比率となるように混合して本発明Sn−Au合金はんだペースト19〜27および比較Sn−Au合金はんだペースト5〜6を作製した。   These Sn-Au alloy solder powders are mixed with RMA flux (manufactured by Mitsubishi Materials Co., Ltd.), which is a general flux, so that the flux ratio shown in Table 6 is obtained. 27 and comparative Sn—Au alloy solder pastes 5 to 6 were produced.

実施例1で用意しためっきCu基板上に、ニードル内径:250μmを有するディスペンス装置を用いて本発明Sn−Au合金はんだペースト19〜27および比較Sn−Au合金はんだペースト5〜6を塗布し、この塗布したペーストの上に、900μm角の搭載素子に見たてたダミーチップ(Si基板にNiメッキ/Auメッキ処理を施したもの)をマウンタを用いて搭載し、窒素ガス吹き付けのホットプレートにて150℃に60秒間保持し、引き続いて265℃に30秒間保持するリフロー処理した。
このとき発生した種々のサイズのボイドの総面積を透過X線装置および画像処理ソフトを用いて算出し、ダミーチップの接合面の面積に対するボイドの総面積をボイド率として求め、それらの測定結果を表6に示した。
On the plated Cu substrate prepared in Example 1, the Sn—Au alloy solder pastes 19 to 27 of the present invention and the comparative Sn—Au alloy solder pastes 5 to 6 were applied using a dispensing apparatus having a needle inner diameter of 250 μm. On the applied paste, mount a dummy chip (Ni substrate / Au plating treatment on a Si substrate) seen as a 900 μm square mounting element using a mounter, and use a hot plate sprayed with nitrogen gas Reflow treatment was performed at 150 ° C. for 60 seconds, and subsequently at 265 ° C. for 30 seconds.
The total area of voids of various sizes generated at this time was calculated using a transmission X-ray apparatus and image processing software, and the total area of voids with respect to the area of the bonding surface of the dummy chip was obtained as the void ratio. Table 6 shows.

Figure 2008161913
Figure 2008161913

Figure 2008161913
Figure 2008161913

表5〜6に示される結果から、本発明Sn−Au合金はんだ19〜27は、実施例1で作製した従来Sn−Au合金はんだ1に比べてボイド率が少ないことから、本発明Sn−Au合金はんだ19〜27は従来Sn−Au合金はんだ1に比べてボイドの発生が少ないことが分かる。しかし、この発明の範囲から外れた比較Sn−Au合金はんだ5〜6はボイドの発生がやや多くなることがわかる。 From the results shown in Tables 5 to 6, since the Sn-Au alloy solders 19 to 27 of the present invention have a lower void ratio than the conventional Sn-Au alloy solder 1 manufactured in Example 1, the present Sn-Au alloy It can be seen that the alloy solders 19 to 27 generate less voids than the conventional Sn—Au alloy solder 1. However, it can be seen that the comparative Sn—Au alloy solders 5 to 6 which are out of the scope of the present invention generate a little amount of voids.

Claims (7)

Au:5〜15質量%、Bi:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体からなることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 It is characterized by comprising a mixture of a Sn—Au alloy solder powder and a flux containing Au: 5 to 15% by mass, Bi: 0.1 to 10% by mass, the remainder having a component composition consisting of Sn and inevitable impurities. Sn-Au alloy solder paste with less void generation. 請求項1記載の混合体は、フラックス:5〜25質量%含有し、残部が請求項1記載のSn−Au合金はんだ粉末からなる配合組成を有する混合体であることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 The mixture according to claim 1 contains a flux: 5 to 25% by mass, and the remainder is a mixture having a blend composition comprising the Sn—Au alloy solder powder according to claim 1. Less Sn-Au alloy solder paste. Au:5〜15質量%、In:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体からなることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 It is characterized by comprising a mixture of a Sn—Au alloy solder powder and a flux containing Au: 5 to 15% by mass, In: 0.1 to 10% by mass, and the remainder comprising Sn and inevitable impurities. Sn-Au alloy solder paste with less void generation. 請求項3記載の混合体は、フラックス:5〜25質量%含有し、残部が請求項3記載のSn−Au合金はんだ粉末からなる配合組成を有する混合体であることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 The mixture according to claim 3 is a flux containing 5 to 25% by mass, and the balance is a mixture having the blended composition comprising the Sn—Au alloy solder powder according to claim 3. Less Sn-Au alloy solder paste. Au:5〜15質量%、Sb:0.1〜10質量%を含有し、残りがSnおよび不可避不純物からなる成分組成を有するSn−Au合金はんだ粉末とフラックスとの混合体からなることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 It is characterized by comprising a mixture of a Sn—Au alloy solder powder and a flux containing Au: 5 to 15% by mass, Sb: 0.1 to 10% by mass, and the remainder comprising Sn and inevitable impurities. Sn-Au alloy solder paste with less void generation. 請求項5記載の混合体は、フラックス:5〜25質量%含有し、残部が請求項5記載のSn−Au合金はんだ粉末からなる配合組成を有する混合体であることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 The mixture according to claim 5 contains flux: 5 to 25% by mass, and the remainder is a mixture having a blended composition comprising the Sn—Au alloy solder powder according to claim 5. Less Sn-Au alloy solder paste. 請求項1、2、3、4、5または6記載のフラックスは、ノンハロゲンフラックスまたは低残渣フラックスであることを特徴とするボイド発生の少ないSn−Au合金はんだペースト。 The flux according to claim 1, 2, 3, 4, 5 or 6, which is a non-halogen flux or a low residue flux, Sn-Au alloy solder paste with less void generation.
JP2006354116A 2006-12-28 2006-12-28 Sn-Au alloy solder paste with low void generation Active JP4811663B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354116A JP4811663B2 (en) 2006-12-28 2006-12-28 Sn-Au alloy solder paste with low void generation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354116A JP4811663B2 (en) 2006-12-28 2006-12-28 Sn-Au alloy solder paste with low void generation

Publications (2)

Publication Number Publication Date
JP2008161913A true JP2008161913A (en) 2008-07-17
JP4811663B2 JP4811663B2 (en) 2011-11-09

Family

ID=39692074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354116A Active JP4811663B2 (en) 2006-12-28 2006-12-28 Sn-Au alloy solder paste with low void generation

Country Status (1)

Country Link
JP (1) JP4811663B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015087588A1 (en) 2013-12-10 2015-06-18 住友金属鉱山株式会社 Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
EP2929975A4 (en) * 2012-12-04 2016-07-06 Mitsubishi Materials Corp Au-sn-bi alloy powder paste, au-sn-bi alloy thin film, and method for forming au-sn-bi alloy thin film
US9796054B2 (en) 2014-09-30 2017-10-24 Sumitomo Metal Mining Co., Ltd. Au—Sn—Ag-based solder alloy, electronic device sealed or joined using the same, and electronic apparatus equipped with the electronic device
WO2024157542A1 (en) * 2023-01-25 2024-08-02 株式会社日立パワーデバイス Electronic component and method for producing electronic component

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122653A (en) * 1978-03-16 1979-09-22 Toshiba Corp Sn-au base solder alloy
JPS561292A (en) * 1979-06-18 1981-01-08 Toshiba Corp Soft braze material
JPH0970687A (en) * 1995-07-04 1997-03-18 Toyota Central Res & Dev Lab Inc Leadless solder alloy
JP2000208934A (en) * 1999-01-12 2000-07-28 Matsushita Electric Ind Co Ltd Electronic component mounting object, its manufacture method and solder used for the same
JP2003211283A (en) * 2002-01-22 2003-07-29 Japan Science & Technology Corp Lead-free solder material
JP2003305589A (en) * 2002-04-08 2003-10-28 Mitsubishi Materials Corp Flux with trace amount of residue and solder paste for gold-tin alloy solder
JP2004031697A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module
JP2006055882A (en) * 2004-08-19 2006-03-02 Mitsui Mining & Smelting Co Ltd Manufacturing method of solder powder for improving wet-spreading property
JP2006167802A (en) * 2004-03-31 2006-06-29 Nof Corp Solder paste

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54122653A (en) * 1978-03-16 1979-09-22 Toshiba Corp Sn-au base solder alloy
JPS561292A (en) * 1979-06-18 1981-01-08 Toshiba Corp Soft braze material
JPH0970687A (en) * 1995-07-04 1997-03-18 Toyota Central Res & Dev Lab Inc Leadless solder alloy
JP2000208934A (en) * 1999-01-12 2000-07-28 Matsushita Electric Ind Co Ltd Electronic component mounting object, its manufacture method and solder used for the same
JP2003211283A (en) * 2002-01-22 2003-07-29 Japan Science & Technology Corp Lead-free solder material
JP2003305589A (en) * 2002-04-08 2003-10-28 Mitsubishi Materials Corp Flux with trace amount of residue and solder paste for gold-tin alloy solder
JP2004031697A (en) * 2002-06-26 2004-01-29 Kyocera Corp Thermoelectric module
JP2006167802A (en) * 2004-03-31 2006-06-29 Nof Corp Solder paste
JP2006055882A (en) * 2004-08-19 2006-03-02 Mitsui Mining & Smelting Co Ltd Manufacturing method of solder powder for improving wet-spreading property

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2929975A4 (en) * 2012-12-04 2016-07-06 Mitsubishi Materials Corp Au-sn-bi alloy powder paste, au-sn-bi alloy thin film, and method for forming au-sn-bi alloy thin film
WO2015087588A1 (en) 2013-12-10 2015-06-18 住友金属鉱山株式会社 Au-sn-ag series solder alloy, electronic component sealed using same au-sn-ag series solder alloy, and electronic component-equipped device
US9796054B2 (en) 2014-09-30 2017-10-24 Sumitomo Metal Mining Co., Ltd. Au—Sn—Ag-based solder alloy, electronic device sealed or joined using the same, and electronic apparatus equipped with the electronic device
WO2024157542A1 (en) * 2023-01-25 2024-08-02 株式会社日立パワーデバイス Electronic component and method for producing electronic component

Also Published As

Publication number Publication date
JP4811663B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
WO2006001422A1 (en) Au-Sn ALLOY POWDER FOR SOLDER PASTE
WO1997028923A1 (en) Solder, solder paste and soldering method
JP2005319470A (en) Lead-free solder material, electronic circuit board and their production method
JP6780994B2 (en) Solder materials and electronic components
JP5643972B2 (en) Metal filler, low-temperature connection lead-free solder, and connection structure
JP6811798B2 (en) Molded solder and manufacturing method of molded solder
JP2010149185A (en) Metal filler, solder paste and joint structure
JP4811663B2 (en) Sn-Au alloy solder paste with low void generation
JP5733610B2 (en) Au-Sn alloy solder paste and Au-Sn alloy solder formed thereby
WO2021043708A1 (en) Solder alloy and solder paste containing said alloy
WO2014024271A1 (en) High-temperature lead-free solder alloy
WO2013099853A1 (en) Solder paste
JP2011062736A (en) Lead-free high-temperature solder material
JP2010129664A (en) Electronic device and method of manufacturing the same
JP4703411B2 (en) Solder material
KR101235540B1 (en) Au-Sn ALLOY BUMP HAVING NO TRAPPED-IN LARGE VOID AND PROCESS FOR PRODUCING THE SAME
JP6730833B2 (en) Solder alloy and solder composition
JP4811661B2 (en) Au-Sn alloy solder paste with less void generation
JP5077684B2 (en) Au-Sn alloy solder paste for pin transfer
WO2016076353A1 (en) Au-Sn ALLOY SOLDER PASTE, METHOD FOR MANUFACTURING Au-Sn ALLOY SOLDER LAYER, AND Au-Sn ALLOY SOLDER LAYER
JP4872764B2 (en) Au-Sn alloy solder paste with less void generation
JP4780466B2 (en) Sn-Au alloy solder paste for Au plated substrate
US11618108B2 (en) Molded solder and molded solder production method
WO2016139848A1 (en) Au-Sn-Ag-BASED SOLDER PASTE, AND ELECTRONIC COMPONENT JOINED OR SEALED USING Au-Sn-Ag-BASED SOLDER PASTE
JP2017177121A (en) HIGH-TEMPERATURE Pb-FREE SOLDER PASTE AND MANUFACTURING METHOD THEREOF

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4811663

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250