JP2008161878A - Lap resistance spot welding method - Google Patents

Lap resistance spot welding method Download PDF

Info

Publication number
JP2008161878A
JP2008161878A JP2006350991A JP2006350991A JP2008161878A JP 2008161878 A JP2008161878 A JP 2008161878A JP 2006350991 A JP2006350991 A JP 2006350991A JP 2006350991 A JP2006350991 A JP 2006350991A JP 2008161878 A JP2008161878 A JP 2008161878A
Authority
JP
Japan
Prior art keywords
steel plate
spot welding
welding method
resistance spot
contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006350991A
Other languages
Japanese (ja)
Other versions
JP4884958B2 (en
Inventor
Yasuo Takahashi
靖雄 高橋
Hatsuhiko Oikawa
初彦 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006350991A priority Critical patent/JP4884958B2/en
Publication of JP2008161878A publication Critical patent/JP2008161878A/en
Application granted granted Critical
Publication of JP4884958B2 publication Critical patent/JP4884958B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lap resistance spot welding method capable of obtaining requested penetration even on a thinner steel sheet side and free from occurrence of scattering even under the constant pressure during the welding when performing the lap resistance spot welding of three or more steel sheets. <P>SOLUTION: An assembly of three or more lapped steel sheets is held by a pair of welding electrodes, and contact parts of the steel sheets are welded by running the current under the pressure. The thinnest steel sheet 3 is a bare or plated steel sheet having the thickness of 0.5-1.0 mm and the strength of 270-980 MPa while a phosphate-treated coating film, a chromate-treated coating film, an organic coating film or an inorganic coating film is deposited at least on a lap surface, the contact resistance is 50-500 mΩ, the mean roughness Ra of a lapped surface is 1.0-3.0 μm, or 1-10 projections per 10 mm<SP>2</SP>having the height of 0.1-1.2 mm are provided on the lapped surface. The steel sheets are set so that the thinnest steel sheet 3 is brought into contact with one electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、複数枚の鋼板を重ね合わせて抵抗溶接法でスポット溶接する重ね抵抗スポット溶接方法に関し、特に、3枚以上の鋼板を重ね合わせた板組みを1対の電極で挟持し、加圧しながら通電して溶接する重ね抵抗スポット溶接方法に関する。   The present invention relates to a lap resistance spot welding method in which a plurality of steel plates are overlapped and spot-welded by resistance welding, and in particular, a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of electrodes and pressed. The present invention relates to a lap resistance spot welding method in which energization is performed while welding.

重ね抵抗スポット溶接方法は、複数の被接合材を重ね合わせた板組みを1対の電極で挟み、この1対の電極で加圧しながら通電して被接合材同士を接合する溶接方法であり、通電により生じる抵抗発熱によって、被接合材の接触箇所には点状の溶融部分(ナゲット)が形成される。   The lap resistance spot welding method is a welding method in which a pair of electrodes is sandwiched between a pair of electrodes and energized while being pressed with this pair of electrodes to join the materials to be joined together. Due to the resistance heat generated by energization, a spot-like melted portion (nugget) is formed at the contact portion of the material to be joined.

このような重ね抵抗スポット溶接方法を行う溶接機には、電源方式から、単相交流方式、単相及び三相整流方式、インバータ直流式及びコンデンサ式等があるが、近年、装置の軽量化及び省電力化の面から、インバータ式の直流抵抗スポット溶接が主流となりつつある。しかしながら、直流式の抵抗溶接方法は、交流式の抵抗溶接方法に比べて、電極寿命が短いという問題点がある。そこで、従来、電極寿命を延ばすために、亜鉛系片面表面処理鋼板同士を重ね合わせ溶接する際に、プラス側電極に亜鉛系表面処理面が、マイナス側電極に非表面処理面が接する配置で直流抵抗スポット溶接を行う方法が提案されている(例えば、特許文献1参照。)。   Welding machines that perform such lap resistance spot welding methods include power supply systems, single-phase AC systems, single-phase and three-phase rectification systems, inverter DC systems, and capacitor systems. From the viewpoint of power saving, inverter type DC resistance spot welding is becoming mainstream. However, the direct current resistance welding method has a problem that the electrode life is shorter than the alternating current resistance welding method. Therefore, conventionally, in order to extend the electrode life, when the zinc-based single-side surface-treated steel sheets are overlapped and welded together, the direct current is arranged in such a manner that the positive electrode is in contact with the zinc-based surface-treated surface and the negative electrode is in contact with the non-surface-treated surface. A method of performing resistance spot welding has been proposed (see, for example, Patent Document 1).

しかしながら、特許文献1に記載されているような従来の重ね抵抗スポット溶接方法で3枚以上の被接合材を溶接すると、最も外側に薄板を配置した場合に、この薄板と隣接する厚板との間に良好なナゲットが形成されず、充分な接合強度が得られないという問題点がある。また、最も外側の薄板までナゲットが成長するように溶接条件を設定すると、内側の厚板間に形成されるナゲットが成長しすぎて散りが発生してしまう。   However, when three or more materials to be joined are welded by the conventional lap resistance spot welding method as described in Patent Document 1, when a thin plate is arranged on the outermost side, the thin plate and the adjacent thick plate There is a problem that a good nugget is not formed between them and a sufficient bonding strength cannot be obtained. Further, if the welding conditions are set so that the nugget grows to the outermost thin plate, the nugget formed between the thick plates on the inner side grows too much and scattering occurs.

そこで、従来、3枚以上の被接合材を重ね抵抗スポット溶接した際に、充分な接合強度を得るための方法が提案されている(例えば、特許文献2〜6参照。)。例えば、特許文献2には、2枚の厚板に薄板を重ね合わせて溶接する際に、薄板の溶接すべき部位に凸部を形成し、溶接初期は低加圧力でこの凸部を押しつぶすようにして薄板と厚板とを溶接し、その後、高加圧力で2枚の厚板を溶接するスポット溶接方法が開示されている。また、特許文献3に記載のスポット溶接方法では、剛性が高い厚板の上に剛性の低い薄板を重ね合わせて溶接する際に、薄板に当接する電極チップの先端径を、厚板に当接する電極チップの先端径よりも小さくすることにより、薄板と電極チップとの接触面積が厚板と電極チップとの接触面積よりも小さくして、溶接強度向上を図っている。   Therefore, conventionally, a method has been proposed for obtaining sufficient joint strength when three or more materials to be joined are subjected to resistance spot welding (see, for example, Patent Documents 2 to 6). For example, in Patent Document 2, when a thin plate is overlapped and welded on two thick plates, a convex portion is formed at a portion to be welded of the thin plate, and the convex portion is crushed with a low pressure in the initial stage of welding. A spot welding method is disclosed in which a thin plate and a thick plate are welded, and then two thick plates are welded with high pressure. Further, in the spot welding method described in Patent Document 3, when a thin plate with low rigidity is superimposed on a thick plate with high rigidity and welded, the tip diameter of the electrode tip that contacts the thin plate is brought into contact with the thick plate. By making it smaller than the tip diameter of the electrode tip, the contact area between the thin plate and the electrode tip is made smaller than the contact area between the thick plate and the electrode tip, thereby improving the welding strength.

一方、特許文献4に記載のスポット溶接方法では、薄板側と厚板側で加圧力を変えることにより接合強度向上を図っており、特許文献5に記載の抵抗スポット溶接継手の製造方法では、散りの発生を防止するために、2段階でスポット溶接を行い、第2段の溶接を第1段の溶接よりも高加圧力、低電流又は同電流、長通電時間又は同じ通電時間としている。更に、特許文献5及び6に記載の抵抗スポット溶接方法では、板圧比が大きな板組みであっても、必要サイズのナゲットを散りの発生なく形成することを目的として、厚金属板に接する電極チップの先端を平面又は薄金属板に接する電極チップの先端の曲率半径よりも曲率半径が大きい曲面とすると共に、2段階でスポット溶接を行い、第2段の溶接を第1段の溶接よりも高加圧力で行っている。   On the other hand, in the spot welding method described in Patent Document 4, the bonding strength is improved by changing the applied pressure between the thin plate side and the thick plate side. In order to prevent the occurrence of this, spot welding is performed in two stages, and the second stage welding is performed with a higher applied pressure, lower current or the same current, longer energization time or the same energization time than the first stage welding. Further, in the resistance spot welding methods described in Patent Documents 5 and 6, even if the plate pressure ratio is a plate assembly, an electrode tip that contacts a thick metal plate for the purpose of forming a nugget of a required size without occurrence of scattering. The tip of the electrode is a curved surface having a radius of curvature larger than the radius of curvature of the tip of the electrode tip in contact with a flat or thin metal plate, spot welding is performed in two stages, and the second stage welding is higher than the first stage welding. It is done with pressure.

また、従来、スポット溶接における溶接性を高めること目的として、表面粗度を規定した冷延鋼板及びアルミニウムめっき鋼板が提案されている(例えば、特許文献7〜9参照。)特許文献7に記載の冷延鋼板では、表面粗度(SRa)と降伏応力(Y.S.)との関係がSRa≧(32.4/Y.S.)−1.1であり、かつ表面の凸部面積率SSrが60%以下、凸部1個あたりの平均面積SGrが2×10μm以上となるようにしている。また、特許文献8に記載のアルミめっき鋼板では、めっき層の表面粗度を3μm以下とし、更に後処理皮膜を2g/m以下施すことにより、接触抵抗値を0.05〜12mΩにしている。更に、特許文献9に記載のアルミニウムめっき鋼板では、表面に形成された金属間化合物層の表面粗度Raを0.5μm以上としている。 Conventionally, cold rolled steel sheets and aluminized steel sheets that have specified surface roughness have been proposed for the purpose of improving weldability in spot welding (see, for example, Patent Documents 7 to 9). In the cold-rolled steel sheet, the relationship between the surface roughness (SRa) and the yield stress (YS) is SRa ≧ (32.4 / YS) −1.1, and the convex area ratio of the surface The SSr is 60% or less, and the average area SGr per protrusion is 2 × 10 4 μm 2 or more. Further, the aluminum-plated steel sheet described in Patent Document 8, the surface roughness of the plating layer is 3μm or less, by performing further post-treatment coating 2 g / m 2 or less, and the contact resistance to 0.05~12mΩ . Further, in the aluminum-plated steel sheet described in Patent Document 9, the surface roughness Ra of the intermetallic compound layer formed on the surface is set to 0.5 μm or more.

特開平4−94877号公報JP-A-4-94877 特開2003−71569号公報JP 2003-71569 A 特開2003−251468号公報JP 2003-251468 A 特開2003−251469号公報JP 2003-251469 A 特開2005-262259号公報JP 2005-262259 A 特開2006−55898号公報JP 2006-55898 A 特開昭63−317648号公報Japanese Unexamined Patent Publication No. Sho 63-317648 特開2000−273609号公報JP 2000-273609 A 特開2004−2932号公報JP 2004-2932 A

しかしながら、上述の従来の技術には、以下に示す問題点がある。即ち、上述した特許文献2に記載のスポット溶接方法は、薄板側の溶接すべき箇所に予め凸部を設ける必要があり、溶接箇所がこれにより限定され、更に、凸部の中央部に正確に電極を当接させる精度が要求されるため、製造コストが増加するという問題点がある。また、特許文献3に記載のスポット溶接方法は、薄板側に当接する電極の接触面積が小さいことから、電流密度は相対的に大きくなるため、薄板側のシートセパレーション(板の浮き上がり)が大きくなり、製品の仕上がり精度が悪くなるという問題点を生ずる。更に、薄板側の電極は電流密度が高くなるため、電極の汚損及び磨耗が著しくなり、その結果、頻繁に電極のドレッシング又は交換が必要となり、生産工程上の遅延及び費用の増大等の問題点が多く発生する。更に、特許文献4に記載のスポット溶接方法は、薄板側に当接する電極の加圧力を厚板側に当接する電極の加圧力よりも小さくすることで、厚板側の接触抵抗値よりも薄板側の接触抵抗値の方が小さくなるように制御して発熱を促進しているが、そのためには、ガン本体に下部から押し上げる力を作用させるために、サーボモーターとこれを作動させるガンコントローラーが必要であり、更に溶接機は、定置式のスポット溶接機は適用できず、ロボット形スポットガンに限定される等のように、生産工程上、その設備に関わる余分な負担及び煩雑さが増し、費用が増加するという問題点がある。   However, the above-described conventional technology has the following problems. That is, in the spot welding method described in Patent Document 2 described above, it is necessary to provide a convex portion in advance at the location to be welded on the thin plate side, the welding location is limited thereby, and more precisely at the center of the convex portion. There is a problem in that the manufacturing cost increases because the accuracy of contacting the electrodes is required. Further, in the spot welding method described in Patent Document 3, since the contact area of the electrode in contact with the thin plate side is small, the current density is relatively large, so that the sheet separation (plate lift) on the thin plate side is large. This causes the problem that the finished accuracy of the product is deteriorated. Furthermore, since the electrode on the thin plate side has a high current density, the electrode is significantly fouled and worn. As a result, the electrode must be frequently dressed or replaced, resulting in problems such as production delays and increased costs. Occur frequently. Further, in the spot welding method described in Patent Document 4, the applied pressure of the electrode that contacts the thin plate side is made smaller than the applied pressure of the electrode that contacts the thick plate side, thereby reducing the contact resistance value on the thick plate side. The contact resistance value on the side is controlled so as to decrease, and heat generation is promoted.To that end, a servo motor and a gun controller that operates the servo motor are used to apply a force that pushes up the gun body from the bottom. In addition, as for the welding machine, a stationary spot welding machine cannot be applied, and it is limited to a robot type spot gun. There is a problem that the cost increases.

一方、特許文献5及び6に記載のスポット溶接方法は、第一段及び第二段と、二段階からなる溶接工程を実施するためには、スポット溶接機に一般には具備されていない短時間で作動する可変加圧機構を備えておく必要があり、設備が高価になるという問題点がある。また、これらの溶接方法では、第一段階で薄板側にナゲットを形成させた後に、第二段階で厚板側に散り発生なしにナゲットを形成するため、第一段階に比べて特に高加圧条件を適用し、かつ低電流又は同電流で長時間通電又は同通電時間条件にする必要がある。このため、第一段階目の溶接で既に溶接は完了しているが、まだ高温状態にある薄板側に、第二段階目の溶接で大きな加圧力と余分な入熱及び負荷を生じる。これにより、薄板側の圧痕が大きくなり、製品としての変形程度も大きくなるという問題点がある。特に、特許文献6に記載の溶接方法では、薄板側電極の曲率半径が小さいため、この傾向が大きくなる。更に、特許文献5及び6に記載の溶接方法では、薄板側の電極の汚損及び磨耗が激しく、頻繁に電極のドレッシング又は交換が必要となるため、生産工程上の管理及び費用に問題点がある。   On the other hand, in the spot welding methods described in Patent Documents 5 and 6, in order to carry out a welding process consisting of a first stage and a second stage, the spot welding machine is generally not provided in a short time. There is a problem that it is necessary to provide a variable pressure mechanism that operates, and the equipment becomes expensive. Also, in these welding methods, the nugget is formed on the thin plate side in the first stage, and then the nugget is formed on the thick plate side in the second stage without being scattered. It is necessary to apply the conditions and to apply a long-time energization or the same energization time condition at a low current or the same current. For this reason, although the welding has already been completed in the first stage welding, a large pressure and excessive heat input and load are generated in the second stage welding on the thin plate side which is still in a high temperature state. As a result, the indentation on the thin plate side becomes large, and there is a problem that the degree of deformation as a product becomes large. In particular, in the welding method described in Patent Document 6, this tendency increases because the radius of curvature of the thin plate side electrode is small. Further, in the welding methods described in Patent Documents 5 and 6, the electrode on the thin plate side is heavily soiled and worn, and frequent dressing or replacement of the electrode is required. .

また、特許文献7に記載の鋼板は、冷延鋼板に限定されたものであり、めっき鋼板への適用は困難である。更に、鋼板特性に関して、鋼板の降伏応力を大きくし、かつ表面粗度を大きくするという技術の範囲では、3枚以上の多枚重ねにおいて最も薄い鋼板が電極に接するような板組にした場合、最も薄い鋼板への有効なナゲット形成効果は期待できず、また、特許文献7にはこのような事例及び効果については言及も開示もなされていない。   Moreover, the steel plate described in Patent Document 7 is limited to a cold-rolled steel plate and is difficult to apply to a plated steel plate. Furthermore, regarding the steel sheet characteristics, in the range of the technique of increasing the yield stress of the steel sheet and increasing the surface roughness, when the plate assembly is such that the thinnest steel sheet contacts the electrode in multiple stacks of three or more, An effective nugget formation effect on the thinnest steel plate cannot be expected, and Patent Document 7 does not mention or disclose such cases and effects.

特許文献8に記載の技術は、アルミめっき鋼板において表面粗度を3μm以下、後処理皮膜を2g/m以下、接触抵抗値を0.05〜12mΩの範囲としたもので、また特許文献9に記載の技術は、アルミニウムを主成分とする金属化合物の表面粗度Raを0.5μm以下としたものであり、いずれもアルミめっき鋼板に限定されたもので、冷延鋼板には適用できない技術である。一般に、アルミめっき鋼板は、めっき厚さが厚く、電気伝導度が大きいため、3枚重ね以上の多枚重ね溶接をすることは困難であり、まして最も薄い鋼板が電極に接するような板組にした場合に、有効なナゲットを形成する効果は全く期待できない。また、特許文献8及び9には、3枚重ね以上の多枚重ね溶接に適用する場合については、何ら記載されていない。従って、特許文献8及び9に記載された鋼板では、3枚以上の鋼板を重ね抵抗スポット溶接した場合、最も外側に薄鋼板を配置すると隣接する鋼板との間に良好なナゲットが形成されず、充分な接合強度が得られないという問題点がある。 The technique described in Patent Document 8 is an aluminum-plated steel sheet having a surface roughness of 3 μm or less, a post-treatment film of 2 g / m 2 or less, and a contact resistance value of 0.05 to 12 mΩ. The technology described in 1 is a technology in which the surface roughness Ra of a metal compound mainly composed of aluminum is 0.5 μm or less, both of which are limited to aluminum-plated steel plates, and cannot be applied to cold-rolled steel plates. It is. In general, aluminum-plated steel sheets have a large plating thickness and large electrical conductivity, making it difficult to perform multi-layer welding of three or more layers. In this case, the effect of forming an effective nugget cannot be expected at all. In addition, Patent Documents 8 and 9 do not describe anything about application to multi-layer welding of three or more sheets. Therefore, in the steel plates described in Patent Documents 8 and 9, when three or more steel plates are overlapped and resistance spot welded, if a thin steel plate is arranged on the outermost side, a good nugget is not formed between adjacent steel plates, There is a problem that sufficient bonding strength cannot be obtained.

本発明は、上述した問題点に鑑みてなさなれたものであって、3枚以上の鋼板を重ね抵抗スポット溶接する際に、溶接時の加圧力が一定であっても、薄鋼板側にも必要な溶け込みが得られ、かつ散りの発生もない重ね抵抗スポット溶接方法を提供することを目的とする。   The present invention has been made in view of the above-described problems. When three or more steel plates are subjected to resistance spot welding, even if the welding pressure is constant, the thin steel plate side is also provided. It is an object of the present invention to provide a lap resistance spot welding method in which necessary penetration is obtained and no scatter occurs.

本願第1発明に係る重ね抵抗スポット溶接方法は、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法において、前記鋼板のうち板厚が最も薄いものを、一方の電極に接触するように板組みして溶接する工程を有し、この板厚が最も薄い鋼板を、板厚が0.5〜1.0mm、強度が270〜980MPaであり、少なくとも重ねあわせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成され、接触抵抗値が50〜500mΩである裸鋼板又はめっき鋼板とすることを特徴とする。   The lap resistance spot welding method according to the first invention of the present application is a method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld the contact points of each steel plate. In the resistance spot welding method, the steel plate having the thinnest thickness among the steel plates is assembled and welded so as to be in contact with one of the electrodes. Bare steel plate having a contact resistance value of 50 to 500 mΩ, having a thickness of 270 to 980 MPa, a phosphate treatment film, a chromate treatment film, an organic film or an inorganic film formed on at least the overlapping surface Or it is set as a plated steel plate.

本願第2発明に係る重ね抵抗スポット溶接方法は、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法において、前記鋼板のうち板厚が最も薄いものを、一方の電極に接触するように板組みして溶接する工程を有し、この板厚が最も薄い鋼板を、板厚が0.5〜1.0mm、強度が270〜980MPa、重ねあわせ面の平均粗さRaが1.0〜3.0μmの裸鋼板又はめっき鋼板で、少なくとも重ねあわせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成されてものとすることを特徴とする。   In the lap resistance spot welding method according to the second invention of the present application, a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes, and a contact point of each steel plate is welded by energizing while pressing. In the resistance spot welding method, the steel plate having the thinnest thickness among the steel plates is assembled and welded so as to be in contact with one of the electrodes. .5 to 1.0 mm, strength is 270 to 980 MPa, average roughness Ra of the overlap surface is 1.0 to 3.0 μm, and at least the overlap surface is a phosphate-treated film and chromate treatment. A film, an organic film, or an inorganic film is formed.

本願第3発明に係る重ね抵抗スポット溶接方法は、3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法において、前記鋼板のうち板厚が最も薄いものを、一方の電極に接触するように板組みして溶接する工程を有し、この板厚が最も薄い鋼板を、板厚が0.5〜1.0mm、強度が270〜980MPaであり、少なくとも重ねあわせ面に、リン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成されると共に、高さが0.1〜1.2mmの突起が10mmあたり1〜10個設けられた裸鋼板又はめっき鋼板とすることを特徴とする。 The lap resistance spot welding method according to the third invention of the present application is a method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld the contact points of each steel plate. In the resistance spot welding method, the steel plate having the thinnest thickness among the steel plates is assembled and welded so as to be in contact with one of the electrodes. 0.5 to 1.0 mm, strength is 270 to 980 MPa, and a phosphate treatment film, chromate treatment film, organic film or inorganic film is formed on at least the overlapping surface, and the height is 0.1 to 1 A bare steel plate or a plated steel plate having 1 to 2 projections of 2 mm per 10 mm 2 is characterized.

上述した本願第3発明における突起は、例えば、ボタン型、コーン型、楕円形状又は角型とすることができる。   The protrusion in the third invention of the present application described above can be, for example, a button shape, a cone shape, an elliptical shape, or a square shape.

また、上述した本願第1〜第3発明では、パルセーション通電又は多段通電方式で溶接してもよい。   In the first to third inventions of the present application described above, welding may be performed by pulsation energization or multistage energization.

本発明によれば、板厚が最も薄い鋼板が一方の電極に接触するように板組みして溶接する際に、この板厚が最も薄い鋼板の重ね合わせ面を接触抵抗値50〜500mΩ又は平均粗さRa1.0〜3.0μmとするか、重ね合わせ面に高さ0.1〜1.2mmの突起を10mmあたり1〜10個設け、更に、この重ね合わせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜を形成しているため、溶接時の加圧力が一定であっても、散りを発生させずに3枚以上の鋼板をスポット溶接することができ、更に、薄鋼板側にも充分な接合強度が得られる程度の溶け込みを形成することができる。 According to the present invention, when the steel sheet having the thinnest plate thickness is assembled and welded so as to contact one of the electrodes, the overlapping surface of the steel plates having the thinnest plate thickness has a contact resistance value of 50 to 500 mΩ or an average. The roughness Ra is set to 1.0 to 3.0 μm, or 1 to 10 protrusions having a height of 0.1 to 1.2 mm are provided per 10 mm 2 on the overlapping surface, and further, the phosphate treatment film is provided on the overlapping surface. In addition, since the chromate-treated film, organic film or inorganic film is formed, it is possible to spot weld three or more steel plates without generating scattering even if the applied pressure during welding is constant. It is possible to form a penetration enough to obtain a sufficient bonding strength on the thin steel plate side.

以下、本発明を実施するための最良の形態について、添付の図面を参照して詳細に説明する。先ず、本発明の第1の実施形態に係る重ね抵抗スポット溶接方法(以下、単に溶接方法ともいう。)について説明する。図1は本実施形態の重ね抵抗スポット溶接方法を模式的に示す図である。図1に示すように、本実施形態の重ね抵抗スポット溶接方法においては、先ず、厚さが異なる3枚の鋼板1,2,3を、板厚が最も薄い鋼板3が外側になるように、即ち、最も薄い鋼板3が電極5又は電極6に接触するように重ね合わせる。そして、溶接電極5,6により、この3枚の鋼板1,2,3からなる板組み4を挟持すると共に加圧しつつ、通電して溶接する。   The best mode for carrying out the present invention will be described below in detail with reference to the accompanying drawings. First, a lap resistance spot welding method (hereinafter also simply referred to as a welding method) according to a first embodiment of the present invention will be described. FIG. 1 is a diagram schematically showing the lap resistance spot welding method of the present embodiment. As shown in FIG. 1, in the lap resistance spot welding method of the present embodiment, first, the three steel plates 1, 2, 3 having different thicknesses are arranged so that the steel plate 3 having the smallest thickness is on the outside. That is, the thin steel plates 3 are overlapped so as to contact the electrodes 5 or 6. The plate assembly 4 composed of the three steel plates 1, 2, 3 is held between the welding electrodes 5, 6 and is energized and welded while being pressed.

このとき、最も薄い鋼板3としては、板厚tが0.5〜1.0mm、強度が270〜980MPaで、少なくとも重ねあわせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜等からなる表面皮膜3aが形成され、隣接する鋼板2との接触抵抗値が50〜500mΩである裸鋼板又はめっき鋼板とする。なお、重ね合わせ面に表面皮膜3aが形成されていない場合、接触抵抗値を50〜500mΩの範囲にすることができない。   At this time, the thinnest steel plate 3 has a thickness t of 0.5 to 1.0 mm, a strength of 270 to 980 MPa, and a phosphate treatment film, a chromate treatment film, an organic film, an inorganic film or the like on at least the overlapping surface. The surface coating 3a made of the steel plate is formed, and the contact resistance value with the adjacent steel plate 2 is 50 to 500 mΩ. In addition, when the surface film 3a is not formed on the overlapping surface, the contact resistance value cannot be in the range of 50 to 500 mΩ.

また、ここで規定する接触抵抗値は、以下に示す方法により測定した値である。図2は接触抵抗の測定方法を模式的に示す図である。図2に示すように、接触抵抗値は、板組み4を、電極先端径が4mmのCF形電極15,16で挟持し、加圧力1.96kNで押圧しながら、直流電流を1A通電したときの鋼板2,3間の電圧Vから演算により求めた。この条件で測定したときの接触抵抗が50mΩ未満の場合、鋼板3と鋼板2との接合部に良好なナゲットが得られず、また、鋼板3にナゲットが成長するように溶接条件を設定すると、鋼板1と鋼板2との接合部に形成されるナゲットが成長しすぎて散りが発生する。一方、接触抵抗値が500mΩを超えると電極5,6間が無通電となり、溶接できなくなる。   Moreover, the contact resistance value prescribed | regulated here is the value measured by the method shown below. FIG. 2 is a diagram schematically showing a method for measuring contact resistance. As shown in FIG. 2, the contact resistance value is obtained when a plate current 4 is sandwiched between CF-type electrodes 15 and 16 having an electrode tip diameter of 4 mm, and a direct current of 1 A is applied while pressing with a pressure of 1.96 kN. It calculated | required by calculation from the voltage V between the steel plates 2 and 3 of this. When the contact resistance measured under these conditions is less than 50 mΩ, a good nugget cannot be obtained at the joint between the steel plate 3 and the steel plate 2, and when the welding conditions are set so that the nugget grows on the steel plate 3, The nugget formed at the joint between the steel plate 1 and the steel plate 2 grows too much and scattering occurs. On the other hand, if the contact resistance value exceeds 500 mΩ, the electrodes 5 and 6 are not energized and cannot be welded.

通常のスポット溶接技術を適用した場合には、最も薄い鋼板3はこれと接触している電極に冷却され、鋼板3側に充分な大きさのナゲットを形成することが困難であるが、本実施形態の重ね抵抗スポット溶接方法においては、最も薄い鋼板3の重ね合わせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜を形成すると共に、その接触抵抗値を50〜500mΩとしているため、この最も薄い鋼板3が電極で冷却されやすい板組、即ち、最も薄い鋼板3を電極5又は電極6と接触するように配置しても、最も薄い鋼板3に良好なナゲットを形成することが可能になる。更に、溶接時の加圧力を変化させなくとも、散りを発生させずに、充分な接合強度が得られるナゲットを形成することができる。   When the usual spot welding technique is applied, the thinnest steel plate 3 is cooled by the electrode in contact with it, and it is difficult to form a sufficiently large nugget on the steel plate 3 side. In the form of the overlap resistance spot welding method, a phosphate treatment film, a chromate treatment film, an organic film or an inorganic film is formed on the overlap surface of the thinnest steel plate 3, and the contact resistance value is 50 to 500 mΩ. The thinnest steel plate 3 can be easily cooled by the electrode, that is, even if the thinnest steel plate 3 is arranged so as to be in contact with the electrode 5 or 6, a good nugget can be formed on the thinnest steel plate 3. It becomes possible. Furthermore, a nugget can be formed in which sufficient bonding strength can be obtained without causing scattering even if the welding pressure is not changed.

なお、実施形態の重ね抵抗スポット溶接方法においては、3枚の鋼板を重ね合わせた板組みの溶接を例にして説明しているが、本発明はこれに限定されるものではなく、3枚以上の鋼板の重ね抵抗スポット溶接方法であれば、上述した効果が得られる。また、最も薄い鋼板3は、両面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜等の表面皮膜が形成されていてもよい。更に、溶接方法についても特に限定されるものではなく、パルセーション通電及び多段通電方式で溶接することもできる。   In the lap resistance spot welding method of the embodiment, the welding of a plate assembly in which three steel plates are overlapped is described as an example, but the present invention is not limited to this, and three or more sheets are used. If it is the lap resistance spot welding method of this steel plate, the effect mentioned above will be acquired. Further, the thinnest steel plate 3 may have a surface film such as a phosphate-treated film, a chromate-treated film, an organic film, or an inorganic film formed on both surfaces. Further, the welding method is not particularly limited, and welding can be performed by pulsation energization and multistage energization.

次に、本発明の第2の実施形態に係る重ね抵抗スポット溶接方法について説明する。本実施形態の重ね抵抗スポット溶接方法は、板厚が最も薄い鋼板として、板厚が0.5〜1.0mm、強度が270〜980MPaで、一方の面の平均粗さRaを1.0〜3.0μmとした裸鋼板又はめっき鋼板に対して、少なくともこの一方の面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜等の表面皮膜を形成したものを使用する。そして、この一方の面を重ね合わせ面とし、図1に示す第1の実施形態の溶接方法と同様に、最も薄い鋼板を電極に接触するように外側に配置して板組し、1対の溶接電極で加圧しながら通電して溶接する。   Next, a lap resistance spot welding method according to the second embodiment of the present invention will be described. In the lap resistance spot welding method of the present embodiment, as the steel plate having the thinnest thickness, the plate thickness is 0.5 to 1.0 mm, the strength is 270 to 980 MPa, and the average roughness Ra of one surface is 1.0 to 1.0. For a bare steel plate or plated steel plate having a thickness of 3.0 μm, a surface coating such as a phosphate-treated film, a chromate-treated film, an organic film, or an inorganic film is formed on at least one surface. Then, this one surface is used as an overlapping surface, and the thinnest steel plate is arranged on the outside so as to be in contact with the electrode, as in the welding method of the first embodiment shown in FIG. It is energized and welded while pressing with a welding electrode.

このように、表面皮膜形成前の裸鋼板又はめっき鋼板において、重ね合わせ面となる面(一方の面)の平均粗さRaを1.0〜3.0μmとし、更に、この重ね合わせ面となる面(一方の面)に表面皮膜を形成することにより、最も薄い鋼板とそれに隣接する鋼板との間の接触抵抗値を、50〜500mΩとすることができる。重ね合わせ面となる面(一方の面)の平均粗さRaが1.0μm未満の場合、表面皮膜形成後の重ね合わせ面が平滑となり、最も薄い鋼板における集中抵抗が小さくなるため、発熱効果が低減する。その結果、最も薄い鋼板に良好なナゲットが形成されない。また、最も薄い鋼板にナゲットが成長するように溶接条件を設定すると、他の鋼板の接合部に形成されるナゲットが成長しすぎて散りが発生する。一方、重ね合わせ面となる面(一方の面)の平均粗さRaを3.0μm超にする場合、通常の工程及び設備ではロール表面のつぶれ等が発生するため、安定して形成することが困難である。このため、別途工程及び設備を設ける必要があり、製造コストが増加する。   Thus, in the bare steel plate or the plated steel plate before the surface coating is formed, the average roughness Ra of the surface (one surface) to be the overlapping surface is 1.0 to 3.0 μm, and further, this overlapping surface is obtained. By forming the surface film on the surface (one surface), the contact resistance value between the thinnest steel plate and the steel plate adjacent thereto can be set to 50 to 500 mΩ. When the average roughness Ra of the surface (one surface) to be the overlapping surface is less than 1.0 μm, the overlapping surface after the formation of the surface film is smooth, and the concentrated resistance in the thinnest steel sheet is reduced, so the heat generation effect is reduced. Reduce. As a result, a good nugget is not formed on the thinnest steel plate. Further, when the welding conditions are set so that the nugget grows on the thinnest steel plate, the nugget formed at the joint portion of the other steel plate grows too much and the scattering occurs. On the other hand, when the average roughness Ra of the surface to be the overlapping surface (one surface) exceeds 3.0 μm, the roll surface may be crushed in a normal process and equipment, so that it can be stably formed. Have difficulty. For this reason, it is necessary to provide a process and an installation separately, and a manufacturing cost increases.

なお、最も薄い鋼板の表面粗さRaを上述した範囲にする方法は、特に限定されるものではなく、レーザ加工及びロール加工等の公知の方法を適用することができる。また、最も薄い鋼板における重ね合わせ面以外の面の表面粗さは、特に限定されるものではなく、適宜設定することができる。また、溶接時の通電方法についても、特に限定されるものではなく、例えば、多段通電方式及びパルゼーション通電等を適用することもできる。   In addition, the method of making surface roughness Ra of the thinnest steel plate into the range mentioned above is not specifically limited, Well-known methods, such as laser processing and roll processing, can be applied. Moreover, the surface roughness of surfaces other than the overlapping surface in the thinnest steel plate is not particularly limited and can be set as appropriate. Also, the energization method during welding is not particularly limited, and for example, a multistage energization method, pulsation energization, or the like can be applied.

上述の如く、本実施形態の重ね抵抗スポット溶接方法においては、最も薄い鋼板について、表面皮膜形成前の鋼板で重ね合わせ面となる面の平均粗さRaを1.0〜3.0μmとし、更に、この重ね合わせ面となる面に皮膜での電気抵抗が大きいリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜を形成しているため、最も薄い鋼板側の抵抗発熱を容易に促進し、充分な溶込みを得ることができる。その結果、溶接時の加圧力を変化させなくとも、散りを発生させずに、充分な接合強度が得られる大きさのナゲットを形成することができる。   As described above, in the lap resistance spot welding method of the present embodiment, for the thinnest steel plate, the average roughness Ra of the surface that becomes the overlapping surface in the steel plate before the surface coating is formed is 1.0 to 3.0 μm. In addition, a phosphate-treated film, chromate-treated film, organic film, or inorganic film with a large electrical resistance is formed on the surface to be the superposed surface, facilitating resistance heat generation on the thinnest steel plate side. Sufficient penetration can be obtained. As a result, it is possible to form a nugget having a size that can provide sufficient joint strength without causing scattering even if the pressure during welding is not changed.

なお、本実施形態の重ね抵抗スポット溶接方法における上記以外の構成及び効果は、上述した第1の実施形態の溶接方法と同様である。また、本実施形態の溶接方法では、最も薄い鋼板の重ね合わせ面の平均粗さRaを1.0〜3.0μmとし、更に、リン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜を形成しているが、平均粗さRa又は表面皮膜のいずれかの条件を満たせば、最も薄い鋼板におけるナゲット成長を促進する効果は得られる。ただし、溶接時の加圧力を変化させなくても、散りを発生させずに、充分な接合強度が得られる大きさのナゲットを形成できるという本発明の効果を得るためには、これらの条件の両方を満たす必要がある。   The configuration and effects other than those described above in the lap resistance spot welding method of the present embodiment are the same as those of the welding method of the first embodiment described above. Moreover, in the welding method of this embodiment, the average roughness Ra of the overlapping surface of the thinnest steel sheet is set to 1.0 to 3.0 μm, and further, a phosphate treatment film, a chromate treatment film, an organic film, or an inorganic film is applied. Although it is formed, the effect of promoting nugget growth in the thinnest steel sheet can be obtained if either of the conditions of average roughness Ra or surface coating is satisfied. However, in order to obtain the effect of the present invention that a nugget having a sufficient size can be formed without causing scattering without changing the welding pressure, these conditions are satisfied. It is necessary to satisfy both.

次に、本発明の第3の実施形態に係る重ね抵抗スポット溶接方法について説明する。本実施形態の重ね抵抗スポット溶接方法は、板厚が最も薄い鋼板として、板厚が0.5〜1.0mm、強度が270〜980MPaで、少なくとも重ねあわせ面に、リン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜等の表面皮膜が形成されると共に、高さが0.1〜1.2mmの突起が10mmあたり1〜10個設けられた裸鋼板又はめっき鋼板を使用する。そして、この突起が形成された面を重ね合わせ面とし、図1に示す第1の実施形態の溶接方法と同様に、最も薄い鋼板を電極に接触するように外側に配置して板組みし、この板組みを1対の溶接電極で挟持して加圧しながら通電して溶接する。 Next, a lap resistance spot welding method according to the third embodiment of the present invention will be described. The lap resistance spot welding method of the present embodiment is a thin steel plate having a thickness of 0.5 to 1.0 mm and a strength of 270 to 980 MPa. A surface coating such as a treatment coating, an organic coating, or an inorganic coating is formed, and a bare steel plate or a plated steel plate provided with 1 to 10 protrusions having a height of 0.1 to 1.2 mm per 10 mm 2 is used. Then, the surface on which the protrusions are formed is an overlapping surface, and, like the welding method of the first embodiment shown in FIG. This plate assembly is sandwiched between a pair of welding electrodes and energized while being pressurized and welded.

このように、最も薄い鋼板の重ね合わせ面に、表面皮膜及び突起を形成することにより、最も薄い鋼板とそれに隣接する鋼板との間の接触抵抗値を、50〜500mΩとすることができる。ここで、突起の高さが0.1mm未満の場合、通常の加圧力で溶接すると、通電前に突起が圧壊して鋼板同士が前面接触状態となり、局部的な有効発熱が得られなくなる。一方、突起の高さが1.2mmを超えると、通常の加圧力では突起の圧壊が不充分となる。その結果、溶接入熱(例えば溶接電流が)小さい場合には、溶接後に突起が残存して鋼板間に隙間が形成され、溶接入熱が大きい場合には、突起が圧壊しないうちに激しい散りが発生する等、適正溶接条件が存在しないか、又は条件選択が困難になる。また、10mmあたりの突起の数が10個を超えると、接点が分散して発熱効果が低減する。よって、最も薄い鋼板の重ね合わせ面に形成する突起は、高さが0.1〜1.2mmで、かつ10mmあたり1〜10個とする。その際、突起1個あたりの底面積が0.5mm未満の場合、突起自体の強度が低下し、充分な効果が得られないことがある。このため、突起1個あたりの底面積は0.5mm以上であることが望ましい。 Thus, the contact resistance value between the thinnest steel plate and the steel plate adjacent to the thinnest steel plate can be set to 50 to 500 mΩ by forming the surface film and the protrusion on the overlapping surface of the thinnest steel plate. Here, when the height of the protrusion is less than 0.1 mm, if the welding is performed with a normal pressure, the protrusion is crushed before energization, and the steel plates are brought into contact with each other in the front surface, so that local effective heat generation cannot be obtained. On the other hand, when the height of the protrusion exceeds 1.2 mm, the protrusion is not sufficiently crushed by a normal pressure. As a result, when welding heat input (for example, welding current) is small, protrusions remain after welding and gaps are formed between the steel plates. When welding heat input is large, severe scattering occurs before the protrusions are crushed. Appropriate welding conditions do not exist or conditions selection becomes difficult. On the other hand, when the number of protrusions per 10 mm 2 exceeds 10, the contacts are dispersed and the heat generation effect is reduced. Therefore, the protrusions formed on the thinnest overlapping surface of the steel plates have a height of 0.1 to 1.2 mm and 1 to 10 per 10 mm 2 . At that time, if the bottom area per protrusion is less than 0.5 mm 2 , the strength of the protrusion itself is lowered, and a sufficient effect may not be obtained. For this reason, it is desirable that the bottom area per protrusion is 0.5 mm 2 or more.

突起の具体的な形状としては、例えば、ボタン型、コーン型、楕円形状又は角型とすることができる。また、鋼板にこのような突起を形成する方法は、特に限定されるものではなく、パンチング、コイニング、ロール成形及び据え込み等の公知の方法を適用することができる。   The specific shape of the protrusion can be, for example, a button shape, a cone shape, an elliptical shape, or a square shape. Moreover, the method of forming such protrusions on the steel plate is not particularly limited, and known methods such as punching, coining, roll forming and upsetting can be applied.

上述の如く、本実施形態の重ね抵抗スポット溶接方法においては、最も薄い鋼板の重ね合わせ面に、高さが0.1〜1.2mmの突起を10mmあたり1〜10個設けているため、この突起に溶接電流が集中して、最も薄い鋼板側の抵抗発熱を効果的に促進し、十分なナゲット溶け込みを得ることができる。その結果、溶接時の加圧力を変化させなくとも、散りを発生させずに、充分な接合強度が得られる大きさのナゲットを形成することができる。 As described above, in the lap resistance spot welding method of the present embodiment, since 1 to 10 protrusions having a height of 0.1 to 1.2 mm are provided per 10 mm 2 on the overlapping surface of the thinnest steel plate, The welding current concentrates on the protrusions, and the resistance heat generation on the thinnest steel plate side is effectively promoted, and sufficient nugget penetration can be obtained. As a result, it is possible to form a nugget having a size that can provide sufficient joint strength without causing scattering even if the pressure during welding is not changed.

なお、本実施形態の重ね抵抗スポット溶接方法における上記以外の構成及び効果は、上述した第1の実施形態の溶接方法と同様である。また、本実施形態の溶接方法では、最も薄い鋼板の重ね合わせ面に、高さが0.1〜1.2mmの突起を10mmあたり1〜10個形成すると共に、リン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜を形成しているが、突起又は表面皮膜のいずれかの条件を満たせば、最も薄い鋼板におけるナゲット成長を促進する効果が得られる。しかしながら、溶接時の加圧力を変化させなくても、散りを発生させずに、充分な接合強度が得られる大きさのナゲットを形成できるという本発明の効果を得るためには、これらの条件の両方を満たす必要がある。 The configuration and effects other than those described above in the lap resistance spot welding method of the present embodiment are the same as those of the welding method of the first embodiment described above. Further, in the welding method of the present embodiment, 1 to 10 protrusions having a height of 0.1 to 1.2 mm are formed per 10 mm 2 on the overlapping surface of the thinnest steel plates, and the phosphate treatment film and chromate are formed. Although the treatment film, the organic film or the inorganic film is formed, the effect of promoting the nugget growth in the thinnest steel sheet can be obtained if any of the conditions of the protrusion or the surface film is satisfied. However, in order to obtain the effect of the present invention that a nugget having a size capable of obtaining a sufficient joint strength can be formed without causing scattering even if the pressure during welding is not changed, these conditions are satisfied. It is necessary to satisfy both.

以下、本発明の実施例及び本発明の範囲から外れる比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、厚さ及び強度が異なる3枚の鋼板を、図1に示す方法で重ねスポット溶接し、散り発生の有無及び接合部のナゲット径の大きさを調べた。その際の板組は、鋼板1としては、板厚が1.6mm、引張り強度が780MPaの高張力鋼板の両面に、片面あたりの付着量45g/mで亜鉛めっきした合金化溶融亜鉛めっき鋼板を使用し、鋼板2としては、板厚が2.3mm、引張り強度が590MPaの高張力鋼板の両面に、片面あたりの付着量45g/mで亜鉛めっきした合金化溶融亜鉛めっき鋼板を使用した。また、鋼板3としては、板厚が0.7mm、引張り強度が270MPaの鋼板の両面に片面あたりの付着量45g/mで亜鉛めっきした合金化溶融亜鉛めっき鋼板で、両面に下記表1に示す表面皮膜が形成され、更に、下記表1に示す表面加工が施されたものを使用した。なお、下記表1には、図2に示す方法で測定した各鋼板の接触抵抗値を併せて示す。 Hereinafter, the effects of the present invention will be specifically described with reference to examples of the present invention and comparative examples that are out of the scope of the present invention. In this example, three steel plates having different thicknesses and strengths were spot-welded by the method shown in FIG. 1, and the presence / absence of scattering and the size of the nugget diameter of the joint were examined. In this case, the steel sheet 1 is an alloyed hot-dip galvanized steel sheet in which the steel sheet 1 is galvanized with an adhesion amount of 45 g / m 2 on one side on both sides of a high-strength steel sheet having a thickness of 1.6 mm and a tensile strength of 780 MPa. As the steel plate 2, an alloyed hot-dip galvanized steel plate that was galvanized with an adhesion amount of 45 g / m 2 per side on both sides of a high-tensile steel plate with a plate thickness of 2.3 mm and a tensile strength of 590 MPa was used. . The steel plate 3 is an alloyed hot-dip galvanized steel plate that is galvanized on both sides of a steel plate having a thickness of 0.7 mm and a tensile strength of 270 MPa, with an adhesion amount per side of 45 g / m 2. The surface film shown in Table 1 was formed and the surface treatment shown in Table 1 below was applied. Table 1 below also shows the contact resistance value of each steel plate measured by the method shown in FIG.

Figure 2008161878
Figure 2008161878

一方、溶接条件としては、溶接電源には単相交流式電源を使用し、電極には電極径Dが16mm、先端の直径が6mm、先端のRが40であるCr−Cu合金製DR形電極を使用し、加圧力は6.0kNとした。その他の溶接条件は下記表2に示す。更に、比較例として、鋼板3に、板厚が0.7mm、引張り強度が270MPaの鋼板の両面に片面あたりの付着量45g/mで亜鉛めっきした合金化溶融亜鉛めっき鋼板で、表面皮膜形成及び表面加工を実施せず、両面に防錆油を塗布したもの、及び重ね合わせ面に本発明の範囲から外れる突起を形成したものを使用して、上述した実施例と同様の方法及び条件で溶接し、散り発生の有無及び接合部のナゲット径の大きさを調べた。以上の結果を下記表2に併せて示す。 On the other hand, as welding conditions, a single-phase AC power source is used as a welding power source, and the electrode has an electrode diameter D of 16 mm, a tip diameter of 6 mm, and a tip R of 40. The pressure was 6.0 kN. Other welding conditions are shown in Table 2 below. Further, as a comparative example, a surface film was formed on a steel sheet 3 by galvanizing an galvanized steel sheet galvanized on both surfaces of a steel sheet having a thickness of 0.7 mm and a tensile strength of 270 MPa with an adhesion amount per side of 45 g / m 2. In addition, the same method and conditions as in the above-described embodiment were used without applying surface treatment and using a rust-preventive oil coated on both sides and a surface formed with protrusions outside the scope of the present invention. Welding was performed to check for the occurrence of scattering and the size of the nugget diameter at the joint. The above results are also shown in Table 2 below.

Figure 2008161878
Figure 2008161878

上記表2に示すように、最も薄い鋼板3として、表面粗さRaが1.0〜3.0μmの範囲内の亜鉛めっき鋼板の表面に、クロメート処理皮膜又はリン酸亜鉛処理皮膜を形成したものを使用した実施例No.1〜No.3の供試材、及び亜鉛めっき鋼板の表面にリン酸亜鉛処理皮膜を形成すると共に、その重ね合わせ面に高さ0.5mmの突起を3個/10mm設けたものを使用した実施例No.4の供試材は、いずれも散りの発生がなく、各鋼板の接合部において充分な大きさのナゲットが得られた。これに対して、最も薄い鋼板3として、表面皮膜形成及び表面加工を実施せず、亜鉛めっき鋼板の両面に防錆油を塗布しただけで、表面粗さRaが本発明の範囲に満たないものを使用した比較例No.5の供試材、及び重ね合わせ面に本発明の範囲から外れる高さ1.4mmの突起が形成された亜鉛めっき鋼板を使用した比較例No.6の供試材は、鋼板1と鋼板2との間には充分な大きさのナゲットが形成されたが、鋼板2と鋼板3との間にはナゲットが形成されず、散りも発生した。 As shown in Table 2, as the thinnest steel plate 3, a chromate-treated film or a zinc phosphate-treated film is formed on the surface of a galvanized steel sheet having a surface roughness Ra in the range of 1.0 to 3.0 μm. Example No. using 1-No. 3 test materials, and zinc to form a zinc phosphate coating on the surface of the plated steel sheet, Example No of using what its overlapping faces three of height 0.5mm protrusions / was 10 mm 2 provided . In all of the test materials of No. 4, there was no occurrence of scattering, and a sufficiently large nugget was obtained at the joint portion of each steel plate. On the other hand, as the thinnest steel plate 3, the surface roughness Ra is less than the range of the present invention by applying rust preventive oil to both sides of the galvanized steel plate without performing surface film formation and surface processing. Comparative Example No. 5 using Comparative Example No. 5 and Comparative Example No. 5 using a galvanized steel sheet in which a projection having a height of 1.4 mm deviating from the scope of the present invention was formed on the overlapping surface. In the test material No. 6, a sufficiently large nugget was formed between the steel plate 1 and the steel plate 2, but no nugget was formed between the steel plate 2 and the steel plate 3, and scattering occurred.

本発明の第1の実施形態に係る抵抗スポット溶接方法を模式的に示す図である。It is a figure which shows typically the resistance spot welding method which concerns on the 1st Embodiment of this invention. 接触抵抗の測定方法を模式的に示す図である。It is a figure which shows typically the measuring method of contact resistance.

符号の説明Explanation of symbols

1、2、3 鋼板
3a 表面皮膜
4 板組み
5、6、15、16 電極
1, 2, 3 Steel plate 3a Surface coating 4 Board assembly 5, 6, 15, 16 Electrode

Claims (5)

3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法において、
前記鋼板のうち板厚が最も薄いものを、一方の電極に接触するように板組みして溶接する工程を有し、
この板厚が最も薄い鋼板を、板厚が0.5〜1.0mm、強度が270〜980MPaであり、少なくとも重ねあわせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成され、接触抵抗値が50〜500mΩである裸鋼板又はめっき鋼板とすることを特徴とする重ね抵抗スポット溶接方法。
In a lap resistance spot welding method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld the contact points of each steel plate,
The steel plate having the thinnest thickness is assembled and welded so as to be in contact with one electrode,
The thinnest steel plate has a thickness of 0.5 to 1.0 mm and a strength of 270 to 980 MPa, and a phosphate treatment film, a chromate treatment film, an organic film or an inorganic film is formed on at least the overlapping surface. A lap resistance spot welding method, characterized in that the contact resistance value is a bare steel plate or a plated steel plate having a contact resistance value of 50 to 500 mΩ.
3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法において、
前記鋼板のうち板厚が最も薄いものを、一方の電極に接触するように板組みして溶接する工程を有し、
この板厚が最も薄い鋼板を、板厚が0.5〜1.0mm、強度が270〜980MPa、重ねあわせ面の平均粗さRaが1.0〜3.0μmの裸鋼板又はめっき鋼板で、少なくとも重ねあわせ面にリン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成されてものとすることを特徴とする重ね抵抗スポット溶接方法。
In a lap resistance spot welding method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld the contact points of each steel plate,
The steel plate having the thinnest thickness is assembled and welded so as to be in contact with one electrode,
This thin steel plate is a bare steel plate or a plated steel plate having a thickness of 0.5 to 1.0 mm, a strength of 270 to 980 MPa, and an average roughness Ra of the overlapping surface of 1.0 to 3.0 μm. A lap resistance spot welding method characterized in that a phosphate treatment film, a chromate treatment film, an organic film, or an inorganic film is formed on at least the overlapping surface.
3枚以上の鋼板を重ね合わせた板組みを、1対の溶接電極で挟持し、加圧しながら通電して各鋼板の接触箇所を溶接する重ね抵抗スポット溶接方法において、
前記鋼板のうち板厚が最も薄いものを、一方の電極に接触するように板組みして溶接する工程を有し、
この板厚が最も薄い鋼板を、板厚が0.5〜1.0mm、強度が270〜980MPaであり、少なくとも重ねあわせ面に、リン酸塩処理皮膜、クロメート処理皮膜、有機皮膜又は無機皮膜が形成されると共に、高さが0.1〜1.2mmの突起が10mmあたり1〜10個設けられた裸鋼板又はめっき鋼板とすることを特徴とする重ね抵抗スポット溶接方法。
In a lap resistance spot welding method in which a plate assembly in which three or more steel plates are overlapped is sandwiched between a pair of welding electrodes and energized while being pressed to weld the contact points of each steel plate,
The steel plate having the thinnest thickness is assembled and welded so as to be in contact with one electrode,
This steel plate having the thinnest plate thickness is 0.5 to 1.0 mm and the strength is 270 to 980 MPa, and at least the overlapping surface has a phosphate treatment film, a chromate treatment film, an organic film or an inorganic film. A lap resistance spot welding method, characterized by being formed as a bare steel plate or a plated steel plate having 1 to 10 protrusions having a height of 0.1 to 1.2 mm per 10 mm 2 .
前記突起は、ボタン型、コーン型、楕円形状又は角型であることを特徴とする請求項3に記載の重ね抵抗スポット溶接方法。   The lap resistance spot welding method according to claim 3, wherein the protrusion is a button shape, a cone shape, an elliptical shape, or a rectangular shape. パルセーション通電又は多段通電方式で溶接することを特徴とする請求項1乃至4のいずれか1項に記載の重ね抵抗スポット溶接方法。   The lap resistance spot welding method according to any one of claims 1 to 4, wherein welding is performed by pulsation energization or multistage energization.
JP2006350991A 2006-12-27 2006-12-27 Lap resistance spot welding method Expired - Fee Related JP4884958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006350991A JP4884958B2 (en) 2006-12-27 2006-12-27 Lap resistance spot welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006350991A JP4884958B2 (en) 2006-12-27 2006-12-27 Lap resistance spot welding method

Publications (2)

Publication Number Publication Date
JP2008161878A true JP2008161878A (en) 2008-07-17
JP4884958B2 JP4884958B2 (en) 2012-02-29

Family

ID=39692042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006350991A Expired - Fee Related JP4884958B2 (en) 2006-12-27 2006-12-27 Lap resistance spot welding method

Country Status (1)

Country Link
JP (1) JP4884958B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205156A (en) * 2013-04-11 2014-10-30 新日鐵住金株式会社 Method for manufacturing joined body, resistance spot welding apparatus, and composite electrode used for the same
JP2019034319A (en) * 2017-08-17 2019-03-07 日新製鋼株式会社 Projection welding method and projection welding electrode
JP2019098389A (en) * 2017-12-07 2019-06-24 日本製鉄株式会社 Steel plate for spot welding
WO2019124465A1 (en) * 2017-12-19 2019-06-27 日本製鉄株式会社 Method for manufacturing resistance spot welded joint

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9737956B2 (en) 2013-06-14 2017-08-22 GM Global Technology Operations LLC Resistance spot welding thin gauge steels

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317648A (en) * 1987-06-19 1988-12-26 Kawasaki Steel Corp Cold-rolled steel sheet excellent in workability and spot weldability
JPH11114675A (en) * 1994-08-11 1999-04-27 Touichi Watanabe Spot welding automatic assembling method for galvanized steel sheet
JP2000169976A (en) * 1998-12-02 2000-06-20 Natl Res Inst For Metals High tensile steel plate and welding method
JP2004002932A (en) * 2002-05-31 2004-01-08 Nippon Steel Corp Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
JP2004291088A (en) * 2003-03-13 2004-10-21 Sumitomo Metal Ind Ltd Method for inspecting surface quality of steel member
JP2005297054A (en) * 2004-04-16 2005-10-27 Nippon Steel Corp Projection welding method, projection welded joint, and projection welded structure
JP2006055898A (en) * 2004-08-23 2006-03-02 Jfe Steel Kk Resistance spot welding method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317648A (en) * 1987-06-19 1988-12-26 Kawasaki Steel Corp Cold-rolled steel sheet excellent in workability and spot weldability
JPH11114675A (en) * 1994-08-11 1999-04-27 Touichi Watanabe Spot welding automatic assembling method for galvanized steel sheet
JP2000169976A (en) * 1998-12-02 2000-06-20 Natl Res Inst For Metals High tensile steel plate and welding method
JP2004002932A (en) * 2002-05-31 2004-01-08 Nippon Steel Corp Aluminum plated steel sheet having excellent resistance weldability and worked parts obtained by using the same
JP2004291088A (en) * 2003-03-13 2004-10-21 Sumitomo Metal Ind Ltd Method for inspecting surface quality of steel member
JP2005297054A (en) * 2004-04-16 2005-10-27 Nippon Steel Corp Projection welding method, projection welded joint, and projection welded structure
JP2006055898A (en) * 2004-08-23 2006-03-02 Jfe Steel Kk Resistance spot welding method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014205156A (en) * 2013-04-11 2014-10-30 新日鐵住金株式会社 Method for manufacturing joined body, resistance spot welding apparatus, and composite electrode used for the same
JP2019034319A (en) * 2017-08-17 2019-03-07 日新製鋼株式会社 Projection welding method and projection welding electrode
JP2019098389A (en) * 2017-12-07 2019-06-24 日本製鉄株式会社 Steel plate for spot welding
JP7163018B2 (en) 2017-12-07 2022-10-31 日本製鉄株式会社 Steel plate for spot welding
WO2019124465A1 (en) * 2017-12-19 2019-06-27 日本製鉄株式会社 Method for manufacturing resistance spot welded joint
JP6584729B1 (en) * 2017-12-19 2019-10-02 日本製鉄株式会社 Method of manufacturing resistance spot welded joint

Also Published As

Publication number Publication date
JP4884958B2 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP4728926B2 (en) Lap resistance spot welding method
US5783794A (en) Method and material for resistance welding steel-base metal sheet to aluminum-base metal sheet
KR101744427B1 (en) Spot welding method for high-strength steel sheet excellent in joint strength
JP2008161877A (en) Lap resistance spot welding method
JP4884958B2 (en) Lap resistance spot welding method
JP6410003B1 (en) Method of manufacturing resistance spot welded joint
JP6079935B2 (en) Resistance spot welding method
US20200361021A1 (en) Method for production of resistance spot-welded joint
JP2013027890A (en) Joint body of aluminum alloy plate material to plated steel plate material
JP5138957B2 (en) Dissimilar joints of steel and aluminum
JP6094306B2 (en) Resistance spot welding method for galvanized steel sheet
JP2016041441A (en) Resistance spot welding method
EP0686453B1 (en) Resistance welding method for steel metal plates and aluminum metal plates and material for resistance welding
CN111451625A (en) Method for improving welding quality of resistance spot welding of coated ultrahigh-strength steel
KR102276817B1 (en) Method of Manufacturing Resistance Spot Welded Joints
JP2019171464A (en) Stud welding method and joining body
JP2005297054A (en) Projection welding method, projection welded joint, and projection welded structure
JP7047543B2 (en) Joined structure and its manufacturing method
JP2022030694A (en) Surface-treated steel sheet and method for manufacturing processed material
JP3117053B2 (en) Resistance welding method and material for dissimilar metals
JPH089104B2 (en) Resistance welding method for steel sheet
JP2002346780A (en) Method for lap welding of galvanized steel plates with laser beam
JPH04246182A (en) Surface-treated steel sheet excellent in lap resistance weldability
JP2002219578A (en) Resistance spot welding method for resin covered steel sheet
JP2004276058A (en) Resistance spot welding method for hot dip galvanized steel plate and joined body manufactured by resistance spot welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4884958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141216

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees